Devices and methods for positioning and monitoring tether load for prosthetic mitral valve

Information

  • Patent Grant
  • 11382753
  • Patent Number
    11,382,753
  • Date Filed
    Tuesday, November 12, 2019
    5 years ago
  • Date Issued
    Tuesday, July 12, 2022
    2 years ago
Abstract
Apparatus and methods are described herein for positioning an epicardial anchor device and measuring the load of a tether extending from a prosthetic heart valve and coupled to the epicardial anchor device. In some embodiments, an apparatus includes a handle assembly coupled to an elongate member and a docking member coupled to a distal end of the elongate member. The docking member can be releasably coupled to an epicardial anchor device configured to secure a tether extending from a prosthetic heart valve implanted with a heart at a location on an exterior of a ventricular wall of the heart. A force sensor device is coupled to the handle assembly and can measure a force exerted on the force sensor device. The force is associated with a tension of the tether extending through the elongate member and handle assembly.
Description
BACKGROUND

Embodiments are described herein that relate to devices and methods for anchoring a medical device such as a prosthetic heart valve replacement, and more particularly to devices and methods for the post-deployment adjustment and/or re-positioning of such a medical device.


Some known prosthetic heart valves, such as prosthetic mitral valves, include one or more tethers that extend from the valve to the exterior of the heart, and are secured to an outer ventricular wall of the heart with an epicardial anchor device. During such procedures, positioning the anchor device and providing a desired tension to the securing tether can be challenging. Many known devices do not have the ability to make adjustments to the anchor device or to the tension of the tether after initial placement. Further, known devices do not have the ability to measure and monitor the tension on the tether during deployment of the valve to assist in providing an optimal tension and position.


Some problems associated with improper tensioning of a securing tether can include, for example, the tether becoming progressively slack over time, a tether which has been overtightened and is deforming the positioning of the deployed valve, and a tether which has been deployed in a less than optimal angular configuration or has migrated such that the valve axis is no longer orthogonal to the plane of the native valve's annulus.


Accordingly, there is a need for devices and methods for adjusting and/or repositioning a prosthetic heart valve after its initial deployment and for monitoring the tension on a securing tether extending from the prosthetic heart valve.


SUMMARY

Apparatus and methods are described herein for positioning an epicardial anchor device and measuring the load of a tether extending from a prosthetic heart valve and coupled to the epicardial anchor device. In some embodiments, an apparatus includes a handle assembly coupled to an elongate member and a docking member coupled to a distal end of the elongate member. The docking member can be releasably coupled to an epicardial anchor device configured to secure a tether extending from a prosthetic heart valve implanted with a heart at a location on an exterior of a ventricular wall of the heart. A force sensor device is coupled to the handle assembly and can measure a force exerted on the force sensor device. The force is associated with a tension of the tether extending through the elongate member, handle assembly and force sensor device.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic cross-sectional illustration of portion of a heart with a prosthetic mitral valve implanted therein and an epicardial anchor device anchoring the mitral valve in position.



FIG. 2 is a schematic illustration of an epicardial anchor device, according to an embodiment.



FIG. 3 is a schematic illustration of a positioning device, according to an embodiment.



FIG. 4 is a top perspective view of an epicardial anchor device, according to another embodiment.



FIG. 5 is a top view of the epicardial anchor device of FIG. 4.



FIG. 6 is an exploded view of the epicardial anchor device of FIG. 4.



FIG. 7 is a cross-sectional perspective view of the epicardial anchor device of FIG. 4 with a locking pin of the device shown in a first position.



FIG. 8 is a cross-sectional side view of the epicardial anchor device of FIG. 4 with the locking pin of the device shown in the first position.



FIG. 9 is a cross-sectional bottom perspective view of the epicardial anchor device of FIG. 4 with the locking pin shown in a second position.



FIGS. 10 and 11 are a top perspective and a bottom perspective view, respectively, of a hub member of the epicardial anchor device of FIG. 4.



FIG. 12 is an enlarged top view of a portion of the epicardial anchor device of FIG. 4.



FIG. 13 is a perspective view of a positioning device, according to an embodiment.



FIG. 14 is a top view of a portion of the positioning device of FIG. 13.



FIG. 15 is a cross-sectional view of the portion of the positioning device of FIG. 14.



FIG. 16A is a perspective view and FIG. 16B is a top view of a portion of the positioning device of FIG. 13.



FIG. 17A is a perspective view of a portion of the positioning device of FIG. 13 shown partially exploded.



FIG. 17B is a perspective view of the portion of the positioning device of FIG. 17A.



FIG. 18 is a top view of a positioning device, according to another embodiment.



FIG. 19 is a perspective view of a portion of the positioning device of FIG. 18 shown partially exploded.



FIG. 20 is a perspective view of the portion of the positioning device of FIG. 19.



FIG. 21 is a schematic illustration of a portion of the positioning device of FIG. 18.



FIG. 22 is a perspective view of a positioning device, according to another embodiment, shown coupled to an epicardial anchor device.



FIG. 23 is a top view of the positioning device of FIG. 22.



FIG. 24 is a cross-sectional view of a portion of the positioning device of FIG. 22, taken along line 24-24 in FIG. 23.



FIG. 25 is a perspective view of a portion of the positioning device of FIG. 22.



FIG. 26 is a perspective view of a force sensor device of the positioning device of FIG. 22.



FIG. 27 is an exploded perspective view of the force sensor device of FIG. 26.



FIG. 28 is a perspective view of a portion of the force sensor device of FIG. 26.



FIG. 29 is a perspective view of a portion of the positioning device of FIG. 22.



FIG. 30 is a side view of the positioning device of FIG. 22.



FIG. 31 is a partial cross-sectional side view of a tension limiting device according to an embodiment.



FIG. 32 is a top view of a tether release tool, according to an embodiment.



