Devices and methods for multi-focus ultrasound therapy

Information

  • Patent Grant
  • 11969609
  • Patent Number
    11,969,609
  • Date Filed
    Monday, December 5, 2022
    2 years ago
  • Date Issued
    Tuesday, April 30, 2024
    8 months ago
Abstract
Embodiments of a dermatological cosmetic treatment and imaging system and method can include use of transducer to simultaneously or substantially simultaneously produce multiple cosmetic treatment zones in tissue. The system can include a hand wand, a removable transducer module, a control module, and/or graphical user interface. In some embodiments, the cosmetic treatment system may be used in cosmetic procedures, including brow lifts, fat reduction, sweat reduction, and treatment of the décolletage. Skin tightening, lifting and amelioration of wrinkles and stretch marks are provided.
Description
FIELD

Several embodiments of the present invention generally relate to noninvasive energy-based treatments to achieve cosmetic effects. For example, some embodiments generally relate to devices, systems and methods for providing multiple ultrasound treatment points or focus zones for performing various treatment and/or imaging procedures safely and effectively. Some embodiments relate to splitting an ultrasound therapy beam to two, three, four, or more focal zones for performing various treatment and/or imaging procedures with modulated and/or multiphasing. Some embodiments relate to splitting an ultrasound therapy beam to two, three, four, or more focal zones for performing various treatment and/or imaging procedures with poling techniques. Devices and methods of directing ultrasound therapy to multiple focus points in cosmetic and/or medical procedures are provided in several embodiments.


DESCRIPTION OF THE RELATED ART

Many cosmetic procedures involve invasive procedures that may require invasive surgery. Patients not only have to endure weeks of recovery time, but also are frequently required to undergo risky anesthetic procedures for aesthetic treatments.


SUMMARY

Although energy-based treatments have been disclosed for cosmetic and medical purposes, no procedures are known to Applicant, other that Applicant's own work, that successfully achieve an aesthetic effect using targeted and precise ultrasound to cause a visible and effective cosmetic result via a thermal pathway by splitting an ultrasound therapy beam to two, three, four, or more focal zones for performing various treatment and/or imaging procedures.


In several embodiments disclosed herein, non-invasive ultrasound is used to achieve one or more of the following effects: a face lift, a brow lift, a chin lift, an eye treatment, a wrinkle reduction, a scar reduction, a burn treatment, a tattoo removal, a vein removal, a vein reduction, a treatment on a sweat gland, a treatment of hyperhidrosis, a sun spot removal, an acne treatment, a pimple reduction. Treatment of the décolletage is provided in several embodiments. In another embodiment, the device may be used on adipose tissue (e.g., fat). In another embodiment the system, device and/or method may be applied in the genital area (e.g., vaginal rejuvenation and/or vaginal tightening, such as for tightening the supportive tissue of the vagina).


In accordance with various embodiments, a cosmetic ultrasound treatment system and/or method can non-invasively produce single or multiple cosmetic treatment zones and/or thermal coagulation points where ultrasound is focused in one or more locations in a region of treatment in tissue under a skin surface. Some systems and methods provide cosmetic treatment at different locations in tissue, such as at different depths, heights, widths, and/or positions. In one embodiment, a method and system comprise a multiple depth transducer system configured for providing ultrasound treatment to more than one region of interest, such as between at least two of a deep treatment region of interest, a superficial region of interest, and/or a subcutaneous region of interest. In one embodiment, a method and system comprise a transducer system configured for providing ultrasound treatment to more than one region of interest, such as between at least two points in various locations (e.g., at a fixed or variable depth, height, width, orientation, etc.) in a region of interest in tissue. Some embodiments can split a beam to focus at two, three, four, or more focal points (e.g., multiple focal points, multi-focal points) for cosmetic treatment zones and/or for imaging in a region of interest in tissue. Position of the focal points can be positioned axially, laterally, or otherwise within the tissue. Some embodiments can be configured for spatial control, such as by the location of a focus point, changing the distance from a transducer to a reflecting surface, and/or changing the angles of energy focused or unfocused to the region of interest, and/or configured for temporal control, such as by controlling changes in the frequency, drive amplitude and timing of the transducer. In some embodiments the position of multiple treatment zones or focal points with poling, phasic poling, biphasic poling, and/or multi-phasic poling. In some embodiments the position of multiple treatment zones or focal points with phasing, such as in one embodiment, electrical phasing. As a result, changes in the location of the treatment region, the number, shape, size and/or volume of treatment zones or lesions in a region of interest, as well as the thermal conditions, can be dynamically controlled over time.


In accordance with various embodiments, a cosmetic ultrasound treatment system and/or method can create multiple cosmetic treatment zones using one or more of phase modulation, poling, nonlinear acoustics, and/or Fourier transforms to create any spatial periodic pattern with one or multiple ultrasound portions. In one embodiment, a system simultaneously or sequentially delivers single or multiple treatment zones using poling at a ceramic level. In one embodiment, a poling pattern is function of focal depth and frequency, and the use of odd or even functions. In one embodiment, a process can be used in two or more dimensions to create any spatial periodic pattern. In one embodiment, an ultrasound beam is split axially and laterally to significantly reduce treatment time through the use of nonlinear acoustics and Fourier transforms. In one embodiment, modulation from a system and amplitude modulation from a ceramic or a transducer can be used to place multiple treatments zones in tissue, either sequentially or simultaneously.


In one embodiment, an aesthetic imaging and treatment system includes an ultrasonic probe that includes an ultrasound transducer configured to apply ultrasonic therapy to tissue at a plurality of locations at a focal depth with at least one of the group consisting of amplitude modulation poling and phase shifting. In one embodiment, the system includes a control module coupled to the ultrasonic probe for controlling the ultrasound transducer.


In various embodiments, the plurality of locations are positioned in a substantially linear sequence within a cosmetic treatment zone. In one embodiment, a first set of locations is positioned within a first cosmetic treatment zone and a second set of locations is positioned within a second cosmetic treatment zone, the first zone being different from the second zone. In one embodiment, the first cosmetic treatment zone includes a substantially linear sequence of the first set of locations and the second cosmetic treatment zone includes a substantially linear sequence of the second set of locations. In one embodiment, the ultrasound transducer is configured to apply ultrasonic therapy using amplitude modulation whereby a plurality of portions of the ultrasound transducer are configured to emit ultrasonic therapy at a plurality of amplitudes of acoustic intensity, wherein a first amplitude is different than a second amplitude. In one embodiment, the ultrasound transducer is configured to apply ultrasonic therapy phase shifting whereby a plurality of portions of the ultrasound transducer are configured to emit ultrasonic therapy at a plurality of phases of acoustic intensity, wherein a first phase is different than a second phase. In one embodiment, the ultrasound transducer is configured to apply ultrasonic therapy using amplitude modulation whereby a plurality of portions of the ultrasound transducer are configured to emit ultrasonic therapy at a plurality of amplitudes of acoustic intensity, wherein a first amplitude is different than a second amplitude, and apply ultrasonic therapy phase shifting whereby a plurality of portions of the ultrasound transducer are configured to emit ultrasonic therapy at a plurality of phases of acoustic intensity, wherein a first phase is different than a second phase. In one embodiment, the plurality of phases includes discrete phase values. In one embodiment, the ultrasound transducer includes piezoelectric material and the plurality of portions of the ultrasound transducer are configured to create a plurality of corresponding piezoelectric material variations in response to an electric field applied to the ultrasound transducer. In one embodiment, the plurality of piezoelectric material variations include at least one of expansion of the piezoelectric material and contraction of the piezoelectric material. In one embodiment, at least one portion of the ultrasonic transducer is configured to emit ultrasonic therapy at two or more amplitudes of acoustic intensity, and wherein the amplitude of ultrasonic therapy emitted by the at least one portion of the piezoelectric varies over time. In one embodiment, the system also includes a movement mechanism configured to be programmed to provide variable spacing between the plurality of individual cosmetic treatment zones. In one embodiment, a sequence of individual cosmetic treatment zones has a treatment spacing in a range from about 0.01 mm to about 25 mm. In various embodiments, the ultrasonic treatment is at least one of a face lift, a brow lift, a chin lift, an eye treatment, a wrinkle reduction, a scar reduction, a burn treatment, a tattoo removal, a skin tightening, a vein removal, a vein reduction, a treatment on a sweat gland, a treatment of hyperhidrosis, a sun spot removal, a fat treatment, a vaginal rejuvenation, and an acne treatment. In one embodiment, the ultrasonic transducer is configured to provide an acoustic power of the ultrasonic therapy in a range of between about 1 W to about 100 W and a frequency of about 1 MHz to about 10 MHz to thermally heat the tissue to cause coagulation.


In one embodiment, an aesthetic imaging and treatment system for use in cosmetic treatment includes: an ultrasonic probe and a control module. The ultrasonic probe includes a first switch operably controlling an ultrasonic imaging function for providing an ultrasonic imaging, a second switch operably controlling an ultrasonic treatment function for providing an ultrasonic treatment, and a movement mechanism configured to direct ultrasonic treatment in at least one sequence of individual thermal cosmetic treatment zones. In one embodiment, the system also includes a transducer module. In one embodiment, the transducer module is configured for both ultrasonic imaging and ultrasonic treatment. In one embodiment, the transducer module is configured for coupling to the ultrasonic probe. In one embodiment, the transducer module includes an ultrasound transducer configured to apply ultrasonic therapy to tissue at a plurality of locations at a focal depth. In one embodiment, the transducer module is configured to be operably coupled to at least one of the first switch, the second switch and the movement mechanism. In one embodiment, the control module includes a processor and a display for controlling the transducer module.


In various embodiments, the plurality of locations are positioned in a substantially linear sequence within a cosmetic treatment zone. In one embodiment, a first set of locations is positioned within a first cosmetic treatment zone and a second set of locations is positioned within a second cosmetic treatment zone, the first zone being different from the second zone. In one embodiment, the first cosmetic treatment zone includes a substantially linear sequence of the first set of locations and the second cosmetic treatment zone includes a substantially linear sequence of the second set of locations. In one embodiment, the transducer module is configured to apply ultrasonic therapy using amplitude modulation whereby a plurality of portions of the transducer module are configured to emit ultrasonic therapy at a plurality of amplitudes of acoustic intensity, wherein a first amplitude is different than a second amplitude. In one embodiment, the transducer module is configured to apply ultrasonic therapy phase shifting whereby a plurality of portions of the transducer module are configured to emit ultrasonic therapy at a plurality of phases of acoustic intensity, wherein a first phase is different than a second phase. In one embodiment, the transducer module is configured to apply ultrasonic therapy using amplitude modulation whereby a plurality of portions of the transducer module are configured to emit ultrasonic therapy at a plurality of amplitudes of acoustic intensity, wherein a first amplitude is different than a second amplitude. In one embodiment, the transducer module is configured to apply ultrasonic therapy phase shifting whereby a plurality of portions of the transducer module are configured to emit ultrasonic therapy at a plurality of phases of acoustic intensity, wherein a first phase is different than a second phase. In one embodiment, the plurality of phases includes discrete phase values. In one embodiment, the transducer module is configured to the transducer module includes piezoelectric material and the plurality of portions of the transducer module are configured to create a plurality of corresponding piezoelectric material variations in response to an electric field applied to the transducer module. In one embodiment, the plurality of piezoelectric material variations include at least one of expansion of the material and contraction of the material. In one embodiment, at least one portion of the transducer module is configured to emit ultrasonic therapy at two or more amplitudes of acoustic intensity, and wherein the amplitude of ultrasonic therapy emitted by the at least one portion of the transducer module varies over time. In one embodiment, the movement mechanism is configured to be programmed to provide variable spacing between a plurality of individual thermal cosmetic treatment zones. In one embodiment, a sequence of individual thermal cosmetic treatment zones has a treatment spacing in a range from about 0.01 mm to about 25 mm. In one embodiment, the first and second switches include user operated buttons or keys. In one embodiment, at least one of the first switch and the second switch is activated by the control module. In one embodiment, the treatment function is at least one of a face lift, a brow lift, a chin lift, an eye treatment, a wrinkle reduction, a scar reduction, a burn treatment, a tattoo removal, a skin tightening, a vein removal, a vein reduction, a treatment on a sweat gland, a treatment of hyperhidrosis, a sun spot removal, a fat treatment, a vaginal rejuvenation, and an acne treatment. In one embodiment, the transducer module is configured to provide an acoustic power of the ultrasonic therapy in a range of between about 1 W to about 100 W and a frequency of about 1 MHz to about 10 MHz to thermally heat the tissue to cause coagulation.


In one embodiment, a treatment system includes a controlling device operably controlling an ultrasonic treatment function for providing an ultrasonic treatment and a hand wand configured to direct ultrasonic treatment in a sequence of individual thermal cosmetic treatment zones. In one embodiment, the hand wand includes a transducer configured to apply ultrasonic therapy to tissue at a location at a focal depth, the location positioned within a thermal cosmetic treatment zone, wherein the transducer is further configured to apply ultrasonic therapy to tissue at a plurality of locations at the focal depth.


In one embodiment, a method of performing a cosmetic procedure includes coupling a transducer module with an ultrasonic probe, wherein the ultrasonic probe includes a first switch to control acoustic imaging, wherein the ultrasonic probe includes a second switch to control acoustic therapy for causing a plurality of individual cosmetic treatment zones, wherein the ultrasonic probe includes a movement mechanism to provide desired spacing between the individual cosmetic treatment zones. In one embodiment, the method includes contacting the transducer module with a subject's skin surface. In one embodiment, the method includes activating the first switch on the ultrasonic probe to acoustically image, with the transducer module, a region below the skin surface. In one embodiment, the method includes activating the second switch on the ultrasonic probe to acoustically treat, with the transducer module, the region below the skin surface in a desired sequence of individual cosmetic treatment zones that is controlled by the movement mechanism, wherein the transducer module includes an ultrasound transducer configured to apply ultrasonic therapy to tissue at a plurality of locations at a focal depth.


In one embodiment, a treatment system includes a controlling device operably controlling an ultrasonic treatment function for providing an ultrasonic treatment, and a hand wand configured to direct ultrasonic treatment in a sequence of individual thermal cosmetic treatment zones. In one embodiment, the hand wand includes a transducer configured to apply ultrasonic therapy to tissue at a plurality of locations at a focal depth.


In one embodiment, the use of an aesthetic imaging and treatment system is for the non-invasive cosmetic treatment of skin.


In accordance with various embodiments, an aesthetic ultrasound treatment system for creating multiple focus points with an ultrasound transducer includes an ultrasonic probe comprising an ultrasound transducer configured to apply ultrasonic therapy to tissue at a plurality of locations at a focal depth with at least one of the group consisting of amplitude modulation poling and phase shifting, and a control module coupled to the ultrasonic probe for controlling the ultrasound transducer.


In one embodiment, the ultrasound transducer comprises a single ultrasound transduction element. In one embodiment, the plurality of locations are positioned in a substantially linear sequence within a cosmetic treatment zone. In one embodiment, a first set of locations is positioned within a first cosmetic treatment zone and a second set of locations is positioned within a second cosmetic treatment zone, the first zone being different from the second zone. In one embodiment, the first cosmetic treatment zone comprises a substantially linear sequence of the first set of locations and the second cosmetic treatment zone comprises a substantially linear sequence of the second set of locations.


In one embodiment, the ultrasound transducer is configured to apply ultrasonic therapy using amplitude modulation whereby a plurality of portions of the ultrasound transducer are configured to emit ultrasonic therapy at a plurality of amplitudes of acoustic intensity, wherein a first amplitude is different than a second amplitude. In one embodiment, the ultrasound transducer is configured to apply ultrasonic therapy phase shifting whereby a plurality of portions of the ultrasound transducer are configured to emit ultrasonic therapy at a plurality of phases of acoustic intensity, wherein a first phase is different than a second phase. In one embodiment, the ultrasound transducer is configured to apply ultrasonic therapy using amplitude modulation whereby a plurality of portions of the ultrasound transducer are configured to emit ultrasonic therapy at a plurality of amplitudes of acoustic intensity, wherein a first amplitude is different than a second amplitude, and apply ultrasonic therapy phase shifting whereby a plurality of portions of the ultrasound transducer are configured to emit ultrasonic therapy at a plurality of phases of acoustic intensity, wherein a first phase is different than a second phase. In one embodiment, the plurality of phases comprises discrete phase values. In one embodiment, the ultrasound transducer comprises piezoelectric material and the plurality of portions of the ultrasound transducer are configured to create a plurality of corresponding piezoelectric material variations in response to an electric field applied to the ultrasound transducer. In one embodiment, the plurality of piezoelectric material variations comprise at least one of expansion of the piezoelectric material and contraction of the piezoelectric material. In one embodiment, at least one portion of the ultrasonic transducer is configured to emit ultrasonic therapy at two or more amplitudes of acoustic intensity, and wherein the amplitude of ultrasonic therapy emitted by the at least one portion of the piezoelectric varies over time.


In one embodiment, the system further includes a movement mechanism configured to be programmed to provide variable spacing between the plurality of individual cosmetic treatment zones. In one embodiment, a sequence of individual cosmetic treatment zones has a treatment spacing in a range from about 0.01 mm to about 25 mm.


In various embodiments, the ultrasonic treatment is at least one of a face lift, a brow lift, a chin lift, an eye treatment, a wrinkle reduction, a scar reduction, a burn treatment, a tattoo removal, a skin tightening, a vein removal, a vein reduction, a treatment on a sweat gland, a treatment of hyperhidrosis, a sun spot removal, a fat treatment, a vaginal rejuvenation, and an acne treatment.


In one embodiment, the ultrasonic transducer is configured to provide an acoustic power of the ultrasonic therapy in a range of between about 1 W to about 100 W and a frequency of about 1 MHz to about 10 MHz to thermally heat the tissue to cause coagulation.


In accordance with various embodiments, an aesthetic treatment system for use in cosmetic treatment for creating multiple focal points with an ultrasound transducer includes an ultrasonic probe that includes a first switch operably controlling an ultrasonic imaging function for providing an ultrasonic imaging, a second switch operably controlling an ultrasonic treatment function for providing an ultrasonic treatment, and a movement mechanism configured to direct ultrasonic treatment in at least one sequence of individual thermal cosmetic treatment zones. The system includes a transducer module configured to apply ultrasonic therapy with at least one of the group consisting of amplitude modulation poling and phase shifting, wherein the transducer module is configured for both ultrasonic imaging and ultrasonic treatment, wherein the transducer module is configured for coupling to the ultrasonic probe, wherein the transducer module comprises an ultrasound transducer configured to apply ultrasonic therapy to tissue at a plurality of locations at a focal depth, wherein the transducer module is configured to be operably coupled to at least one of the first switch, the second switch and the movement mechanism, and a control module, wherein the control module comprises a processor and a display for controlling the transducer module.


In one embodiment, the plurality of locations are positioned in a substantially linear sequence within a cosmetic treatment zone. In one embodiment, a first set of locations is positioned within a first cosmetic treatment zone and a second set of locations is positioned within a second cosmetic treatment zone, the first zone being different from the second zone. In one embodiment, the first cosmetic treatment zone comprises a substantially linear sequence of the first set of locations and the second cosmetic treatment zone comprises a substantially linear sequence of the second set of locations.


In one embodiment, the transducer module is configured to apply ultrasonic therapy using amplitude modulation whereby a plurality of portions of the transducer module are configured to emit ultrasonic therapy at a plurality of amplitudes of acoustic intensity, wherein a first amplitude is different than a second amplitude. In one embodiment, the transducer module is configured to apply ultrasonic therapy phase shifting whereby a plurality of portions of the transducer module are configured to emit ultrasonic therapy at a plurality of phases of acoustic intensity, wherein a first phase is different than a second phase. In one embodiment, the transducer module is configured to apply ultrasonic therapy using amplitude modulation whereby a plurality of portions of the transducer module are configured to emit ultrasonic therapy at a plurality of amplitudes of acoustic intensity, wherein a first amplitude is different than a second amplitude, and apply ultrasonic therapy phase shifting whereby a plurality of portions of the transducer module are configured to emit ultrasonic therapy at a plurality of phases of acoustic intensity, wherein a first phase is different than a second phase. In one embodiment, the plurality of phases comprises discrete phase values. In one embodiment, the transducer module comprises piezoelectric material and the plurality of portions of the transducer module are configured to create a plurality of corresponding piezoelectric material variations in response to an electric field applied to the transducer module. In one embodiment, the plurality of piezoelectric material variations comprise at least one of expansion of the material and contraction of the material. In one embodiment, at least one portion of the transducer module is configured to emit ultrasonic therapy at two or more amplitudes of acoustic intensity, and wherein the amplitude of ultrasonic therapy emitted by the at least one portion of the transducer module varies over time.


In one embodiment, the movement mechanism is configured to be programmed to provide variable spacing between a plurality of individual thermal cosmetic treatment zones. In one embodiment, a sequence of individual thermal cosmetic treatment zones has a treatment spacing in a range from about 0.01 mm to about 25 mm. In one embodiment, the first and second switches comprises user operated buttons or keys. In one embodiment, at least one of the first switch and the second switch is activated by the control module.


In one embodiment, the treatment function is at least one of a face lift, a brow lift, a chin lift, an eye treatment, a wrinkle reduction, a scar reduction, a burn treatment, a tattoo removal, a skin tightening, a vein removal, a vein reduction, a treatment on a sweat gland, a treatment of hyperhidrosis, a sun spot removal, a fat treatment, a vaginal rejuvenation, and an acne treatment.


In one embodiment, the transducer module is configured to provide an acoustic power of the ultrasonic therapy in a range of between about 1 W to about 100 W and a frequency of about 1 MHz to about 10 MHz to thermally heat the tissue to cause coagulation.


In accordance with various embodiments, a treatment system includes a controlling device operably controlling an ultrasonic treatment function for providing an ultrasonic treatment, and a hand wand configured to direct ultrasonic treatment in a sequence of individual thermal cosmetic treatment zones. The hand wand includes a transducer configured to apply ultrasonic therapy to tissue at a location at a focal depth, the location positioned within a thermal cosmetic treatment zone, wherein the transducer is further configured to apply ultrasonic therapy to tissue at a plurality of locations at the focal depth.


In accordance with various embodiments, a method of performing a noninvasive cosmetic procedure on the skin by creating multiple focal points with a single transducer includes coupling a transducer module with an ultrasonic probe, wherein the ultrasonic probe comprises a first switch to control acoustic imaging, wherein the ultrasonic probe comprises a second switch to control acoustic therapy for causing a plurality of individual cosmetic treatment zones, wherein the ultrasonic probe comprises a movement mechanism to provide desired spacing between the individual cosmetic treatment zones, contacting the transducer module with a subject's skin surface, activating the first switch on the ultrasonic probe to acoustically image, with the transducer module, a region below the skin surface, and activating the second switch on the ultrasonic probe to acoustically treat, with the transducer module, the region below the skin surface in a desired sequence of individual cosmetic treatment zones that is controlled by the movement mechanism, wherein the transducer module comprises a single ultrasound transducer configured to apply ultrasonic therapy to tissue at a plurality of locations at a focal depth.


In accordance with various embodiments, an aesthetic treatment system for creating multiple focal points in tissue with an ultrasound transducer includes a controlling device operably controlling an ultrasonic treatment function for providing an ultrasonic treatment, and a hand wand configured to direct ultrasonic treatment in a sequence of individual thermal cosmetic treatment zones. The hand wand includes a transducer configured to apply ultrasonic therapy to tissue at a plurality of locations at a focal depth. In accordance with various embodiments, the use of an aesthetic treatment system is for the non-invasive cosmetic treatment of skin.


In accordance with various embodiments, an aesthetic ultrasound treatment system for creating multiple focus points with an ultrasound transducer includes an ultrasonic probe comprising an ultrasound transducer configured to apply ultrasonic therapy to tissue at a plurality of locations at a focal depth with at least one of the group consisting of amplitude modulation poling and phase shifting, and a control module coupled to the ultrasonic probe for controlling the ultrasound transducer. In one embodiment, the ultrasound transducer is configured to apply ultrasonic therapy using amplitude modulation whereby a plurality of portions of the ultrasound transducer are configured to emit ultrasonic therapy at a plurality of amplitudes of acoustic intensity, wherein a first amplitude is different than a second amplitude. In one embodiment, the ultrasound transducer is configured to apply ultrasonic therapy phase shifting whereby a plurality of portions of the ultrasound transducer are configured to emit ultrasonic therapy at a plurality of phases of acoustic intensity, wherein a first phase is different than a second phase. In one embodiment, the ultrasound transducer is configured to apply ultrasonic therapy using amplitude modulation whereby a plurality of portions of the ultrasound transducer are configured to emit ultrasonic therapy at a plurality of amplitudes of acoustic intensity, wherein a first amplitude is different than a second amplitude, and apply ultrasonic therapy phase shifting whereby a plurality of portions of the ultrasound transducer are configured to emit ultrasonic therapy at a plurality of phases of acoustic intensity, wherein a first phase is different than a second phase. In one embodiment, the plurality of phases comprises discrete phase values. In one embodiment, the ultrasound transducer comprises piezoelectric material and the plurality of portions of the ultrasound transducer are configured to create a plurality of corresponding piezoelectric material variations in response to an electric field applied to the ultrasound transducer. In one embodiment, the plurality of piezoelectric material variations comprise at least one of expansion of the piezoelectric material and contraction of the piezoelectric material. In one embodiment, at least one portion of the ultrasonic transducer is configured to emit ultrasonic therapy at two or more amplitudes of acoustic intensity, and wherein the amplitude of ultrasonic therapy emitted by the at least one portion of the piezoelectric varies over time. In various embodiments, the ultrasonic treatment is at least one of a face lift, a brow lift, a chin lift, an eye treatment, a wrinkle reduction, a scar reduction, a burn treatment, a tattoo removal, a skin tightening, a vein removal, a vein reduction, a treatment on a sweat gland, a treatment of hyperhidrosis, a sun spot removal, a fat treatment, a vaginal rejuvenation, and an acne treatment.


In accordance with various embodiments, an aesthetic treatment system for use in cosmetic treatment for creating multiple focal points with an ultrasound transducer includes an ultrasonic probe that includes a first switch operably controlling an ultrasonic imaging function for providing an ultrasonic imaging, a second switch operably controlling an ultrasonic treatment function for providing an ultrasonic treatment, and a movement mechanism configured to direct ultrasonic treatment in at least one sequence of individual thermal cosmetic treatment zones. The system includes a transducer module configured to apply ultrasonic therapy with at least one of the group consisting of amplitude modulation poling and phase shifting, wherein the transducer module is configured for both ultrasonic imaging and ultrasonic treatment, wherein the transducer module is configured for coupling to the ultrasonic probe, wherein the transducer module comprises an ultrasound transducer configured to apply ultrasonic therapy to tissue at a plurality of locations at a focal depth, wherein the transducer module is configured to be operably coupled to at least one of the first switch, the second switch and the movement mechanism, and a control module, wherein the control module comprises a processor and a display for controlling the transducer module. In one embodiment, the ultrasound module comprises a single ultrasound transducer. In one embodiment, the ultrasound module comprises a single ultrasound transduction element. In one embodiment, the ultrasound module comprises a single ultrasound transducer comprising a single transduction element. In one embodiment, the plurality of locations are positioned in a substantially linear sequence within a cosmetic treatment zone. In one embodiment, a first set of locations is positioned within a first cosmetic treatment zone and a second set of locations is positioned within a second cosmetic treatment zone, the first zone being different from the second zone. In one embodiment, the first cosmetic treatment zone comprises a substantially linear sequence of the first set of locations and the second cosmetic treatment zone comprises a substantially linear sequence of the second set of locations. In one embodiment, the transducer module is configured to apply ultrasonic therapy using amplitude modulation whereby a plurality of portions of the transducer module are configured to emit ultrasonic therapy at a plurality of amplitudes of acoustic intensity, wherein a first amplitude is different than a second amplitude. In one embodiment, the transducer module is configured to apply ultrasonic therapy phase shifting whereby a plurality of portions of the transducer module are configured to emit ultrasonic therapy at a plurality of phases of acoustic intensity, wherein a first phase is different than a second phase. In one embodiment, the transducer module is configured to apply ultrasonic therapy using amplitude modulation whereby a plurality of portions of the transducer module are configured to emit ultrasonic therapy at a plurality of amplitudes of acoustic intensity, wherein a first amplitude is different than a second amplitude, and apply ultrasonic therapy phase shifting whereby a plurality of portions of the transducer module are configured to emit ultrasonic therapy at a plurality of phases of acoustic intensity, wherein a first phase is different than a second phase. In one embodiment, the plurality of phases comprises discrete phase values. In one embodiment, the transducer module comprises piezoelectric material and the plurality of portions of the transducer module are configured to create a plurality of corresponding piezoelectric material variations in response to an electric field applied to the transducer module. In one embodiment, the plurality of piezoelectric material variations comprise at least one of expansion of the material and contraction of the material. In one embodiment, at least one portion of the transducer module is configured to emit ultrasonic therapy at two or more amplitudes of acoustic intensity, and wherein the amplitude of ultrasonic therapy emitted by the at least one portion of the transducer module varies over time. In one embodiment, the movement mechanism is configured to be programmed to provide variable spacing between a plurality of individual thermal cosmetic treatment zones. In one embodiment, a sequence of individual thermal cosmetic treatment zones has a treatment spacing in a range from about 0.01 mm to about 25 mm. In one embodiment, the first and second switches comprises user operated buttons or keys. In one embodiment, at least one of the first switch and the second switch is activated by the control module. In one embodiment, the treatment function is at least one of a face lift, a brow lift, a chin lift, an eye treatment, a wrinkle reduction, a scar reduction, a burn treatment, a tattoo removal, a skin tightening, a vein removal, a vein reduction, a treatment on a sweat gland, a treatment of hyperhidrosis, a sun spot removal, a fat treatment, a vaginal rejuvenation, and an acne treatment.


In one embodiment, an aesthetic imaging and treatment system for use in cosmetic treatment includes an ultrasonic probe configured for ultrasonic imaging and ultrasonic treatment of tissue at a plurality of locations at a focal depth. In one embodiment, the probe includes a transducer module configured for coupling to the ultrasonic probe, wherein the transducer module comprises an ultrasound transducer configured to apply an ultrasonic therapy to tissue at the plurality of locations at the focal depth. In one embodiment, a first switch operably controlling an ultrasonic imaging function for providing an ultrasonic imaging. In one embodiment, a second switch operably controlling an ultrasonic treatment function for providing the ultrasonic therapy. In one embodiment, a movement mechanism is configured to direct ultrasonic treatment in at least one sequence of individual thermal cosmetic treatment zones, wherein the transducer module is configured to be operably coupled to at least one of the first switch, the second switch and the movement mechanism. In one embodiment, the control module comprises a processor and a display for controlling the transducer module. In one embodiment, the module is removable. For example, some non-limiting embodiments transducers can be configured for a tissue depth of 1.5 mm, 3 mm, 4.5 mm, 6 mm, less than 3 mm, between 1.5 mm and 3 mm, between 1.5 mm and 4.5 mm, more than more than 4.5 mm, more than 6 mm, and anywhere in the ranges of 0.1 mm-3 mm, 0.1 mm-4.5 mm, 0.1 mm-25 mm, 0.1 mm-100 mm, and any depths therein.


In various embodiments, the plurality of locations are positioned in a substantially linear sequence within a cosmetic treatment zone. In one embodiment, a first set of locations is positioned within a first cosmetic treatment zone and a second set of locations is positioned within a second cosmetic treatment zone, the first zone being different from the second zone. In one embodiment, the first cosmetic treatment zone comprises a substantially linear sequence of the first set of locations and the second cosmetic treatment zone comprises a substantially linear sequence of the second set of locations. In one embodiment, the transducer module is configured to apply ultrasonic therapy using amplitude modulation whereby the transducer module comprises a plurality of portions that are configured to emit ultrasonic therapy at a plurality of amplitudes of acoustic intensity, wherein a first amplitude is different than a second amplitude. In one embodiment, the transducer module is configured to apply ultrasonic therapy phase shifting whereby the transducer module comprises a plurality of portions that are configured to emit ultrasonic therapy at a plurality of phases of acoustic intensity, wherein a first phase is different than a second phase.


In one embodiment, a movement mechanism is a motion mechanism. In various embodiments, a movement mechanism is configured to move a transducer within a module or a probe. In one embodiment, a transducer is held by a transducer holder. In one embodiment, the transducer holder includes a sleeve which is moved along motion constraining bearings, such as linear bearings, namely, a bar (or shaft) to ensure a repeatable linear movement of the transducer. In one embodiment, sleeve is a spline bushing which prevents rotation about a spline shaft, but any guide to maintain the path of motion is appropriate.


In one embodiment, the transducer holder is driven by a motion mechanism, which may be located in a hand wand or in a module, or in a probe. In one embodiment, a motion mechanism 400 includes any one or more of a scotch yoke, a movement member, and a magnetic coupling. In one embodiment, the magnetic coupling helps move the transducer. One benefit of a motion mechanism is that it provides for a more efficient, accurate and precise use of an ultrasound transducer, for imaging and/or therapy purposes. One advantage this type of motion mechanism has over conventional fixed arrays of multiple transducers fixed in space in a housing is that the fixed arrays are a fixed distance apart.