FIG. 33 is a perspective view of an end portion of the tether release tool of FIG. 32.



FIG. 34 is a perspective view of a portion of the tether release tool of FIG. 32 shown being coupled to an epicardial anchor device.



FIG. 35 is a perspective view of a portion of the tether release tool of FIG. 32 shown coupled to the epicardial anchor device of FIG. 34.



FIG. 36 is a perspective view of a force sensor device according to an embodiment.



FIG. 37 is an exploded perspective view of the force sensor device of FIG. 36.



FIG. 38 is a cross-sectional perspective view of the force sensor device of FIG. 36.



FIG. 39 is a side view of a portion of a tether with a marker band according to an embodiment.





DETAILED DESCRIPTION

Apparatus and methods are described herein that can be used for the post-deployment adjustment and/or re-positioning of a transcatheter prosthetic heart valve, such as a mitral valve, that has been deployed into the annulus of a native valve, such as a mitral valve. For example, such a prosthetic mitral valve can be anatomically secured in a two-phase process that includes securing the prosthetic mitral valve in the native annulus using an atrial cuff and a tether axial tensioning system in combination with a laterally expanded stent, and to methods for making such systems.


In some embodiments, apparatus and methods are described herein for monitoring the tension applied to a securing tether extending from a prosthetic mitral valve that has been deployed into the native mitral valve.


Various embodiments described herein address problems concerning valve delivery and deployment, valve compliance, perivalvular leaking, hemodynamic issues such as left ventricular outflow tract (LVOT) interference, clotting, cardiac remodeling, etc.


In some embodiments, an adjustable tether and epicardial anchor device for a compressible prosthetic heart valve replacement are described herein, which can be deployed into a closed beating heart using, for example, a transcatheter delivery system. In some embodiments, such a valve replacement device can be deployed in a minimally invasive fashion and by way of example considers a minimally invasive surgical procedure utilizing the intercostal or sub-xyphoid space for valve introduction. To accomplish this, the valve is formed so that it can be compressed to fit within a delivery system and then ejected from the delivery system into the target location, for example, the annulus of the mitral or tricuspid valve.


In some embodiments, there is provided a method of adjusting the length and/or tension of a tether for a tethered transcatheter prosthetic heart valve after a transcatheter valve implantation procedure in a patient. Such a method can include adjusting the transluminal length of a ventricular tether, wherein the tether is anchored between an epicardial anchor device that is releasably affixed to an external epicardial surface of the heart and a valve-based fastening system on a transcatheter prosthetic heart valve that is deployed in the native valve annulus of the patient. Upon releasing the tether from the epicardial anchor device, the tether length and/or tension is adjusted and the tether is re-fastened to the epicardial anchor device.


In another embodiment, there is provided a method as above, further including capturing the tether, threading the tether through a tether release tool, re-engaging the tether release tool with the epicardial anchor device, unlocking the pin and releasing the tether. In some embodiments, after adjusting the length of the tether (longer or shorter), the tether tensioning force can be measure again, and then the tether can be re-pinned into the epicardial anchor device.


In some embodiments, there is provided a device for adjusting the length and/or tension of a tether for a tethered transcatheter prosthetic heart valve after a transcatheter valve implantation procedure in a patient. The device can include a positioning device for operatively engaging an epicardial anchor device, and the positioning device includes a positioning rod. The positioning rod member includes at a distal end of an elongate member a docking member that has a hinged frame that is connected to a circular platform having two bent locking tines or flanges located across from each other. The elongate member may or may not be hollow and includes a mechanism associated therewith for inserting or withdrawing a locking pin from a tether. The positioning device further includes a pin locking thumb wheel sub-component to actuate the pin locking mechanism that drives or removes a piercing pin on the epicardial anchor device into or from the tether. The positioning device further includes a transparent segment between the pin locking thumb wheel and a proximal end of the positioning device. The transparent segment has an implant position scale marked thereon. A proximal end of the positioning device also has a tether attachment pin vise. When the tether is threaded through the epicardial anchor device and the positioning device, and when the tether is drawn/pulled to the desired tension, e.g., such that the deployed valve seats firmly in the native annulus and any regurgitation seen on fluoroscopy or echocardiography is no longer present, the tether tensioning can be adjusted by visually observing the tether within the transparent segment of the positioning device and comparing the longitudinal distance travelled against an implant position scale. After the tether is suitably located, the pin locking thumb wheel is actuated and the pin locks the tether in place on the epicardial anchor device. The docking member is then disengaged from the epicardial anchor device.


In some embodiments, there is provided a tether release tool that has a distal tip that includes a shaped anchor device-engagement tip, a distal opening and a passageway in fluid communication with an angled tether capture/recapture access port. The angled tether capture/recapture access port allows a tether to be captured and released from a locked position, and the shaped anchor device-engagement tip is configured to fit within a similarly shaped portion of an epicardial anchor device.


In some embodiments, there is provided a method of tethering a prosthetic heart valve during a transcatheter valve replacement procedure that includes deploying a transcatheter prosthetic heart valve in a patient using as an anchor an adjustable tether that is anchored within the heart between an apically affixed epicardial anchor device and a stent-based fastening system (e.g., attached to the prosthetic heart valve). The transcatheter prosthetic heart valve includes an expandable tubular stent having a cuff and an expandable internal leaflet assembly. The cuff includes wire covered with stabilized tissue or synthetic material, and the leaflet assembly is disposed within the stent and includes stabilized tissue or synthetic material.


In some embodiments, an epicardial anchor device for anchoring a transluminal (transventricular) suture/tether includes a substantially rigid suturing disk having a tether-capture mechanism such as an axial tunnel, a winding channel, or a functional equivalent, and a tether locking mechanism such as a locking pin or screw that intersects the axial tunnel, a locking pin or screw operatively associated with the winding channel, a cam device like a rope lock that grips the tether by compression between two cams or a cam and fixed locking wall, a metal compression fastener, a tooth and pawl device, various combinations of the above, or a functional equivalent thereof.


In another embodiment, an epicardial anchor device for anchoring a transluminal suture includes a substantially rigid suturing disk having an axial tunnel, a locking pin locking pin tunnel that intersects the axial tunnel, a locking pin operatively associated with the locking pin tunnel, one or more radial channels that do not intersect with the axial tunnel and that do not intersect the locking pin tunnel, and a winding channel circumferentially disposed within a perimeter sidewall of the disk.


In some embodiments, an epicardial anchor device further includes a polyester velour coating. In some embodiments, the one or more radial channels include four radial channels. In some embodiments, the one or more radial channels each have an enlarged axial keyhole tunnel.


In some embodiments, an epicardial anchor device includes a flexible pad operatively associated with the rigid tethering/suturing disk, and the flexible pad has a through-hole longitudinally aligned with the axial tunnel. In some embodiments, the epicardial anchor device further includes a sleeve gasket operatively associated with the rigid tethering/suturing disk, and the sleeve gasket has a lumen longitudinally aligned with the axial tunnel. In some embodiments, the device further includes a sleeve gasket attached to the rigid tethering/suturing disk and a flexible pad attached to the sleeve gasket. In such an embodiment, the sleeve gasket has a lumen longitudinally aligned with the axial tunnel of the tethering/suturing disk, and the flexible pad has a through-hole longitudinally aligned with both the lumen of the sleeve gasket and the axial tunnel of the tethering/suturing disk.


In some embodiments, a device for anchoring a transluminal tethering/suture includes a substantially rigid tethering/suturing disk, a sleeve gasket connected to the tethering/suturing disk, and a flexible pad connected to the sleeve gasket. The substantially rigid tethering/suturing disk has an axial tunnel, a locking pin tunnel that intersects the axial tunnel, a locking pin operatively associated with the locking pin tunnel, one or more radial channels that do not intersect with the axial tunnel and that do not intersect the locking pin tunnel, and a winding channel circumferentially disposed within a perimeter sidewall of the disk. The sleeve gasket is in longitudinal alignment with the axial tunnel, and the flexible pad has a through-hole longitudinally aligned with both the lumen of the sleeve gasket and the axial tunnel of the tethering/suturing disk.


In another embodiment, an epicardial anchor device for anchoring a transluminal suture includes a substantially rigid tethering/suturing disk having an axial tunnel, a locking pin tunnel that intersects the axial tunnel, and a locking pin operatively associated with the locking pin tunnel.


In some embodiments, a method for anchoring a transluminal suture includes affixing a transluminal suture to an epicardial anchor device as described herein, and positioning the epicardial anchor device external to a body lumen. The transluminal tether/suture extends from within the lumen to the epicardial anchor device.


In another embodiment, a tether and epicardial anchor device as described herein further includes a tether tension load measuring device operatively associated with the tether. In some embodiments, a tension sensor includes one or more electronic strain gage transducers. The tension sensor can be configured for dynamic tension, static tension, or both dynamic and static tension measurement. In some embodiments, the tether is loaded with a specific tension, such as, for example, 1.0 to 4.0 lbs.


In another embodiment, there is provided a device and exemplary method for monitoring and/or controlling tether load during implant positioning using a fluid chamber device described in more detail below. A force sensor device having an annular fluid chamber is installed on the proximal end of a positioning device. This chamber is connected to a pressure transducer and then connected to a monitoring display. In some embodiments, a mechanical indicator can be used in conjunction therewith. A spring device may be connected to a mechanical tension meter to show load range. In some embodiments, the force sensor device remains as an integral part of the epicardial fastening pad assembly and is not removed after the tether tensioning is performed.


In some embodiments, a sterile surgical kit can be provided. The sterile surgical kit can contain a transcatheter delivery system, an epicardial anchor device and/or a transcatheter prosthetic valve.


In another embodiment, there is provided method of treating mitral or tricuspid regurgitation in a patient, which includes surgically deploying an adjustable-tethered prosthetic heart valve into the mitral or tricuspid annulus of the patient.


In another embodiment, the space between the cuff tissue and cuff Dacron liner (inside-outside) may be used to create a cuff that is expandable, swellable or may be inflated, and which provides an enhanced level of sealing of the cuff against the annular tissue.


Various embodiments described herein address problems concerning valve delivery and deployment, valve compliance, perivalvular leaking, hemodynamic issues such as LVOT interference, clotting, cardiac remodeling and so forth.


In some embodiments described herein, a tethering system for a prosthetic mitral valve is provided that is designed to maintain integrity to about 800 million cycles, or about 20 years. The use of a compressible prosthetic valve delivered via transcatheter endoscope techniques addresses various delivery issues. Deployment is addressed through the use of a prosthetic valve having a shape that features a tubular stent body that contains leaflets and an atrial cuff. This allows the valve to seat within the mitral annulus and be held by the native mitral leaflets. The use of a flexible valve attached using an apical tether provides compliance with the motion and geometry of the heart. The geometry and motion of the heart are well-known as exhibiting a complicated biphasic left ventricular deformation with muscle thickening and a sequential twisting motion. The additional use of the apically secured ventricular tether helps maintain the prosthetic valve's annular position without allowing the valve to migrate, while providing enough tension between the cuff valve annulus to reduce and eliminate perivalvular leakage. The use of an adjustable tether or an adjustable paired-tether that is attached to an apical location can reduce or eliminate the cardiac muscle remodeling that has been witnessed in prior art devices. Some prior art devices can have a problem with unwanted change in tissue at the anchoring locations, as well as heart-generated migration of the original anchoring locations to new locations that reduce or destroy the prior art valve's effectiveness. The use of a compliant valve prosthesis and the special shape and features help reduce or eliminate clotting and hemodynamic issues, including LVOT interference problems. Many prior art valves were not designed with an awareness of, or were not able to address, problems with blood flow and aorta/aortic valve compression issues.