By placing transducer on a track (e.g., such as a linear track) under controller control, embodiments of the system and device provide for adaptability and flexibility in addition to efficiency, accuracy and precision. Real time and near real time adjustments can be made to imaging and treatment positioning along the controlled motion by the motion mechanism. In addition to the ability to select nearly any resolution based on the incremental adjustments made possible by the motion mechanism, adjustments can be made if imaging detects abnormalities or conditions meriting a change in treatment spacing and targeting. In one embodiment, one or more sensors may be included in the module. In one embodiment, one or more sensors may be included in the module to ensure that a mechanical coupling between the movement member and the transducer holder is indeed coupled. In one embodiment, an encoder may be positioned on top of the transducer holder and a sensor may be located in a portion of the module, or vice versa (swapped).


In various embodiments the sensor is a magnetic sensor, such as a giant magnetoresistive effect (GMR) or Hall Effect sensor, and the encoder a magnet, collection of magnets, or multi-pole magnetic strip. The sensor may be positioned as a transducer module home position. In one embodiment, the sensor is a contact pressure sensor. In one embodiment, the sensor is a contact pressure sensor on a surface of the device to sense the position of the device or the transducer on the patient. In various embodiments, the sensor can be used to map the position of the device or a component in the device in one, two, or threes dimensions. In one embodiment the sensor is configured to sense the position, angle, tilt, orientation, placement, elevation, or other relationship between the device (or a component therein) and the patient. In one embodiment, the sensor comprises an optical sensor. In one embodiment, the sensor comprises a roller ball sensor. In one embodiment, the sensor is configured to map a position in one, two and/or three dimensions to compute a distance between areas or lines of treatment on the skin or tissue on a patient.


Motion mechanism can be any motion mechanism that may be found to be useful for movement of the transducer. Other embodiments of motion mechanisms useful herein can include worm gears and the like. In various embodiments, the motion mechanism is located in a module 200. In various embodiments, the motion mechanism can provide for linear, rotational, multi-dimensional motion or actuation, and the motion can include any collection of points and/or orientations in space. Various embodiments for motion can be used in accordance with several embodiments, including but not limited to rectilinear, circular, elliptical, arc-like, spiral, a collection of one or more points in space, or any other 1-D, 2-D, or 3-D positional and attitudinal motional embodiments. The speed of the motion mechanism may be fixed or may be adjustably controlled by a user. One embodiment, a speed of the motion mechanism for an image sequence may be different than that for a treatment sequence. In one embodiment, the speed of the motion mechanism is controllable by a controller.


In various embodiments, the transducer module is configured to apply ultrasonic therapy using amplitude modulation whereby the transducer module comprises a plurality of portions that are configured to emit ultrasonic therapy at a plurality of amplitudes of acoustic intensity, wherein a first amplitude is different than a second amplitude, and apply ultrasonic therapy phase shifting whereby the transducer module comprises a plurality of portions that are configured to emit ultrasonic therapy at a plurality of phases of acoustic intensity, wherein a first phase is different than a second phase.


In one embodiment, the plurality of phases comprises discrete phase values. In one embodiment, the transducer module comprises piezoelectric material and the plurality of portions of the transducer module are configured to create a plurality of corresponding piezoelectric material variations in response to an electric field applied to the transducer module. In one embodiment, the plurality of piezoelectric material variations comprise at least one of expansion of the material and contraction of the material. In one embodiment, the transducer module comprises at least one portion that is configured to emit ultrasonic therapy at two or more amplitudes of acoustic intensity, and wherein the amplitude of ultrasonic therapy emitted by the at least one portion of the transducer module varies over time.


In one embodiment, the movement mechanism is configured to be programmed to provide variable spacing between a plurality of individual thermal cosmetic treatment zones. In one embodiment, a sequence of individual thermal cosmetic treatment zones has a treatment spacing in a range from about 0.01 mm to about 25 mm (e.g., 1 mm, 1.5 mm, 2 mm, 1-5 mm). In one embodiment, the first and second switches comprise user operated buttons or keys. In one embodiment, at least one of the first switch and the second switch is activated by the control module.


In various embodiments, the treatment function is at least one of a face lift, a brow lift, a chin lift, an eye treatment, a wrinkle reduction, a scar reduction, a burn treatment, a tattoo removal, a skin tightening, a vein removal, a vein reduction, a treatment on a sweat gland, a treatment of hyperhidrosis, a sun spot removal, a fat treatment, a vaginal rejuvenation, and an acne treatment. In one embodiment, the transducer module is configured to provide an acoustic power of the ultrasonic therapy in a range of between about 1 W to about 100 W (e.g., 5-40 W, 10-50 W, 25-35 W) and a frequency of about 1 MHz to about 10 MHz to thermally heat the tissue to cause coagulation. In one embodiment, the acoustic power can be from a range of 1 W to about 100 W in a frequency range from about 1 MHz to about 12 MHz (e.g., 4 MHz, 7 MHz, 10 MHz, 4-10 MHz), or from about 10 W to about 50 W at a frequency range from about 3 MHz to about 8 MHz. In one embodiment, the acoustic power and frequencies are about 40 W at about 4.3 MHz and about 30 W at about 7.5 MHz. An acoustic energy produced by this acoustic power can be between about 0.01 joule (“J”) to about 10 J or about 2 J to about 5 J. In one embodiment, the acoustic energy is in a range less than about 3 J.


In various embodiments, a multi-focus ultrasound treatment system includes a controlling device operably controlling an ultrasonic treatment function for providing an ultrasonic treatment and a hand wand configured to direct ultrasonic treatment in a sequence of individual thermal cosmetic treatment zones. The hand wand includes a transducer configured to apply ultrasonic therapy to tissue at a location at a focal depth, the location positioned within a thermal cosmetic treatment zone, wherein the transducer is further configured to apply ultrasonic therapy to tissue simultaneously at a plurality of locations at the focal depth.


In various embodiments, an aesthetic imaging and multi-focus treatment system includes an ultrasonic probe comprising an ultrasound transducer configured to apply ultrasonic therapy to tissue at a plurality of locations at a focal depth with at least one of the group consisting of amplitude modulation poling and phase shifting, and a control module coupled to the ultrasonic probe for controlling the ultrasound transducer. In one embodiment, the plurality of locations are positioned in a substantially linear sequence within a cosmetic treatment zone. In one embodiment, a first set of locations is positioned within a first cosmetic treatment zone and a second set of locations is positioned within a second cosmetic treatment zone, the first zone being different from the second zone. In one embodiment, the first cosmetic treatment zone comprises a substantially linear sequence of the first set of locations and the second cosmetic treatment zone comprises a substantially linear sequence of the second set of locations. In one embodiment, the ultrasound transducer is configured to apply ultrasonic therapy using amplitude modulation whereby the ultrasound transducer comprises a plurality of portions that are configured to emit ultrasonic therapy at a plurality of amplitudes of acoustic intensity, wherein a first amplitude is different than a second amplitude. In one embodiment, the ultrasound transducer is configured to apply ultrasonic therapy phase shifting whereby the ultrasound transducer comprises a plurality of portions that are configured to emit ultrasonic therapy at a plurality of phases of acoustic intensity, wherein a first phase is different than a second phase. In one embodiment, the ultrasound transducer is configured to apply ultrasonic therapy using amplitude modulation whereby the ultrasound transducer comprises a plurality of portions that are configured to emit ultrasonic therapy at a plurality of amplitudes of acoustic intensity, wherein a first amplitude is different than a second amplitude, and apply ultrasonic therapy phase shifting whereby the ultrasound transducer comprises a plurality of portions that are configured to emit ultrasonic therapy at a plurality of phases of acoustic intensity, wherein a first phase is different than a second phase. In one embodiment, the plurality of phases comprises discrete phase values.


In one embodiment, the ultrasound transducer comprises piezoelectric material and the plurality of portions of the ultrasound transducer are configured to create a plurality of corresponding piezoelectric material variations in response to an electric field applied to the ultrasound transducer. In one embodiment, the plurality of piezoelectric material variations comprise at least one of expansion of the piezoelectric material and contraction of the piezoelectric material. In one embodiment, the ultrasonic transducer comprises at least one portion that is configured to emit ultrasonic therapy at two or more amplitudes of acoustic intensity, and wherein the amplitude of ultrasonic therapy emitted by the at least one portion of the piezoelectric varies over time. In one embodiment, the system also includes a movement mechanism configured to be programmed to provide variable spacing between the plurality of individual cosmetic treatment zones. In one embodiment, a sequence of individual cosmetic treatment zones has a treatment spacing in a range from about 0.01 mm to about 25 mm. In one embodiment, the ultrasonic treatment is at least one of a face lift, a brow lift, a chin lift, an eye treatment, a wrinkle reduction, a scar reduction, a burn treatment, a tattoo removal, a skin tightening, a vein removal, a vein reduction, a treatment on a sweat gland, a treatment of hyperhidrosis, a sun spot removal, a fat treatment, a vaginal rejuvenation, and an acne treatment. In one embodiment, the ultrasonic transducer is configured to provide an acoustic power of the ultrasonic therapy in a range of between about 1 W to about 100 W and a frequency of about 1 MHz to about 10 MHz to thermally heat the tissue to cause coagulation.


In various embodiments, a treatment system includes a controlling device operably controlling an ultrasonic treatment function for providing an ultrasonic treatment, and a hand wand configured to direct ultrasonic treatment in a sequence of individual thermal cosmetic treatment zones. In one embodiment, the hand wand includes a transducer configured to simultaneously apply ultrasonic therapy to tissue at a plurality of locations at a focal depth.


In various embodiments, a system of performing a cosmetic procedure that is not performed by a doctor, includes an ultrasonic probe comprising a transducer module. In one embodiment, the transducer module comprises an ultrasound transducer configured to apply ultrasonic therapy to tissue at a plurality of locations at a focal depth with at least one of the group consisting of amplitude modulation poling and phase shifting. In one embodiment, the ultrasonic probe comprises a first switch to control acoustic imaging, the ultrasonic probe comprises a second switch to control acoustic therapy for causing a plurality of individual cosmetic treatment zones, and the ultrasonic probe comprises a movement mechanism to provide desired spacing between the individual cosmetic treatment zones.


In various embodiments, aesthetic imaging and treatment system for use in cosmetic treatment, includes an ultrasonic probe. In one embodiment, a transducer module includes an ultrasound transducer configured to apply ultrasonic therapy through an aperture in an acoustically transparent member to form a thermal coagulation point (TCP) at a focal depth in tissue. In one embodiment, a first switch operably controls an ultrasonic imaging function for providing an ultrasonic imaging, a second switch operably controls an ultrasonic treatment function for providing an ultrasonic treatment, and a movement mechanism is configured to direct ultrasonic treatment in at least one sequence of individual thermal cosmetic treatment zones. In various embodiments, the transducer module is configured for both ultrasonic imaging and ultrasonic treatment, the transducer module is configured for coupling to the ultrasonic probe, the transducer module is configured to be operably coupled to at least one of the first switch, the second switch and the movement mechanism. In one embodiment, a control module comprises a processor and a display for controlling the transducer module.


In one embodiment, the plurality of locations are positioned in a substantially linear sequence within a cosmetic treatment zone. In one embodiment, a first set of locations is positioned within a first cosmetic treatment zone and a second set of locations is positioned within a second cosmetic treatment zone, the first zone being different from the second zone. In one embodiment, the first cosmetic treatment zone comprises a substantially linear sequence of the first set of locations and the second cosmetic treatment zone comprises a substantially linear sequence of the second set of locations. In one embodiment, the movement mechanism is configured to provide fixed spacing between a plurality of individual thermal cosmetic treatment zones. In one embodiment, a sequence of individual thermal cosmetic treatment zones has a treatment spacing in a range from about 0.01 mm to about 25 mm. In one embodiment, the first and second switches comprises user operated buttons or keys. In one embodiment, the treatment function is at least one of a face lift, a brow lift, a chin lift, an eye treatment, a wrinkle reduction, a scar reduction, a burn treatment, a tattoo removal, a skin tightening, a vein removal, a vein reduction, a treatment on a sweat gland, a treatment of hyperhidrosis, a sun spot removal, a fat treatment, a vaginal rejuvenation, and an acne treatment. In one embodiment, the transducer module is configured to provide an acoustic power of the ultrasonic therapy in a range of between about 1 W to about 100 W and a frequency of about 1 MHz to about 10 MHz to thermally heat the tissue to cause coagulation.


In various embodiments, a cosmetic treatment system includes a controlling device operably controlling an ultrasonic treatment function for providing an ultrasonic treatment to different depths below a skin surface, and a hand wand configured to direct ultrasonic treatment at two or more focal depths below the skin surface, the hand wand configured to connect at least two interchangeable transducer modules configured to apply the ultrasonic treatment to said two or more focal depths below the skin surface, wherein each of the transducer modules is configured to create one or more sequences of thermal coagulation points (TCPs).


In one embodiment, the system also includes an imaging transducer configured to provide images of at least one depth below the skin surface. In one embodiment, the system also includes a movement mechanism to place the sequence of individual discrete lesions in a linear sequence. In one embodiment, the transducer modules comprise at least one transducer module that is configured to provide ultrasound therapy in a range of between about 1 W to about 100 W and a frequency of about 1 MHz to about 10 MHz. In one embodiment, the transducer modules comprises one transducer module that is configured to provide therapy at a depth of 3 mm. In one embodiment, the transducer modules comprise one transducer module that is configured to provide therapy at a depth of 4.5 mm.


In one embodiment, the at least two interchangeable transducer modules comprise a first interchangeable transducer module that is configured to treat at a first focal depth below the skin surface with a first therapeutic transduction element, wherein the at least two interchangeable transducer modules comprise a second interchangeable transducer module that is configured to treat at a second focal depth below the skin surface with a second therapeutic transduction element, wherein the hand wand is configured to connect to one of the first interchangeable transducer module and the second interchangeable transducer module at a time, wherein the system further comprises a display to show a first image of the first focal depth below the skin surface and a second image of the second focal depth below the skin surface.


In one embodiment, the hand wand is configured to connect to one of the at least two interchangeable transducer modules at a time, the at least two interchangeable transducer modules comprise a first module that is configured to treat at a first focal depth below the skin surface with a single first ultrasound therapy element, and a second module that is configured to treat at a second focal depth below the skin surface with a single second ultrasound therapy element. In one embodiment, the creation of the one or more sequences of thermal coagulation points (TCPs) comprises the creation of multiple linear sequences of thermal coagulation points (TCPs).


In one embodiment, an imaging transducer is configured to provide images of at least one depth below the skin surface, wherein the individual thermal cosmetic treatment zones are individual discrete lesions, and further comprising a movement mechanism to place the sequence of individual discrete lesions in a linear sequence, wherein the transducer modules comprise at least one transducer module that is configured to provide ultrasound therapy in a range of between about 1 W to about 100 W and a frequency of about 1 MHz to about 10 MHz, wherein the transducer modules comprise one transducer module that is configured to provide therapy at a depth of 3 mm or 4.5 mm, and wherein the treatment function is at least one of a face lift, a brow lift, a chin lift, an eye treatment, a wrinkle reduction, a scar reduction, a burn treatment, a tattoo removal, a skin tightening, a vein removal, a vein reduction, a treatment on a sweat gland, a treatment of hyperhidrosis, a sun spot removal, a fat treatment, a vaginal rejuvenation, and an acne treatment.


In several of the embodiments described herein, the procedure is entirely cosmetic and not a medical act. For example, in one embodiment, the methods described herein need not be performed by a doctor, but at a spa or other aesthetic institute. In some embodiments, a system can be used for the non-invasive cosmetic treatment of skin.


The methods summarized above and set forth in further detail below describe certain actions taken by a practitioner; however, it should be understood that they can also include the instruction of those actions by another party. Thus, actions such as “coupling a transducer module with an ultrasonic probe” include “instructing the coupling of a transducer module with an ultrasonic probe.”


Further, areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the embodiments disclosed herein.





BRIEF DESCRIPTION OF THE DRAWINGS

The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way. Embodiments of the present invention will become more fully understood from the detailed description and the accompanying drawings wherein:



FIG. 1 is a schematic illustration of an ultrasound system according to various embodiments of the present invention.



FIG. 2 is a schematic illustration of an ultrasound system coupled to a region of interest according to various embodiments of the present invention.



FIG. 3 is a schematic partial cut away illustration of a portion of a transducer according to various embodiments of the present invention.



FIG. 4 is a partial cut away side view of an ultrasound system according to various embodiments of the present invention.



FIGS. 5A-5D are plots illustrating time delays for reaching a focal point for various transducers according to several embodiments of the present invention.



FIGS. 6A-6C are plots illustrating phase delays for reaching a focal point for various transducers according to several embodiments of the present invention.



FIGS. 7A-7C are plots illustrating quantized phase delays for reaching a focal point for various transducers according to several embodiments of the present invention.



FIGS. 8A-8B are plots illustrating quantized phase delay profiles for reaching a focal point for various transducers according to several embodiments of the present invention.



FIG. 9 is a schematic illustration of characteristics of poled piezoelectric material according to an embodiment of the present invention.



FIGS. 10A-10B are plots illustrating approximations of amplitude modulation according to several embodiments of the present invention.



FIGS. 11A-11H are schematic illustrations and plots illustrating modulation functions and corresponding intensity distributions according to several embodiments of the present invention.



FIGS. 12A-12D are plots illustrating modulation functions and corresponding intensity distributions according to several embodiments of the present invention.



FIG. 13 is a schematic illustration of a two-phase system according to an embodiment of the present invention.



FIG. 14 is a schematic illustration of a selectable, four-phase system according to an embodiment of the present invention.



FIG. 15 is a plot illustrating performance of a discrete-phase system according to an embodiment of the present invention.



FIGS. 16A-16B are plots illustrating performance of discrete-phase systems at various foci according to several embodiments of the present invention.



FIGS. 17A-17D are schematic illustrations of hybrid systems and plots illustrating their performance according to several embodiments of the present invention.



FIG. 18 is a schematic illustration of a two-phase switchable system according to an embodiment of the present invention.



FIGS. 19A-19C are plots of an intensity distribution before focus according to an embodiment of the present invention.



FIGS. 20A-20C are plots an intensity distribution at focus according to an embodiment of the present invention.



FIG. 21 is a schematic illustration of an amplitude modulation aperture pattern according to an embodiment of the present invention.



FIGS. 22A-22C are plots of an intensity distribution from an amplitude modulated aperture before focus according to an embodiment of the present invention.



FIGS. 23A-23C are plots of an intensity distribution from an amplitude modulated aperture at focus according to an embodiment of the present invention.



FIG. 24 is a schematic illustration of an amplitude modulated aperture pattern with changing states according to an embodiment of the present invention.



FIGS. 25A-25D are plots of an intensity distribution from an amplitude modulated aperture with changing states before focus according to an embodiment of the present invention.



FIGS. 26A-26C are plots of an intensity distribution from an amplitude modulated aperture with changing states at focus according to an embodiment of the present invention.



FIG. 27A is a schematic illustration of an amplitude modulated aperture with two changing levels according to an embodiment of the present invention.



FIG. 27B is a state transition table of the schematic of FIG. 27A according to an embodiment of the present invention.



FIG. 28A is a schematic illustration of an amplitude modulated aperture with three changing levels according to an embodiment of the present invention.



FIG. 28B is a state transition table of the schematic of FIG. 28A according to an embodiment of the present invention.



FIG. 29A is a schematic illustration of an amplitude modulated aperture with four changing levels according to an embodiment of the present invention.



FIG. 29B is a state transition table of the schematic of FIG. 29A according to an embodiment of the present invention.





DETAILED DESCRIPTION

The following description sets forth examples of embodiments, and is not intended to limit the present invention or its teachings, applications, or uses thereof. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features. The description of specific examples indicated in various embodiments of the present invention are intended for purposes of illustration only and are not intended to limit the scope of the invention disclosed herein. Moreover, recitation of multiple embodiments having stated features is not intended to exclude other embodiments having additional features or other embodiments incorporating different combinations of the stated features. Further, features in one embodiment (such as in one figure) may be combined with descriptions (and figures) of other embodiments.


In various embodiments, systems and methods for ultrasound treatment of tissue are configured to provide cosmetic treatment. In various embodiments, tissue below or even at a skin surface such as epidermis, dermis, fascia, muscle, fat, and superficial muscular aponeurotic system (“SMAS”), are treated non-invasively with ultrasound energy. The ultrasound energy can be focused at one or more treatment points, can be unfocused and/or defocused, and can be applied to a region of interest containing at least one of epidermis, dermis, hypodermis, fascia, muscle, fat and SMAS to achieve a cosmetic and/or therapeutic effect. In various embodiments, systems and/or methods provide non-invasive dermatological treatment to tissue through thermal treatment, coagulation, ablation, and/or tightening. In several embodiments disclosed herein, non-invasive ultrasound is used to achieve one or more of the following effects: a face lift, a brow lift, a chin lift, an eye treatment, a wrinkle reduction, a scar reduction, a burn treatment, a tattoo removal, a vein removal, a vein reduction, a treatment on a sweat gland, a treatment of hyperhidrosis, sun spot removal, an acne treatment, and a pimple removal. In one embodiment, fat reduction is achieved. In one embodiment, décolletage is treated. In some embodiments, two, three or more beneficial effects are achieved during the same treatment session, and may be achieved simultaneously. In another embodiment, the device may be used on adipose tissue (e.g., fat). In another embodiment the system, device and/or method may be applied in the genital area (e.g., a vagina for vaginal rejuvenation and/or vaginal tightening, such as for tightening the supportive tissue of the vagina).


Various embodiments of the present invention relate to devices or methods of controlling the delivery of energy to tissue. In various embodiments, various forms of energy can include acoustic, ultrasound, light, laser, radio-frequency (RF), microwave, electromagnetic, radiation, thermal, cryogenic, electron beam, photon-based, magnetic, magnetic resonance, and/or other energy forms. Various embodiments of the present invention relate to devices or methods of splitting an ultrasonic energy beam into multiple beams. In various embodiments, devices or methods can be used to alter the delivery of ultrasound acoustic energy in any procedures such as, but not limited to, therapeutic ultrasound, diagnostic ultrasound, non-destructive testing (NDT) using ultrasound, ultrasonic welding, any application that involves coupling mechanical waves to an object, and other procedures. Generally, with therapeutic ultrasound, a tissue effect is achieved by concentrating the acoustic energy using focusing techniques from the aperture. In some instances, high intensity focused ultrasound (HIFU) is used for therapeutic purposes in this manner. In one embodiment, a tissue effect created by application of therapeutic ultrasound at a particular depth to can be referred to as creation of a thermal coagulation point (TCP). It is through creation of TCPs at particular positions that thermal and/or mechanical ablation of tissue can occur non-invasively or remotely.


In one embodiment, TCPs can be created in a linear or substantially linear zone or sequence, with each individual TCP separated from neighboring TCPs by a treatment spacing. In one embodiment, multiple sequences of TCPs can be created in a treatment region. For example, TCPs can be formed along a first linear sequence and a second linear sequence separated by a treatment distance from the first linear sequence. Although treatment with therapeutic ultrasound can be administered through creation of individual TCPs in a sequence and sequences of individual TCPs, it may be desirable to reduce treatment time and corresponding risk of pain and/or discomfort experienced by a patient. Therapy time can be reduced by forming multiple TCPs simultaneously, nearly simultaneously, or sequentially. In some embodiments, a treatment time can be reduced 10%, 20%, 25%, 30%, 35%, 40%, 4%, 50%, 55%, 60%, 65%, 70%, 75%, 80% or more by creating multiple TCPs.


Various embodiments of the present invention address potential challenges posed by administration of ultrasound therapy. In various embodiments, time for effecting the formation of TCPs for a desired cosmetic and/or therapeutic treatment for a desired clinical approach at a target tissue is reduced. In various embodiments, target tissue is, but is not limited to, any of skin, eyelids, eye lash, eye brow, caruncula lacrimalis, crow's feet, wrinkles, eye, nose, mouth, tongue, teeth, gums, ears, brain, heart, lungs, ribs, abdomen, stomach, liver, kidneys, uterus, breast, vagina, prostrate, testicles, glands, thyroid glands, internal organs, hair, muscle, bone, ligaments, cartilage, fat, fat labuli, adipose tissue, subcutaneous tissue, implanted tissue, an implanted organ, lymphoid, a tumor, a cyst, an abscess, or a portion of a nerve, or any combination thereof.


In some embodiments, amplitude modulation and/or discrete phasing techniques can be applied to an aperture configured to emit ultrasonic energy. This can cause splitting of an ultrasonic beam emitted by the aperture into multiple beams, which may simultaneously, substantially simultaneously, or sequentially deliver ultrasonic energy to multiple locations or focal points. In some embodiments, amplitude modulation can be combined with techniques configured to change modulation states of an aperture in order to reduce intensity of ultrasonic energy delivered to tissues located before and/or after focal points. In various embodiments, therapy time can be reduced by 1-24%, 1-26%, 1-39%, 1-50%, or more than 50%.


Various embodiments of ultrasound treatment and imaging devices are described in U.S. application Ser. No. 12/996,616, which published as U.S. Publication No. 2011-0112405 A1 on May 12, 2011, which is a U.S. National Phase under 35 U.S.C. § 371 of International Application No. PCT/US2009/046475, filed on Jun. 5, 2009 and published in English on Dec. 10, 2009, which claims the benefit of priority from U.S. Provisional No. 61/059,477 filed Jun. 6, 2008, each of which is incorporated in its entirety by reference, herein.


System Overview


With reference to the illustration in FIG. 1, an embodiment of an ultrasound system 20 includes a hand wand 100, module 200, and a controller 300. The hand wand 100 can be coupled to the controller 300 by an interface 130, which may be a wired or wireless interface. The interface 130 can be coupled to the hand wand 100 by a connector 145. The distal end of the interface 130 can be connected to a controller connector on a circuit 345. In one embodiment, the interface 130 can transmit controllable power from the controller 300 to the hand wand 100.


In various embodiments, the controller 300 can be configured for operation with the hand wand 100 and the module 200, as well as the overall ultrasound system 20 functionality. In various embodiments, multiple controllers 300, 300′, 300″, etc. can be configured for operation with multiple hand wands 100, 100′, 100″, etc. and or multiple modules 200, 200′, 200″, etc. The controller 300 can include an interactive graphical display 310, which can include a touchscreen monitor and Graphic User Interface (GUI) that allows the user to interact with the ultrasound system 20. As is illustrated, the graphical display 315 includes a touchscreen interface 315. In various embodiments, the display 310 sets and displays the operating conditions, including equipment activation status, treatment parameters, system messages and prompts, and ultrasound images. In various embodiments, the controller 300 can be configured to include, for example, a microprocessor with software and input/output devices, systems and devices for controlling electronic and/or mechanical scanning and/or multiplexing of transducers and/or multiplexing of transducer modules, a system for power delivery, systems for monitoring, systems for sensing the spatial position of the probe and/or transducers and/or multiplexing of transducer modules, and/or systems for handling user input and recording treatment results, among others. In various embodiments, the controller 300 can include a system processor and various analog and/or digital control logic, such as one or more of microcontrollers, microprocessors, field-programmable gate arrays, computer boards, and associated components, including firmware and control software, which may be capable of interfacing with user controls and interfacing circuits as well as input/output circuits and systems for communications, displays, interfacing, storage, documentation, and other useful functions. System software running on the system process may be configured to control all initialization, timing, level setting, monitoring, safety monitoring, and all other ultrasound system functions for accomplishing user-defined treatment objectives. Further, the controller 300 can include various input/output modules, such as switches, buttons, etc., that may also be suitably configured to control operation of the ultrasound system 20.


As is illustrated in FIG. 1, in one embodiment, the controller 300 can include one or more data ports 390. In various embodiments, the data ports 390 can be a USB port, Bluetooth port, IrDA port, parallel port, serial port, and the like. The data ports 390 can be located on the front, side, and/or back of the controller 300, and can be used for accessing storage devices, printing devices, computing devices, etc. The ultrasound system 20 can include a lock 395. In one embodiment, in order to operate the ultrasound system 20, the lock 395 should be unlocked so that a power switch 393 may be activated. In one embodiment, the lock 395 can be connectable to the controller 300 via a data port 390 (e.g., a USB port). The lock 395 could be unlocked by inserting into the data port 390 an access key (e.g., USB access key), a hardware dongle, or the like. The controller 300 can include an emergency stop button 392, which can be readily accessible for emergency deactivation.


In one embodiment, the hand wand 100 includes one or more finger activated controllers or switches, such as 150 and 160. In one embodiment, the hand wand 100 can include a removable module 200. In other embodiments, the module 200 may be non-removable. The module 200 can be mechanically coupled to the hand wand 100 using a latch or coupler 140. An interface guide 235 can be used for assisting the coupling of the module 200 to the hand wand 100. The module 200 can include one or more ultrasound transducers. In some embodiments, an ultrasound transducer includes one or more ultrasound elements. The module 200 can include one or more ultrasound elements. The hand wand 100 can include imaging-only modules, treatment-only modules, imaging-and-treatment modules, and the like. In one embodiment, the control module 300 can be coupled to the hand wand 100 via the interface 130, and the graphic user interface 310 can be configured for controlling the module 200. In one embodiment, the control module 300 can provide power to the hand wand 100. In one embodiment, the hand wand 100 can include a power source. In one embodiment, the switch 150 can be configured for controlling a tissue imaging function and the switch 160 can be configured for controlling a tissue treatment function


In one embodiment, the module 200 can be coupled to the hand wand 100. The module 200 can emit and receive energy, such as ultrasonic energy. The module 200 can be electronically coupled to the hand wand 100 and such coupling may include an interface which is in communication with the controller 300. In one embodiment, the interface guide 235 can be configured to provide electronic communication between the module 200 and the hand wand 100. The module 200 can comprise various probe and/or transducer configurations. For example, the module 200 can be configured for a combined dual-mode imaging/therapy transducer, coupled or co-housed imaging/therapy transducers, separate therapy and imaging probes, and the like. In one embodiment, when the module 200 is inserted into or connected to the hand wand 100, the controller 300 automatically detects it and updates the interactive graphical display 310.


In various embodiments, tissue below or even at a skin surface such as epidermis, dermis, hypodermis, fascia, and superficial muscular aponeurotic system (“SMAS”), and/or muscle are treated non-invasively with ultrasound energy. Tissue may also include blood vessels and/or nerves. The ultrasound energy can be focused, unfocused or defocused and applied to a region of interest containing at least one of epidermis, dermis, hypodermis, fascia, and SMAS to achieve a therapeutic effect. FIG. 2 is a schematic illustration of the ultrasound system 20 coupled to a region of interest 10. In various embodiments, tissue layers of the region of interest 10 can be at any part of the body of a subject. In one embodiment, the tissue layers are in the head and face region of the subject. The cross-sectional portion of the tissue of the region of interest 10 includes a skin surface 501, an epidermal layer 502, a dermal layer 503, a fat layer 505, a superficial muscular aponeurotic system 507 (hereinafter “SMAS 507”), and a muscle layer 509. The tissue can also include the hypodermis 504, which can include any tissue below the dermal layer 503. The combination of these layers in total may be known as subcutaneous tissue 510. Also illustrated in FIG. 2 is a treatment zone 525 which is below the surface 501. In one embodiment, the surface 501 can be a surface of the skin of a subject 500. Although an embodiment directed to therapy at a tissue layer may be used herein as an example, the system can be applied to any tissue in the body. In various embodiments, the system and/or methods may be used on muscles (or other tissue) of the face, neck, head, arms, legs, or any other location in the body.


With reference to the illustration in FIG. 2, an embodiment of the ultrasound system 20 includes the hand wand 100, the module 200, and the controller 300. In one embodiment, the module 200 includes a transducer 280. FIG. 3 illustrates an embodiment of an ultrasound system 20 with a transducer 280 configured to treat tissue at a focal depth 278. In one embodiment, the focal depth 278 is a distance between the transducer 280 and the target tissue for treatment. In one embodiment, a focal depth 278 is fixed for a given transducer 280. In one embodiment, a focal depth 278 is variable for a given transducer 280.


With reference to the illustration in FIG. 4, the module 200 can include a transducer 280 which can emit energy through an acoustically transparent member 230. In various embodiments, a depth may refer to the focal depth 278. In one embodiment, the transducer 280 can have an offset distance 270, which is the distance between the transducer 280 and a surface of the acoustically transparent member 230. In one embodiment, the focal depth 278 of a transducer 280 is a fixed distance from the transducer. In one embodiment, a transducer 280 may have a fixed offset distance 270 from the transducer to the acoustically transparent member 230. In one embodiment, an acoustically transparent member 230 is configured at a position on the module 200 or the ultrasound system 20 for contacting the skin surface 501. In various embodiments, the focal depth 278 exceeds the offset distance 270 by an amount to correspond to treatment at a target area located at a tissue depth 279 below a skin surface 501. In various embodiments, when the ultrasound system 20 placed in physical contact with the skin surface 501, the tissue depth 279 is a distance between the acoustically transparent member 230 and the target area, measured as the distance from the portion of the hand wand 100 or module 200 surface that contacts skin (with or without an acoustic coupling gel, medium, etc.) and the depth in tissue from that skin surface contact point to the target area. In one embodiment, the focal depth 278 can correspond to the sum of an offset distance 270 (as measured to the surface of the acoustically transparent member 230 in contact with a coupling medium and/or skin 501) in addition to a tissue depth 279 under the skin surface 501 to the target region. In various embodiments, the acoustically transparent member 230 is not used.