Structurally, a prosthetic heart valve as used with the apparatus and methods described herein can include a self-expanding tubular body having a cuff at one end and one or more tethers attached at the other end. Disposed within the tubular body is a leaflet assembly that contains the valve leaflets, and the valve leaflets can be formed from stabilized tissue or other suitable biological or synthetic material. In one embodiment, the leaflet assembly may include a wire form where a formed wire structure is used in conjunction with stabilized tissue to create a leaflet support structure which can have anywhere from 1, 2, 3 or 4 leaflets, or valve cusps disposed therein. In another embodiment, the leaflet assembly is wireless and uses only the stabilized tissue and stent body to provide the leaflet support structure, without using wire, and which can also have anywhere from 1, 2, 3 or 4 leaflets, or valve cusps disposed therein.


The upper cuff portion may be formed by heat-forming a portion of a tubular Nitinol® braided (or similar) stent such that the lower portion retains the tubular shape, but the upper portion is opened out of the tubular shape and expanded to create a widened collar structure that may be shaped in a variety of functional regular or irregular funnel-like or collar-like shapes. In one embodiment, the entire structure is formed from a laser-cut stent and collar design, as described further herein


As used in this specification, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, the term “a member” is intended to mean a single member or a combination of members, “a material” is intended to mean one or more materials, or a combination thereof.


As used herein, the words “proximal” and “distal” refer to a direction closer to and away from, respectively, an operator of, for example, a medical device. Thus, for example, the end of the medical device closest to the patient's body (e.g., contacting the patient's body or disposed within the patient's body) would be the distal end of the medical device, while the end opposite the distal end and closest to, for example, the user (or hand of the user) of the medical device, would be the proximal end of the medical device.


A prosthetic mitral valve can be anchored to the heart at a location external to the heart via one or more tethers coupled to an anchor device, as described herein. For example, the tether(s) can be coupled to the prosthetic mitral valve and extend out of the heart and be secured at an exterior location (e.g., the epicardial surface) with an anchor device, as described herein. An anchor device as described herein can be used with one or more such tethers in other surgical situations where such a tether may be desired to extend from an intraluminal cavity to an external anchoring site. Various different types and/or configurations of an anchor device (also referred to herein as “epicardial anchor device” or “epicardial pad” or “pad”) can be used to anchor a prosthetic mitral valve in the methods described herein. For example, any of the epicardial anchor devices described in PCT International Application No. PCT/US2014/049218, filed Jul. 31, 2014, entitled “Epicardial Anchor Devices and Methods,” (referred to herein as “the '218 PCT application”), the disclosure of which is incorporated herein by reference in its entirety, can be used.



FIG. 1 is a schematic cross-sectional illustration of the left ventricle LV and left atrium LA of a heart H having a transcatheter prosthetic mitral valve PMV deployed therein and an epicardial anchor device EAD as described herein securing the prosthetic mitral valve PMV in place. FIG. 1 illustrates the prosthetic mitral valve PMV seated into the native valve annulus and held there using an atrial cuff AC of the prosthetic mitral valve PMV and a ventricular tether T secured with attachment portions Tp to the prosthetic mitral valve PMV and to the epicardial anchor EAD. The epicardial anchor device EAD can be various different shapes, sizes, types and configurations, for example, the EAD can be an epicardial anchor device such as those described in the '218 PCT application incorporated by reference above. Further, the prosthetic mitral valve PMV and the tether T can be, for example, a prosthetic mitral valve and tether, respectively, as described in the '218 PCT application or other suitable types and configurations.



FIG. 2 is a schematic illustration of an epicardial anchor device 100 (also referred to herein as “anchor device” or “epicardial anchor”) according to an embodiment. The anchor device 100 can be used to anchor or secure a prosthetic mitral valve PMV deployed between the left atrium LA and left ventricle LV of a heart H. The anchor device 100 can be used, for example, to anchor or secure the prosthetic mitral valve PMV via a suturing tether 128 as described above with respect to FIG. 1. The anchor device 100 can also seal a puncture formed in the ventricular wall (not shown in FIG. 2) of the heart during implantation of the prosthetic mitral valve PMV. The anchor device 100 can also be used in other applications to anchor a medical device (such as any prosthetic atrioventricular valve or other heart valve) and/or to seal an opening such as a puncture.


The anchor device 100 can include a pad (or pad assembly) 120, a tether attachment member 124 and a locking pin or locking pin assembly 126. The pad 120 can contact the epicardial surface of the heart and can be constructed of any suitable biocompatible surgical material. The pad 120 can be used to assist the sealing of a surgical puncture formed when implanting a prosthetic mitral valve.


In some embodiments, the pad 120 can be made with a double velour material to promote ingrowth of the pad 120 into the puncture site area. For example, pad or felt pledgets can be made of a felted polyester and may be cut to any suitable size or shape, such as those available from Bard® as PTFE Felt Pledgets having a nominal thickness of 2.87 mm. In some embodiments, the pad 120 can be larger in diameter than the tether attachment member 124. The pad 120 can have a circular or disk shape, or other suitable shapes.


The tether attachment member 124 can provide the anchoring and mounting platform to which one or more tethers 128 can be coupled (e.g., tied or pinned). The tether attachment member 124 can include a base member (not shown) that defines at least a portion of a tether passageway (not shown) through which the tether 128 can be received and pass through the tether attachment member 124, and a locking pin channel (not shown) through which the locking pin 126 can be received. The locking pin channel can be in fluid communication with the tether passageway such that when the locking pin 126 is disposed in the locking pin channel, the locking pin 126 can contact or pierce the tether 128 as it passes through the tether passageway as described in more detail below with reference to specific embodiments.


The locking pin assembly 126 can be used to hold the tether 128 in place after the anchor device 100 has been tightened against the ventricular wall and the tether 128 has been pulled to a desired tension. For example, the tether 128 can extend through a hole in the pad 120, and through the tether passageway of the tether attachment member 124. The locking pin 126 can be inserted or moved within the locking pin channel 134 such that it pierces or otherwise engages the tether 128 as the tether 128 extends through the tether passageway of the tether attachment member 124. Thus, the locking pin 126 can intersect the tether 128 and secure the tether 128 to the tether attachment member 124.


The tether attachment member 124 can be formed with, a variety of suitable biocompatible material. For example, in some embodiments, the tether attachment member 124 can be made of polyethylene, or other hard or semi-hard polymer, and can be covered with a polyester velour to promote ingrowth. In other embodiments, the tether attachment member 124 can be made of metal, such as, for example, Nitinol®, or ceramic materials. The tether attachment member 124 can be various sizes and/or shapes. For example, the tether attachment member 124 can be substantially disk shaped.


In use, after a PMV has been placed within a heart, the tether extending from the PMV can be inserted into the tether passageway of the anchor device 100 and the tension on the tether attachment device can be adjusted to a desired tension. Alternatively, in some cases, the tether extending from the PMV can be coupled to the anchor device 100 prior to the PMV being placed within the heart. The anchor device 100 (e.g., some portion of the anchor device such as the tether attachment member 124, or the lever arm or hub depending on the particular embodiment) can be actuated such that the locking pin 126 intersects the tether passageway and engages a portion of the tether disposed within the tether passageway, securing the tether to the tether attachment member. In some embodiments, prior to inserting the tether into the tether passageway, the anchor device 100 can be actuated to configure the anchor device 100 to receive the tether. For example, if the tether attachment member includes a lever arm movably coupled to the base member, the lever arm may need to be moved to an open position to allow the tether to be inserted. In some embodiments, the anchor device 100 can be actuated by rotating a hub relative to a base member of the tether attachment member 124 such that the locking pin 126 is moved from a first position in which the locking pin is spaced from the tether passageway and a second position in which the locking pin intersects the tether passageway and engages or pierces the portion of the tether.



FIG. 3 is a schematic illustration of an embodiment of a positioning device 142 that can be used to position the epicardial anchor device 100 and measure the tension applied to a tether 128 attached to a prosthetic mitral valve (not shown in FIG. 3) to be anchored by the epicardial anchor device 100. The positioning device 142 includes a handle assembly 144, an elongate member 145, a docking member 146, and a tether securing member 147. In some embodiments, the positioning device 142 can include a force sensor device 148, which can communicate with a transducer 149, which in turn can communicate with an electronic device 141 to display the output of the force sensor device 148. In some embodiments, the transducer 149 can be incorporated within the force sensor device 148. In some embodiments, the force sensor device 148 can be coupled to a data acquisition module rather than a transducer. The electronic device 141 can be, for example, a monitor or display of a computer, such as a laptop computer or a desktop computer, or a handheld electronic device such as a tablet, phone or other electronic device configured to receive and display the output of the force sensor device 148.


The positioning device 142 can include other various components that can be for example coupled to or incorporated within the handle assembly 144 or another component of the positioning device 142. The docking member 146 can be used to releasably couple the epicardial pad 100 to the positioning device 142 and can be actuated by one or more components of the positioning device 142. The tether securing device 147 can include, for example, a vice mechanism used to lock the tether 128 at a desired position. In some embodiments, the tether securing device 147 can include a pinning device that can pierce the tether 128 to secure the tether 128 in the desired position. More detailed descriptions of various components of embodiments of a positioning device 142 are described below.



FIGS. 4-12 illustrate an epicardial anchor device according to an embodiment. An epicardial anchor device 200 includes a tether attachment member 224, a pad assembly 220, a tube member 255 and a tube cover member 256. The tether attachment member 224 includes a base member 240, a hub 250, a retaining ring 252, a locking pin assembly 226, and a pin member 253. The locking pin assembly 226 includes a driver portion 246 and a piercing portion 249. The base member 940 defines a circumferential pad channel 242, a retaining channel 251 and a locking pin channel 234. The pad channel 242 can be used to couple the pad assembly 220 to the tether attachment member 224. The retaining channel 251 can receive an outer edge of the retaining ring 252, which is used to retain the hub 250 to the base member 240. The base member 240 also defines cutouts or detents 243, as shown for example, in FIGS. 5, 7 and 12.


The tube member 255 is coupled to the base member 240 and the base member 240, the hub 250 and the tube member 255 collectively define a tether passageway 235 through which a tether (not shown) can be received. The cover member 256 can be formed with a fabric material, such as for example, Dacron®. The tether channel 235 intersects the locking pin channel 234 and is in fluid communication therewith.


The pad assembly 220 includes a top pad portion 258, a bottom pad portion 259 and a filler member 257 disposed therebetween. The top pad portion 258 and the bottom pad portion 259 can each be formed with, for example, a flexible fabric material. The top pad portion 258 and the bottom pad portion 259 can each define a central opening through which the tube member 255 can pass through. A portion of the top pad portion 258 is received within the channel 242 of the base member 240 as shown, for example, in FIGS. 7-9.