Coupling components can comprise various substances, materials, and/or devices to facilitate coupling of the transducer 280 or module 200 to a region of interest. For example, coupling components can comprise an acoustic coupling system configured for acoustic coupling of ultrasound energy and signals. Acoustic coupling system with possible connections such as manifolds may be utilized to couple sound into the region of interest, provide liquid- or fluid-filled lens focusing. The coupling system may facilitate such coupling through use of one or more coupling media, including air, gases, water, liquids, fluids, gels, solids, non-gels, and/or any combination thereof, or any other medium that allows for signals to be transmitted between the transducer 280 and a region of interest. In one embodiment one or more coupling media is provided inside a transducer. In one embodiment a fluid-filled module 200 contains one or more coupling media inside a housing. In one embodiment a fluid-filled module 200 contains one or more coupling media inside a sealed housing, which is separable from a dry portion of an ultrasonic device. In various embodiments, a coupling medium is used to transmit ultrasound energy between one or more devices and tissue with a transmission efficiency of 100%, 99% or more, 98% or more, 95% or more, 90% or more, 80% or more, 75% or more, 60% or more, 50% or more, 40% or more, 30% or more, 25% or more, 20% or more, 10% or more, and/or 5% or more.


In various embodiments, the transducer 280 can image and treat a region of interest at any suitable tissue depths 279. In one embodiment, the transducer module 280 can provide an acoustic power in a range of about 1 W or less, between about 1 W to about 100 W, and more than about 100 W. In one embodiment, the transducer module 280 can provide an acoustic power at a frequency of about 1 MHz or less, between about 1 MHz to about 10 MHz, and more than about 10 MHz. In one embodiment, the module 200 has a focal depth 278 for a treatment at a tissue depth 279 of about 4.5 mm below the skin surface 501. Some non-limiting embodiments of transducers 280 or modules 200 can be configured for delivering ultrasonic energy at a tissue depth of 3 mm, 4.5 mm, 6 mm, less than 3 mm, between 3 mm and 4.5 mm, between 4.5 mm and 6 mm, more than more than 4.5 mm, more than 6 mm, etc., and anywhere in the ranges of 0-3 mm, 0-4.5 mm, 0-6 mm, 0-25 mm, 0-100 mm, etc. and any depths therein. In one embodiment, the ultrasound system 20 is provided with two or more transducer modules 280. For example, a first transducer module can apply treatment at a first tissue depth (e.g., about 4.5 mm) and a second transducer module can apply treatment at a second tissue depth (e.g., of about 3 mm), and a third transducer module can apply treatment at a third tissue depth (e.g., of about 1.5-2 mm). In one embodiment, at least some or all transducer modules can be configured to apply treatment at substantially same depths.


In various embodiments, changing the number of focus point locations (e.g., such as with a tissue depth 279) for an ultrasonic procedure can be advantageous because it permits treatment of a patient at varied tissue depths even if the focal depth 278 of a transducer 270 is fixed. This can provide synergistic results and maximizing the clinical results of a single treatment session. For example, treatment at multiple depths under a single surface region permits a larger overall volume of tissue treatment, which results in enhanced collagen formation and tightening. Additionally, treatment at different depths affects different types of tissue, thereby producing different clinical effects that together provide an enhanced overall cosmetic result. For example, superficial treatment may reduce the visibility of wrinkles and deeper treatment may induce formation of more collagen growth. Likewise, treatment at various locations at the same or different depths can improve a treatment.


Although treatment of a subject at different locations in one session may be advantageous in some embodiments, sequential treatment over time may be beneficial in other embodiments. For example, a subject may be treated under the same surface region at one depth in time one, a second depth in time two, etc. In various embodiments, the time can be on the order of nanoseconds, microseconds, milliseconds, seconds, minutes, hours, days, weeks, months, or other time periods. The new collagen produced by the first treatment may be more sensitive to subsequent treatments, which may be desired for some indications. Alternatively, multiple depth treatment under the same surface region in a single session may be advantageous because treatment at one depth may synergistically enhance or supplement treatment at another depth (due to, for example, enhanced blood flow, stimulation of growth factors, hormonal stimulation, etc.). In several embodiments, different transducer modules provide treatment at different depths. In one embodiment, a single transducer module can be adjusted or controlled for varied depths. Safety features to minimize the risk that an incorrect depth will be selected can be used in conjunction with the single module system.


In several embodiments, a method of treating the lower face and neck area (e.g., the submental area) is provided. In several embodiments, a method of treating (e.g., softening) mentolabial folds is provided. In other embodiments, a method of treating the eye region is provided. Upper lid laxity improvement and periorbital lines and texture improvement will be achieved by several embodiments by treating at variable depths. By treating at varied locations in a single treatment session, optimal clinical effects (e.g., softening, tightening) can be achieved. In several embodiments, the treatment methods described herein are non-invasive cosmetic procedures. In some embodiments, the methods can be used in conjunction with invasive procedures, such as surgical facelifts or liposuction, where skin tightening is desired. In various embodiments, the methods can be applied to any part of the body.


In one embodiment, a transducer module permits a treatment sequence at a fixed depth at or below the skin surface. In one embodiment, a transducer module permits a treatment sequence at a fixed depth below the dermal layer. In several embodiments, the transducer module comprises a movement mechanism configured to direct ultrasonic treatment in a sequence of individual thermal lesions (hereinafter “thermal coagulation points” or “TCPs”) at a fixed focal depth. In one embodiment, the linear sequence of individual TCPs has a treatment spacing in a range from about 0.01 mm to about 25 mm. For example, the spacing can be 1.1 mm or less, 1.5 mm or more, between about 1.1 mm and about 1.5 mm, etc. In one embodiment, the individual TCPs are discrete. In one embodiment, the individual TCPs are overlapping. In one embodiment, the movement mechanism is configured to be programmed to provide variable spacing between the individual TCPs. In several embodiments, a transducer module comprises a movement mechanism configured to direct ultrasonic treatment in a sequence so that TCPs are formed in linear or substantially linear sequences separated by a treatment distance. For example, a transducer module can be configured to form TCPs along a first linear sequence and a second linear sequence separated by a treatment distance from the first linear sequence. In one embodiment, treatment distance between adjacent linear sequences of individual TCPs is in a range from about 0.01 mm to about 25 mm. For example, the treatment distance can be 2 mm or less, 3 mm or more, between about 2 mm and about 3 mm, etc. In several embodiments, a transducer module can comprise one or more movement mechanisms configured to direct ultrasonic treatment in a sequence so that TCPs are formed in linear or substantially linear sequences of individual thermal lesions separated by a treatment distance from other linear sequences. In one embodiment, the treatment distance separating linear or substantially linear TCPs sequences is the same or substantially the same. In one embodiment, the treatment distance separating linear or substantially linear TCPs sequences is different or substantially different for various adjacent pairs of linear TCPs sequences.


In one embodiment, first and second removable transducer modules are provided. In one embodiment, each of the first and second transducer modules are configured for both ultrasonic imaging and ultrasonic treatment. In one embodiment, a transducer module is configured for treatment only. In one embodiment, an imaging transducer may be attached to a handle of a probe or a hand wand. The first and second transducer modules are configured for interchangeable coupling to a hand wand. The first transducer module is configured to apply ultrasonic therapy to a first layer of tissue, while the second transducer module is configured to apply ultrasonic therapy to a second layer of tissue. The second layer of tissue is at a different depth than the first layer of tissue.


As illustrated in FIG. 3, in various embodiments, delivery of emitted energy 50 at a suitable focal depth 278, distribution, timing, and energy level is provided by the module 200 through controlled operation by the control system 300 to achieve the desired therapeutic effect of controlled thermal injury to treat at least one of the epidermis layer 502, dermis layer 503, fat layer 505, the SMAS layer 507, the muscle layer 509, and/or the hypodermis 504. FIG. 3 illustrates one embodiment of a depth that corresponds to a depth for treating muscle. In various embodiments, the depth can correspond to any tissue, tissue layer, skin, epidermis, dermis, hypodermis, fat, SMAS, muscle, blood vessel, nerve, or other tissue. During operation, the module 200 and/or the transducer 280 can also be mechanically and/or electronically scanned along the surface 501 to treat an extended area. Before, during, and after the delivery of ultrasound energy 50 to at least one of the epidermis layer 502, dermis layer 503, hypodermis 504, fat layer 505, the SMAS layer 507 and/or the muscle layer 509, monitoring of the treatment area and surrounding structures can be provided to plan and assess the results and/or provide feedback to the controller 300 and the user via a graphical interface 310.


In one embodiment, an ultrasound system 20 generates ultrasound energy which is directed to and focused below the surface 501. This controlled and focused ultrasound energy 50 creates the thermal coagulation point or zone (TCP) 550. In one embodiment, the ultrasound energy 50 creates a void in subcutaneous tissue 510. In various embodiments, the emitted energy 50 targets the tissue below the surface 501 which cuts, ablates, coagulates, micro-ablates, manipulates, and/or causes a lesion 550 in the tissue portion 10 below the surface 501 at a specified focal depth 278. In one embodiment, during the treatment sequence, the transducer 280 moves in a direction denoted by the arrow marked 290 at specified intervals 295 to create a series of treatment zones 254 each of which receives an emitted energy 50 to create one or more TCPs 550.


In various embodiments, transducer modules can comprise one or more transduction elements. The transduction elements can comprise a piezoelectrically active material, such as lead zirconante titanate (PZT), or any other piezoelectrically active material, such as a piezoelectric ceramic, crystal, plastic, and/or composite materials, as well as lithium niobate, lead titanate, barium titanate, and/or lead metaniobate. In various embodiments, in addition to, or instead of, a piezoelectrically active material, transducer modules can comprise any other materials configured for generating radiation and/or acoustical energy. In various embodiments, transducer modules can be configured to operate at different frequencies and treatment depths. Transducer properties can be defined by an outer diameter (“OD”) and focal length (FL). In one embodiment, a transducer can be configured to have OD=19 mm and FL=15 mm. In other embodiments, other suitable values of OD and FL can be used, such as OD of less than about 19 mm, greater than about 19 mm, etc. and FL of less than about 15 mm, greater than about 15 mm, etc. Transducer modules can be configured to apply ultrasonic energy at different target tissue depths. As described above, in several embodiments, transducer modules comprise movement mechanisms configured to direct ultrasonic treatment in a linear or substantial liner sequence of individual TCPs with a treatment spacing between individual TCPs. For example, treatment spacing can be about 1.1 mm, 1.5 mm, etc. In several embodiments, transducer modules can further comprise movement mechanisms configured to direct ultrasonic treatment in a sequence so that TCPs are formed in linear or substantially linear sequences separated by a treatment spacing. For example, a transducer module can be configured to form TCPs along a first linear sequence and a second linear sequence separated by treatment spacing between about 2 mm and 3 mm from the first linear sequence. In one embodiment, a user can manually move the transducer modules across the surface of a treatment area so that adjacent linear sequences of TCPs are created. In one embodiment, a movement mechanism can automatically move the transducer modules across the surface of a treatment area so that adjacent linear sequences of TCPs are created.


In various embodiments, treatment advantageously can be delivered at a faster rate and with improved accuracy. This in turn can reduce treatment time and decrease pain experienced by a subject. Further, efficiency can be increased if variance is reduced in a treatment spacing between linear or substantially linear sequences of TCPs. In one embodiment, a system uses a transducer configured to produce a single focus treatment point. In one embodiment, the transducer can be mechanically moved along a line to create a linear sequence of TCPs. For example, Table 1 provides an estimate of time for creating a linear sequence of TCPs and an estimate of time for moving between linear sequences of TCPs according to one embodiment. It can be seen that time for creating a linear sequence of TCPs and time for moving between linear sequences of TCPs are nearly equivalent.











TABLE 1





Time Metric
Time (in msec)
Percentage of Total Time

















Time for creating a
2.9
48


linear sequence


Time for moving between
3.2
52


linear sequences




Total Time
6.1
100









In various embodiments, therapeutic treatment advantageously can be delivered at a faster rate and with improved accuracy by using a transducer configured to deliver multiple focus points, or TCPs. This in turn can reduce treatment time and decrease pain experienced by a subject. In several embodiments, treatment time is reduced if time for creating a linear sequence of TCPs and time for moving between linear sequences of TCPs are reduced by emitting TCPs at multiple locations from a single transducer.


Therapy Delivery Using Amplitude Modulation


Aperture Spatial Frequency Analysis and Fourier Transform


In various embodiments, spatial frequency analysis techniques based on Fourier analysis and Fourier optics can be used to increase efficiency of therapeutic treatment. When a system that has an impulse response h(t) is excited by a stimulus x(t), the relationship between the input x(t) and output y(t) is related by the convolution function as follows:

y(t)=x(t)*h(t)=∫−∞x(τ)h(t−τ)  (1)


In various embodiments, Fourier transform can be applied to compute the convolution of equation (1). Continuous one-dimensional Fourier transform can be defined as:

y(t)=x(t)*h(t)Y(f)=F(y(t)=∫−∞y(t)e−j2πftdt  (2)


Here f is frequency, t is time. It can be shown that convolution in the time domain is equivalent to multiplication in the frequency domain:

y(t)=x(t)*h(t)F(x(t)*h(t))=X(f)H(f)=Y(f)  (3)


In various embodiments, the Fraunhofer approximation can be used for deriving a relationship between a transducer opening or aperture and a resulting ultrasonic beam response. Derivation of the Fraunhofer approximation is described in Joseph Goodman, Introduction to Fourier Optics (3d ed. 2004), which is incorporated in its entirety by reference, herein. According to the Fraunhofer approximation, a far-field complex amplitude pattern produced by a complex aperture is equal to a two-dimensional Fourier transform of the aperture amplitude and phase. In several embodiments, this relationship in optics can be extended to ultrasound since linear wave equations can be used to represent both light propagation and sound propagation. In the case of optics and/or ultrasound, the two-dimensional Fourier transform can determine a sound wave pressure amplitude distribution at the focus of a transducer.


In various embodiments, a Huygens-Fresnel integral determines an amplitude in the pressure field U(P0) from an aperture by integrating the effect (both amplitude and phase) from each resonator or transducer on a surface Σ. It is expressed as:










U

(

P
o

)

=









h

(


P
o

,

P
1


)



U

(

P
1

)


ds







(

4


a

)













h

(


P
o

,

P
1


)

=


1

j

λ





e

(

jkr
01

)



r
01




cos

(


n


,


r

01






)






(

4


b

)







where k is a wave number expressed as 2π/λ, r01 is a distance from an aperture to the screen in a field, n is a directional vector from the aperture, U(P1) is the pressure field in the aperture, and U(P0) is the pressure field in the screen.


In various embodiments, following assumption are used to lead to an approximation that the amplitude in the pressure field U(P0) is a two-dimensional Fourier transform of U(P1). First, at small angles, the cosine function of the angle between n and r01 is 1. This leads to the following simplifications:








cos

(


n


,


r

01






)


1





r
01


z





h

(


x
0

,


y
0

;

x
1


,

y
1


)




1

j

λ




e

jkr
01








where z represents depth. Second, Fresnel approximation of the distance r01 can be expressed, using a binomial expansion, as:







r
01

=



e
jkz

z



e

[


jk

2

z




(



(


x
1

-

x
0


)

2

+


(


y
1

-

y
0


)

2


)


]







Third, it can be assumed that the observation plane is much greater than the dimensions of the aperture as follows:






z




k

(


x
1
2

+

y
1
2


)

max

2





If these assumptions are applied to equations (4a) and (4b), then the amplitude in the field can be expressed as:










U

(


x
0

,

y
0


)






e
jkz



e

[


jk

2

z




(


x
0
2

+

y
0
2


)


]




j

λ

z










-







U

(


x
1

,

y
1


)



e


-


j

2

π


λ

z





(



x
0



x
1


+


y
0



y
1



)





dx
1



dy
1









(
5
)







Equation (5) includes a quadratic phase term on the outside of the integral which does not affect the overall magnitude. Comparing equation (5) to equation (2) reveals a similarity in the arguments inside the integral. In particular, instead of a one dimensional function y(t) evaluated at frequencies f, a two dimensional function U(x1,y1) is evaluated at spatial frequencies given as:










f
x

=


x
0


λ

z






(

5


a

)













f
y

=


y
0


λ

z






(

5


b

)







Because the integral of equation (5) is the two-dimensional Fourier transform, equation (5) can be rewritten as:










h

(


P

o



,

P
1


)

=



1

j

λ





e

(

jkr

01



)



r
01




cos

(


n


,


r
01




)



U

(


x
0

,

y
0


)







e
jkz



e

[


jk

2

z




(


x
0
2

+

y
0
2


)


]




j

λ

z




F

x
1





F

y
1


(

U

(


x
1

,

y
1


)

)







(
6
)







In various embodiments, the amplitude and phase functions in the aperture U(x1,y1) are separable into two functions, namely a function of x1 and a function of y1 respectively.

U(x1,y1)=g(x1)h(y1)  (7)


Applying equation (7) to equation (6) leads to further simplification:










h

(


P
o

,

P
1


)

=



1

j

λ





e

(

jkr
01

)



r
01




cos

(


n


,


r
01




)



y

(
t
)


=



x

(
t
)

*



h

(
t
)







(
8
)










U

(


x
0

,

y
0


)






e
jkz



e

[


jk

2

z




(


x
0
2

+

y
0
2


)


]




j

λ

z





F

x
1


(

g

(

x
1

)

)




F

y
1


(

h

(

y
1

)

)






Equation (8) demonstrates that a response of the aperture in the field for a separable two-dimensional function is the multiplication of two one-dimensional Fourier transforms in x1 and y1 directions. It can be further shown that equations (6) and (8) hold for a focused system with the exception that spatial frequency arguments change as is expressed in equations (9a) and (9b). For a focused system, the variable z which represents depth can be replaced with zf which represents a focal distance.










f
x

=




x
0


λ


z
f





y

(
t
)


=



x

(
t
)

*



h

(
t
)







(

9


a

)













f
y

=




y
0


λ


z
f





y

(
t
)


=



x

(
t
)

*



h

(
t
)







(

9


b

)







In various embodiments, Fourier optics and Fourier transform identities (some of which are listed in Table 2, below) can be used for ultrasound transducers in order to determine the intensity distribution corresponding to a transducer design. For example, Fourier transform of a rectangle rect(ax) is a sine function. As another example, Fourier transform of a two dimensional circle of uniform amplitude is a first order Bessel function which can be represented as J1.











TABLE 2






Aperture Function
Fourier Transform







1
rect(ax)





1

|
a
|




sinc



(

ξ
a

)










2
δ(x)
1





3
cos (ax)






δ



(

ξ
-

a

2

π



)


+

δ



(

ξ
+

a

2

π



)



2









4
sin (ax)






δ



(

ξ
-

a

2

π



)


-

δ



(

ξ
+

a

2

π



)




2

j










5 (two-dimensional transform pair)
circ({square root over (x2 + y2)})






J
1

(

2

π




ξ
x
2

+

ξ
y
2




)




ξ
x
2

+

ξ
y
2












6
ƒ(x) * g(x)
F(ξ)G(ξ)


7
ƒ(x)g(x)
F(ξ) * G(ξ)









In several embodiments, an ultrasound transducer can have a rectangular aperture of suitable dimensions and focal length. In several embodiments, an ultrasound transducer can have a circular aperture with suitable dimensions and focal length. In one embodiment, a transducer can have a circular aperture with an outer radius of approximately 9.5 mm, an inner diameter of approximately 2 mm, and focal length of approximately 15 mm. The aperture of a circular transducer may be described as:










f

(

x
,
y

)

=


circ


(

r
a

)


-

circ

(

r
b

)






(

10


a

)












r
=



x
2

+

y
2







(

10


b

)







For example, a can be approximately 9.5 mm and b can be approximately 2 mm. Applying Fourier transform to equation (10a) can provide an estimate of the sound wave pressure distribution at the focus.











F

x
,
y


(

f

(

x
,
y

)

)

=


F

(


ξ
x

,

ξ
y


)

=




aJ
1

(

2

π

a




ξ
x
2

+

ξ
y
2




)




ξ
x
2

+

ξ
y
2




-



bJ
1

(

2

π

b




ξ
x
2

+

ξ
y
2




)




ξ
x
2

+

ξ
y
2










(
11
)







where ξx and ξy are same as fx and fy of equations (9a) and (9b). Equation (11) demonstrates that the sound wave pressure distribution of a transducer with a circular aperture is a first order Bessel function. In one embodiment, a substantial majority of the energy is concentrated at the focus (e.g., 15 mm away from the aperture). The width of a main ultrasonic beam and the distribution of energy away from the main beam can be expressed as a function of the operating frequency as is expressed in equations (9a) and (9b).


In various embodiments, two identical or nearly identical beams could be created at the focus if the aperture was modulated (e.g., multiplied) by a correct function. In one embodiment, a cosine function can be applied to a circular aperture as follows:










g

(

x
,
y

)

=


cos

(
cx
)



(


circ

(

r
a

)

-

c

i

r


c

(

r
b

)



)






(
12
)







An energy distribution or beam response at the focus of the modulated aperture of equation (12) is the convolution of the Fourier transform of the two functions of the aperture:










G

(


ξ
x

,

ξ
y


)

=


(



δ

(


ξ
x

-

c

2

π



)

+

δ

(


ξ
x

+

c

2

π



)


2

)

*

F

(


ξ
x

,

ξ
y


)






(
13
)







Equation (13) can be simplified into the summation of two separate functions applying the Fourier Transform identity for a Dirac delta function (e.g., identity 2 in Table 2):










G

(


ξ
x

,

ξ
y


)

=


1
2



(


F

(



ξ
x

-

c

2

π



,

ξ
y


)

+

F

(



ξ
x

+

c

2

π



,

ξ
y


)


)






(
14
)







Equation (14) shows that two beams appearing at the focus are spatially shifted







b

y

±

c

2

π







compared to the original, non-modulated beam. In several embodiments, one or more other modulation functions, such as sine function, can be used to achieve a desired beam response. In several embodiments, aperture can be modulated such that more than two foci are created. For example, three, four, five, etc. foci can be created. In several embodiments, aperture can be modulated such that foci are created sequentially or substantially sequentially rather than simultaneously.


In several embodiments, therapy transducer modules comprise movement mechanisms configured to direct ultrasonic treatment in a linear or substantial liner sequence of individual TCPs with a treatment spacing between individual TCPs. For example, treatment spacing can be about 1.1 mm, 1.5 mm, etc. In several embodiments, transducer modules can further comprise movement mechanisms configured to direct ultrasonic treatment in a sequence so that TCPs are formed in linear or substantially linear sequences separated by a treatment spacing. For example, a transducer module can be configured to form TCPs along a first linear sequence and a second linear sequence separated by treatment spacing between about 2 mm and 3 mm from the first linear sequence. According to equation (14), a simultaneous or substantially simultaneous split in the ultrasonic beam may be achieved at the focus (or before the focus) if the aperture is modulated by a cosine and/or sine function of a desired spatial frequency. In one embodiment, two simultaneous or nearly simultaneous focused beams separated by about 1.1 mm treatment spacing can be created in a linear or substantially linear sequence. At 7 MHz frequency of ultrasound, the wavelength λ of ultrasound wave in water is approximately 0.220 mm. Accordingly, spatial frequencies ξx and ξy at the focus are represented as:










ξ
x

=



x
0


15
*
0.22


=


x
0

3.3






(

15


a

)













ξ
y

=



y
0


15
*
0.22


=


y
0

3.3






(

15


b

)







In order to place two foci separated by about 1.1 mm, then the spatial frequency for modulating the aperture is calculated as follows. Using identities 3 and 4 in Table 2, the Fourier transformation of a sine or cosine function is a Dirac delta function with the argument:









arg
=



x
0

3.3

-


k
x


2

π







(

16


a

)







In one embodiment, equation (16a) can solved for kx when argument is 0:







k
x

=


2

π


x
0


3.3





Further, xo can be replaced by half of the separation distance (e.g., 1.1 mm):










h

(


P
o

,

P
1


)

=



1

j

λ





e

(

jkr
01

)



r

0

1





cos

(


n


,



r

0

1





)



k
x


=



2

π


s
2




z
f


λ


=



2

π

1.1
2


3.3

=

1
.04


mm

-
1










(

16

c

)







In several embodiments, a transducer with circular aperture emitting ultrasonic energy at various operating frequencies can be modulated by a sine and/or cosine functions at spatial frequencies listed in Table 3. Modulated aperture of the transducer can produce a simultaneously or substantially simultaneously split beam with two foci having different separation distances, as is indicated in Table 3. In one embodiment, the transducer can have OD of about 19 mm and a focal length of about 15 mm.











TABLE 3







Ultrasound
Separation Distance Between Foci












Frequency
1.1 mm
1.5 mm
2 mm
3 mm





4 MHz
0.60
0.82
1.09
1.63


7 MHz
1.04
1.43
1.90
2.86


10 MHz 
1.50
2.04
2.72
3.08









As is shown in Table 3, in several embodiments, a spatial frequency of an aperture modulation function increases as the ultrasonic operating frequency increases for a given foci separation distance. In addition, the spatial frequency increases as the desired foci separation distance increases.


In one embodiment, higher spatial frequency can result in amplitude transitions in the aperture occurring more rapidly. Due to transducer processing limitations, rapid amplitude variations in the aperture can make the aperture less efficient as there may be a variance in an amount of sound pressure produced by different parts of the aperture. In one embodiment, using spatial frequencies to simultaneously or nearly simultaneously split the beam can reduce the overall focal gain of each beam. As is shown in equation (14), a field pressure at the focus of each beam is reduced by a factor of two in comparison with an unmodulated beam. In one embodiment, the sound pressure or ultrasound intensity from the aperture can be increased to obtain similar or substantially similar intensities at the focal plane. However, in one embodiment, increasing the pressure at the aperture may not be limited by system and/or transducer processing limitations. In one embodiment, an increase in the pressure at the aperture can increase the overall intensity in the near field, which may increase the possibility of excessively heating treatment area tissue(s) that is located before focus. In one embodiment, the possibility of additional heating of the pre-focal tissue(s) may be limited or eliminated by using a lower ultrasound treatment frequency.


In one embodiment, applying aperture modulation function as is shown in equation (12) results in two simultaneous or substantially simultaneous ultrasound beams at the focus. In various embodiments, ultrasound beam can be split multiple times, such as three, four, five, etc. times, such that multiple simultaneous or nearly simultaneous beams are created. In one embodiment, four equally spaced beams along one dimension can be generated by modulating or multiplying the aperture by two separate spatial frequencies:












g

(

x
,
y

)

=


(


cos

(

c

x

)

+

cos

(

d

x

)


)



(


circ


(

r
a

)


-

circ

(

r
b

)


)







(

17

a

)













G

(


ξ
x

,

ξ
y


)

=


1
2



(


F

(



ξ
x

-

c

2

π



,

ξ
y


)

+

F

(



ξ
x

+

c

2

π



,

ξ
y


)

+

F

(



ξ
x

-

d

2

π



,


ξ
y


)

+

F

(



ξ
x

+

d

2

π



,

ξ
y


)


)






(

17

b

)







As is shown in equation (17b), unmodulated beam at the focus can be created at four different locations along the x-axis. In one embodiment, a constant or DC term, C1, may be added to the amplitude modulation function to maintain placement of energy at the original focal location:












g

(

x
,
y

)

=


(


cos

(

c

x

)

+

cos

(

d

x

)

+

C
1


)



(


circ

(

r
a

)

-

c

i

r


c

(

r
b

)



)







(

18

a

)













G

(


ξ
x

,

ξ
y


)

=



1
2



(


F

(



ξ
x

-

c

2

π



,

ξ
y


)

+

F

(



ξ
x

+

c

2

π



,

ξ
y


)

+

F

(



ξ
x

-

d

2

π



,


ξ
y


)

+

F

(



ξ
x

+

d

2

π



,


ξ
y


)


)


+


C
1



F

(


ξ
x

,

ξ
y


)







(

18

b

)







In one embodiment, aperture modulation of equations (17) and (18), whereby the beam can be placed at multiple locations simultaneously or nearly simultaneously, may be have limited applicability due to system, material, and/or tissue limitations. In one embodiment, due to the possibility of heating treatment area tissue(s) located before focus, the frequency of ultrasound therapy may be adjusted, such as lowered, in order to limit and/or eliminate such possibility. In one embodiment, nonlinear techniques can be applied at the focus in order to limit and/or eliminate the possibility of heating of the pre-focal tissue(s). In one embodiment, the sound pressure or ultrasound intensity from the aperture can be increased to obtain similar or substantially similar intensities at the focal plane.


In various embodiments, as is shown in equation (7), if the amplitude and phase functions at the aperture are separable, the two-dimensional Fourier transform of a sound pressure function U(x1, y1) can be expressed as a product of one-dimensional dimensional Fourier transform of two functions in x and y, which is shown in equation (8). In various embodiments, it may be advantageous to create multiple TCPs in a linear or substantially linear sequence as well as to create multiple linear sequences simultaneously or nearly simultaneously. As is shown in Table 1, in one embodiment, if two TCPs are created simultaneously or substantially simultaneously in a linear sequence, but linear sequences are created sequentially, overall treatment time may be reduced by about 24%. In one embodiment, if four TCPs are created simultaneously or substantially simultaneously in a linear sequence, but linear sequences are created sequentially, overall treatment time may be reduced by about 39%. In one embodiment, if two TCPs are created simultaneously or substantially simultaneously along with two linear sequences, overall treatment time may be reduced by about 50%.


Multiple Beam Splitting in Two Dimensions


In several embodiments, four TCPs can be created, such as two each in two linear or substantially linear sequences, using the following aperture amplitude modulation function:










g

(

x
,
y

)

=


cos

(

c

x

)



cos

(

d

y

)



(


circ

(

r
a

)

-

c

i

r


c

(

r
b

)



)






(

19

a

)







The Fourier transform of this function is:










G

(


ξ
x

,

ξ
y


)

=


1
4



(


F

(



ξ
x

-

c

2

π



,



ξ
y

-

d

2

π




)

+

F

(



ξ
x

+

c

2

π



,


ξ
y

-

d

2

π




)

+

F

(



ξ
x

-

c

2

π



,


ξ
y

+

d

2

π




)

+

F

(



ξ
x

+

c

2

π



,



ξ
y

+

d

2

π




)


)






(

19

b

)







As is shown in equations (19a) and (19b), the beam can be modulated into two linear sequences, with each sequence having two foci. In one embodiment, the linear sequences may be orthogonal. In one embodiment, the linear sequences may not be orthogonal. Because the Fourier transform is multiplied by ¼ in equation (19b), the amplitude of the beam or the intensity is further reduced as compared with beam split in into two foci (e.g., as is shown in equation (14)). In one embodiment, due to the possibility of heating treatment area tissue(s) that is located before focus, the frequency of ultrasound therapy may be adjusted, such as lowered, in order to limit and/or eliminate possibility of excessive heating of tissue(s) located before the focus. In several embodiments, modulation can be applied so that linear or substantially linear sequences of TCPs are created sequentially or substantially sequentially.


In various embodiments, as is shown in equations (12) through (14), cosine and/or sine amplitude modulation across a transducer with having a circular aperture creates two separate beams shifted by a spatial frequency of the cosine and/or sine modulation function. In various embodiments, modulation function can be spatially or phase shifted as follows:











g
shift

(

x
,
y

)

=


cos

(


c

x

-
θ

)



(


circ

(

r
a

)

-

c

i

r


c

(

r
b

)



)






(

20

a

)














G
shift

(


ξ
x

,

ξ
y


)

=


1
2




e

j

2

π


ξ
x


θ


(


F

(



ξ
x

-

c

2

π



,

ξ
y


)

+

F

(



ξ
x

+

c

2

π



,

ξ
y


)


)






(

20

a

)







In one embodiment, the amplitude caused by the shift is the same as that in equation (14). In one embodiment, although spatial shift (e.g., by angle θ) does not change the overall amplitude at the focus, the phase is modified. In several embodiments, modification of the phase may be advantageous for reducing a peak intensity before the focus. In several embodiments, an aperture can be designed so that near field or pre-focal heating of the tissue(s) is substantially minimized while intensity at the focus or focal gain is substantially maximized.