An outer perimeter portion of the hub 250 is received within the retaining channel 251 such that the hub 250 can rotate relative to the base member 240 to actuate the locking pin assembly 226 as described in more detail below. As shown, for example, in FIGS. 10 and 11, the hub 250 includes arms 261 with protrusions 262. The protrusions 262 can be received within cutouts 243 of the base member 240 and act as a stop or limit to the rotation of the hub 250. The hub 250 defines slots 263 that enable the arms 261 to flex and allow the protrusions 262 to be moved in and out of the cutouts 243. As shown, for example, in FIGS. 9 and 10 the hub 950 defines a curved channel 250 on a bottom portion of the hub 950. The curved channel 250 is asymmetrical (or spiral) and receives the driver portion 246 of the locking pin assembly 226. As the hub 250 is rotated relative to the base member 240, the hub 250 acts as a cam to move the locking pin assembly 226 linearly within the locking pin channel 234. The locking pin assembly 226 can be moved from a first position in which the piercing portion 249 is disposed outside of the tether passageway 235 as shown in FIGS. 7 and 8, and a second position in which the piercing portion 249 extends through the tether passageway 235 as shown in FIG. 9. The pin member 253 (see, e.g., FIG. 8) can be formed with a metal material that is more radio-opaque than the other components of the anchor device and thus visible to the user (e.g. physician) using conventional imaging modalities to enable the user to confirm that the locking pin assembly 226 has been fully moved to the second position.


In use, when the locking pin assembly 226 is in the first position, a tether (not shown) coupled to, for example, a prosthetic mitral valve and extending through a puncture site in the ventricular wall of a heart can be inserted through the tether passageway 235. The hub 250 can then be rotated 180 degrees to move the locking pin assembly 226 linearly within the locking pin channel 234 such that the piercing portion 249 extends through the tether passageway 235 and engages or pierces the tether, securing the tether to the tether attachment member 224. For example, the hub 250 also defines a driver receiving opening 210 configured to receive a mating portion of a positioning device (described below, e.g., with reference to positioning devices 242, 342 and 442). The positioning device can be used to rotate the hub and actuate the locking pin assembly 226. When the locking pin is in the first position, the protrusions 262 of the hub 250 are each disposed within one of the cutouts 243 of the base member 240 (i.e., a first protrusion is in a first cutout, and a second protrusion is in a second cutout). The hub 250 can then be rotated 180 degrees such that the protrusions 262 are moved out of the cutouts 243 of the base member 240 and at the end of the 180 degrees the protrusions 262 are moved into the other of the cutouts 243 of the base member 240 (i.e., the first protrusion is now in the second cutout, the second protrusion is now in the first cutout).


The base member 240 can also include cutout sections 266 and define side openings 267 (see, e.g., FIGS. 4 and 5) that can be used to couple a positioning device to the epicardial anchor device 200. For example, FIGS. 13-17B illustrate a positioning device 242 that can be used to deploy and position an epicardial anchor device such as anchor device 200.


As shown in FIG. 13, in this embodiment, the positioning device 242 includes an elongate member 245, a docking member 246 coupled to a distal end of the elongate member 245, a handle assembly 244 and a tether securing member 247. The handle assembly 244 includes a housing 254, a transparent tube segment 223 with indications disposed thereon, a tension member 229, a thumb dial 227, a release button 233 and a safety lever 231.


The handle assembly 245 is coupled to the tether securing device 247 with a rod member 264 (see, e.g., FIG. 15). The handle assembly 245 is also coupled to the elongate member 245, which is coupled to the docking member 246. The docking member 246 includes coupling arms 236 with coupling pins 238 extending inwardly from the coupling arms 236. The coupling pins 238 are configured to be received within the side openings 267 of the anchor device 200 described above, and the coupling arms 236 can engage the cutout sections 266 of the anchor device 200. The coupling arms 236 have hinged joints which are coupled to a disc member 239. The disc member 239 can be coupled to or incorporated with or monolithically formed with the elongate member 245. A spring 216 disposed between the disc member 239 and the arms 236 biases the coupling arms 236 in a closed position as shown, for example, in FIGS. 13, 15 and 16. The coupling arms 236 can be moved to an open position (not shown) to allow for the anchor device 200 to be received between the coupling arms 236 to couple and release the anchor device 200 to and from the positioning device 242. Actuation of the docking member 246 is described in more detail below. An inner driver member 217 is movably disposed within a lumen defined by the elongate member 245 and extends through the docking member 246. The inner driver member 217 includes a shaped distal tip 237 that is configured to be matingly received within the driver receiving opening 210 of the anchor device 200. The inner driver member 217 is operatively coupled to the thumb dial 227 of the positioning device 242 and can be used to actuate the locking pin assembly 226 of the anchor device 200 to secure a tether to the anchor device 200, as described below.


The safety lever 231 is hingedly coupled to the housing 254 and can be moved from a first position as shown, for example, in FIG. 13, in which the safety lever 231 prevents the release button 233 from moving and a second position (not shown) in which the safety lever 231 is pivoted or moved in a direction upward away from the elongate member 245 such that the release button 233 can be moved as desired as described in more detail below.


In use, a tether (not shown) extending from a prosthetic mitral valve and outside of the heart can be inserted through the epicardial anchor device 200 and threaded through a lumen of the inner driver member 217, through the handle assembly 244, and out through the tether securing device 247.


To releasably couple and uncouple the anchor device 200 to and from the positioning device 242, the safety lever 231 is moved to its second position in which the release button 233 is free to move. The release button 233 is fixedly coupled to the elongate member 245 such that as the release button is moved distally, the elongate member 245 moves distally, and in turn the disc member 239 moves distally compressing the spring 216 and actuating the hinged coupling arms 236 of the docking member 246 to open wide enough such that the anchor device 200 can be place therebetween. The distal tip 237 of the driver member 217 is received within the opening 210 of the anchor device 200. The release button 233 can then be moved proximally to allow the coupling arms 236 to move back to their biased closed position (e.g., closer together) and be inserted into the side openings 267 of the anchor device 200. The safety lever 231 can then be moved back to its first position, as shown in FIG. 13.