Therapy Delivery Using Phase Shifting


In various embodiments, the beam may be split axially. It may be advantageous to analyze such axial split through an analysis of time delays and application of discrete phasing. In several embodiments, splitting the beam axially in x and/or y direction can be combined with planar or two-dimensional amplitude modulation of the aperture (e.g., such as that shown in equations (19a) and (19b)), which may result in splitting the beam in two or three dimensions. In several embodiments, beam can be shifted by using phase tilting at the aperture, which can be substantially equivalent to spatial shifting. In several embodiments, phase tilting can be performed using the following Fourier transform pair:










e

j

a

x


=


cos

(

a

x

)

+

j


sin

(
ax
)







(

21

a

)













F

(

e

j

a

x


)

=

δ

(

ξ
-

a

2

π



)





(

21

b

)







In one embodiment, this function describes an aperture which is only phase modulated since the magnitude of the exponential term is one. In one embodiment, each spatial location has an element that is under a different phase which can be expressed as the ratio of the imaginary (sine) and real (cosine) parts as follows:











θ

(
i
)

=


tan

-
1


(


sin

(

a

x

)


cos

(

a

x

)


)


)




(
22
)







Equation (22) expresses the phase differences spatially.


In various embodiments, time delays associated with the propagation of ultrasound waves can be used to describe the phase shift or tilt for focusing the beam. In one embodiment, a transducer aperture can be a focused circular bowl having the following geometry:

r2+(z−zf)2=zf2  (23a)
r2=x2+y2  (23b)


Equations (23a) and (23b) describe a circular bowl that is centered at the bowl apex with a focal length zf. In one embodiment, the focus can be moved from (0, 0, zf) to a spatial point P0 which is located at (x0, y0, z0). The distance to this new spatial point P0 from any point on the bowl can be expressed as:

d=(x1−x0)2+(y1−y0)2+(z1−z0)2  (24)


where (x1, y1, z1) are points on the bowl aperture that is defined by equations (23a) and (23b). In one embodiment, in order to determine the actual time to the target P0, then the speed of sound c (343.2 m/s) can be divided into a propagation distance d as follows:









t
=





(


x
1

-

x
0


)

2

+


(


y
1

-

y
0


)

2

+


(


z
1

-

z
0


)

2



c





(
25
)







In one embodiment, in order to obtain a desired constructive interference associated with propagation of delayed ultrasound waves at the focus, equation (25) can be used to calculate the relative time delay to another part of the aperture. In one embodiment, this can be accomplished by subtracting equation (25) by the minimum time delay. The remaining time is the extra time for ultrasound waves emitted by other parts of the aperture to arrive at the new spatial point P0.


In several embodiments, a focus point of (0, 0, 15 mm) can be moved to a different focus point P0. Relative time delays to new focus points P0 relative to the center or apex of the aperture bowl (as expressed in radial distance) can be calculated using equation (25) and are illustrated in FIGS. 5A-5D for a transducer having geometry of outer diameter (OD)=19 mm, inner diameter (ID)=4 mm, and distance to focus (FL)=15 mm. Other embodiments can use other dimensions, the present examples illustrate one non-limiting embodiment. Other dimensions are contemplated. FIG. 5A illustrates the relative time delay 1002a (in microseconds) for sound energy travelling from a spatial point on the aperture to reach a target focus point P0=(0, 0, 15 mm) in relation to varying radial locations on the bowl aperture according to one embodiment. As expected, the delay illustrated in FIG. 5A is zero since the target point is the same as the focal point, and the focus point has not changed. FIG. 5B illustrates the relative time delay 1002b (in microseconds) for sound energy travelling from a spatial point on the aperture to reach a target focus point P0=(0, 0, 10 mm) in relation to varying radial locations on the bowl aperture according to one embodiment. As is illustrated, the radial position starts at 2 mm due to a hole in the center of the transducer bowl. In one embodiment, an imaging element can be placed in the hole. Time to the target point P0=(0, 0, 10 mm) increases as the radial position on the bowl increases. FIG. 5C illustrates the relative time delay 1002c (in microseconds) for sound energy travelling from a spatial point on the aperture to reach a target point P0=(0, 0, 20 mm) in relation to varying radial locations on the bowl aperture according to one embodiment. As is illustrated, if the focus is shifted to P0=(0, 0, 20) mm, time to the target decreases as the radial position on the bowl increases. FIG. 5D illustrates the relative time delay 1002d (in microseconds) for sound energy travelling from a spatial point on the aperture to reach a target focus point P0=(2 mm, 0, 14.7 mm) in relation to varying radial locations on the bowl aperture according to one embodiment. In one embodiment, the total distance from the apex to the target point P0=(2 mm, 0, 14.7 mm) is about 15 mm. As is illustrated, if the focus is shifted to P0=(2 mm, 0, 14.7 mm), time to the target is linearly dependent on the x coordinate of the position on the bowl. Time to the target is less for positions having positive x relative to the apex and greater for positions having negative x relative to the apex. Positions having x coordinates between about −2 mm and about 2 mm occur outside of the inner diameter of the bowl (e.g., where an imaging element can be located).



FIGS. 5A-5D illustrate time delays for propagation of sound from various points on the aperture for constructively placing the sound energy at the focus according to several embodiments. A negative time relative to zero implies that it takes less time for energy from that point to reach a new focus point. A positive time relative to zero implies that it takes more time for energy to reach a new focus point. In one embodiment, if appropriate time delays could be placed on individual points of the bowl, the time delays can be controlled to obtain constructive interference at the new focus. In one embodiment, for transducers comprising piezoelectrically active material, moving the focus from a mechanical focus (0, 0, zf) to a new focus point P0 can changes the distances that resonators on the aperture should travel (due to expansion and/or contraction of the material) to create constructive interference at the focus P0. These distances can be converted to time delays by dividing by the distances by the speed of sound. In one embodiment, if time delays for the resonators on the surface of the aperture are known, additional time delays to reach the focus P0 could be accounted for such that desired pressure intensity at the focus P0 can be achieved.


In various embodiments, ultrasound wave of a suitable frequency can be directed to a target area. In one embodiment, a transducer comprising piezoelectrically active material can be electrically excited by a continuous wave signal of a suitable operational frequency to achieve a suitable therapy frequency. In various embodiments of transducers, the operational frequency can be about 4 MHz, about 7 MHz, about 10 MHz, less than about 4 MHz (e.g., between about 20 KHz and about 4 MHz), between about 4 MHz and about 7 MHz, greater than about 10 MHz, etc. In one embodiment, the continuous wave signal can be on or active for a period of between about 20 msec to 30 msec. This in turn can imply that the aperture is excited by between about 80,000 cycles to about 300,000 cycles of the excitation signal. In one embodiment, other suitable periods of the excitation signal being active can be used, such as for example, less than about 20 msec, greater than about 30 msec, and the like. In one embodiment, a short duration of the excitation signal being active can make it unnecessary to obtain constructive interference at the focus. This can be a result of time delays for propagation of an ultrasonic wave from different points of the aperture to a focus point P0 being greater than the duration of the excitation signal being active. In one embodiment, it may be sufficient to modify phases corresponding to aperture locations based on the operational frequency without controlling the time delays for obtaining constructive interference. In one embodiment, phases corresponding to aperture locations may be modified and, additionally, time delays for obtaining constructive interference at a new focus point may be controlled.



FIGS. 6A-6C illustrate phase delays associated with propagation of sound to focus relative to the apex of an aperture according to several embodiments. In one embodiment, phase delays are associated with time delays. FIG. 6A illustrates the relative phase delays 1012a, 1014a, and 1016a (in degrees) for sound energy travelling from a spatial point on the aperture to reach a target focus point P0=(0, 0, 10 mm) in relation to varying radial locations on the bowl aperture according to one embodiment. Curve 1012a corresponds to an excitation signal of about 4 MHz, curve 1014a corresponds to an excitation signal of about 7 MHz, and curve 1016a corresponds to an excitation signal of about 10 MHz. FIG. 6B illustrates the relative phase delays 1012b, 1014b, and 1016b (in degrees) for sound energy travelling from a spatial point on the aperture to reach a target focus point P0=(0, 0, 20 mm) in relation to varying radial locations on the bowl aperture according to one embodiment. Curve 1012b corresponds to an excitation signal of about 4 MHz, curve 1014b corresponds to an excitation signal of about 7 MHz, and curve 1016b corresponds to an excitation signal of about 10 MHz. FIG. 6C illustrates the relative phase delays 1012c, 1014c, and 1016c (in degrees) for sound energy travelling from a spatial point on the aperture to reach a target focus point P0=(2 mm, 0, 14.7 mm) in relation to varying radial locations on the bowl aperture according to one embodiment. Curve 1012c corresponds to an excitation signal of about 4 MHz, curve 1014c corresponds to an excitation signal of about 7 MHz, and curve 1016c corresponds to an excitation signal of about 10 MHz. As is illustrated in FIGS. 6A-6C, in one embodiment, whether the aperture attempts to focus shallow, deep, or laterally, which can be related to the operational frequency, is related to a number of discontinuities in the phase delay. The number of discontinuities over a given length increases with the operational frequency of the excitation signal. In one embodiment, as is explained below, manufacturing and system limitations may increase the number of discontinuities. In one embodiment, as is illustrated in FIG. 6B, the rate of phase delay transitions increases toward the edge of the transducer (e.g., right part of the graph) regardless of whether the transducer is used to focus deep or shallow. In one embodiment, as is illustrated in FIG. 6C, the rate of phase delay transitions is substantially constant when a transducer is used to tilt the beam. FIGS. 5B-5D and FIGS. 6A-6C illustrate additional time and phase to a focus point from a point on a transducer bowl. In one embodiment, the additional time and/or phase can be reduced or eliminated by placing an opposite of the time and/or phase delay at appropriate transducer locations.


Therapy Delivery Using Discrete Phase Shifting


In one embodiment, delay and/or phase quantization can affect the precision that is used to represent time and/or phase delays. In other words, the discrete delay and/or discrete phase can be used. In one embodiment, a precision of time and/or phase delays can be limited by system parameters, such as a system clock and/or number of bits available for representing the delay. In one embodiment, other system parameters can instead or further limit the precision. In one embodiment, phase delays are equally spaced around the unit circle (360°). In one embodiment, phase delays can aperiodic or unequally spaced around the unit circle. Table 4 shows phase quantization levels according to several embodiments. Additional numbers of levels (greater than 8) can be used in several embodiments. As is shown in Table 4 two phases (N=2), 0° and 180°, can represent a minimum level of phase control for changing the focus point of an ultrasound beam according to one embodiment.












TABLE 4







Number of levels (N)
Phases (degrees)









2
0, 180



3
0, 120, 240



4
0, 90, 180, 270



5
0, 72, 144, 216, 288



6
0, 60, 120, 180, 240, 300



7
0, 51, 103, 154, 206, 257, 309



8
0, 45, 90, 135, 180, 225, 270, 315











FIGS. 7A-7C illustrate discrete or quantized phase delays for various quantization levels, where phase delays are associated with propagation of sound to focus relative to the apex of an aperture according to several embodiments. FIGS. 7A-7C illustrate sound propagation at an operational frequency of about 7 MHz. FIG. 7A illustrates the relative quantized phase delays 1022a, 1024a, and 1026a (in degrees) for sound energy travelling from a spatial point on the aperture to reach a target focus point P0=(0, 0, 10 mm) in relation to varying radial locations on the bowl aperture according to one embodiment. Curve 1022a corresponds to two phase quantization levels, curve 1024a corresponds to three phase quantization levels, and curve 1026a corresponds to four phase quantization levels. FIG. 7B illustrates the relative quantized phase delays 1022b, 1024b, and 1026b (in degrees) for sound energy travelling from a spatial point on the aperture to reach a target focus point P0=(0, 0, 20 mm) in relation to varying radial locations on the bowl aperture according to one embodiment. Curve 1022b corresponds to two phase quantization levels, curve 1024b corresponds to three phase quantization levels, and curve 1026b corresponds to four phase quantization levels. FIG. 7C illustrates the relative quantized phase delays 1022c, 1024c, and 1026c (in degrees) for sound energy travelling from a spatial point on the aperture to reach a target focus point P0=(2 mm, 0, 14.7 mm) in relation to varying radial locations on the bowl aperture according to one embodiment. Curve 1022c corresponds to two phase quantization levels, curve 1024c corresponds to three phase quantization levels, and curve 1026c corresponds to four phase quantization levels. In several embodiments, as the number of quantization levels increases as is shown in FIGS. 7A-7C (e.g., curves 1026a, 1026b, and 1026c), quantized phase delay patterns in the one embodiment with a frequency of 7 MHz become substantially similar to unquantized phase delay patterns shown in FIGS. 6A-6C (e.g., curves 1014a, 1014b, and 1014c).


In one embodiment with reference to curve 1022c of FIG. 7C (two-level phase quantization), demonstrates that when a focused beam is steered 2 mm and −2 mm, a resulting phase delay pattern is substantially similar with transition from 0° to 180° occurring at substantially same spatial frequency. There is a slight spatial shift in the phase delay pattern. Since the phase delay pattern is substantially similar at 2 mm and −2 mm, in one embodiment, acoustic intensity distribution at the focus may have a peak at both foci locations simultaneously. In one embodiment, if the phase quantization is two levels, a phase solution for a specific focus will also be a solution for another location. In one embodiment, this result can be similar for modification of the focus along the beam axis. If the phase quantization is two levels, then a solution for one focus can also be a solution for another focus.



FIG. 8A illustrates discrete or quantized phase delays associated with propagation of sound, at an operational frequency of about 7 MHz, to focus relative to the apex of an aperture according to several embodiments. FIG. 8A illustrates the relative phase delays 1032a and 1034a (in degrees) for sound energy travelling from a spatial point on the aperture to reach target focus points (2 mm, 0, 14.7 mm) and (−2 mm, 0, 14.7 mm) respectively. Curves 1032a and 1034a are shown in relation to varying radial locations on the bowl aperture according to one embodiment. In one embodiment, the quantization level of two is shown in FIG. 8A. As shown in FIG. 8A, quantized phase delay patterns for the two foci are substantially similar.



FIG. 8B illustrates discrete or quantized phase delays associated with propagation of sound, at an operational frequency of about 7 MHz, to focus relative to the apex of an aperture according to several embodiments. FIG. 8B illustrates the relative phase delays 1032b and 1034b (in degrees) for sound energy travelling from a spatial point on the aperture to reach target focus points (0, 0, 10.25 mm) and (0, 0, 27 mm) respectively. Curves 1032b and 1034b are shown in relation to varying radial locations on the bowl aperture according to one embodiment. In one embodiment, the quantization level of two is shown in FIG. 8B. As shown in FIG. 8B, quantized phase delay patterns for the two foci are substantially 180° out of phase.


In various embodiments, continuous or discrete amplitude modulation at an aperture and/or continuous or discrete phase delays to focus an ultrasound beam can be used. In one embodiment, it may be advantageous to provide a mechanical focal point rather than using aperture amplitude modulation and/or phase control in a flat aperture because the focal gain associated with mechanical focus may be preferable. In one embodiment, complexity of aperture or system design may be reduced if a mechanical focus can be created and modulation and/or phase delay techniques can be applied to the mechanical focus. One advantage can be a reduction in a number of discrete phase transitions for focusing the beam at a new focal point. Another advantage can be that a distance between different discrete phase levels can be increased when the aperture is already mechanical focused, which may result in using fewer quantization levels, such as two, three, four, etc.


In various embodiments, fabrication methods, including piezoelectric material poling and/or discrete system phasing, can be used to manufacture transducers configured to split or focus an ultrasound beam in two and/or three dimensions from a mechanical focus. The following lists several non-limiting examples of transducer designs. In various embodiments, other transducer designs can be manufactured using the disclosed methods.


Multi-Focal Energy Delivery Using Transducer Poling


In several embodiments, a transducer can comprise piezoelectric material. Piezoceramic material can be poled at elevated temperatures and high electric fields to create a net dipole moment in the material. A net dipole moment can allow the piezoceramic material to have a piezoelectric effect that causes either material contraction or expansion when an electric field is placed across a whole or part of the material in the direction of the dipole moment. In one embodiment, parts of a transducer, such as a transduction element, can be treated to have different poling moment features. In one embodiment, a single transduction element can be treated to have one, two, or more poling features. In one embodiment, a single transduction element can be treated to have one pole. In another embodiment, parts of an element can be treated with one pole, and non-treated parts of the element can have a second pole. In one embodiment, a poling treatment can be painted on a transduction element.



FIG. 9 shows a schematic diagram of a poled piezoceramic material and resulting behavior when a voltage is applied according to one embodiment. In one embodiment, a transducer can comprise PZT 1052 piezoceramic material. The arrow shown in the PZT material 1052 is a net dipole moment. In one embodiment, if a voltage is placed across the PZT material 1052 such that the electric field is in the opposite or substantially opposite direction of the dipole moment (as is shown in 1082), then the material contracts. In one embodiment, if a voltage is placed across the PZT material 1052 such that the electric field is in the same or substantially same direction as the dipole moment (as is shown in 1072), then the material expands. In one embodiment, the PZT material 1052 does not expand or contract when no voltage is applied across the material, as is shown in 1062.


In several embodiments, piezoelectric material poling can be used to implement aperture amplitude modulation. In one embodiment, two level modulation can be equivalent to two level phase quantization. As is shown in equations (12)-(14), an ultrasonic beam emitted by a transducer aperture can be modulated to appear at two (or more) locations in a focal plane shifted by a distance that is related to the spatial frequency of a modulation function (e.g., cosine and/or sine function). In one embodiment, poling direction may be used to modify the amplitude modulation at the aperture, and to approximate cosine and/or sine amplitude modulation. As is shown in FIG. 9, in one embodiment, poling or applying voltage across the whole or part of the material can provide three levels of amplitude modulation: −1 (contraction of the material), 1 (expansion of the material), and 0 (no change to the shape of the material). FIGS. 10A-10B illustrate approximations of amplitude modulation using two and three levels of poling according to several embodiments. FIG. 10A illustrates approximations of amplitude modulation using a sine function according to one embodiment. The x-axis represents relative distance with respect to an apex of the aperture and the y-axis represents amplitude of the modulation function. Curve 1092a illustrates the modulation function (e.g., sine function), curve 1094a illustrates approximation using two levels of poling (e.g., ±1), and curve 1096a illustrates approximation using three levels of poling (e.g., ±1 and 0). FIG. 10B illustrates approximations of amplitude modulation using a sine function with DC offset of 0.25 according to one embodiment. The x-axis represents relative distance with respect to an apex of the aperture and the y-axis represents amplitude of the modulation function. Curve 1092b illustrates the modulation function (e.g., sine function), curve 1094b illustrates approximation using two levels of poling (e.g., ±1), and curve 1096b illustrates approximation using three levels of poling (e.g., ±1 and 0). In one embodiment, as is illustrated in FIGS. 10B, the width of a positive poled region (having amplitude of 1) is greater than the width of a negative poled region (having amplitude of −1) so that a mean amplitude is substantially equal to the DC offset (e.g., 0.25). The limitation of two or three levels limits the achievable DC offset between −1 and 1. In several embodiments, more than three levels of poling can be used for amplitude modulation.


In one embodiment, in order to quantify the energy distribution at the focus, then the square wave can be represented in terms of a function that has a related Fourier transform pair. The Fourier series expansion for a square wave of period c is:











f

s

q

u

a

r

e


(

x
c

)

=



4
π






n
=
1





sin

(

2


π

(


2

n

-
1

)


c

t

)


(


2

n

-
1

)




=


4
π



(


sin

(

2

π

c

t

)

+


1
3



sin

(

2

π

3

c

t

)


+


1
5



sin

(

2

π

5

c

t

)


+


)







(
25
)







In one embodiment, a circular aperture with amplitude modulation described in equation (25) can be described as:











f
aperture

(

x
,
y

)

=



f

s

q

u

a

r

e


(

x
c

)



(


circ

(

r
a

)

-

c

i

r


c

(

r
b

)



)






(

26

a

)







The Fourier transform of this function is:











F

x
,
y


(


f
aperture

(

x
,
y

)

)

=



[


4
π






n
=
1






δ

(


ξ
x

-


(


2

n

-
1

)


c


)

-

δ

(


ξ
x

+


(


2

n

-
1

)


c


)



2


j

(


2

n

-
1

)





]

*

F

(


ξ
x

,

ξ
y


)






(

26

b

)







Equation (26b) may be simplified as follows:











F

x
,
y


(


f
aperture

(

x
,
y

)

)

=


[


4
π






n
=
1






F

(



ξ
x

-


(


2

n

-
1

)


c


,

ξ
y


)

-

F

(



ξ
x

+


(


2

n

-
1

)


c


,

ξ
y


)



2


j

(


2

n

-
1

)





]





(

26

c

)







In one embodiment, sound wave pressure in the focal plane includes repeating patterns of the main beam at multiple spatial locations separated by a distance of 2c between each beam. The repeating patterns can be decreasing in the amplitude.



FIGS. 11A-11H illustrate some embodiments of aperture modulation or apodization functions (using two-level poling or three-level poling) and some corresponding normalized intensity distributions of the sound wave pressure at the focus or foci for a transducer excited by a 7 MHz excitation signal according to several embodiments. In one embodiment, transducers illustrated in FIGS. 11A-11H are configured a circular bowls with OD=19 mm and FL=15 mm. FIGS. 11A-11B illustrate apodization profile without splitting the beam and a corresponding intensity distribution according to one embodiment. FIG. 11B illustrates that intensity is concentrated at the focus 1108. FIGS. 11C-11D illustrate apodization profile with laterally splitting the beam by about 1.1 mm between the foci peaks and a corresponding intensity distribution according to one embodiment. As is illustrated by region 1104 in FIG. 11A and region 1114 in FIG. 11C, in several embodiments, part of an aperture of the transducer has an apodization of zero, which represents an inner diameter (ID) of the bowl. In some embodiments, these regions 1104 and 1114, which are illustrated as being about 4 mm in diameter, can correspond to regions where an imaging element can be located. In one embodiment, apodization of the imaging element can be represented by region 1106.


With reference to FIG. 11C, in one embodiment, amplitude modulation for a 1.1 mm split between the foci peaks is illustrated. In one embodiment, if two poling or apodization levels are used, then 8 strips of substantially equal width (except at the edges) are defined on the aperture surface. For example, two such strips are labeled as 1112 and 1112′. In one embodiment, the polarization of the strips alternates from −1 to +1 across the transducer surface. The resulting beam pattern is shown in FIG. 11D. As expected, the ultrasonic beam appears at two foci 1120 and 1120′ are located at about −0.55 mm and 0.55 mm. Higher frequency components of the beam are visible in regions 1122 and 1122′ at a distance of about 1.65 mm from the beam axis. In one embodiment, these components have lower intensity than foci regions 1120 and 1120′. The higher frequency components can correspond to the third harmonic having a lower intensity, as is expressed in equation (26c). In various embodiments, such as illustrated in FIGS. 11E-11H, polarization of portions 1125, 1125′ of the transducer surface can include lines, curves, shapes, waves, patterns, etc. In one embodiment, features of a portions 1125, 1125′ can be used to maintain a foci split, and can redistribute energy pre-focally and/or post-focally for less heating.


In one embodiment, the split of the beam may occur in both x (azimuth) and y (elevation) dimensions. In one embodiment, x and y axis splits may be treated independently when performing the Fourier transform. In one embodiment, an aperture can be designed for splitting the beam in the x dimension by about 1.0 mm and in the y dimension by about 0.5 mm. The corresponding aperture modulation function can be represented as:











f
aperture

(

x
,
y

)

=



f

s

q

u

a

r

e


(

y
d

)




f

s

q

u

a

r

e


(

x
c

)



(


circ

(

r
a

)

-

c

i

r


c

(

r
b

)



)






(
27
)







The spatial frequency for alternating amplitude modulation can be calculated as described above in connection with equations 26(a)-(c), with the exception that the calculation is performed for two dimensions. FIGS. 12A-12D illustrate some embodiments of aperture modulation or apodization functions (using two-level poling) and a corresponding normalized intensity distributions of the sound wave pressure at the focus or foci for a transducer excited by a 7 MHz excitation signal according to several embodiments. In one embodiment, transducers illustrated in FIGS. 12A-12D are configured a circular bowls with OD=19 mm and FL=15 mm. FIG. 12A shows an apodization function for the aperture according to one embodiment. As is illustrated, the checkerboard pattern 1132 and 1136 is alternating in amplitude in both x and y directions. As is illustrated in FIG. 12B, the checkerboard pattern produces four substantially distinct ultrasound beams 1140, 1140′, 1142, and 1142′ separated by the expected distances, namely by about 1.0 mm in x direction and by about 0.5 mm in y direction. In one embodiment, a five point pattern can be achieved by adding a constant to an apex of the aperture, which may have a corresponding intensity distribution at the origin.


In one embodiment, as is illustrated in FIGS. 12C-12D, a line of four peaks is obtained by placing multiple frequencies along the same dimension (e.g., x dimension). The modulation function can be expressed as:











f
aperture

(

x
,

y

)

=


(



f

s

q

u

a

r

e


(

x
d

)

+


f

s

q

u

a

r

e


(

x
c

)


)



(


circ

(

r
a

)

-

c

i

r


c

(

r
b

)



)






(
28
)








FIG. 12C shows an apodization function for the aperture according to one embodiment. As is illustrated, the pattern 1142 and 1146, the polarization of the strips alternates from −1 to +1 across the transducer surface. As is illustrated in FIG. 12D, in one embodiment, the pattern produces four substantially distinct ultrasound beams 1150, 1152, 1154, and 1156 separated by about 1.0 mm and 3.0 mm in an x direction.


In one embodiment, an axial split of the beam or split along one dimension is achieved such that the beam remains axis symmetric. In one embodiment, splitting the beam axially using only two phases from poling can be more difficult than obtaining a lateral split. This can be due to the difficulty of obtaining intensity balance between the two or more peaks. In one embodiment, two phases may produce two simultaneous intensity peaks with one shallower than the other. The deeper intensity peak can be of lower intensity than the shallow peak due to additional diffraction and attenuation in tissue. In one embodiment, more than two phases may be used to achieve an axial split.


In several embodiments, splitting an ultrasonic beam simultaneously, nearly simultaneously, or sequentially into two or more foci points can be achieved through an application of discrete system phasing. FIG. 13 is a schematic illustration of a two-phase system 1200 according to one embodiment. As is illustrated, block 1202 is a AC voltage (or current) source that drives the discrete phase shifters, blocks 1204 and 1206 are discrete phase shifters by 0° and 180° respectively, and blocks 1208 and 1210 are transducer portions that are phase shifted. In one embodiment, discrete phase shifters 1204 and 1206 can be configured to phase shift the AC voltage (or current) signal supplied by the source 1202, so that the resulting signals are 180° out of phase. In one embodiment, discrete phase shifters 1204 and 1206 can be configured to excite different portions of the transducer. In one embodiment, the system 1200 is configured to mimic two levels of material poling. In one embodiment, it may be desirable to electrically isolate the transducer portions 1208 and 1210. Electrical isolation and corresponding connection scheme can determine a resultant beam pattern at the focus according to one embodiment. In one embodiment, no electrical isolation may be performed. With reference to FIG. 1, in several embodiments, discrete phase shifters may be placed in or on the controller 300, hand wand 100, module 200, and/or transducers of the ultrasound system 20. In one embodiment, continuous phase shifting may be used.


In several embodiments, more than two discrete phase shifters can be used (e.g., as is shown in Table 4). The increase in the number of phases may result in an improved approximation of the phase delays for steering and/or focus the beam. In one embodiment, four discrete phase shifters can be used. FIG. 14 is a schematic illustration of a selectable, four-phase system 1250 according to one embodiment. As is illustrated, blocks 1252, 1254, 1256, and 1258 are AC voltage (or current) sources that drive the discrete phase shifters 1262, 1264, 1266, and 1268. Each discrete phase shifter block can be configured to provide four different phases 0°, 90°, 180°, and 270°. In one embodiment, multiplexers 1272, 1274, 1276, and 1278 can be included to select a particular phase of a signal. Signal with selected phase can be applied to portions 1282, 1284, 1286, and 1288 of a transducer 1280. In one embodiment a portion is a part of a single transducer with a single transduction element. In one embodiment, a portion can be a transduction element. As is illustrated, each portion 1282, 1284, 1286, and 1288 of the transducer 1280 has a selectable phase (e.g., 0°, 90°, 180°, or 270°). In one embodiment, portions 1282, 1284, 1286, and 1288 can be electrically isolated (e.g., from each other). In one embodiment, if the transducer 1280 is divided or segmented into portions 1282, 1284, 1286, and 1866, the ultrasonic beam could be steered and focused to multiple foci locations.


In one embodiment, an advantage of providing more discrete phase shifters can be illustrated by considering a flat disc or ring transducer and a measured intensity at the focus as compared to a measured intensity at the focus of a substantially perfectly focused circular bowl transducer. FIG. 15 illustrates performance of a discrete-phase system according to one embodiment. In one embodiment, the bowl transducer can be configured to have OD=19 mm and FL=15 mm, and its intensity (in dB) is illustrated by line 1302. Intensity of the flat ring transducer is illustrated by line 1306. As is illustrated, the improvement in the focal intensity produced by the flat ring transducer increases (e.g., exponentially) between about two and 5-6 discrete phase levels, but starts to level off after about 5-6 discrete phases. In one embodiment, the intensity asymptotically approaches about −2.3 dB (line 1304). As is illustrated, in one embodiment flat ring transducer (line 1306) produces a smaller focal gain than the bowl transducer (line 1302). As can be seen, in one embodiment, adding additional discrete phase levels can improve the intensity at the focus and, thereby, improve the transducer performance.


In one embodiment, a difference in intensity between a desired focus point and an ideal focus point can be changed by using a focused bowl. In one embodiment, a circular bowl transducer with OD=19 mm and FL=15 mm can be used initially. Subsequently, in one embodiment, discrete phasing techniques can be used to move the focus to depth of about 12 mm or 18 mm. FIGS. 16A-16B are plots illustrating performance of discrete-phase systems at various foci points according to several embodiments. FIG. 16A illustrates performance 1316 of a bowl transducer (OD=19 mm and FL=15 mm) when the focus is moved to 12 mm using discrete phasing when compared to performance 1312 of a bowl transducer (OD=19 mm bowl and FL=12 mm) according to one embodiment. As is illustrated, line 1316 asymptotically approaches about −1.3 dB (line 1314). In one embodiment, comparing line 1316 with performance of flat disc transducer, which is illustrated by line 1306 in FIG. 15, intensity produced by the bowl transducer has been improved. FIG. 16B illustrates performance 1326 of a bowl transducer (OD=19 mm and FL=15 mm) when the focus is moved to 18 mm using discrete phasing when compared to performance 1322 of a bowl transducer (OD=19 mm bowl and FL=18 mm) according to one embodiment. As is illustrated, line 1326 asymptotically approaches about 0.5 dB (line 1324). As is illustrated, performance of the bowl transducer with discrete phasing (line 1326) can exceed performance of an ideal transducer (line 1322), such as when number of discrete phase levels exceeds about six. In one embodiment, it may be advantageous to use discrete phases to move the focus deeper.


Therapy Delivery Using Amplitude Modulation and Discrete Phase Shifting


In several embodiments, amplitude modulation (e.g., realized via material poling) can be used in addition to discrete phasing. In one embodiment, splitting of an ultrasound beam may cause an increase in transducer power that may be difficult to obtain due to, for example, system or transducer material limitations. It may be desirable to phase shift or tilt the ultrasound beam from one focal position to another focal position. In one embodiment, split of the ultrasound beam may be difficult to achieve due to a possibility of excessive heating of tissue before focus. In one embodiment, linear sequences of TCPs may be created sequentially or substantially sequentially without moving a transducer, which can result in reduction of therapy time. In one embodiment, the transducer can be moved to further distribute treatment points. In one embodiment, a transducer can be a circular bowl transducer excited by 7 MHz excitation signal and having OD of about 19 mm, ID of about 4 mm, and FL of about 15 mm. Linear TCP sequences can be spaced about 1.0 mm apart. It may be desirable to split the ultrasound beam so two linear TCP sequences are created simultaneously or substantially simultaneously about 1.0 mm apart from each other. However, in one embodiment, as compared to intensity of a beam that is not split, each of the split beams can have intensity that is approximately 2.4 times lower. Due to a potential for excessive heating of tissue located before focus, power delivered to the transducer may not be increased by about 2.4 times to compensate for the reduction in intensity. In one embodiment, quadrature phasing may be used to create linear TCP sequences one at a time. Quadrature phasing can be accomplished by combining material poling with discrete system phasing. In one embodiment, using quadrature phasing may relate to an increase in power of approximately 1.2 times when quadrature phasing is applied to a focused bowl transducer. In one embodiment, such slight increase in power may be desirable.



FIGS. 17A-17B illustrate quadrature control of a transducer by combining poling and discrete system phasing according to one embodiment. FIG. 17A illustrates, in one embodiment, individual strips (e.g., 1402, 1404, etc.) defined across a focused circular bowl transducer 1400 at a pitch configured to achieve an about 1.0 mm in the ultrasonic beam produced by the transducer. The focus of the transducer is a single beam 1408 in the plane parallel to the transducer face. Transducer 1400 is not configured with discrete phasing. In one embodiment, as is illustrated in FIG. 17B, strips of transducer 1410 are poled by alternating the phasing direction. For example, strip 1412 has a phase of 0° and strip 1414 has a phase of 180°. As is shown in the intensity plot, two intensity peaks 1418 and 1418′ appear substantially along a line at a focal depth.