With the anchor device 200 coupled to the positioning device 242, the anchor device 200 can be positioned at a desired location on the outer surface of the ventricular wall of the heart, such as for example, at the apex. The tether extending through the positioning device 242 and out the proximal end of the positioning device 242 can be pulled proximally to a desired tension. When the tether is drawn/pulled to the desired tension, e.g., such that the deployed prosthetic valve seats firmly in the native annulus and any regurgitation seen on fluoroscopy or echocardiography is no longer present, the practitioner can fine tune the tensioning by visually observing the tether within the transparent tube segment 223 and compare the longitudinal distance travelled against an implant position scale. When the tether is suitably located, the locking pin assembly 226 of the anchor device 200 can be actuated by the positioning device 242 to lock the tether in place on the epicardial anchor device 200. For example, the thumb dial 227, which is operatively coupled to the driver member 217, can be rotated to actuate the locking pin assembly 226 of the anchor device 200 to pierce the tether and secure the tether to the anchor device 200.


Prior to pinning the tether to the anchor device 200, it may be desirable to make small adjustments or fine tuning to the position of the anchor device 200 and/or to the tension of the tether. To make such adjustments or fine tuning, the tether securing device 247 can be used to secure the tether at a fixed position on the positioning device 242, such that the anchor device 200 can be pushed distally snug to the outer wall of the heart. For example, in this embodiment, the tether securing device 247 includes a collet 212 (see, e.g., FIGS. 15 and 17A) that provides a friction fit against the tether when the tether securing device 247 is rotated. If an adjustment to the tension of the tether and/or to the position of the anchor device 200 is desired, with the tether securing device 247 holding the tether in a fixed position, the tension member 229 can be actuated to allow the handle assembly 244, elongate member 245 and docking member 246 to be moved distally relative to the rod member 264 to which the tether securing device 247 is coupled. For example, as shown in FIGS. 17A and 17B, grooved teeth 265 of the rod member 264 allow the handle assembly 244 to be incrementally moved distally. Alternatively, the push buttons 219 on the tension member 229 can be depressed which will release the grooved teeth 265 and allow the handle assembly 244 to be slid freely relative to the rod member 264.


When the anchor device and tether have been secured in a desired position and at a desired tension, the positioning device 242 can be actuated to pin the tether to the anchor device 200 as described above, and then the epicardial anchor device 200 can be released from the positioning device 242. The portion of the tether extending from the anchor device 200 can be cut to a desired length and/or tied off.



FIGS. 18-21 illustrate another embodiment of a positioning device that can be used to position an epicardial anchor device such as anchor device 200. As with the previous embodiment, the positioning device 342 includes an elongate member 345, a docking member 346 coupled to a distal end of the elongate member 345, and a handle assembly 344 coupled to the elongate member 345. The handle assembly 344 includes a housing 354, a transparent tube member 323 with indications disposed thereon, a tension member 329, a thumb dial 327, a release button 333 and a safety lever 331. Each of these components can be the same as or similar to the corresponding components of positioning device 242 and are therefore not discussed in detail with respect to this embodiment.


In this embodiment, the positioning device 342 also includes a force sensor device 348 coupled at a proximal end of the positioning device 342. The force sensor device 348 can be coupled to the housing 344 via a rod member 364 similar to the rod member 264. The force sensor device 348 includes a sensor housing 369 defining an interior region that receives a load cell 368. In some embodiments, the load cell can include, for example a piezoelectric sensor. In some embodiments the load cell 368 can include miniature strain gauges. The load cell 368 can be electrically coupled to a transducer (not shown) or a data acquisition module (not shown) via a cable 311, which in turn can communicate with an electronic device (not shown) configured to display the output of the force sensor device 348 as described above with respect to FIG. 3. The electronic device can be, for example, a monitor or display of a computer, such as a laptop computer or a desktop computer, or a handheld electronic device such as a tablet, phone or other electronic device configured to receive and display the results of the force sensor device 348.


The positioning device 342 can also include a tether securing device 347 coupled proximally to force sensor device 348. The tether securing device 347 includes a collet (not shown) that provides a friction fit against a tether when the tether securing device 347 is rotated as described for the previous embodiment. As shown in the schematic illustration of FIG. 21, the rod member 364 can extend through the force sensor device 348 and the tether securing device 347 can be coupled thereto.


In use, as with the previous embodiment, a tether (not shown) extending from a prosthetic mitral valve and outside of the heart can be inserted through an epicardial anchor device, threaded through the elongate member 345, through the handle assembly 344, and out through the tether securing device 347. The anchor device can be releasably coupled to the positioning device 342 in the same manner as described above for positioning device 242 and the locking pin assembly of the anchor device can be actuated to pin the tether to the anchor device as described above.


The anchor device 200 can be positioned at a desired location on the outer surface of the ventricular wall of the heart, such as for example, at the apex. The tether extending through the positioning device 342 can be pulled proximally to a desired tension. In this embodiment, the tension on the tether can be measured and displayed for the practitioner. For example, tether securing device 347 exerts a compressive force on the load cell 368 as the tether is being pulled through. The compressive force displaces the load cell, which causes a deflection of the load cell which is detected by the sensor(s) within the load cell 368. The deflection data is sent to the data acquisition module which in turn provides pressure data to be viewed on an electronic display. When the desired tension on the tether is achieved, the tether securing device 347 can be used to secure the tether at a fixed position relative to the positioning device 342 as described above.


If an adjustment to the tension of the tether and/or to the position of the anchor device on the tether is desired, with the tether securing device 347 holding the tether in a fixed position, and while holding the tether securing device 347, the tension member 329 can be actuated to allow the handle assembly 344, elongate member 345 and docking member 346 to be moved distally relative to the rod member 364 and tether securing device 347. For example, as previously described, the tension member 329 can be used to incrementally move the handle assembly 344 distally or push buttons 319 on the tension member 329 can be depressed which will release grooved teeth 365 on the rod member 364 and allow the handle assembly 344 to be slid freely relative to the rod member 364.