In one embodiment, creating two intensity peaks 1430 and 1432 may be undesirable due to limitations of the system (e.g., power supply) and/or transducer materials. For example, more power may need to be supplied to the transducer to create two TCPs simultaneously or nearly simultaneously. FIG. 17C illustrates modulation of an aperture of a transducer 1420 using an additional phase shift (by 90°) according to one embodiment. As is illustrated, strip 1422 has a phase of 0°, and is further divided into a region or sub-strip 1426 having a phase of 90° and sub-strip 1428 having a phase of 0°. Further, strip 1424 has a phase of 180° (e.g., alternating phase with respect to strip 1422), and is further divided into a region or sub-strip 1430 having a phase of 270° and sub-strip 1432 having a phase of 180°. In one embodiment, these two additional phases (e.g., 1426 and 1428) can be electrically connected to the transducer 1420 through a conductive bond and, optionally, a switch or flex circuit configured to separate the two phases. Similar to the embodiments illustrated in FIGS. 17A-17B, transducer 1420 is poled so that the phase alternates between 0° and 180° between adjacent strips. In one embodiment, one half of the transducer 1420 is excited with 0° phase excitation signal and the other half is excited with 180° phase excitation signal. In one embodiment, a pitch of the phase variation is decreased by two with the additional phasing (e.g., sub-strips 1426 and 1428). In one embodiment, when discrete phasing is combined with poling (e.g., alternating the phase between 0° and 180° between adjacent strips 1422 and 1424), four distinct phases can be provided, namely 0°, 90°, 180°, and 270°. As is illustrated in FIG. 17C, the repeating phase pattern applied across the transducer 1420 from left to right can be 90°, 0°, 270°, and 180°. As is illustrated in the intensity plot, in one embodiment, a peak 1438 about −1 mm away from a beam axis at a focal depth can be created. In one embodiment, as is illustrated in FIG. 17D, if the phase pattern has a reversed order of 0° (sub-strip 1446), 90° (sub-strip 1448), 180° (sub-strip 1450), and 270° (sub-strip 1452), then a peak 1458 moves about +1 mm away from a beam axis. As is illustrated in FIG. 17D, strip 1442 has a phase of 0° and strip 1444 has a phase of 180° (e.g., alternating phase with respect to strip 1442).



FIG. 18 is a schematic illustration of a two-phase switchable system 1500 according to one embodiment. As is illustrated, the system 1500 includes an AC voltage (or current) source 1502 that drives the discrete phase shifters 1504 (0° phase shifter) and 1506 (90° phase shifter), switches 1508 and 1510, and transducer portions 1512 and 1514. In one embodiment, discrete phase shifters 1504 and 1506 can be configured to phase shift the AC voltage (or current) signal supplied by the source 1502, so that the resulting signals are 90° out of phase. In one embodiment, discrete phase shifters 1504 and 1506 can be configured to excite different portions (e.g., strips) of the transducer. Output of discrete phase shifters 1504 and 1506 can be connected to switches 1508 and 1510 that are connected to different portions 1512 and 1514 of the transducer. On one embodiment, the switches 1508 and 1510 cause the phase of the voltage (or current) signal provided by the source 1502 to toggle between 0° and 90° such that the phase pattern at the transducer reverses the order and causes a focal point to move from one side of the beam axis to another side of the beam axis, as is illustrated in FIGS. 17C-17D. In one embodiment, phase shifters 1504 and 1506 can shift the phase by any suitable value, such as 30°, 45°, 120°, 145°, 180°, etc.


Therapy Delivery Using Amplitude Modulation With Walking


In one embodiment, modulating or splitting an ultrasound beam axially and/or laterally, for example so that multiple linear sequences of TCPs are created simultaneously, substantially simultaneously, or sequentially may necessitate supply of additional power to a transducer in order to achieve substantially same intensity at focal point(s) as an unmodulated beam. In one embodiment, such increase in power can cause a possibility of excessive heating in tissue proximal (pre-focal) and/or distal (post-focal) to the focus. For example, for a given transducer configuration, splitting an ultrasound beam from a focal position of about (0, 0, 15 mm) to focal positions of about (−0.55 mm, 0, 15 mm) and (0.55 mm, 0, 15 mm) may necessitate increasing the supply of power by about 2.2 times in order to produce substantially same intensity at the two focal positions as the intensity in the unmodulated focal position. In one embodiment, such an increase in power may be undesirable. In various embodiments, amplitude modulation can be combined with walking aperture techniques in order to reduce the possibility of excessive heating of tissues in pre-focal and post-focal regions. For example, the maximum intensity measured in the pre-focal and post focal regions may be reduced.



FIGS. 19A-19C are plots of an intensity distribution 1600 in an x-y plane at about 2 mm before focus according to one embodiment. No modulation has been applied to a transducer. The plot 1600 illustrates that the acoustic intensity distribution is axis symmetric about a beam axis. In one embodiment, the symmetry is caused by a circular aperture of the transducer (e.g., a focused circular bowl transducer). The regions of highest intensity 1601, 1602, and 1604 occur along the beam axis at a radius of approximately 0 mm (region 1601), 0.75 mm (region 1602) and 1.0 mm (region 1604). In one embodiment, the maximum intensity is about 101 W/cm2 in the plane provided that the intensity at the aperture is about 1 W/cm2.



FIGS. 20A-20C are plots of an intensity distribution 1620 in an x-y plane at focal depth according to one embodiment. In one embodiment, the focal depth can be about 15 mm. FIGS. 20A-20C show a significant concentration 1622 in acoustic intensity at a focal plane. In one embodiment, the diameter of the acoustic distribution has decreased from an OD of about 3 mm in FIGS. 20A-20C to a diameter of less than about 0.3 mm at a focal depth. The maximum intensity has increased to about 7.73 kW/cm2, which is approximately 77.3 times greater than the maximum intensity about 2 mm before focus.



FIG. 21 is a schematic illustration of an amplitude modulation aperture pattern 1630 according to one embodiment. The amplitude modulation pattern 1630 can be placed across an aperture. Groups of transducer strips or portions 1632 can represent an amplitude of +1 (e.g., due to expansion of transducer material). Groups of transducer strips or portions 1634 can represent an amplitude of −1 (e.g., due to contraction of transducer material). As is shown, groups 1632 and 1634 can alternate across the aperture. Pitch distance 1640 can correspond to a spatial period of transitions between +1 and −1 transducer material across the aperture. In one embodiment, the pitch distance 1640 along with a focal depth and operating frequency may determine the distance of the split beams in the focal plane. In one embodiment, any number of transducer portions can be grouped into groups 1632 and 1634. In one embodiment, the number of portions in groups 1632 and 1634 may be the same. In one embodiment, the number of portions in groups 1632 and 1634 may be different. In one embodiment, amplitude modulation can include more than two levels, such as three (0 and ±1) or more levels.



FIGS. 22A-22C are plots of an intensity distribution 1650 in an x-y plane from an amplitude modulated aperture pattern of FIG. 21 about 2 mm before focus according to one embodiment. In one embodiment, the pitch distance is approximately 6 mm for an excitation signal frequency of about 7 MHz. In one embodiment, the amplitude modulation pattern 1630 is placed along the y-axis to split the beam by about 1.1 mm, as is demonstrated by foci points 1652 and 1654. In one embodiment, although the energy distribution has an OD of approximately 3 mm in the x-direction, it is increased in the y-direction to about 4 mm. As compared with FIGS. 19A-C, the maximum intensity of intensity distribution 1650 is increased by about 20% to 112 W/cm2, provided that 1 W/cm2 of intensity is placed at the unmodulated focal point. In one embodiment, the amount of power from a split aperture may need to be increased by a factor of about 2.2 to achieve substantially similar intensity at two foci points. At a depth of about 2 mm before focus, the maximum intensity may be about 246 W/cm2 due to the increase in power. However, because in one embodiment temperature increases in a tissue are proportional to increases in intensity, the temperature rise in a pre-focal region can be more than double for a split beam design.



FIGS. 23A-23C are plots of an intensity distribution 1670 in an x-y plane from an amplitude modulated aperture pattern of FIG. 21 at focal depth according to one embodiment. In one embodiment, the focal depth can be about 15 mm. In one embodiment, the intensity of each of the foci 1672 and 1674 can be about 3.45 kW/cm2, provided that 1 W/cm2 of intensity is placed at the unmodulated focal point. As is illustrated, two symmetric beams occur at focal positions 1672 (0.55 mm, 0, 15 mm) and 1674 (−0.55 mm, 0, 15 mm) mm. In one embodiment, the intensity distribution at the focal positions 1672 and 1674 is substantially similar to the intensity distribution illustrated in FIG. 20.



FIG. 24 is a schematic illustration of an amplitude modulation aperture pattern 1680 with walking or changing states according to one embodiment. In one embodiment, the pattern 1680 is the same as the amplitude modulation function 1630 illustrated in FIG. 21 with the exception of state changes. In one embodiment, the amplitude modulation pattern 1680 can be placed across an aperture as follows. Pitch distance 1688 can comprise a plurality of transducer strips or portions. Although eight such portions are shown in FIG. 24, the number of portions can be any suitable number such as less than eight or more than eight. The transducer portions can be individually addressable, and can be configured to represent an amplitude state of −1 and/or +1. As voltage or current is supplied to the transducer, the aperture can change states (or walk) from S1 to S2, then S2 to S3, then S3 to S4, and so on. As is illustrated, in state S1 the plurality of portions across the pitch distance 1688 are divided into two groups 1682 (+1 modulation) and 1684 (−1 modulation). When transition is made from state S1 to state S2, the plurality of portions across the pitch distance 1688 are divided into groups 1692 (+1 modulation) and 1690 and 1694 (−1 modulation). As is illustrated, portion 1681 in state S1 has corresponds to +1 and in state S2 corresponds to −1. When transition is made from state S2 to state S3, the plurality of portions across the pitch distance 1688 are divided into groups 1702 (+1 modulation) and 1700 and 1704 (−1 modulation). When transition is made from state S3 to state S4, the plurality of portions across the pitch distance 1688 are divided into groups 1712 (+1 modulation) and 1710 and 1711 (−1 modulation). Accordingly, the modulation pattern shifts (or walks) across the aperture over time. In one embodiment, there are eight unique states if the aperture walks with the same amplitude modulation pattern across the aperture. In one embodiment, the effective intensity can be determined as a weighted time average of the acoustic intensity distribution from each aperture state. In one embodiment, the aperture changes state (or walks) at a rate sufficient to reduce the possibility of excessive heating of tissues pre-focally and/or post focally. In one embodiment, pitch distance 1688 can include any suitable number of transducer portions. In one embodiment, the number of portions in groups corresponding to modulation of +1 and −1 may be the same. In one embodiment, the number of portions in groups corresponding to modulation of +1 and −1 may be different. In one embodiment, amplitude modulation can include more than two levels, such as three (0 and ±1) or more levels.



FIGS. 25A-25D are plots of an intensity distribution 1730 in an x-y plane from an amplitude modulated aperture pattern with walking of FIG. 24 about 2 mm before focus according to one embodiment. In one embodiment, the maximum intensity is about 71 W/cm2 which is about 37% lower than the maximum intensity from an amplitude modulated aperture pattern without walking (e.g., shown in FIG. 22). In one embodiment, this reduction may be significant. FIGS. 25A-25D illustrate that a number and area of regions experiencing high intensity have been reduced as compared with FIG. 22. Regions receiving significant amount of energy are localized to approximately six locations 1731-1736. Intensity distribution plot 1730 illustrates that the extent of the energy distribution is reduced, as compared to FIG. 22, to about 2 mm OD in the x-dimension and about 3 mm OD in the y-dimension. In one embodiment, this reduction may be significant. In one embodiment, the intensity distribution 1730 appears as acoustic power being emanated from two apertures as the intensity distribution 1730 appears to be a spatially offset summation of the distribution 1600 of FIG. 19. In one embodiment, as is illustrated in FIG. 25, the possibility of excessive heating of tissues located before and after the focus is significantly reduced.



FIGS. 26A-26C are plots of an intensity distribution 1750 in an x-y plane from an amplitude modulated aperture pattern with walking of FIG. 24 at focal depth according to one embodiment. In one embodiment, the focal depth can be about 15 mm. In one embodiment, although intensity distribution before focus changes substantially (compare FIGS. 25 with FIG. 22), intensity distribution 1750 at focal is substantially similar to the intensity distribution 1670 at focal depth for amplitude modulated aperture pattern without walking illustrated in FIG. 23. In one embodiment, peak intensity of the intensity distribution 1750 is reduced (e.g., compare 3.34 W/cm2 with 3.45 W/cm2). In one embodiment, to order to get the same intensity at the focal depth, supplied power may need to be increased by a factor of 2.3. The maximum intensity about 2 mm before focus would be 163 W/cm2, which is a substantial reduction over the prediction of 246 W/cm2 (FIG. 22) if the amplitude modulation pattern is not walked across the aperture. In one embodiment, acoustic intensity maximums at foci 1752 and 1754 are substantially concentrated as compared to the intensity distribution 1650 in FIG. 22.



FIG. 27A is a schematic illustration of an amplitude modulated aperture with walking (two levels ±1) 180° according to one embodiment. In one embodiment, the schematic 1800 corresponds to the pattern 1680 illustrated in FIG. 24. FIG. 27B is a state transition table 1850 of the two-state schematic 1800 according to one embodiment.



FIG. 28A is a schematic illustration of an amplitude modulated aperture with walking (three levels) 1900 according to one embodiment. Schematic 1900 includes a 0 level 1952. In one embodiment, 0 level 1952 can be realized by using a ground terminal or a connecting a resistor to the ground terminal. In one embodiment, 0 level 1952 can reduce an amount of high frequency spatial components in a focal zone (e.g., these components can correspond to grating lobes). In one embodiment, 0 level 1952 can reduces spatial frequency transitions in pre-focal and post focal zones. FIG. 28B is a state transition table 1950 of the three-state schematic 1900 according to one embodiment.



FIG. 29A is a schematic illustration of an amplitude modulated aperture with walking (four levels) 2000 according to one embodiment. Schematic 2000 includes two additional levels +0.5 2002 and −0.5 2004. In one embodiment, doing so can provide the similar advantages as adding a 0 level. In one embodiment, amplitude modulation across the aperture provided by schematic 2000 can better approximate a sine wave, such that high frequency spatial components do not occur in the focal plan. FIG. 29B is a state transition table 2050 of the three-state schematic 1900 according to one embodiment.


In several embodiments, number of transducer strips and/or portions in a pitch distance can be less than or greater than eight. The number of portions selected can depend on an amount of heating reduction desired for tissues located before and/or after the focus. In several embodiments, number of amplitude modulation levels can be greater than four, such as six, eight, ten, etc.


There are several advantages to use of embodiments of the systems and methods disclosed herein. In one embodiment, amplitude modulation, particularly with walking, and/or phase shifting techniques can reduce a possibility of excessive pre-focal and post-focal heating. In one embodiment, amplitude modulation, particularly with walking, and/or phase shifting techniques can allow splitting an ultrasound beam into two or more beams. In one embodiment, amplitude modulation, particularly with walking, and/or phase shifting techniques can approximate two or more ultrasound sources by placing ultrasonic energy at two or more foci locations. In one embodiment, amplitude modulation, particularly with walking, and/or phase shifting techniques can reduce pain or discomfort experienced by a patient during ultrasound therapy by redistributing acoustic energy away from a focal point. In one embodiment, amplitude modulation, particularly with walking, and/or phase shifting techniques can reduce therapy time due to the production of multiple TCPs.


Imaging Systems


In one embodiment, a receive ultrasound beamformer can be used as part of an ultrasound imaging system. In one embodiment, an ultrasound imaging system uses a transmit and a receive event to create one line of an ultrasound image. The transmit typically focuses at one location and then the receive processing of the imaging system focuses on the same location. In this case, the response of the imaging system is described as:

h(t)=(Tx)*Rx(t)  (29)


where h(t) is the spatial response of both the transmit and receive apertures, Tx(t) is the response of the transmit aperture, and Rx(t) is the response of the receive aperture.


In one embodiment, an ultrasound imaging systems uses dynamic receive focusing. In this case, although the transmit ultrasound beam focused on one spatial location, the receive system could ‘dynamically’ change the focus along the beam axis so each spatial location in depth was focused. This system response is represented as:

h(t−δ)=Tx(t)*Rx(t−δ)  (30)


The δ represents the time delay between received signals which suggests how the focusing can change for the receive aperture as the signals come from deeper depths.


In one embodiment, a technique to split a transmit therapy beam into multiple foci through aperture amplitude manipulation can include receiving beam(s) as well. In one embodiment, a system can include two transmit foci (or more), and it is possible to focus on either spatial aperture using a receive aperture such as a linear array where delays may be used to steer and focus the received beam along different axes. This method allows the system to obtain two receive beams with just one transmit. This reduces the required time to visually observe the two beam axes from the receive aperture. This system is described as:

h1(t−δ)=Tx(t)*Rx1(t−δ)  (31a)
h2(t−δ)=Tx(t)*Rx2(t−δ)  (31b)


For example, suppose the system produces two foci, one at a distance 1.0 mm away from the center axis of the therapy transducer and another −1.0 mm away from the center axis of the therapy transducer each at a depth of 15 mm. The ultrasound receiver would be able to create two receive lines, one constantly focused on the 1.0 mm peak and one constantly focused on the −1.0 mm peak. In one embodiment, a receiver can create two receive lines, one constantly focused on the 1.0 mm peak and one constantly focused on the −1.0 mm peak simultaneously.


In one embodiment, a method 2100 comprises the steps of:

    • transmitting multiple foci with a therapy aperture
    • gathering a signal from each portion of a receive aperture array
    • creating multiple receive vectors based on the multiple foci, and
    • utilizing the receive vectors to speed up an algorithm for imaging.


In some embodiments, the transmission of multiple foci can be simultaneous or sequential. In some embodiments, the receive vectors can be simultaneously or sequentially utilized.


Some embodiments and the examples described herein are examples and not intended to be limiting in describing the full scope of compositions and methods of these invention. Equivalent changes, modifications and variations of some embodiments, materials, compositions and methods can be made within the scope of the present invention, with substantially similar results.


While the invention is susceptible to various modifications, and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the invention is not to be limited to the particular forms or methods disclosed, but to the contrary, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the various embodiments described and the appended claims. Any methods disclosed herein need not be performed in the order recited. The methods disclosed herein include certain actions taken by a practitioner; however, they can also include any third-party instruction of those actions, either expressly or by implication. For example, actions such as “coupling a transducer module with an ultrasonic probe” include “instructing the coupling of a transducer module with an ultrasonic probe.” The ranges disclosed herein also encompass any and all overlap, sub-ranges, and combinations thereof. Language such as “up to,” “at least,” “greater than,” “less than,” “between,” and the like includes the number recited. Numbers preceded by a term such as “about” or “approximately” include the recited numbers. For example, “about 25 mm” includes “25 mm.”

Claims
  • 1. An aesthetic treatment system for use in cosmetic treatment for creating multiple focal points with an ultrasound transducer, the system comprising: an ultrasonic probe comprising: a first switch operably controlling an ultrasonic imaging function for providing an ultrasonic imaging;a second switch operably controlling an ultrasonic treatment function for providing an ultrasonic treatment; anda movement mechanism configured to direct ultrasonic treatment in at least one sequence of individual thermal cosmetic treatment zones, wherein the movement mechanism comprises one or more of a linear track, a shaft, a scotch yoke, a magnetic coupling, and a worm gear; anda transducer module configured to apply ultrasonic therapy with at least one of the group consisting of amplitude modulation, poling, and phase shifting,wherein the transducer module is configured for both ultrasonic imaging and ultrasonic treatment,wherein the transducer module is configured for coupling to the ultrasonic probe,wherein the transducer module comprises an ultrasound transducer comprising a single piezoelectric material for the ultrasonic treatment,wherein the single piezoelectric material comprises a plurality of portions configured to simultaneously apply ultrasonic therapy to tissue at a plurality of locations at a focal depth with the at least one of the group consisting of amplitude modulation, poling, and phase shifting,wherein the plurality of portions comprises a plurality of strips on an aperture surface,wherein the transducer module is configured to be operably coupled to at least one of the first switch, the second switch and the movement mechanism; anda control module,wherein the control module comprises a processor and a display for controlling the transducer module,wherein the display is configured to display an image produced from the ultrasonic imaging.
  • 2. The aesthetic treatment system of claim 1, wherein the transducer module is configured to apply ultrasonic therapy using amplitude modulation whereby a plurality of portions of the transducer module are configured to emit ultrasonic therapy at a plurality of amplitudes of acoustic intensity, wherein a first amplitude is different than a second amplitude.
  • 3. The aesthetic treatment system of claim 1, wherein the transducer module is configured to apply ultrasonic therapy using phase shifting whereby a plurality of portions of the transducer module are configured to emit ultrasonic therapy at a plurality of phases of acoustic intensity, wherein a first phase is different than a second phase.
  • 4. The aesthetic treatment system of claim 1, wherein the transducer module is configured to apply ultrasonic therapy using poling, wherein the poling comprises different poling moments provided from the plurality of portions of the single piezoelectric material, wherein the plurality of portions of the single piezoelectric material are configured to create a plurality of corresponding piezoelectric material variations respectively in response to an electric field applied to the single piezoelectric material.
  • 5. The aesthetic treatment system of claim 1, wherein the ultrasonic transducer is configured to provide an acoustic power of the ultrasonic therapy in a range of between 1 W to 100 W and a frequency of 1 MHz to 10 MHz.
  • 6. The aesthetic treatment system of claim 1, wherein the ultrasonic treatment is at least one of a face lift, a brow lift, a chin lift, an eye treatment, a wrinkle reduction, a scar reduction, a skin tightening, a vein reduction, a treatment of hyperhidrosis, a fat treatment, a vaginal rejuvenation, and an acne treatment.
  • 7. An aesthetic treatment system for use in cosmetic treatment for creating multiple focal points with an ultrasound transducer, the system comprising: an ultrasonic probe comprising:a first switch operably controlling an ultrasonic imaging function for providing an ultrasonic imaging;a second switch operably controlling an ultrasonic treatment function for providing an ultrasonic treatment; anda movement mechanism configured to direct ultrasonic treatment in at least one sequence of individual thermal cosmetic treatment zones, wherein the movement mechanism comprises one or more of a linear track, a shaft, a scotch yoke, a magnetic coupling, and a worm gear; anda transducer module configured to apply ultrasonic therapy with at least one of the group consisting of amplitude modulation, poling, and phase shifting,wherein the transducer module is configured for both ultrasonic imaging and ultrasonic treatment,wherein the transducer module is configured for coupling to the ultrasonic probe,wherein the transducer module comprises an ultrasound transducer comprising a single piezoelectric material for the ultrasonic treatment,wherein the single piezoelectric material comprises a plurality of portions configured to create a plurality of corresponding piezoelectric material variations respectively in response to an electric field applied to the single piezoelectric material to simultaneously apply ultrasonic therapy to tissue at multiple thermal coagulation points at a plurality of locations at one or more focal depths with the at least one of the group consisting of amplitude modulation, poling, and phase shifting,wherein the plurality of portions comprises a plurality of strips on an aperture surface.
  • 8. The aesthetic treatment system of claim 7, wherein the ultrasound transducer is configured to apply ultrasonic therapy using poling, wherein the poling comprises different poling moments provided from the plurality of portions of the single piezoelectric material, wherein the plurality of portions of the single piezoelectric material are configured to create a plurality of corresponding piezoelectric material variations respectively in response to an electric field applied to the single piezoelectric material.
  • 9. The aesthetic treatment system of claim 7, wherein the ultrasound transducer is configured to apply ultrasonic therapy using amplitude modulation whereby the plurality of portions of the ultrasound transducer are configured to emit ultrasonic therapy at a plurality of amplitudes of acoustic intensity, wherein a first amplitude is different than a second amplitude.
  • 10. The aesthetic treatment system of claim 7, wherein the ultrasound transducer is configured to apply ultrasonic therapy phase shifting whereby the plurality of portions of the ultrasound transducer are configured to emit ultrasonic therapy at a plurality of phases of acoustic intensity, wherein a first phase is different than a second phase.
  • 11. The aesthetic treatment system of claim 7, wherein the plurality of piezoelectric material variations comprise at least one of expansion of the single piezoelectric material and contraction of the single piezoelectric material.
  • 12. The aesthetic treatment system of claim 7, wherein the ultrasonic transducer is configured to provide an acoustic power of the ultrasonic therapy in a range of between 1 W to 100 W and a frequency of 1 MHz to 10 MHz.
  • 13. The aesthetic treatment system of claim 7, wherein a first set of locations is positioned within a first treatment zone and a second set of locations is positioned within a second treatment zone, the first zone being different from the second zone.
  • 14. The aesthetic treatment system of claim 7, wherein the ultrasonic treatment is at least one of a face lift, a brow lift, a chin lift, an eye treatment, a wrinkle reduction, a scar reduction, a skin tightening, a vein reduction, a treatment of hyperhidrosis, a fat treatment, a vaginal rejuvenation, and an acne treatment.
  • 15. An aesthetic treatment system for use in cosmetic treatment for creating multiple focal points with an ultrasound transducer, the system comprising: an ultrasonic probe comprising:a first switch operably controlling an ultrasonic imaging function for providing an ultrasonic imaging;a second switch operably controlling an ultrasonic treatment function for providing an ultrasonic treatment; anda movement mechanism configured to direct ultrasonic treatment in at least one sequence of individual thermal cosmetic treatment zones, wherein the movement mechanism comprises one or more of a linear track, a shaft, a scotch yoke, a magnetic coupling, and a worm gear; anda transducer module configured to apply ultrasonic therapy with at least one of the group consisting of amplitude modulation and poling,wherein the transducer module is configured for both ultrasonic imaging and ultrasonic treatment,wherein the transducer module comprises an ultrasound transducer comprising a single piezoelectric material for the ultrasonic treatment,wherein the single piezoelectric material comprises a plurality of portions configured to create a plurality of corresponding piezoelectric material variations respectively in response to an electric field applied to the single piezoelectric material to simultaneously apply ultrasonic therapy to tissue at multiple thermal coagulation points at a plurality of locations at one or more focal depths with the at least one of the group consisting of amplitude modulation and poling,wherein the plurality of portions comprises a plurality of strips on an aperture surface.
  • 16. The aesthetic treatment system of claim 15, wherein the ultrasound transducer is configured to apply ultrasonic therapy using poling, wherein the poling comprises different poling moments provided from the plurality of portions of the single piezoelectric material, wherein the plurality of portions of the single piezoelectric material are configured to create a plurality of corresponding piezoelectric material variations respectively in response to an electric field applied to the single piezoelectric material.
  • 17. The aesthetic treatment system of claim 15, wherein the ultrasound transducer is configured to apply ultrasonic therapy using amplitude modulation whereby the plurality of portions of the ultrasound transducer are configured to emit ultrasonic therapy at a plurality of amplitudes of acoustic intensity, wherein a first amplitude is different than a second amplitude.
  • 18. The aesthetic treatment system of claim 15, wherein the ultrasonic transducer is configured to provide an acoustic power of the ultrasonic therapy in a range of between 1 W to 100 W and a frequency of 1 MHz to 10 MHz.
  • 19. The aesthetic treatment system of claim 15, wherein a first set of locations is positioned within a first treatment zone and a second set of locations is positioned within a second treatment zone, the first zone being different from the second zone.
  • 20. The aesthetic treatment system of claim 15, wherein the ultrasonic treatment is at least one of a face lift, a brow lift, a chin lift, an eye treatment, a wrinkle reduction, a scar reduction, a skin tightening, a vein reduction, a treatment of hyperhidrosis, a fat treatment, a vaginal rejuvenation, and an acne treatment.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. application Ser. No. 16/541,476 filed Aug. 15, 2019, which is a continuation of U.S. application Ser. No. 14/193,234 filed Feb. 28, 2014, which claims the benefit of priority from U.S. Provisional Application No. 61/774,785 filed Mar. 8, 2013, which are incorporated in their entireties by reference, herein. Any and all priority claims identified in the Application Data Sheet, or any correction thereto, are hereby incorporated by reference under 37 CFR 1.57.

US Referenced Citations (1236)
Number Name Date Kind
2427348 Bond et al. Sep 1947 A
2792829 Calosi Feb 1952 A
3913386 Saglio Oct 1975 A
3965455 Hurwitz Jun 1976 A
3992925 Perilhou Nov 1976 A
4039312 Patru Aug 1977 A
4059098 Murdock Nov 1977 A
4101795 Fukumoto Jul 1978 A
4151834 Sato et al. May 1979 A
4166967 Benes et al. Sep 1979 A
4211948 Smith et al. Jul 1980 A
4211949 Brisken et al. Jul 1980 A
4213344 Rose Jul 1980 A
4276491 Daniel Jun 1981 A
4315514 Drewes et al. Feb 1982 A
4325381 Glenn Apr 1982 A
4343301 Indech Aug 1982 A
4372296 Fahim Feb 1983 A
4379145 Masuho et al. Apr 1983 A
4381007 Doss Apr 1983 A
4381787 Hottinger May 1983 A
4397314 Vaguine Aug 1983 A
4409839 Taenzer Oct 1983 A
4417170 Benisncasa Nov 1983 A
4431008 Wanner et al. Feb 1984 A
4441486 Pounds Apr 1984 A
4452084 Taenzer Jun 1984 A
4484569 Driller Nov 1984 A
4507582 Glenn Mar 1985 A
4513749 Kino Apr 1985 A
4513750 Heyman et al. Apr 1985 A
4527550 Ruggera et al. Jul 1985 A
4528979 Marchenko Jul 1985 A
4534221 Fife et al. Aug 1985 A
4566459 Umemura et al. Jan 1986 A
4567895 Putzke Feb 1986 A
4586512 Do-Huu May 1986 A
4587971 Stolfi May 1986 A
4601296 Yerushalmi Jul 1986 A
4620546 Aida et al. Nov 1986 A
4637256 Sugiyama et al. Jan 1987 A
4646756 Watmough Mar 1987 A
4663358 Hyon May 1987 A
4668516 Duraffourd et al. May 1987 A
4672591 Breimesser et al. Jun 1987 A
4680499 Umemura et al. Jul 1987 A
4697588 Reichenberger Oct 1987 A
4754760 Fukukita et al. Jul 1988 A
4757820 Itoh Jul 1988 A
4771205 Mequio Sep 1988 A
4801459 Liburdy Jan 1989 A
4803625 Fu et al. Feb 1989 A
4807633 Fry Feb 1989 A
4817615 Fukukita et al. Apr 1989 A
4858613 Fry Aug 1989 A
4860732 Hasegawa et al. Aug 1989 A
4865041 Hassler Sep 1989 A
4865042 Umemura Sep 1989 A
4867169 Machida Sep 1989 A
4874562 Hyon Oct 1989 A
4875487 Seppi Oct 1989 A
4881212 Takeuchi Nov 1989 A
4891043 Zeimer et al. Jan 1990 A
4893624 Lele Jan 1990 A
4896673 Rose Jan 1990 A
4900540 Ryan et al. Feb 1990 A
4901729 Saitoh Feb 1990 A
4917096 Englehart Apr 1990 A
4932414 Coleman et al. Jun 1990 A
4938216 Lele Jul 1990 A
4938217 Lele Jul 1990 A
4947046 Kawabata et al. Aug 1990 A
4951653 Fry Aug 1990 A
4955365 Fry Sep 1990 A
4958626 Nambu Sep 1990 A
4976709 Sand Dec 1990 A
4979501 Valchanov Dec 1990 A
4992989 Watanabe et al. Feb 1991 A
5012797 Liang May 1991 A
5018508 Fry et al. May 1991 A
5030874 Saito et al. Jul 1991 A
5036855 Fry Aug 1991 A
5040537 Katakura Aug 1991 A
5054310 Flynn Oct 1991 A
5054470 Fry Oct 1991 A
5054491 Saito et al. Oct 1991 A
5070879 Herres Dec 1991 A
5088495 Miyagawa Feb 1992 A
5115814 Griffith May 1992 A
5117832 Sanghvi Jun 1992 A
5123418 Saurel Jun 1992 A
5142511 Kanai et al. Aug 1992 A
5143063 Fellner Sep 1992 A
5143074 Dory Sep 1992 A
5149319 Unger Sep 1992 A
5150711 Dory Sep 1992 A
5150714 Green Sep 1992 A
5152294 Mochizuki et al. Oct 1992 A
5156144 Iwasaki Oct 1992 A
5158536 Sekins Oct 1992 A
5159931 Pini Nov 1992 A
5163421 Bernstein Nov 1992 A
5163436 Saitoh et al. Nov 1992 A
5178135 Uchiyama et al. Jan 1993 A
5190518 Takasu Mar 1993 A
5190766 Ishihara Mar 1993 A
5191880 McLeod Mar 1993 A
5205287 Erbel et al. Apr 1993 A
5209720 Unger May 1993 A
5212671 Fujii et al. May 1993 A
5215680 D'Arrigo Jun 1993 A
5224467 Oku Jul 1993 A
5230334 Klopotek Jul 1993 A
5230338 Allen et al. Jul 1993 A
5247924 Suzuki et al. Sep 1993 A
5255681 Ishimura et al. Oct 1993 A
5257970 Dougherty Nov 1993 A
5265614 Hayakawa Nov 1993 A
5267985 Shimada Dec 1993 A
5269297 Weng Dec 1993 A
5282797 Chess Feb 1994 A
5295484 Marcus Mar 1994 A
5295486 Wollschlager et al. Mar 1994 A
5304169 Sand Apr 1994 A
5305756 Entrekin et al. Apr 1994 A
5321520 Inga et al. Jun 1994 A
5323779 Hardy et al. Jun 1994 A
5327895 Hashimoto et al. Jul 1994 A
5329202 Garlick et al. Jul 1994 A
5348016 Unger et al. Sep 1994 A
5358466 Aida et al. Oct 1994 A
5360268 Hayashi Nov 1994 A
5370121 Reichenberger Dec 1994 A
5370122 Kunig Dec 1994 A
5371483 Bhardwaj Dec 1994 A
5375602 Lancee et al. Dec 1994 A
5379773 Hornsby Jan 1995 A
5380280 Peterson Jan 1995 A
5380519 Schneider et al. Jan 1995 A
5383917 Desai et al. Jan 1995 A
5391140 Schaetzle et al. Feb 1995 A
5391197 Burdette et al. Feb 1995 A
5392259 Bolorforosh Feb 1995 A
5396143 Seyed-Bolorforosh et al. Mar 1995 A
5398689 Connor et al. Mar 1995 A
5406503 Williams Apr 1995 A
5413550 Castel May 1995 A
5417216 Tanaka May 1995 A
5423220 Finsterwald et al. Jun 1995 A
5435311 Umemura Jul 1995 A
5438998 Hanafy Aug 1995 A
5443068 Cline et al. Aug 1995 A
5445611 Eppstein et al. Aug 1995 A
5458596 Lax Oct 1995 A
5460179 Okunuki et al. Oct 1995 A
5460595 Hall et al. Oct 1995 A
5419327 Rohwedder Nov 1995 A
5469854 Unger et al. Nov 1995 A
5471488 Fujio Dec 1995 A
5472405 Buchholtz et al. Dec 1995 A
5487388 Rello et al. Jan 1996 A
5492126 Hennige Feb 1996 A
5496256 Bock Mar 1996 A
5501655 Rolt Mar 1996 A
5503152 Oakley et al. Apr 1996 A
5503320 Webster et al. Apr 1996 A
5507790 Weiss Apr 1996 A
5511296 Dias et al. Apr 1996 A
5520188 Hennige May 1996 A
5522869 Burdette Jun 1996 A
5523058 Umemura et al. Jun 1996 A
5524620 Rosenchein Jun 1996 A
5524624 Tepper Jun 1996 A
5524625 Okazaki Jun 1996 A
5526624 Berg Jun 1996 A
5526812 Dumoulin et al. Jun 1996 A
5526814 Cline et al. Jun 1996 A
5526815 Granz Jun 1996 A
5529070 Augustine et al. Jun 1996 A
5540235 Wilson Jul 1996 A
5558092 Unger Sep 1996 A
5560362 Sliwa et al. Oct 1996 A
5573497 Chapelon Nov 1996 A
5575291 Hayakawa Nov 1996 A
5575807 Faller Nov 1996 A
5577502 Darrow et al. Nov 1996 A
5577507 Snyder et al. Nov 1996 A
5577991 Akui et al. Nov 1996 A
5580575 Unger et al. Dec 1996 A
5643179 Fujimoto Jan 1997 A
5601526 Chapelon Feb 1997 A
5603323 Pflugrath et al. Feb 1997 A
5605154 Ries et al. Feb 1997 A
5609562 Kaali Mar 1997 A
5615091 Palatnik Mar 1997 A
5618275 Bock Apr 1997 A
5620479 Diederich Apr 1997 A
5622175 Sudol et al. Apr 1997 A
5617858 Taverna et al. May 1997 A
5638819 Manwaring et al. Jun 1997 A
5644085 Lorraine et al. Jul 1997 A
5647373 Paltieli Jul 1997 A
5655535 Frlemel et al. Aug 1997 A
5655538 Lorraine Aug 1997 A
5657760 Ying Aug 1997 A
5658328 Johnson Aug 1997 A
5660836 Knowlton Aug 1997 A
5662116 Kondo Sep 1997 A
5665053 Jacobs Sep 1997 A
5665141 Vago Sep 1997 A
5671746 Dreschel et al. Sep 1997 A
5673699 Trahey et al. Oct 1997 A
5676692 Sanghvi Oct 1997 A
5685820 Riek et al. Nov 1997 A
5690608 Watanabe Nov 1997 A
5694936 Fujimoto Dec 1997 A
5697897 Buchholtz Dec 1997 A
5701900 Shehada et al. Dec 1997 A
5704361 Seward et al. Jan 1998 A
5706252 Le Verrier et al. Jan 1998 A
5706564 Rhyne Jan 1998 A
5715823 Wood et al. Feb 1998 A
5720287 Chapelon et al. Feb 1998 A
5722411 Suzuki Mar 1998 A
5727554 Kalend et al. Mar 1998 A
5735280 Sherman et al. Apr 1998 A
5740804 Cerofolini Apr 1998 A
5743863 Chapelon Apr 1998 A
5746005 Steinberg May 1998 A
5746762 Bass May 1998 A
5748767 Raab May 1998 A
5749364 Sliwa et al. May 1998 A
5755228 Wilson et al. May 1998 A
5755753 Knowlton May 1998 A
5762066 Law Jun 1998 A
5763886 Schulte Jun 1998 A
5769790 Watkins Jun 1998 A
5779644 Eberle et al. Jul 1998 A
5792058 Lee Aug 1998 A
5795297 Daigle Aug 1998 A
5795311 Wess Aug 1998 A
5810009 Mine et al. Sep 1998 A
5810888 Fenn Sep 1998 A
5814599 Mitragotri et al. Sep 1998 A
5817013 Ginn et al. Oct 1998 A
5817021 Reichenberger Oct 1998 A
5820564 Slayton Oct 1998 A
5823962 Schaetzle Oct 1998 A
5827204 Grandia et al. Oct 1998 A
5840032 Hatfield et al. Nov 1998 A
5844140 Seale Dec 1998 A
5853367 Chalek et al. Dec 1998 A
5866024 de Villenueve Feb 1999 A
5869751 Bonin Feb 1999 A
5871524 Knowlton Feb 1999 A
5873902 Sanghvi Feb 1999 A
5876341 Wang et al. Mar 1999 A
5879303 Averkiou et al. Mar 1999 A
5882557 Hayakawa Mar 1999 A
5891034 Bucholz Apr 1999 A
5895356 Andrus et al. Apr 1999 A
5899861 Friemel et al. May 1999 A
5904659 Duarte May 1999 A
5919219 Knowlton Jul 1999 A
5923099 Bilir Jul 1999 A
5924989 Polz Jul 1999 A
5928169 Schatzle et al. Jul 1999 A
5931805 Brisken Aug 1999 A
5938606 Bonnefous Aug 1999 A
5938612 Kline-Schoder Aug 1999 A
5948011 Knowlton Sep 1999 A
5957844 Dekel Sep 1999 A
5957882 Nita et al. Sep 1999 A
5957941 Ream Sep 1999 A
5964707 Fenster et al. Oct 1999 A
5967980 Ferre et al. Oct 1999 A
5968034 Fullmer Oct 1999 A
5971949 Levin Oct 1999 A
5977538 Unger et al. Nov 1999 A
5984881 Ishibashi et al. Nov 1999 A
5984882 Rosenchein Nov 1999 A
5990598 Sudol et al. Nov 1999 A
5997471 Gumb et al. Dec 1999 A
5997497 Nita et al. Dec 1999 A
5999843 Anbar Dec 1999 A
6004262 Putz et al. Dec 1999 A
6007499 Martin et al. Dec 1999 A
6013032 Savord Jan 2000 A
6014473 Hossack et al. Jan 2000 A
6016255 Bolan et al. Jan 2000 A
6019724 Gronningsaeter et al. Feb 2000 A
6022308 Williams Feb 2000 A
6022317 Cruanas et al. Feb 2000 A
6022327 Chang Feb 2000 A
6030374 McDaniel Feb 2000 A
6036646 Barthe Mar 2000 A
6039048 Silberg Mar 2000 A
6039689 Lizzi Mar 2000 A
6042556 Beach Mar 2000 A
6049159 Barthe Apr 2000 A
6050943 Slayton Apr 2000 A
6059727 Fowlkes May 2000 A
6071239 Cribbs Jun 2000 A
6080108 Dunham Jun 2000 A
6083148 Williams Jul 2000 A
6086535 Ishibashi Jul 2000 A
6086580 Mordon et al. Jul 2000 A
6090054 Tagishi Jul 2000 A
6093148 Fujimoto Jul 2000 A
6093883 Sanghvi Jul 2000 A
6100626 Frey et al. Aug 2000 A
6101407 Groezinger Aug 2000 A
6106469 Suzuki et al. Aug 2000 A
6113558 Rosenchein Sep 2000 A
6113559 Klopotek Sep 2000 A
6120452 Barthe Sep 2000 A
6123081 Durette Sep 2000 A
6126619 Peterson et al. Oct 2000 A
6135971 Hutchinson Oct 2000 A
6139499 Wilk Oct 2000 A
6159150 Yale et al. Dec 2000 A
6171244 Finger et al. Jan 2001 B1
6176840 Nishimura Jan 2001 B1
6183426 Akisada Feb 2001 B1
6183502 Takeuchi Feb 2001 B1
6183773 Anderson Feb 2001 B1
6190323 Dias Feb 2001 B1
6190336 Duarte Feb 2001 B1
6193658 Wendelken Feb 2001 B1
6198956 Dunne Mar 2001 B1
6210327 Brackett et al. Apr 2001 B1
6213948 Barthe Apr 2001 B1
6216029 Paltieli Apr 2001 B1
6233476 Strommer et al. May 2001 B1
6234990 Rowe et al. May 2001 B1
6241753 Knowlton Jun 2001 B1
6246898 Vesely et al. Jun 2001 B1
6251074 Averkiou et al. Jun 2001 B1
6251088 Kaufman et al. Jun 2001 B1
6268405 Yao Jul 2001 B1
6273864 Duarte Aug 2001 B1
6280402 Ishibashi et al. Aug 2001 B1
6287257 Matichuk Sep 2001 B1
6287304 Eggers et al. Sep 2001 B1
6296619 Brisken Oct 2001 B1
6301989 Brown et al. Oct 2001 B1
6307302 Toda Oct 2001 B1
6309355 Cain et al. Oct 2001 B1
6311090 Knowlton Oct 2001 B1
6315741 Martin Nov 2001 B1
6322509 Pan et al. Nov 2001 B1
6322532 D'Sa Nov 2001 B1
6325540 Lounsberry et al. Dec 2001 B1
6325758 Carol et al. Dec 2001 B1
6325769 Klopotek Dec 2001 B1
6325798 Edwards et al. Dec 2001 B1
6350276 Knowlton Feb 2002 B1
6356780 Licato et al. Mar 2002 B1
6361531 Hissong Mar 2002 B1
6370411 Osadchy et al. Apr 2002 B1
6375672 Aksan Apr 2002 B1
6377854 Knowlton Apr 2002 B1
6377855 Knowlton Apr 2002 B1
6381497 Knowlton Apr 2002 B1
6381498 Knowlton Apr 2002 B1
6387380 Knowlton May 2002 B1
6390982 Bova et al. May 2002 B1
6405090 Knowlton Jun 2002 B1
6409720 Hissong Jun 2002 B1
6413216 Cain et al. Jul 2002 B1
6413253 Koop Jul 2002 B1
6413254 Hissong Jul 2002 B1
6419648 Vitek Jul 2002 B1
6423007 Lizzi et al. Jul 2002 B2
6425865 Salcudean Jul 2002 B1
6425867 Vaezy Jul 2002 B1
6425912 Knowlton Jul 2002 B1
6428477 Mason Aug 2002 B1
6428532 Doukas Aug 2002 B1
6430446 Knowlton Aug 2002 B1
6432057 Mazess et al. Aug 2002 B1
6432067 Martin Aug 2002 B1
6432101 Weber Aug 2002 B1
6436061 Costantino Aug 2002 B1
6438424 Knowlton Aug 2002 B1
6440071 Slayton Aug 2002 B1
6440121 Weber Aug 2002 B1
6443914 Costantino Sep 2002 B1
6447443 Keogh et al. Sep 2002 B1
6450979 Miwa et al. Sep 2002 B1
6451013 Bays et al. Sep 2002 B1
6453202 Knowlton Sep 2002 B1
6461304 Tanaka et al. Oct 2002 B1
6461378 Knowlton Oct 2002 B1
6470216 Knowlton Oct 2002 B1
6338716 Hossack Nov 2002 B1
6485420 Bullis Nov 2002 B1
6488626 Lizzi Dec 2002 B1
6491657 Rowe Dec 2002 B2
6500121 Slayton Dec 2002 B1
6500141 Irion Dec 2002 B1
6506171 Vitek et al. Jan 2003 B1
6508774 Acker Jan 2003 B1
6511427 Sliwa, Jr. et al. Jan 2003 B1
6511428 Azuma Jan 2003 B1
6514244 Pope Feb 2003 B2
6517484 Wilk Feb 2003 B1
6524250 Weber Feb 2003 B1
6666835 Martin Mar 2003 B2
6540679 Slayton Apr 2003 B2
6540685 Rhoads et al. Apr 2003 B1
6540700 Fujimoto et al. Apr 2003 B1
6547788 Maguire et al. Apr 2003 B1
6554771 Buil et al. Apr 2003 B1
6569099 Babaev May 2003 B1
6569108 Sarvazyan et al. May 2003 B2
6572552 Fukukita Jun 2003 B2
6575956 Brisken et al. Jun 2003 B1
6595934 Hissong Jul 2003 B1
6599256 Acker Jul 2003 B1
6605043 Dreschel Aug 2003 B1
6605080 Altshuler et al. Aug 2003 B1
6607498 Eshel Aug 2003 B2
6618620 Freundlich et al. Sep 2003 B1
6623430 Slayton Sep 2003 B1
6626854 Friedman Sep 2003 B2
6626855 Weng Sep 2003 B1
6638226 He et al. Oct 2003 B2
6645145 Dreschel et al. Nov 2003 B1
6645150 Angelsen et al. Nov 2003 B2
6645162 Friedman Nov 2003 B2
6662054 Kreindel Dec 2003 B2
6663627 Francischelli Dec 2003 B2
6665806 Shimizu Dec 2003 B1
6669638 Miller Dec 2003 B1
6673017 Jackson Jan 2004 B1
6685639 Wang et al. Feb 2004 B1
6685640 Fry Feb 2004 B1
6692450 Coleman Feb 2004 B1
6699237 Weber Mar 2004 B2
6716184 Vaezy et al. Apr 2004 B2
6719449 Laughlin Apr 2004 B1
6719694 Weng Apr 2004 B2
6726627 Lizzi et al. Apr 2004 B1
6733449 Krishnamurthy et al. May 2004 B1
6749624 Knowlton Jun 2004 B2
6772490 Toda Aug 2004 B2
6773409 Truckai et al. Aug 2004 B2
6775404 Pagoulatos et al. Aug 2004 B1
6790187 Thompson et al. Sep 2004 B2
6824516 Batten et al. Nov 2004 B2
6835940 Morikawa et al. Dec 2004 B2
6846290 Lizzi et al. Jan 2005 B2
6875176 Mourad et al. Apr 2005 B2
6882884 Mosk et al. Apr 2005 B1
6887239 Elstrom May 2005 B2
6887260 McDaniel May 2005 B1
6889089 Behl May 2005 B2
6896657 Willis May 2005 B2
6902536 Manna Jun 2005 B2
6905466 Salgo Jun 2005 B2
6918907 Kelly Jul 2005 B2
6920883 Bessette Jul 2005 B2
6921371 Wilson Jul 2005 B2
6932771 Whitmore Aug 2005 B2
6932814 Wood Aug 2005 B2
6936044 McDaniel Aug 2005 B2
6936046 Hissong Aug 2005 B2
6945937 Culp et al. Sep 2005 B2
6948843 Laugharn et al. Sep 2005 B2
6953941 Nakano et al. Oct 2005 B2
6958043 Hissong Oct 2005 B2
6971994 Young et al. Dec 2005 B1
6974417 Lockwood Dec 2005 B2
6976492 Ingle Dec 2005 B2
6992305 Maezawa et al. Jan 2006 B2
6997923 Anderson Feb 2006 B2
7006874 Knowlton Feb 2006 B2
7020528 Neev Mar 2006 B2
7022089 Ooba Apr 2006 B2
7058440 Heuscher et al. Jun 2006 B2
7063666 Weng Jun 2006 B2
7070565 Vaezy et al. Jul 2006 B2
7074218 Washington et al. Jul 2006 B2
7094252 Koop Aug 2006 B2
7108663 Talish et al. Sep 2006 B2
7115123 Knowlton Oct 2006 B2
7122029 Koop et al. Oct 2006 B2
7142905 Slayton Nov 2006 B2
7165451 Brooks et al. Jan 2007 B1
7179238 Hissong Feb 2007 B2
7189230 Knowlton Mar 2007 B2
7229411 Slayton Jun 2007 B2
7235592 Muratoglu Jun 2007 B2
7258674 Cribbs Aug 2007 B2
7273459 Desilets Sep 2007 B2
7294125 Phalen et al. Nov 2007 B2
7297117 Trucco Nov 2007 B2
7303555 Makin et al. Dec 2007 B2
7311679 Desilets et al. Dec 2007 B2
7327071 Nishiyama et al. Feb 2008 B2
7331951 Eshel et al. Feb 2008 B2
7332985 Larson et al. Feb 2008 B2
7338434 Haarstad et al. Mar 2008 B1
7347855 Eshel Mar 2008 B2
RE40403 Cho et al. Jun 2008 E
7393325 Barthe Jul 2008 B2
7398116 Edwards Jul 2008 B2
7399279 Abend et al. Jul 2008 B2
7491171 Barthe et al. Feb 2009 B2
7507235 Keogh et al. Mar 2009 B2
7510536 Foley et al. Mar 2009 B2
7517315 Willis Apr 2009 B2
7530356 Slayton May 2009 B2
7530958 Slayton May 2009 B2
7532201 Quistgaard et al. May 2009 B2
7571336 Barthe Aug 2009 B2
7601120 Moilanen et al. Oct 2009 B2
7615015 Coleman Nov 2009 B2
7615016 Barthe Nov 2009 B2
7652411 Crunkilton et al. Jan 2010 B2
7662114 Seip et al. Feb 2010 B2
7674257 Pless et al. Mar 2010 B2
7686763 Vaezy et al. Mar 2010 B2
7713203 Lacoste et al. Mar 2010 B2
7694406 Wildes et al. Apr 2010 B2
7695437 Quistgaard et al. Apr 2010 B2
7727156 Angelsen et al. Jun 2010 B2
7758524 Barthe Jul 2010 B2
7766848 Desilets et al. Aug 2010 B2
7789841 Huckle et al. Sep 2010 B2
7806839 Mast et al. Oct 2010 B2
7815570 Eshel et al. Oct 2010 B2
7819826 Diederich et al. Oct 2010 B2
7828734 Azhari et al. Oct 2010 B2
7824348 Barthe Nov 2010 B2
7833162 Hasegawa et al. Nov 2010 B2
7841984 Cribbs et al. Nov 2010 B2
7846096 Mast et al. Dec 2010 B2
7857773 Desilets et al. Dec 2010 B2
7875023 Eshel et al. Jan 2011 B2
7901359 Mandrusov et al. Mar 2011 B2
7905007 Calisti et al. Mar 2011 B2
7905844 Desilets et al. Mar 2011 B2
7914453 Slayton et al. Mar 2011 B2
7914469 Torbati Mar 2011 B2
7955281 Pedersen et al. Jun 2011 B2
7967764 Lidgren et al. Jun 2011 B2
7967839 Flock et al. Jun 2011 B2
7955262 Rosenberg Jul 2011 B2
7993289 Quistgaard et al. Aug 2011 B2
8057465 Sliwa, Jr. et al. Sep 2011 B2
8057389 Barthe et al. Nov 2011 B2
8066641 Barthe et al. Nov 2011 B2
8123707 Huckle et al. Feb 2012 B2
8128618 Gliklich et al. Mar 2012 B2
8133180 Slayton et al. Mar 2012 B2
8133191 Rosenberg et al. Mar 2012 B2
8142200 Crunkilton et al. Mar 2012 B2
8152904 Slobodzian et al. Apr 2012 B2
8162858 Manna et al. Apr 2012 B2
8166332 Barthe et al. Apr 2012 B2
8182428 Angelsen et al. May 2012 B2
8197409 Foley et al. Jun 2012 B2
8206299 Foley et al. Jun 2012 B2
8208346 Crunkilton Jun 2012 B2
8211017 Foley et al. Jul 2012 B2
8262591 Pedersen et al. Sep 2012 B2
8262650 Zanelli et al. Sep 2012 B2
8264126 Toda et al. Sep 2012 B2
8273037 Kreindel et al. Sep 2012 B2
8282554 Makin et al. Oct 2012 B2
8292835 Cimino Oct 2012 B1
8298163 Cimino Oct 2012 B1
8333700 Barthe et al. Dec 2012 B1
8334637 Crunkilton et al. Dec 2012 B2
8337407 Quistgaard et al. Dec 2012 B2
8343051 Desilets et al. Jan 2013 B2
8454540 Eshel et al. Jan 2013 B2
8366622 Slayton et al. Feb 2013 B2
8398549 Palmeri et al. Mar 2013 B2
8409097 Slayton et al. Apr 2013 B2
8425435 Wing et al. Apr 2013 B2
8388535 Weng et al. May 2013 B2
8444562 Barthe et al. May 2013 B2
8460193 Barthe et al. Jun 2013 B2
8480585 Slayton et al. Jul 2013 B2
8486001 Weyant Jul 2013 B2
8506486 Slayton et al. Aug 2013 B2
8512250 Quistgaard et al. Aug 2013 B2
8523775 Barthe et al. Sep 2013 B2
8523849 Liu et al. Sep 2013 B2
8535228 Slayton et al. Sep 2013 B2
8570837 Toda et al. Oct 2013 B2
8573392 Bennett et al. Nov 2013 B2
8583211 Salomir et al. Nov 2013 B2
8585618 Hunziker et al. Nov 2013 B2
8604672 Toda et al. Dec 2013 B2
8622937 Weng et al. Jan 2014 B2
8636665 Slayton et al. Jan 2014 B2
8641622 Barthe et al. Feb 2014 B2
8663112 Slayton et al. Mar 2014 B2
8672848 Slayton et al. Mar 2014 B2
8690778 Slayton et al. Apr 2014 B2
8690779 Slayton et al. Apr 2014 B2
8690780 Slayton et al. Apr 2014 B2
8708935 Barthe et al. Apr 2014 B2
8715186 Slayton et al. May 2014 B2
8726781 Eckhoff et al. May 2014 B2
8728071 Lischinsky et al. May 2014 B2
8753295 Thierman Jun 2014 B2
8758253 Sano et al. Jun 2014 B2
8836203 Nobles et al. Sep 2014 B2
8857438 Barthe et al. Oct 2014 B2
8858471 Barthe et al. Oct 2014 B2
8915853 Barthe et al. Dec 2014 B2
8915854 Slayton et al. Dec 2014 B2
8915870 Barthe et al. Dec 2014 B2
8920320 Stecco et al. Dec 2014 B2
8920324 Slayton et al. Dec 2014 B2
8926533 Bockenstedt et al. Jan 2015 B2
8932224 Barthe et al. Jan 2015 B2
8932238 Wing et al. Jan 2015 B2
8968205 Zeng et al. Mar 2015 B2
9011336 Slayton et al. Apr 2015 B2
9039617 Slayton et al. May 2015 B2
9039619 Barthe et al. May 2015 B2
9050116 Homer Jun 2015 B2
9095697 Barthe et al. Aug 2015 B2
9107798 Azhari et al. Aug 2015 B2
9114247 Barthe et al. Aug 2015 B2
9180314 Desilets et al. Nov 2015 B2
9216276 Slayton et al. Dec 2015 B2
9220915 Liu et al. Dec 2015 B2
9272162 Slayton et al. Mar 2016 B2
9283409 Slayton et al. Mar 2016 B2
9283410 Slayton et al. Mar 2016 B2
9295607 Rosenberg Mar 2016 B2
9308390 Youngquist Apr 2016 B2
9308391 Liu et al. Apr 2016 B2
9314650 Rosenberg et al. Apr 2016 B2
9320537 Slayton et al. Apr 2016 B2
9345910 Slayton et al. May 2016 B2
9421029 Barthe et al. Aug 2016 B2
9427600 Barthe et al. Aug 2016 B2
9427601 Barthe et al. Aug 2016 B2
9433803 Lin et al. Sep 2016 B2
9440093 Homer Sep 2016 B2
9440096 Barthe et al. Sep 2016 B2
9492645 Zhou et al. Nov 2016 B2
9492686 Da Silva Nov 2016 B2
9498651 Sapozhnikov et al. Nov 2016 B2
9510802 Barthe et al. Dec 2016 B2
9522290 Slayton et al. Dec 2016 B2
9532832 Ron Edoute et al. Jan 2017 B2
9533174 Barthe et al. Jan 2017 B2
9533175 Slayton et al. Jan 2017 B2
9545529 Britva et al. Jan 2017 B2
9566454 Barthe et al. Feb 2017 B2
9623267 Ulric et al. Apr 2017 B2
9694211 Barthe et al. Jul 2017 B2
9694212 Barthe et al. Jul 2017 B2
9700340 Barthe et al. Jul 2017 B2
9707412 Slayton et al. Jul 2017 B2
9710607 Ramdas et al. Jul 2017 B2
9713731 Slayton et al. Jul 2017 B2
9802063 Barthe et al. Oct 2017 B2
9827449 Barthe et al. Nov 2017 B2
9827450 Slayton et al. Nov 2017 B2
9833639 Slayton et al. Dec 2017 B2
9833640 Barthe et al. Dec 2017 B2
9895560 Barthe et al. Feb 2018 B2
9907535 Barthe et al. Mar 2018 B2
9919167 Domankevitz Mar 2018 B2
9974982 Slayton et al. May 2018 B2
9993664 Aviad et al. Jun 2018 B2
10010721 Slayton et al. Jul 2018 B2
10010724 Barthe et al. Jul 2018 B2
10010725 Slayton et al. Jul 2018 B2
10010726 Barthe et al. Jul 2018 B2
10016626 Zovrin et al. Jul 2018 B2
10046181 Barthe et al. Aug 2018 B2
10046182 Barthe et al. Aug 2018 B2
10070883 Barthe et al. Sep 2018 B2
10183183 Burdette Jan 2019 B2
10226645 Barthe Mar 2019 B2
10238894 Slayton et al. Mar 2019 B2
10245450 Slayton et al. Apr 2019 B2
10252086 Barthe et al. Apr 2019 B2
10265550 Barthe et al. Apr 2019 B2
10272272 Lee et al. Apr 2019 B2
10300308 Seip et al. May 2019 B2
10328289 Barthe et al. Jun 2019 B2
10363440 Cho et al. Jun 2019 B2
10406383 Luebcke Sep 2019 B2
10420960 Emery Sep 2019 B2
10420961 Lacoste Sep 2019 B2
10485573 Clark, III et al. Nov 2019 B2
10492862 Domankevitz Dec 2019 B2
10525288 Slayton et al. Jan 2020 B2
10532230 Barthe et al. Jan 2020 B2
10537304 Barthe et al. Jan 2020 B2
10556123 Altshuler et al. Feb 2020 B2
10583287 Schwarz Mar 2020 B2
10603519 Slayton et al. Mar 2020 B2
10603521 Emery et al. Mar 2020 B2
10603523 Slayton et al. Mar 2020 B2
10610705 Barthe et al. Apr 2020 B2
10610706 Barthe et al. Apr 2020 B2
10639006 Choi et al. May 2020 B2
10639504 Kim May 2020 B2
10751246 Kaila Aug 2020 B2
10772646 Lu et al. Sep 2020 B2
10780298 Cain et al. Sep 2020 B2
10888716 Slayton et al. Jan 2021 B2
10888717 Slayton et al. Jan 2021 B2
10888718 Barthe et al. Jan 2021 B2
10960235 Barthe et al. Mar 2021 B2
10960236 Slayton et al. Mar 2021 B2
11123039 Barthe et al. Sep 2021 B2
11167155 Barthe et al. Nov 2021 B2
11179580 Slayton et al. Nov 2021 B2
11207547 Slayton et al. Dec 2021 B2
11207548 Barthe et al. Dec 2021 B2
11224895 Brown et al. Jan 2022 B2
11235179 Barthe et al. Feb 2022 B2
11235180 Slayton et al. Feb 2022 B2
11241218 Emery et al. Feb 2022 B2
20010009997 Pope Jul 2001 A1
20010009999 Kaufman et al. Jul 2001 A1
20010014780 Martin Aug 2001 A1
20010014819 Ingle Aug 2001 A1
20010031922 Weng Oct 2001 A1
20010039380 Larson et al. Nov 2001 A1
20010041880 Brisken Nov 2001 A1
20020000763 Jones Jan 2002 A1
20020002345 Marlinghaus Jan 2002 A1
20020040199 Klopotek Apr 2002 A1
20020040442 Ishidera Apr 2002 A1
20020055702 Atala May 2002 A1
20020062077 Emmenegger May 2002 A1
20020062142 Knowlton May 2002 A1
20020072691 Thompson et al. Jun 2002 A1
20020082528 Friedman Jun 2002 A1
20020082529 Suorsa et al. Jun 2002 A1
20020082589 Friedman Jun 2002 A1
20020087080 Slayton Jul 2002 A1
20020095143 Key Jul 2002 A1
20020099094 Anderson Jul 2002 A1
20020111569 Rosenschien et al. Aug 2002 A1
20020115917 Honda et al. Aug 2002 A1
20020128639 Pless et al. Aug 2002 A1
20020128648 Weber Sep 2002 A1
20020143252 Dunne et al. Oct 2002 A1
20020156400 Babaev Oct 2002 A1
20020161357 Anderson Oct 2002 A1
20020165529 Danek Nov 2002 A1
20020168049 Schriever Nov 2002 A1
20020169394 Eppstein et al. Nov 2002 A1
20020169442 Neev Nov 2002 A1
20020173721 Grunwald et al. Nov 2002 A1
20020193784 McHale et al. Dec 2002 A1
20020193831 Smith Dec 2002 A1
20030009153 Brisken et al. Jan 2003 A1
20030014039 Barzell et al. Jan 2003 A1
20030018255 Martin Jan 2003 A1
20030018270 Makin et al. Jan 2003 A1
20030023283 McDaniel Jan 2003 A1
20030028111 Vaezy et al. Feb 2003 A1
20030028113 Gilbert et al. Feb 2003 A1
20030032900 Ella Feb 2003 A1
20030036706 Slayton et al. Feb 2003 A1
20030040739 Koop Feb 2003 A1
20030050678 Sierra Mar 2003 A1
20030055308 Friemel et al. Mar 2003 A1
20030055417 Truckai et al. Mar 2003 A1
20030060736 Martin et al. Mar 2003 A1
20030065313 Koop Apr 2003 A1
20030066708 Allison et al. Apr 2003 A1
20030073907 Taylor Apr 2003 A1
20030074023 Kaplan Apr 2003 A1
20030083536 Eshel May 2003 A1
20030092988 Makin May 2003 A1
20030097071 Halmann et al. May 2003 A1
20030099383 Lefebvre May 2003 A1
20030125629 Ustuner Jul 2003 A1
20030135135 Miwa et al. Jul 2003 A1
20030139790 Ingle et al. Jul 2003 A1
20030149366 Stringer et al. Aug 2003 A1
20030153961 Babaev Aug 2003 A1
20030171678 Batten et al. Sep 2003 A1
20030171701 Babaev Sep 2003 A1
20030176790 Slayton Sep 2003 A1
20030191396 Sanghvi Oct 2003 A1
20030199794 Sakurai et al. Oct 2003 A1
20030200481 Stanley Oct 2003 A1
20030212129 Liu et al. Nov 2003 A1
20030212351 Hissong Nov 2003 A1
20030212393 Knowlton Nov 2003 A1
20030216648 Lizzi et al. Nov 2003 A1
20030216795 Harth Nov 2003 A1
20030220536 Hissong Nov 2003 A1
20030220585 Hissong Nov 2003 A1
20030229331 Brisken et al. Dec 2003 A1
20030233085 Giammarusti Dec 2003 A1
20030236487 Knowlton Dec 2003 A1
20040000316 Knowlton Jan 2004 A1
20040001809 Brisken Jan 2004 A1
20040002658 Marian, Jr. Jan 2004 A1
20040002705 Knowlton Jan 2004 A1
20040010222 Nunomura et al. Jan 2004 A1
20040015079 Berger et al. Jan 2004 A1
20040015106 Coleman Jan 2004 A1
20040030227 Littrup Feb 2004 A1
20040030268 Weng et al. Feb 2004 A1
20040039312 Hillstead Feb 2004 A1
20040039418 Elstrom Feb 2004 A1
20040041563 Lewin et al. Mar 2004 A1
20040041880 Ikeda et al. Mar 2004 A1
20040042168 Yang et al. Mar 2004 A1
20040044375 Diederich et al. Mar 2004 A1
20040049134 Tosaya et al. Mar 2004 A1
20040049734 Tosaya et al. Mar 2004 A1
20040059266 Fry Mar 2004 A1
20040068186 Ishida et al. Apr 2004 A1
20040073079 Altshuler et al. Apr 2004 A1
20040073113 Salgo Apr 2004 A1
20040073115 Horzewski et al. Apr 2004 A1
20040073116 Smith Apr 2004 A1
20040073204 Ryan et al. Apr 2004 A1
20040077977 Ella et al. Apr 2004 A1
20040082857 Schonenberger Apr 2004 A1
20040082859 Schaer Apr 2004 A1
20040102697 Evron May 2004 A1
20040105559 Aylward et al. Jun 2004 A1
20040106867 Eshel et al. Jun 2004 A1
20040122323 Vortman et al. Jun 2004 A1
20040122493 Ishibashi et al. Jun 2004 A1
20040143297 Ramsey Jul 2004 A1
20040152982 Hwang et al. Aug 2004 A1
20040158150 Rabiner et al. Aug 2004 A1
20040186535 Knowlton Sep 2004 A1
20040189155 Funakubo Sep 2004 A1
20040206365 Knowlton Oct 2004 A1
20040210214 Knowlton Oct 2004 A1
20040217675 Desilets Nov 2004 A1
20040249318 Tanaka Dec 2004 A1
20040254620 Lacoste Dec 2004 A1
20040267252 Washington et al. Dec 2004 A1
20050007879 Nishida Jan 2005 A1
20050033201 Takahashi Feb 2005 A1
20050033316 Kertz Feb 2005 A1
20050038340 Vaezy et al. Feb 2005 A1
20050055018 Kreindel Mar 2005 A1
20050055073 Weber Mar 2005 A1
20050061834 Garcia et al. Mar 2005 A1
20050070961 Maki Mar 2005 A1
20050074407 Smith Apr 2005 A1
20050080469 Larson Apr 2005 A1
20050085731 Miller et al. Apr 2005 A1
20050091770 Mourad et al. May 2005 A1
20050096542 Weng et al. May 2005 A1
20050104690 Larson et al. May 2005 A1
20050113689 Gritzky May 2005 A1
20050131302 Poland Jun 2005 A1
20050137656 Malak Jun 2005 A1
20050143677 Young et al. Jun 2005 A1
20050154313 Desilets Jul 2005 A1
20050154314 Quistgaard Jul 2005 A1
20050154332 Zanelli Jul 2005 A1
20050154431 Quistgaard Jul 2005 A1
20050187495 Quistgaard Aug 2005 A1
20050191252 Mitsui Sep 2005 A1
20050193451 Quistgaard Sep 2005 A1
20050193820 Sheljaskow et al. Sep 2005 A1
20050197681 Barolet et al. Sep 2005 A1
20050228281 Nefos Oct 2005 A1
20050240127 Seip et al. Oct 2005 A1
20050240170 Zhang et al. Oct 2005 A1
20050251120 Anderson et al. Nov 2005 A1
20050251125 Pless et al. Nov 2005 A1
20050256406 Barthe Nov 2005 A1
20050261584 Eshel Nov 2005 A1
20050261585 Makin et al. Nov 2005 A1
20050267454 Hissong Dec 2005 A1
20050288748 Li et al. Dec 2005 A1
20060004306 Altshuler Jan 2006 A1
20060020260 Dover et al. Jan 2006 A1
20060025756 Francischelli Feb 2006 A1
20060042201 Curry Mar 2006 A1
20060058664 Barthe Mar 2006 A1
20060058671 Vitek et al. Mar 2006 A1
20060058707 Barthe Mar 2006 A1
20060058712 Altshuler et al. Mar 2006 A1
20060074309 Bonnefous Apr 2006 A1
20060074313 Slayton et al. Apr 2006 A1
20060074314 Slayton Apr 2006 A1
20060074355 Slayton Apr 2006 A1
20060079816 Barthe Apr 2006 A1
20060079868 Makin Apr 2006 A1
20060084891 Barthe Apr 2006 A1
20060089632 Barthe Apr 2006 A1
20060089688 Panescu Apr 2006 A1
20060094988 Tosaya May 2006 A1
20060106325 Perrier May 2006 A1
20060111744 Makin May 2006 A1
20060116583 Ogasawara et al. Jun 2006 A1
20060116671 Slayton Jun 2006 A1
20060122508 Slayton Jun 2006 A1
20060122509 Desilets Jun 2006 A1
20060161062 Arditi et al. Jul 2006 A1
20060184069 Vaitekunas Aug 2006 A1
20060184071 Klopotek Aug 2006 A1
20060189972 Grossman Aug 2006 A1
20060206105 Chopra Sep 2006 A1
20060224090 Ostrovsky et al. Oct 2006 A1
20060229514 Wiener Oct 2006 A1
20060238068 May et al. Oct 2006 A1
20060241440 Eshel Oct 2006 A1
20060241442 Barthe Oct 2006 A1
20060241470 Novak et al. Oct 2006 A1
20060241576 Diederich et al. Oct 2006 A1
20060250046 Koizumi et al. Nov 2006 A1
20060282691 Barthe Dec 2006 A1
20060291710 Wang et al. Dec 2006 A1
20070016039 Vortman et al. Jan 2007 A1
20070032784 Gilklich et al. Feb 2007 A1
20070035201 Desilets Feb 2007 A1
20070055154 Torbati Mar 2007 A1
20070055155 Owen et al. Mar 2007 A1
20070055156 Desilets et al. Mar 2007 A1
20070065420 Johnson Mar 2007 A1
20070083120 Cain et al. Apr 2007 A1
20070087060 Dietrich Apr 2007 A1
20070088245 Babaev et al. Apr 2007 A1
20070088346 Mirizzi et al. Apr 2007 A1
20070161902 Dan Jul 2007 A1
20070166357 Shaffer et al. Jul 2007 A1
20070167709 Slayton Jul 2007 A1
20070018553 Kennedy Aug 2007 A1
20070208253 Slayton Sep 2007 A1
20070219448 Seip et al. Sep 2007 A1
20070219604 Yaroslavsky et al. Sep 2007 A1
20070219605 Yaroslavsky et al. Sep 2007 A1
20070238994 Stecco et al. Oct 2007 A1
20070239075 Rosenberg Oct 2007 A1
20070239077 Azhari et al. Oct 2007 A1
20070239079 Manstein et al. Oct 2007 A1
20070239142 Altshuler Oct 2007 A1
20080015435 Cribbs et al. Jan 2008 A1
20080027328 Klopotek Jan 2008 A1
20080033458 McLean et al. Feb 2008 A1
20080039724 Seip et al. Feb 2008 A1
20080071255 Barthe Mar 2008 A1
20080086054 Slayton Apr 2008 A1
20080086056 Chang et al. Apr 2008 A1
20080097214 Meyers et al. Apr 2008 A1
20080097253 Pedersen et al. Apr 2008 A1
20080114251 Weymer May 2008 A1
20080139943 Deng et al. Jun 2008 A1
20080139974 Da Silva Jun 2008 A1
20080146970 Litman et al. Jun 2008 A1
20080167556 Thompson Jul 2008 A1
20080183077 Moreau-Gobard et al. Jul 2008 A1
20080183110 Davenport et al. Jul 2008 A1
20080188745 Chen et al. Aug 2008 A1
20080194964 Randall et al. Aug 2008 A1
20080195000 Spooner et al. Aug 2008 A1
20080200810 Buchalter Aug 2008 A1
20080200813 Quistgaard Aug 2008 A1
20080214966 Slayton Sep 2008 A1
20080214988 Altshuler et al. Sep 2008 A1
20080221491 Slayton Sep 2008 A1
20080223379 Stuker et al. Sep 2008 A1
20080242991 Moon et al. Oct 2008 A1
20080243035 Crunkilton Oct 2008 A1
20080269608 Anderson et al. Oct 2008 A1
20080275342 Barthe Nov 2008 A1
20080281206 Bartlett et al. Nov 2008 A1
20080281236 Eshel et al. Nov 2008 A1
20080281237 Slayton Nov 2008 A1
20080281255 Slayton Nov 2008 A1
20080294072 Crutchfield, III Nov 2008 A1
20080294073 Barthe Nov 2008 A1
20080319356 Cain Dec 2008 A1
20090005680 Jones et al. Jan 2009 A1
20090012394 Hobelsberger et al. Jan 2009 A1
20090043198 Milner et al. Feb 2009 A1
20090043293 Pankratov et al. Feb 2009 A1
20090048514 Azhari et al. Feb 2009 A1
20090069677 Chen et al. Mar 2009 A1
20090093737 Chomas et al. Apr 2009 A1
20090156969 Santangelo Jun 2009 A1
20090163807 Sliwa Jun 2009 A1
20090171252 Bockenstedt et al. Jul 2009 A1
20090171266 Harris Jul 2009 A1
20090177122 Peterson Jul 2009 A1
20090177123 Peterson Jul 2009 A1
20090182231 Barthe et al. Jul 2009 A1
20090198157 Babaev et al. Aug 2009 A1
20090216159 Slayton et al. Aug 2009 A1
20090226424 Hsu Sep 2009 A1
20090227910 Pedersen et al. Sep 2009 A1
20090230823 Kushculey et al. Sep 2009 A1
20090240146 Bockenstedt et al. Sep 2009 A1
20090253988 Slayton et al. Oct 2009 A1
20090281463 Chapelon et al. Nov 2009 A1
20090312693 Thapliyal et al. Dec 2009 A1
20090318909 Debenedictis et al. Dec 2009 A1
20090326420 Moonen et al. Dec 2009 A1
20100011236 Barthe et al. Jan 2010 A1
20100022919 Peterson Jan 2010 A1
20100022921 Seip et al. Jan 2010 A1
20100022922 Barthe et al. Jan 2010 A1
20100030076 Vortman et al. Feb 2010 A1
20100042020 Ben-Ezra Feb 2010 A1
20100049178 Deem et al. Feb 2010 A1
20100056925 Zhang et al. Mar 2010 A1
20100056962 Vortman et al. Mar 2010 A1
20100100014 Eshel et al. Apr 2010 A1
20100113983 Heckerman et al. May 2010 A1
20100130891 Taggart et al. May 2010 A1
20100160782 Slayton et al. Jun 2010 A1
20100160837 Hunziker et al. Jun 2010 A1
20100168576 Poland et al. Jul 2010 A1
20100191120 Kraus et al. Jul 2010 A1
20100241035 Barthe et al. Sep 2010 A1
20100249602 Buckley et al. Sep 2010 A1
20100249669 Ulric et al. Sep 2010 A1
20100256489 Pedersen et al. Oct 2010 A1
20100274161 Azhari et al. Oct 2010 A1
20100280420 Barthe et al. Nov 2010 A1
20100286518 Lee et al. Nov 2010 A1
20100312150 Douglas et al. Dec 2010 A1
20110040171 Foley et al. Feb 2011 A1
20110040190 Jahnke et al. Feb 2011 A1
20110040213 Dietz et al. Feb 2011 A1
20110040214 Foley et al. Feb 2011 A1
20110066084 Desilets et al. Mar 2011 A1
20110072970 Slobodzian et al. Mar 2011 A1
20110077514 Ulric et al. Mar 2011 A1
20110079083 Yoo et al. Apr 2011 A1
20110087099 Eshel et al. Apr 2011 A1
20110087255 McCormack et al. Apr 2011 A1
20110112405 Barthe et al. May 2011 A1
20110144490 Davis et al. Jun 2011 A1
20110178444 Slayton et al. Jul 2011 A1
20110178541 Azhari Jul 2011 A1
20110190745 Uebelhoer et al. Aug 2011 A1
20110201976 Sanghvi et al. Aug 2011 A1
20110251524 Azhari et al. Oct 2011 A1
20110251527 Kushculey et al. Oct 2011 A1
20110270137 Goren et al. Nov 2011 A1
20110319793 Henrik et al. Dec 2011 A1
20110319794 Gertner Dec 2011 A1
20120004549 Barthe et al. Jan 2012 A1
20120016239 Barthe et al. Jan 2012 A1
20120029353 Slayton et al. Feb 2012 A1
20120035473 Sanghvi et al. Feb 2012 A1
20120035475 Barthe et al. Feb 2012 A1
20120035476 Barthe et al. Feb 2012 A1
20120046547 Barthe et al. Feb 2012 A1
20120053458 Barthe et al. Mar 2012 A1
20120059288 Barthe et al. Mar 2012 A1
20120111339 Barthe et al. May 2012 A1
20120123304 Rybyanets et al. May 2012 A1
20120136280 Rosenberg et al. May 2012 A1
20120136282 Rosenberg et al. May 2012 A1
20120143056 Slayton et al. Jun 2012 A1
20120143100 Jeong et al. Jun 2012 A1
20120165668 Slayton et al. Jun 2012 A1
20120165848 Slayton et al. Jun 2012 A1
20120191019 Desilets et al. Jul 2012 A1
20120191020 Vitek et al. Jul 2012 A1
20120197120 Makin et al. Aug 2012 A1
20120197121 Slayton et al. Aug 2012 A1
20120209150 Zeng et al. Aug 2012 A1
20120215105 Slayton et al. Aug 2012 A1
20120271202 Wisdom Oct 2012 A1
20120271294 Barthe et al. Oct 2012 A1
20120277639 Pollock et al. Nov 2012 A1
20120296240 Azhari et al. Nov 2012 A1
20120302883 Kong et al. Nov 2012 A1
20120316426 Foley et al. Dec 2012 A1
20120330197 Makin et al. Dec 2012 A1
20120330222 Makin et al. Dec 2012 A1
20120330223 Makin et al. Dec 2012 A1
20120330283 Hyde et al. Dec 2012 A1
20120330284 Hyde et al. Dec 2012 A1
20130012755 Slayton Jan 2013 A1
20130012816 Slayton et al. Jan 2013 A1
20130012838 Jaeger et al. Jan 2013 A1
20130012842 Barthe Jan 2013 A1
20130018285 Park et al. Jan 2013 A1
20130018286 Slayton et al. Jan 2013 A1
20130046209 Slayton et al. Feb 2013 A1
20130051178 Rybyanets Feb 2013 A1
20130060170 Lee et al. Mar 2013 A1
20130066208 Barthe et al. Mar 2013 A1
20130066237 Smotrich et al. Mar 2013 A1
20130072826 Slayton et al. Mar 2013 A1
20130073001 Campbell Mar 2013 A1
20130096471 Slayton et al. Apr 2013 A1
20130096596 Schafer Apr 2013 A1
20130190659 Slayton et al. Jul 2013 A1
20130211293 Auboiroux et al. Aug 2013 A1
20130225994 Hsu et al. Aug 2013 A1
20130268032 Neev Oct 2013 A1
20130274603 Barthe et al. Oct 2013 A1
20130278111 Sammoura Oct 2013 A1
20130281853 Slayton et al. Oct 2013 A1
20130281891 Slayton et al. Oct 2013 A1
20130296697 Slayton et al. Nov 2013 A1
20130296700 Slayton et al. Nov 2013 A1
20130296743 Lee et al. Nov 2013 A1
20130303904 Barthe et al. Nov 2013 A1
20130303905 Barthe et al. Nov 2013 A1
20130310714 Eshel et al. Nov 2013 A1
20130310863 Makin et al. Nov 2013 A1
20130345562 Barthe et al. Dec 2013 A1
20140024974 Slayton et al. Jan 2014 A1
20140050054 Toda et al. Feb 2014 A1
20140081300 Melodelima et al. Mar 2014 A1
20140082907 Barthe et al. Mar 2014 A1
20140117814 Toda et al. May 2014 A1
20140142430 Slayton et al. May 2014 A1
20140148834 Barthe et al. May 2014 A1
20140155747 Bennett Jun 2014 A1
20140180174 Slayton et al. Jun 2014 A1
20140187944 Slayton et al. Jul 2014 A1
20140188015 Slayton et al. Jul 2014 A1
20140188145 Slayton et al. Jul 2014 A1
20140194723 Herzog et al. Jul 2014 A1
20140208856 Schmid Jul 2014 A1
20140221823 Keogh et al. Aug 2014 A1
20140236049 Barthe et al. Aug 2014 A1
20140236061 Lee et al. Aug 2014 A1
20140243713 Slayton et al. Aug 2014 A1
20140257145 Emery Sep 2014 A1
20140276055 Barthe et al. Sep 2014 A1
20140316269 Zhang et al. Oct 2014 A1
20150000674 Barthe et al. Jan 2015 A1
20150025420 Slayton et al. Jan 2015 A1
20150064165 Perry et al. Mar 2015 A1
20150080723 Barthe et al. Mar 2015 A1
20150080771 Barthe et al. Mar 2015 A1
20150080874 Slayton et al. Mar 2015 A1
20150088182 Slayton et al. Mar 2015 A1
20150141734 Chapelon et al. May 2015 A1
20150164734 Slayton et al. Jun 2015 A1
20150165238 Slayton et al. Jun 2015 A1
20150165243 Slayton et al. Jun 2015 A1
20150174388 Slayton Jun 2015 A1
20150202468 Slayton et al. Jul 2015 A1
20150217141 Barthe et al. Aug 2015 A1
20150238258 Palero et al. Aug 2015 A1
20150297188 Konofagou Oct 2015 A1
20150321026 Branson et al. Nov 2015 A1
20150360058 Barthe et al. Dec 2015 A1
20150374333 Barthe et al. Dec 2015 A1
20150375014 Slayton et al. Dec 2015 A1
20160001097 Cho et al. Jan 2016 A1
20160016015 Slayton et al. Jan 2016 A1
20160027994 Toda et al. Jan 2016 A1
20160151618 Powers et al. Jun 2016 A1
20160158580 Slayton et al. Jun 2016 A1
20160175619 Lee et al. Jun 2016 A1
20160206335 Slayton Jul 2016 A1
20160206341 Slayton Jul 2016 A1
20160256675 Slayton Sep 2016 A1
20160296769 Barthe et al. Oct 2016 A1
20160310444 Dobak, III Oct 2016 A1
20160361571 Bernabei Dec 2016 A1
20160361572 Slayton Dec 2016 A1
20170028227 Emery et al. Feb 2017 A1
20170043190 Barthe et al. Feb 2017 A1
20170050019 Ron Edoute et al. Feb 2017 A1
20170080257 Paunescu et al. Mar 2017 A1
20170090507 Weiner et al. Mar 2017 A1
20170100585 Hall et al. Apr 2017 A1
20170119345 Levien et al. May 2017 A1
20170136263 Reil May 2017 A1
20170209201 Slayton et al. Jul 2017 A1
20170209202 Friedrichs et al. Jul 2017 A1
20170304654 Blanche et al. Oct 2017 A1
20170368574 Sammoura Dec 2017 A1
20180001113 Streeter Jan 2018 A1
20180015308 Reed et al. Jan 2018 A1
20180043147 Slayton Feb 2018 A1
20180099162 Bernabei Apr 2018 A1
20180099163 Bernabei Apr 2018 A1
20180126190 Aviad et al. May 2018 A1
20180154184 Kong et al. Jun 2018 A1
20180207450 Sanchez et al. Jul 2018 A1
20180272156 Slayton et al. Sep 2018 A1
20180272157 Barthe et al. Sep 2018 A1
20180272158 Barthe et al. Sep 2018 A1
20180272159 Slayton et al. Sep 2018 A1
20180317884 Chapelon et al. Nov 2018 A1
20180333595 Barthe et al. Nov 2018 A1
20180360420 Vortman et al. Dec 2018 A1
20190000498 Barthe et al. Jan 2019 A1
20190009110 Gross et al. Jan 2019 A1
20190009111 Myhr et al. Jan 2019 A1
20190022405 Greenbaum et al. Jan 2019 A1
20190038921 Domankevitz Feb 2019 A1
20190060675 Krone et al. Feb 2019 A1
20190091490 Alexander et al. Mar 2019 A1
20190142380 Emery et al. May 2019 A1
20190143148 Slayton May 2019 A1
20190184202 Zereshkian et al. Jun 2019 A1
20190184203 Slayton et al. Jun 2019 A1
20190184205 Slayton et al. Jun 2019 A1
20190184207 Barthe et al. Jun 2019 A1
20190184208 Barthe et al. Jun 2019 A1
20190224501 Burdette Jul 2019 A1
20190262634 Barthe et al. Aug 2019 A1
20190282834 Zawada et al. Sep 2019 A1
20190290939 Watson et al. Sep 2019 A1
20190350562 Slayton et al. Nov 2019 A1
20190366126 Pahk et al. Dec 2019 A1
20190366127 Emery Dec 2019 A1
20190366128 Slayton et al. Dec 2019 A1
20200094083 Slayton et al. Mar 2020 A1
20200100762 Barthe et al. Apr 2020 A1
20200129759 Schwarz Apr 2020 A1
20200171330 Barthe et al. Jun 2020 A1
20200179727 Slayton et al. Jun 2020 A1
20200179729 Slayton et al. Jun 2020 A1
20200188703 Barthe et al. Jun 2020 A1
20200188704 Barthe et al. Jun 2020 A1
20200188705 Emery et al. Jun 2020 A1
20200206072 Capelli et al. Jul 2020 A1
20200222728 Khokhlova et al. Jul 2020 A1
20210038925 Emery Feb 2021 A1
20210378630 Slayton et al. Dec 2021 A1
Foreign Referenced Citations (201)
Number Date Country
2460061 Nov 2001 CN
1734284 Dec 2009 CN
104027893 Sep 2014 CN
4029175 Mar 1992 DE
10140064 Mar 2003 DE
10219297 Nov 2003 DE
10219217 Dec 2004 DE
20314479 Dec 2004 DE
0142215 May 1984 EP
0344773 Dec 1989 EP
1479412 Nov 1991 EP
0473553 Apr 1992 EP
670147 Feb 1995 EP
0661029 Jul 1995 EP
724894 Feb 1996 EP
763371 Nov 1996 EP
1044038 Oct 2000 EP
1050322 Nov 2000 EP
1234566 Aug 2002 EP
1262160 Dec 2002 EP
0659387 Apr 2003 EP
1374944 Jan 2004 EP
1028660 Jan 2008 EP
1874241 Jan 2008 EP
1362223 May 2008 EP
1750804 Jul 2008 EP
1283690 Nov 2008 EP
1811901 Apr 2009 EP
1785164 Aug 2009 EP
2230904 Sep 2010 EP
1501331 Jun 2011 EP
2066405 Nov 2011 EP
2474050 Jul 2012 EP
2527828 Nov 2012 EP
2709726 Nov 2015 EP
1538980 Jan 2017 EP
3124047 Jan 2017 EP
2897547 Nov 2017 EP
2173261 Aug 2018 EP
3417911 Dec 2018 EP
2532851 Sep 1983 FR
2685872 Jan 1992 FR
2672486 Aug 1992 FR
2703254 Mar 1994 FR
2113099 Aug 1983 GB
102516 Jan 1996 IL
112369 Aug 1999 IL
120079 Mar 2001 IL
63036171 Feb 1988 JP
03048299 Mar 1991 JP
3123559 May 1991 JP
03136642 Jun 1991 JP
4089058 Mar 1992 JP
04150847 May 1992 JP
7080087 Mar 1995 JP
07505793 Jun 1995 JP
7184907 Jul 1995 JP
7222782 Aug 1995 JP
09047458 Feb 1997 JP
9108288 Apr 1997 JP
9503926 Apr 1997 JP
3053069 Oct 1998 JP
11123226 May 1999 JP
11505440 May 1999 JP
11506636 Jun 1999 JP
10248850 Sep 1999 JP
2000126310 May 2000 JP
2000166940 Jun 2000 JP
2000233009 Aug 2000 JP
2001-46387 Feb 2001 JP
2001136599 May 2001 JP
2001170068 Jun 2001 JP
2002505596 Feb 2002 JP
2002078764 Mar 2002 JP
2002515786 May 2002 JP
2002537013 May 2002 JP
2002521118 Jul 2002 JP
2002537939 Nov 2002 JP
2003050298 Jul 2003 JP
2003204982 Jul 2003 JP
2004-504898 Feb 2004 JP
2004-507280 Mar 2004 JP
2004154256 Mar 2004 JP
2004-509671 Apr 2004 JP
2004-512856 Apr 2004 JP
2004130145 Apr 2004 JP
2004147719 May 2004 JP
2005503388 Feb 2005 JP
2005527336 Sep 2005 JP
2005323213 Nov 2005 JP
2006520247 Sep 2006 JP
2008515559 May 2008 JP
2009518126 May 2009 JP
2010517695 May 2010 JP
2001-0019317 Mar 2001 KR
1020010024871 Mar 2001 KR
2002-0038547 May 2002 KR
100400870 Oct 2003 KR
20060121267 Nov 2006 KR
1020060113930 Nov 2006 KR
1020070065332 Jun 2007 KR
1020070070161 Jul 2007 KR
1020070098856 Oct 2007 KR
1020070104878 Oct 2007 KR
1020070114105 Nov 2007 KR
1020000059516 Apr 2012 KR
10-2013-0124598 Nov 2013 KR
10-1365946 Feb 2014 KR
386883 Sep 2000 TW
201208734 Mar 2012 TW
WO9312742 Jul 1993 WO
WO9524159 Sep 1995 WO
WO9625888 Aug 1996 WO
WO9634568 Nov 1996 WO
WO9639079 Dec 1996 WO
WO9735518 Oct 1997 WO
WO9832379 Jul 1998 WO
WO9852465 Nov 1998 WO
WO9933520 Jul 1999 WO
WO9939677 Aug 1999 WO
WO9949788 Oct 1999 WO
WO200006032 Feb 2000 WO
WO0015300 Mar 2000 WO
WO0021612 Apr 2000 WO
WO0048518 Aug 2000 WO
WO0053113 Sep 2000 WO
WO200071021 Nov 2000 WO
WO0128623 Apr 2001 WO
WO01045550 Jun 2001 WO
WO0182777 Nov 2001 WO
WO0182778 Nov 2001 WO
WO0187161 Nov 2001 WO
WO01080709 Nov 2001 WO
WO2001087161 Nov 2001 WO
WO0209812 Feb 2002 WO
WO0209813 Feb 2002 WO
WO02015768 Feb 2002 WO
WO0224050 Mar 2002 WO
WO200149194 Jul 2002 WO
WO2002054018 Jul 2002 WO
WO02092168 Nov 2002 WO
WO03053266 Jul 2003 WO
WO03065347 Aug 2003 WO
WO03070105 Aug 2003 WO
WO03077833 Sep 2003 WO
WO03086215 Oct 2003 WO
WO03096883 Nov 2003 WO
WO03099177 Dec 2003 WO
WO03099382 Dec 2003 WO
WO03101530 Dec 2003 WO
WO2004000116 Dec 2003 WO
WO2004080147 Sep 2004 WO
WO2004110558 Dec 2004 WO
WO2005011804 Feb 2005 WO
WO2005065408 Jul 2005 WO
WO2005065409 Jul 2005 WO
WO2005090978 Sep 2005 WO
WO2005113068 Dec 2005 WO
WO2006042163 Apr 2006 WO
WO2006036870 Apr 2006 WO
WO2006042168 Apr 2006 WO
WO2006042201 Apr 2006 WO
WO2006065671 Jun 2006 WO
WO2006082573 Aug 2006 WO
WO2006104568 Oct 2006 WO
WO2006110388 Oct 2006 WO
WO2007067563 Jun 2007 WO
WO2008036479 Mar 2008 WO
WO2008036622 Mar 2008 WO
WO2008144274 Nov 2008 WO
WO2009013729 Jan 2009 WO
WO2009149390 Oct 2009 WO
WO2010006293 Jan 2010 WO
WO2010102128 Sep 2010 WO
WO2012134645 Oct 2012 WO
WO2013048912 Apr 2013 WO
WO2013178830 Dec 2013 WO
WO2014043206 Mar 2014 WO
WO2014045216 Mar 2014 WO
WO2014055708 Apr 2014 WO
WO2014057388 Apr 2014 WO
WO2014127091 Aug 2014 WO
WO 2014137835 Sep 2014 WO
WO2015160708 Oct 2015 WO
WO2016054155 Apr 2016 WO
WO2016115363 Jul 2016 WO
WO2017127328 Jul 2017 WO
WO2017149506 Sep 2017 WO
WO2017165595 Sep 2017 WO
WO 2017212489 Dec 2017 WO
WO2017212489 Dec 2017 WO
WO2017223312 Dec 2017 WO
WO2018035012 Feb 2018 WO
WO2018158355 Sep 2018 WO
WO2019008573 Jan 2019 WO
WO 2019147596 Aug 2019 WO
WO2019164836 Aug 2019 WO
WO2020009324 Jan 2020 WO
WO2020075906 Apr 2020 WO
WO2020080730 Apr 2020 WO
WO2020121307 Jun 2020 WO
Non-Patent Literature Citations (198)
Entry
US 10,398,895 B2, 09/2019, Schwarz (withdrawn)
Adams et al., “High Intensity Focused Ultrasound Ablation of Rabbit Kidney Tumors”Sonablate High-Intensity Focused Ultrasound device; Journal of Endourology vol. 10, No. 1, (Feb. 1996).
Agren, Magnus S. et al., Collagenase in Wound Healing: Effect of Wound Age and Type. The Journal of Investigative Dermatology, vol. 99/No. 6, (Dec. 1992).
Alam, M., “The future of noninvasive procedural dermatology”. Semin Cutan Med Surg. Mar. 2013; 32(1):59-61.
Alam, M., et al., “Ultrasound tightening of facial and neck skin: a rater-blinded prospective cohort study”. J Am Acad Dermatol, 2010. 62(2): p. 262-9.
Alexiades-Armenakas, M., “Ultrasound Technologies for Dermatologic Techniques”. J Drugs Derm. 2014. 12 (11): p. 1305.
Alster, T.S., et. al., “Noninvasive lifting of arm, thigh, and knee skin with transcutaneous intense focused ultrasound”. Dermatol Surg, 2012. 38(5): p. 754-9.
Alster, Tinas S., Tanzi, Elizabeth L., “Cellulite Treatment using a Novel Combination Radiofrequency, Infrared Light, and Mechanical Tissue Manipulation Device,” Journal of Cosmetic & Laser Therapy, Jun. 2005, vol. 7, Issue 2, pp. 81-85.
Arosarena, O., “Options and Challenges for Facial Rejuvenation in Patients With Higher Fitzpatrick Skin Phototypes”. JAMA Facial Plastic Surgery, 2015.
Arthur et al., “Non-invasive estimation of hyperthermia temperatures with ultrasound,” Int. J. Hyperthermia, Sep. 2005, 21(6), pp. 589-600.
Barthe et al., “Ultrasound therapy system and ablation results utilizing miniature imaging/therapy arrays,” Ultrasonics Symposium, 2004 IEEE, Aug. 23, 2004, pp. 1792-1795, vol. 3.
Bozec, Laurent et al., Thermal Denaturation Studies of Collagen by Microthermal Analysis and Atomic Force Microscopy, Biophysical Journal, vol. 101, pp. 228-236. (Jul. 2001).
Brobst, R.W., et. al., “Noninvasive Treatment of the Neck”. Facial Plast Surg Clin North Am, 2014. 22(2): p. 191-202.
Brobst, R.W., et., al., “Ulthera: initial and six month results”. Facial Plast Surg Clin North Am, 2012. 20(2): p. 163-76.
Brown J A et al: “Fabrication and performance of 40-60 MHz annular arrays”, 2003 IEEE Ultrasonics Symposium Proceedings. Honolulu, Hawaii, Oct. 5-8, 2003; [IEEE Ultrasonics Symposium Proceedings], New York, NY : IEEE, US, vol. 1, Oct. 5, 2003 (Oct. 5, 2003), pp. 869-872.
Calderhead et al., “One Mechanism Behind LED Photo-Therapy for Wound Healing and Skin Rejuvenation: Key Role of the Mast Cell” Laser Therapy 17.3: 141-148 (2008).
Carruthers et al., “Consensus Recommendations for Combined Aesthetic Interventions in the Face Using Botulinum Toxin, Fillers, and Energy-Based Devices” Dermatol Surg 2016 (pp. 1-12).
Casabona, G., et. al., “Microfocused Ultrasound with Visualization and Calcium Hydroxylapatite for Improving Skin Laxity and Cellulite Appearance”; Plast Reconstr Surg Glob Open. Jul. 25, 2017;5(7):e1388, 8 pages.
Casabona, G., et. al., “Microfocused Ultrasound With Visualization and Fillers for Increased Neocollagenesis: Clinical and Histological Evaluation”. Dermatol Surg 2014;40:S194-S198.
Chan, N.P., et al., “Safety study of transcutaneous focused ultrasound for non-invasive skin tightening in Asians”. Lasers Surg Med, 2011. 43(5): p. 366-75.
Chapelon et al., “Effects of Cavitation in the High Intensity Therapeutic Ultrasound”, Ultrasonics Symposium—1357 (1991).
Chapelon, et al., “Thresholds for Tissue Ablation by Focused Ultrasound” (1990).
Chen, L. et al., “Effect of Blood Perfusion on the ablation of liver parenchyma with high intensity focused ultrasound,” Phys. Med. Biol; 38:1661-1673; 1993b.
Coon, Joshua et al., “Protein identification using sequential ion/ion reactions and tandem mass spectrometry” Proceedings of the National Academy of Sciences of the USA, vol. 102, No. 27, Jul. 27, 2005, pp. 9463-9468.
Corry, Peter M., et al., “Human Cancer Treatment with Ultrasound”, IEEE Transactions on Sonics and Ultrasonics, vol. SU-31, No. 5, Sep. 1984, pp. 444, 456.
Damianou et al., “Application of the Thermal Dose Concept for Predicting the Necrosed Tissue Volume During Ultrasound Surgery,” 1993 IEEE Ultrasound Symposium, pp. 1199-1202.
Daum et al., Design and Evaluation of a Feedback Based Phased Array System for Ultrasound Surgery, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 45, No. 2, Mar. 1998, pp. 431-438.
Davis, Brian J., et al., “An Acoustic Phase Shift Technique for the Non-Invasive Measurement of Temperature Changes in Tissues”, 1985 Ultrasonics Symposium, pp. 921-924.
Dayan, S.H., et al., “Prospective, Multi-Center, Pivotal Trial Evaluating the Safety and Effectiveness of Micro-Focused Ultrasound with Visualization (MFU-V) for Improvement in Lines and Wrinkles of the Décolletage”. Plast Reconstr Surg. Oct. 2014; 134(4 Suppl 1):123-4.
Decision of the Korean Intellectual Property Tribunal dated Jun. 28, 2013 regarding Korean Patent No. 10-1142108, which is related to the pending application and/or an application identified in the Table on pp. 1-4 of the Information Disclosure Statement herein (English translation, English translation certification, and Korean decision included).
Delon Martin, C., et al, “Venous Thrombosis Generation by Means of High-Intensity Focused Ultrasound” Ultrasound in Med. & Biol., vol. 21, No. 1, pp. 113-119 (1995).
Dierickx, Christine C., “The Role of Deep Heating for Noninvasive Skin Rejuvenation” Lasers in Surgery and Medicine 38:799-807 (2006).
Dobke, M.K., et al., “Tissue restructuring by energy-based surgical tools”. Clin Plast Surg, 2012. 39(4): p. 399-408.
Dong, Yuan-Lin et al., “Effect of Ibuprofen on the Inflammatory Response to Surgical Wounds” The Journal of Trauma, vol. 35, No. 3. (1993).
Driller et al., “Therapeutic Applications of Ultrasound: A Review” IEEE Engineering in Medicine and Biology; (Dec. 1987) pp. 33-40.
Dvivedi, Sanjay, et al. “Effect of Ibuprofen and diclofenac sodium on experimental wound healing” Indian Journal of Experimental Biology, vol. 35, pp. 1243-1245. (Nov. 1997).
Fabi, S.G., “Microfocused Ultrasound With Visualization for Skin Tightening and Lifting: My Experience and a Review of the Literature”. Dermatol Surg. Dec. 2014; 40 Suppl 12:S164-7.
Fabi, S.G., “Noninvasive skin tightening: focus on new ultrasound techniques”. Clin Cosmet Investig Dermatol. Feb. 5, 2015; 8:47-52.
Fabi, S.G., et. al., “A prospective multicenter pilot study of the safety and efficacy of microfocused ultrasound with visualization for improving lines and wrinkles of the décolleté”. Dermatol Surg. Mar. 2015; 41(3):327-35.
Fabi, S.G., et. al., “Evaluation of microfocused ultrasound with visualization for lifting, tightening, and wrinkle reduction of the decolletage”. J Am Acad Dermatol, 2013. 69(6): p. 965-71.
Fabi, S.G., et. al., “Future directions in cutaneous laser surgery”. Dermatol Clin, 2014. 32(1): p. 61-9.
Fabi, S.G., et. al., “Retrospective Evaluation of Micro-focused Ultrasound for Lifting and Tightening the Face and Neck”. Dermatol Surg, 2014.
Friedmann D.P., “Comments on evaluation of microfocused ultrasound system for improving skin laxity and tightening in the lower face”. Aesthet Surg J. Mar. 2015;35(3):NP81-2.
Friedmann, D.P., et. al., “Combination of intense pulsed light, Sculptra, and Ultherapy for treatment of the aging face”. J Cosmet Dermatol, 2014. 13(2): p. 109-18.
Fry, W.J. et al., “Production of Focal Destructive Lesions in the Central Nervous System with Ultrasound,” J. Neurosurg., 11:471-478; 1954.
Fujimoto, et al., “A New Cavitation Suppression Technique for Local Ablation Using High-Intensity Focused Ultrasound” Ultrasonics Symposium—1629 (1995).
Gliklich et al., Clinical Pilot Study of Intense Ultrasound therapy to Deep Dermal Facial Skin and Subcutaneous Tissues, Arch Facial Plastic Surgery, Mar. 1, 2007, vol. 9, No. 1.
Gold, M.H., et. al., “Use of Micro-Focused Ultrasound with Visualization to Lift and Tighten Lax Knee Skin”. J Cosmet Laser Ther, 2014: p. 1-15.
Goldberg, D.J., et. al., “Safety and Efficacy of Microfocused Ultrasound to Lift, Tighten, and Smooth the Buttocks”. Dermatol Surg 2014; 40:1113-1117.
Greene, R.M., et al., “Skin tightening technologies”. Facial Plast Surg. Feb. 2014; 30(1):62-7.
Greenhalgh, David G., “Wound healing and diabetes mellitus” Clinics in Plastic Surgery 30; 37-45. (2003).
Guo, S. et al., “Factors Affecting Wound Healing” Critical Reviews in Oral Biology & Medicine, J Dent Res 89(3), pp. 219-229. (2010).
Haar, G.R. et al., “Tissue Destruction with Focused Ultrasound in Vivo,” Eur. Urol. 23 (suppl. 1):8-11; 1993.
Hantash, Basil M. et al., “Bipolar Fractional Radiofrequency Treatment Induces Neoelastogenesis and Neocollagenesis” Lasers in Surgery and Medicine 41:1-9 (2009).
Hantash, Basil M. et al., “In Vivo Histological Evaluation of a Novel Ablative Fractional Resurfacing Device” Lasers in Surgery and Medicine 39:96-107 (2007).
Harris, M.O., “Safety of Microfocused Ultrasound With Visualization in Patients With Fitzpatrick Skin Phototypes III to VI”. JAMA Facial Plast. Surg, 2015.
Hart, et. al., “Current Concepts in the Use of PLLA: Clinical Synergy Noted with Combined Use of Microfocused Ultrasound and Poly-I-Lactic Acid on the Face, Neck, and Décolletage”. Amer. Soc. Plast. Surg. 2015. 136; 180-187S.
Hassan et al., “Structure and Applications of Poly(vinyl alcohol) Hydrogels Produced by Conventional Crosslinking or by Freezing/Thawing Methods,” advanced in Polymer Science, 2000, pp. 37-65, vol. 153.
Hassan et al., “Structure and Morphology of Freeze/Thawed PVA Hydrogels,” Macromolecules, Mar. 11, 2000, pp. 2472-2479, vol. 33, No. 7.
Hexsel et al., “A Validated Photonumeric Cellulite Severity Scale”; J Eur Acad Dermatol Venereol. May 2009; 23(5):523-8, 6 pages.
Hitchcock, T.M. et. al., “Review of the safety profile for microfocused ultrasound with Visualization”. Journal of Cosmetic Dermatology, 13, 329-335. (2014).
Husseini et al, “The Role of Cavitation in Acoustically Activated Drug Delivery,” J. Control Release, Oct. 3, 2005, pp. 253-261, vol. 107(2).
Husseini et al. “Investigating the mechanism of acoustically activated uptake of drugs from Pluronic micelles,” BMD Cancer 2002, 2:20k, Aug. 30, 2002, pp. 1-6.
Hynynen et al., Temperature Distributions During Local Ultrasound Induced Hyperthermia In Vivo, Ultrasonics Symposium—745 (1982).
Jeffers et al., “Evaluation of the Effect of Cavitation Activity on Drug-Ultrasound Synergisms,” 1993 IEEE Ultrasonics Symposium, pp. 925-928.
Jenne, J., et al., “Temperature Mapping for High Energy US-Therapy”, 1994 Ultrasonics Symposium, pp. 1879-1882.
Jeong, K.H., et al., “Neurologic complication associated with intense focused ultrasound”. J Cosmet Laser Ther, 2013.
Johnson, S.A., et al., “Non-Intrusive Measurement of Microwave and Ultrasound-Induced Hyperthermia by Acoustic Temperature Tomography”, Ultrasonics Symposium Proceedings, pp. 977-982. (1977).
Ketterling J. A. et al.: “Design and fabrication of a 40-MHz annular array transducer”, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, IEEE, US, vol. 52, No. 4, Apr. 1, 2005 (Apr. 1, 2005), pp. 672-681.
Kim, H.J., et al., “Coagulation and ablation patterns of high-intensity focused ultrasound on a tissue mimicking phantom and cadaveric skin”. Laser Med Sci. Sep. 4, 2015.
Kornstein, A.N., “Ulthera for silicone lip correction”. Plast Reconstr Surg, 2012. 129(6): p. 1014e-1015e.
Kornstein, A.N., “Ultherapy shrinks nasal skin after rhinoplasty following failure of conservative measures”. Plast Reconstr Surg, 2013. 131(4): p. 664e-6e.
Krischak, G.D., et al., “The effects of non-steroidal anti-inflammatory drug application on incisional wound healing in rats” Journal of Wound Care, vol. 6, No. 2, (Feb. 2007).
Laubach, H.J., et. al., “Confined Thermal Damage with Intense Ultrasound (IUS)” [abstr.] American Society for Laser Medicine and Surgery Abstracts, p. 15 #43 (Apr. 2006).
Laubach, H.J., et. al., “Intense focused ultrasound: evaluation of a new treatment modality for precise microcoagulation within the skin”. Dermatol Surg, 2008. 34(5): p. 727-34.
Lee, H.J., et. al., “The efficacy and safety of intense focused ultrasound in the treatment of enlarged facial pores in Asian skin”. J Dermatolog Treat, 2014.
Lee, H.S., et. al., “Multiple Pass Ultrasound Tightening of Skin Laxity of the Lower Face and Neck”. Dermatol Surg, 2011.
Lin, Sung-Jan, et al., “Monitoring the thermally induced structural transitions of collagen by use of second-harmonic generation microscopy” Optics Letters, vol. 30, No. 6, (Mar. 15, 2005).
MacGregor J.L., et. al., “Microfocused Ultrasound for Skin Tightening”. Semin Cutan Med Surg 32:18-25. (2013).
Madersbacher, S. et al., “Tissue Ablation in Benign Prostatic Hyperplasia with High Intensity Focused Ultrasound,” Dur. Urol., 23 (suppl. 1):39-43; 1993.
Makin et al, “B-Scan Imaging and Thermal Lesion Monitoring Using Miniaturized Dual-Functionality Ultrasound Arrays,” Ultrasonics Symposium, 2004 IEEE, Aug. 23, 2004, pp. 1788-1791, vol. 3.
Makin et al, “Confirmed Bulk Ablation and Therapy Monitoring Using Intracorporeal Image-Treat Ultrasound Arrays,” 4th International Symposium on Therapeutic Ultrasound, Sep. 19, 2004.
Makin et al., “Miniaturized Ultrasound Arrays for Interstitial Ablation and Imaging,” UltraSound Med. Biol. 2005, Nov. 1, 2005, pp. 1539-1550, vol. 31(11).
Manohar et al, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” Journal of Biomedical Optics, Nov./Dec. 2004, pp. 1172-1181, vol. 9, No. 6.
Mast et al, “Bulk Ablation of Soft Tissue with Intense Ultrasound; Modeling and Experiments,” J. Acoust. Soc. Am., Oct. 1, 2005, pp. 2715-2724, vol. 118(4).
Meshkinpour, Azin, et al., “Treatment of Hypertrophic Scars and Keloids With a Radiofrequency Device: A Study of Collagen Effects” Lasers in Surgery and Medicine 37:343-349 (2005).
Microchip microID 125 KHz RFID System Design Guide, Microchip Technology Inc. (2004).
Minkis, K., et. al., “Ultrasound skin tightening”. Dermatol Clin, 2014. 32(1): p. 71-7.
Mitragotri, S., “Healing sound: the use of ultrasound in drug delivery and other therapeutic applications,” Nature Reviews; Drug Delivery, pp. 255-260, vol. 4 (Mar. 2005).
Mosser, David M. et al., “Exploring the full spectrum of macrophage activation” Nat Rev Immunol; 8(12): 958-969. (Dec. 2008).
Murota, Sei-Itsu, et al., “Stimulatory Effect of Prostaglandins on the Production of Hexosamine-Containing Substances by Cultured Fibroblasts (3) Induction of Hyaluronic Acid Synthetase by Prostaglandin” Department of Pharmacology, Tokyo Metropolitan Institute of Gerontology, Itabashiku, Tokyo-173, Japan. (Nov. 1977, vol. 14, No. 5).
Murota, Sei-Itsu, et al., “The Stimulatory Effect of Prostaglandins on Production of Hexosamine-Containing Substances by Cultured Fibroblasts” Department of Pharmacology, Tokyo Metropolitan Institute of Gerontology, Itabashiku, Tokyo-173, Japan. (Aug. 1976, vol. 12, No. 2).
Nestor, M.S. et. al., “Safety and Efficacy of Micro-focused Ultrasound Plus Visualization for the Treatment of Axillary Hyperhidrosis”. J Clin Aesthet Dermatol, 2014. 7(4): p. 14-21.
Oni, G., et al. “Response to ‘comments on evaluation of microfocused ultrasound system for improving skin laxity and tightening in the lower face’”. Aesthet Surg J. Mar. 2015;35(3):NP83-4.
Oni, G., et. al., “Evaluation of a Microfocused Ultrasound System for Improving Skin Laxity and Tightening in the Lower Face”. Aesthet Surg J, 2014. 38:861-868.
Pak, C.S., et. al., “Safety and Efficacy of Ulthera in the Rejuvenation of Aging Lower Eyelids: A Pivotal Clinical Trial”. Aesthetic Plast Surg, 2014.
Paradossi et al., “Poly(vinyl alcohol) as versatile biomaterial for potential biomedical applications,” Journal of Materials Science: Materials in Medicine, 2003, pp. 687-691, vol. 14.
Pritzker, R.N., et. al., “Updates in noninvasive and minimally invasive skin tightening”. Semin Cutan Med Surg. Dec. 2014;33(4):182-7.
Pritzker, R.N., et. al., “Comparison of different technologies for noninvasive skin tightening”. Journal of Cosmetic Dermatology, 13, 315-323. (2014).
Rappolee, Daniel A., et al., “Wound Macrophages Express TGF and Other Growth Factors in Vivo: Analysis by mRNA Phenotyping” Science, vol. 241, No. 4866 (Aug. 1988).
Reid, Gavin, et al., “Tandem Mass spectrometry of ribonuclease A and B: N-linked glycosylation site analysis of whole protein ions,” Analytical Chemistry. Feb. 1, 2002, vol. 74, No. 3, pp. 577-583.
Righetti et al, “Elastographic Characterization of HIFU-Induced Lesions in Canine Livers,” 1999, Ultrasound in Med & Bio, vol. 25, No. 7, pp. 1099-1113.
Rokhsar, C., et. al., “Safety and efficacy of microfocused ultrasound in tightening of lax elbow skin”. Dermatol Surg. 2015; 41(7):821-6.
Rosenberg, Carol S. “Wound Healing in the Patient with Diabetes Mellitus” Nursing Clinics of North America, vol. 25, No. 1, (Mar. 1990).
Saad et al., “Ultrasound-Enhanced Effects of Adriamycin Against Murine Tumors,” Ultrasound in Med. & Biol. vol. 18, No. 8, pp. 715-723 (1992).
Sabet-Peyman, E.J. et. al., “Complications Using Intense Ultrasound Therapy to Treat Deep Dermal Facial Skin and Subcutaneous Tissues”. Dermatol Surg 2014; 40:1108-1112.
Sandulache, Vlad C. et al., “Prostaglandin E2 inhibition of keloid fibroblast migration, contraction, and transforming growth factor (TGF)—B1—induced collagen synthesis” Wound Rep Reg 15 122-133, 2007. (2007).
Sanghvi, N.T., et al., “Transrectal Ablation of Prostate Tissue Using Focused Ultrasound,” 1993 Ultrasonics Symposium, IEEE, pp. 1207-1210.
Sasaki, G.H. et. al., “Clinical Efficacy and Safety of Focused-Image Ultrasonography: A 2-Year Experience”. Aesthet Surg J, 2012.
Sasaki, G.H. et. al., “Microfocused Ultrasound for Nonablative Skin and Subdermal Tightening to the Periorbitum and Body Sites: Preliminary Report on Eighty-Two Patients”. Journal of Cosmetics, Dermatological Sciences and Applications, 2012, 2, 108-116.
Sassen, Sander, “ATI's R520 architecture, the new king of the hill?” http://www.hardwareanalysis.com/content/article/1813, Sep. 16, 2005, 2 pages.
Seip, Ralf, et al., “Noninvasive Detection of Thermal Effects Due to Highly Focused Ultrasonic Fields,” IEEE Symposium, pp. 1229-1232, vol. 2, Oct. 3-Nov. 1993.
Seip, Ralf, et al., “Noninvasive Estimation of Tissue Temperature Response to Heating Fields Using Diagnostic Ultrasound,” IEEE Transactions on Biomedical Engineering, vol. 42, No. 8, Aug. 1995, pp. 828-839.
Simon et al., “Applications of Lipid-Coated Microbubble Ultrasonic Contrast to Tumor Therapy,” Ultrasound in Med. & Biol. vol. 19, No. 2, pp. 123-125 (1993).
Sklar, L.R., et. al., “Use of transcutaneous ultrasound for lipolysis and skin tightening: a review”. Aesthetic Plast Surg, 2014. 38(2): p. 429-41.
Smith, Nadine Barrie, et al., “Non-invasive In Vivo Temperature Mapping of Ultrasound Heating Using Magnetic Resonance Techniques”, 1994 Ultrasonics Symposium, pp. 1829-1832, vol. 3.
Sonocare, Inc. Therapeutic Ultrasound System Model CST-100 Instruction Manual (1985).
Suh, D.H., et. al., “A intense-focused ultrasound tightening for the treatment of infraorbital laxity”. J Cosmet Laser Ther, 2012. 14(6): p. 290-5.
Suh, D.H., et. al., “Comparative histometric analysis of the effects of high-intensity focused ultrasound and radiofrequency on skin”. J Cosmet Laser Ther. Mar. 24, 2015:1-7.
Suh, D.H., et. al., “Intense Focused Ultrasound Tightening in Asian Skin: Clinical and Pathologic Results” American Society for Dermatologic Surgery, Inc.; 37:1595-1602. (2011).
Surry et al., “Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging,” Phys. Med. Biol., Dec. 6, 2004, pp. 5529-5546, vol. 49.
Syka J. E. P. et al., “Peptide and Protein Sequence Analysis by Electron Transfer Dissociation Mass Spectrometry,” Proceedings of the National Academy of Sciences of USA, National Academy of Science, Washington, DC, vol. 101, No. 26, Jun. 29, 2004, pp. 9528-9533.
Talbert, D. G., “An Add-On Modification for Linear Array Real-Time Ultrasound Scanners to Produce 3D Displays,” UTS Int'l 1977 Brighton, England (Jun. 28-30, 1977) pp. 57-67.
Tata et al., “Interaction of Ultrasound and Model Membrane Systems: Analyses and Predictions,” American Chemical Society, Phys. Chem. 1992, 96, pp. 3548-3555.
Ueno, S., et al., “Ultrasound Thermometry in Hyperthermia”, 1990 Ultrasonic Symposium, pp. 1645-1652.
Verhofstad, Michiel H.J. et al., “Collagen Synthesis in rat skin and ileum fibroblasts is affected differently by diabetes-related factors” Int. J. Exp. Path. (1998), 79, 321-328.
Wang, H., et al., “Limits on Focused Ultrasound for Deep Hyperthermia”, 1994 Ultrasonic Symposium, Nov. 1-4, 1994, pp. 1869-1872, vol. 3.
Wasson, Scott, “NVIDIA's GeForce 7800 GTX graphics processor Power MADD,” http://techreport.com/reviews/2005g2/geforce-7800gtx/index.x?pg=1, Jun. 22, 2005, 4 pages.
Webster et al. “The role of ultrasound-induced cavitation in the ‘in vitro’ stimulation of collagen synthesis in human fibroblasts”; Ultrasonics pp. 33-37(Jan. 1980).
Weiss, M., “Commentary: noninvasive skin tightening: ultrasound and other technologies: where are we in 2011?” Dermatol Surg, 2012. 38(1): p. 28-30.
White et al “Selective Creating of Thermal Injury Zones in the Superficial Musculoaponeurotic System Using Intense Ultrasound Therapy,” Arch Facial Plastic Surgery, Jan./Feb. 2007, vol. 9, No. 1 (pp. 22-29).
White, W. M., et al., “Selective Transcutaneous Delivery of Energy to Facial Subdermal Tissues Using the Ultrasound Therapy System” [abstr]. American Society for Laser Medicine and Surgery Abstracts, p. 37 #113 (Apr. 2006).
White, W. Matthew, et al., “Selective Transcutaneous Delivery of Energy to Porcine Soft Tissues Using Intense Ultrasound (IUS)” Lasers in Surgery and Medicine 40:67-75 (2008).
Woodward, J.A., et. al. “Safety and Efficacy of Combining Microfocused Ultrasound With Fractional CO2 Laser Resurfacing for Lifting and Tightening the Face and Neck”. Dermatol Surg, Dec. 2014 40:S190-S193.
Zelickson, Brian D. et al., “Histological and Ultrastructural Evaluation of the Effects of a Radiofrequency-Based Nonablative Dermal Remodeling Device, a Pilot Study” Arch Dermatol, vol. 140, (Feb. 2004).
Ulthera, Inc., Petition for Inter Partes Review filed Jul. 19, 2016 in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 63 pages (Filed Jul. 19, 2016).
Ulthera Exhibit 1001, U.S. Pat. No. 6,113,559 to Klopotek, filed Jul. 19, 2016 in re IPR2016-01459.
Ulthera Exhibit 1002, Patent file history of U.S. Pat. No. 6,113,559 Klopotek filed Jul. 19, 2016 in re IPR2016-01459.
Ulthera Exhibit 1003, Declaration of Expert Witness Mark E. Schafer, Ph.D. filed Jul. 19, 2016 in re IPR2016-01459.
Ulthera Exhibit 1004, Curriculum Vitae of Mark E. Schafer, Ph.D. filed Jul. 19, 2016 in re IPR2016-01459.
Ulthera Exhibit 1005, International PCT Publication WO96/34568 Knowlton filed Jul. 19, 2016 in re IPR2016-01459.
Ulthera Exhibit 1006, French Patent No. 2,672,486, Technomed patent filed Jul. 19, 2016 in re IPR2016-01459.
Ulthera Exhibit 1007, English translation of French Patent No. 2,672,486, Technomed filed Jul. 19, 2016 in re IPR2016-01459.
Ulthera Exhibit 1008, International PCT Publication WO93/12742, Technomed PCT filed Jul. 19, 2016 in re IPR2016-01459.
Ulthera Exhibit 1009, English translation of International PCT Publication WO93/12742, Technomed PCT filed Jul. 19, 2016 in re IPR2016-01459.
Ulthera Exhibit 1010, U.S. Pat. No. 5,601,526, which claims priority to Technomed PCT filed Jul. 19, 2016 in re IPR2016-01459.
Ulthera Exhibit 1011, Patent file history for European Patent Application No. 98964890.2, Klopotek filed Jul. 19, 2016 in re IPR2016-01459.
Ulthera Exhibit 1012, Translator Declaration filed Jul. 19, 2016 in re IPR2016-01459.
Ulthera Exhibit 1013, U.S. Pat. No. 5,230,334 to Klopotek filed Jul. 19, 2016 in re IPR2016-01459.
Ulthera Exhibit 1014, U.S. Pat. No. 5,755,753 to Knowlton filed Jul. 19, 2016 in re IPR2016-01459.
Ulthera Exhibit 1015, Excerpts from The American Medical Association Encyclopedia of Medicine (1989) filed Jul. 19, 2016 in re IPR2016-01459.
Ulthera Exhibit 1016, The Simultaneous Study of Light Emissions and Shock Waves Produced by Cavitation Bubbles, G. Gimenez, J. Acoust. Soc. Am. 71(4), Apr. 1982, pp. 839-847 (filed Jul. 19, 2016 in re IPR2016-01459).
Ulthera Exhibit 1017, Excerpts from Gray's Anatomy (1995) (filed Jul. 19, 2016 in re IPR2016-01459).
Ulthera Exhibit 1018, Anatomy of the Superficial Venous System, Comjen G.M., Dermatol. Surg., 1995; 21:35-45 (filed Jul. 19, 2016 in re IPR2016-01459).
Ulthera Exhibit 1019, Section 2.6 from Ultrasonics Theory and Application, by G.L. Gooberman (Hart Publishing Co., 1969) (filed Jul. 19, 2016 in re IPR2016-01459).
Ulthera Exhibit 1020, Deep Local Hyperthermia for Cancer Therapy: External Electromagnetic and Ultrasound Techniques, A.Y. Cheung and A. Neyzari, Cancer Research (Suppl.), vol. 44, pp. 4736-4744 (1984) (filed Jul. 19, 2016 in re IPR2016-01459).
Decision on Institution of Inter Partes Review in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 20 pages [011] (Dated Jan. 23, 2017).
DermaFocus Response to Institution of Inter Partes Review in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 73 pages [018] (Dated Apr. 26, 2017).
DermaFocus Exhibit List in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 5 pages [019] (Dated Apr. 26, 2017).
DermaFocus Exhibit 2002, Declaration of Mark Palmeri, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 136 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2003, Deposition of Dr. Mark Schafer, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 327 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2004, Amendment No. 4 to Ulthera Form S-1, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 308 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2005, Excerpt from Churchill Livingstone, Gray's Anatomy (38th ed. 1995), in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 7 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2006, Bo Eklof et al., “Revision of the CEAP Classification for Chronic Venous Disorders: Consensus Statement,” ACTA FAC MED NAISS, vol. 25, No. 1 (2008), 3-10 in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 7 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2007, WebMD, “Varicose Veins and Spider Veins” downloaded from http://www.webmd.com/skin-problems-andtreatments/guide/varicose-spider-veins#1 in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 3 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2008, John M. Porter et al, “Reporting Standards in Venous Disease: An Update,” Journal of Vascular Surgery, vol. 21, No. 4 (1995), 635-645 in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 11 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2009, Kullervo Hynynen, “Review of Ultrasound Therapy,” 1997 Ultrasonics Symposium (1997), 1305-1313, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 9 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2010, A.G. Visioli et al, “Preliminary Results of a Phase I Dose Escalation Clinical Trial Using Focused Ultrasound in the Treatment of Localised Tumours,” European Journal of Ultrasound, vol. 9 (1999), 11-18, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 8 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2011, U.S. Pat. No. 5,143,063, issued on Sep. 1, 1992, Fellner, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 6 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2012, Hugh G. Beebe et al, “Consensus Statement: Classification and Grading of Chronic Venous Disease in the Lower Limbs,” European Journal of Vascular and Endovascular Surgery, vol. 12 (1996), 487-492, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 6 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2013, Excerpt from Mosby's Medical Dictionary (3rd ed. 1990), in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 4 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2014, Excerpt from Miller-Keane Encyclopedia & Dictionary of Medicine, Nursing, & Allied Health (5th ed. 1992), in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 6 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2015, David J. Tibbs et al, Varicose Veins, Venous Disorders, and Lymphatic Problems in the Lower Limbs (1997), Chapter 4: Clinical Patterns of Venous Disorder I, 47-67, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 24 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2016, Mitchel P. Goldman et al, Varicose Veins and Telangiectasias (2nd ed. 1999), Chapter 22: Treatment of Leg Telangiectasias with Laser and High-Intensity Pulsed Light, 470-497, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 31 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2017, Email from Anderson to Klopotek dated May 25, 2004, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 1 page (Filed Apr. 26, 2017).
DermaFocus Exhibit 2018, List of Klopotek Patents, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 411 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2019, Declaration of Peter Klopotek Civil Action 15-cv-654-SLR, dated Nov. 2, 2016, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 1 page (Filed Apr. 26, 2017).
DermaFocus Exhibit 2020, “Our Technology,” downloaded from http:/jobs.ulthera.com/about on Apr. 10, 2017, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 4 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2021, C. Damianou and K. Hynynen, “Focal Spacing and Near-Field Heating During Pulsed High Temperature Ultrasound Therapy,” Ultrasound in Medicine & Biology, vol. 19, No. 9 (1993), 777-787, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 11 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2022, Excerpt from Mosby's Medical Dictionary (5th ed. 1997), in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 5 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2023, Excerpt from Miller-Keane Encyclopedia & Dictionary of Medicine, Nursing, & Allied Health (6th ed. 1997), in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 7 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2024, Excerpt from Stedman 's Concise Medical Dictionary (3 rd ed. 1997), in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 4 pages (Filed Apr. 26, 2017).
DermaFocus Exhibit 2025, Excerpt from Taber's Cyclopedic Medical Dictionary (18th ed. 1997), in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 9 pages (Filed Apr. 26, 2017).
DERMAFOCUS Exhibit 2026, Bo Eklof et al, “Revision of the CEAP Classification for Chronic Venous Disorders: Consensus Statement,” Journal of Vascular Surgery, vol. 40, No. 6 (2004), 1248-1252.el, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 6 pages (Filed Apr. 26, 2017).
Ulthera, Inc., Reply in Support of Petition for Inter Partes Review in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 33 pages (Filed Aug. 2, 2017).
Ulthera Exhibit 1022, Use of the Argon and Carbon Dioxide Lasers for Treatment of Superficial Venous Varicosities of the Lower Extremity, D. Apfelberg et al., Lasers in Surgery and Medicine, vol. 4.3, pp. 221-231 (1984) (filed Aug. 2, 2017 in re IPR2016-01459).
Ulthera Exhibit 1023, 532-Nanometer Green Laser Beam Treatment of Superficial Varicosities of the Lower Extremities, T. Smith et al., Lasers in Surgery and Medicine, vol. 8.2, pp. 130-134 (1988) (filed Aug. 2, 2017 in re IPR2016-01459).
Ulthera Exhibit 1024, Deposition Transcript of Dr. Mark Palmeri on Jul. 11, 2017 (filed Aug. 2, 2017 in re IPR2016-01459).
Ulthera Exhibit 1025, Ulthera Oral Proceeding Demonstrative Slides (filed Oct. 2, 2017 in re IPR2016-01459).
DermaFocus Exhibit 2027, DermaFocus Oral Proceeding Demonstrative Slides (filed Oct. 2, 2017 in re IPR2016-01459).
PTAB Record of Oral Hearing held Oct. 4, 2017 in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 67 pages (PTAB Document sent to Ulthera on Nov. 1, 2017).
Final Written Decision of Inter Partes Review in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 37 pages [030] (Entered Jan. 19, 2018).
Ulthera, Inc., Petitioner Notice of Appeal to Federal Circuit 2018-1542 re: IPR2016-01459; 4 pages from [001] (no appendices) (Filed Feb. 9, 2018).
Federal Circuit Order Granting Ulthera Motion to Remand, re: 2018-1542; 4 pages [022] (Dated May 25, 2018).
Ulthera Brief (Corrected), Fed. Cir. Appeal Case 19-1006 from re: IPR2016-01459; 136 pages [030] (Dated Apr. 3, 2019).
DermaFocus Brief (Corrected), Fed. Cir. Appeal Case 19-1006 from re: IPR2016-01459; 73 pages [032] (Dated Apr. 4, 2019).
PCT/US2014/019633 International Search Report dated Jun. 9, 2014, 19 pages.
Narayanasamy et al., “Spatial registration of temporally separated whole breast 3D ultrasound images” Med Phys. Sep. 2009;36(9):4288-300. doi: 10.1118/1.3193678. PMID: 19810503; PMCID: PMC2749445 (2009).
Related Publications (1)
Number Date Country
20230158337 A1 May 2023 US
Provisional Applications (1)
Number Date Country
61774785 Mar 2013 US
Divisions (1)
Number Date Country
Parent 16541476 Aug 2019 US
Child 18074818 US
Continuations (1)
Number Date Country
Parent 14193234 Feb 2014 US
Child 16541476 US