When the anchor device and tether have been secured in a desired position and at a desired tension, the positioning device 442 can be actuated to release the epicardial anchor device. The portion of the tether extending from the anchor device can be cut to a desired length and/or tied off.



FIGS. 22-28 illustrate a positioning device 442 according to another embodiment. The positioning device 442 can be configured the same as or similar to and provide the same or similar functions as the above described embodiments. The positioning device 442 includes a docking member 446 coupled to a distal end of an elongate member 445, a handle assembly 444 and a force sensor device 448. The positioning device 442 can also include a tether securing device (not shown) that can be the same as or similar to the tether securing devices described above. The handle assembly 444 includes a housing 454 having a transparent segment 423 with indications disposed thereon, a tension member 429, a switch 427, a release button 433 and a safety lever 431.


The handle assembly 445 is coupled to the elongate member 445, which is coupled to the docking member 446. The docking member 446 includes coupling arms 436 with coupling pins 438 extending inwardly from the coupling arms 436. As with the previous embodiments, the coupling pins 438 are configured to be received within the side openings of an anchor device such as anchor device 200 described above. The coupling arms 436 can also engage the cutout sections of the anchor device as described above. The coupling arms 436 have hinged joints which are coupled to a disc member 439 which is coupled to or incorporated or monolithically formed with the elongate member 445. A spring 416 is disposed between the disc member 439 and the arms 436 and biases the arms 436 in a closed position as shown, for example, in FIGS. 13, 15 and 16. The coupling arms 436 can be moved to an open position (not shown) to allow for the anchor device to be received between the coupling arms 436 to couple and release the anchor device to and from the positioning device 442. Actuation of the docking member 436 is described in more detail below. An inner driver member 417 is movably disposed within a lumen defined by the elongate member 445 and extends through the docking member 446. The inner driver member 417 includes a shaped distal tip 437 that is configured to be matingly received within a driver receiving opening of the anchor device as described above. The inner driver member 417 is operatively coupled to the switch 427 of the positioning device 442 and can be used to actuate the locking pin assembly of the anchor device to secure a tether to the anchor device, as described above for previous embodiments.


The safety lever 431 can be moved from a first position as shown in FIGS. 22, 24 and 25 in which the safety lever 431 prevents the release button 433 from moving and a second position (not shown) in which the safety lever 431 is moved in a direction downward away from the elongate member 445 such that the release button 433 can be moved as desired as described in more detail below.


As shown in FIGS. 26-30, in this embodiment, the force sensor device 448 includes a sensor housing 470, a fluid chamber 472 and a load washer 474. The fluid chamber 472 defines an interior region that can contain a fluid and that is in fluid communication with a conduit 476. The fluid chamber 472 is received within the sensor housing 470 and the conduit 476 extends out of the sensor housing 470 through an opening 475 defined by the sensor housing 470. The load washer 474 is disposed over the fluid chamber 472 and is coupled to the sensor housing 470 with pins 471 such that the load washer 474 can move within slots 477 defined by the sensor housing 470. This allows for the fluid chamber 472 to reduce and expand in size within the interior region defined collectively by the sensor housing 470 and the load washer 474. A fluid port connector 473 is coupled to the conduit 476. The fluid port connector 473 can be for example, a Luer connector. The fluid port connector 473 can be coupled to a pressure transducer (not shown) which in turn can be coupled to a device that can be used to display pressure readings received from the pressure transducer. In some embodiments, the pressure transducer can be incorporated within the force sensor device 448, or coupled directly to or proximate to the force sensor device 448. During use, force is exerted on the load washer 474 which in turn exerts a compressive force on the fluid chamber 472 causing the pressure of the fluid in the interior region of the fluid chamber 472 to be increased. This increased pressure can be communicated through the fluid from the fluid chamber 472 to and through the conduit 476. The force sensor device 448 can be used to measure the load on a tether extending through the positioning device 442. For example, the positioning device 442 can include a tether securing member (not shown) that can be configured the same as or similar to the tether securing device 247 described above. In a similar manner as shown for force sensor device 448 (see, e.g., FIG. 21), the rod member 464 can extend through the force sensor device 448 and the tether securing device can be coupled to the rod member 464 and disposed on a proximal side of the force sensor device 448 in contact with the load washer 474. As the tether is pulled through to a desired tension, the tether securing device exerts a force on the load washer 474.


In use, a tether (not shown) extending from a prosthetic mitral valve and outside of the heart can be inserted through an epicardial anchor device 400 (see, FIG. 22) and threaded through a lumen of the inner driver member 417, through the handle assembly 444, and out through the tether securing device (not shown). For purposes of the following description, the epicardial anchor device 400 can be the same as the epicardial anchor device 200 described above.


To releasably couple and uncouple the anchor device 400 to and from the positioning device 442, the safety lever 431 is moved to its second position in which the release button 433 is free to move. The release button 433 is fixedly coupled to the elongate member 445 such that as the release button 433 is moved distally, the elongate member 445 moves distally, and in turn the disc member 439 moves distally compressing the spring 416 and actuating the hinged coupling arms 436 of the docking member 446 to open wide enough such that the anchor device 400 can be place therebetween. The distal tip 437 of the driver member 417 is received within the mating opening of the anchor device 400 as described above for anchor device 200. The release button 433 can then be moved proximally to allow the coupling arms 436 to move back to their biased closed position (e.g., closer together) and be inserted into the side openings of the anchor device 400. The safety lever 431 can then be moved back to its first position, as shown in FIGS. 24 and 25.


With the anchor device 400 coupled to the positioning device 442, the anchor device 400 can be positioned at a desired location on the outer surface of the ventricular wall of the heart, such as for example, at the apex. The tether extending through the positioning device 442 and out the proximal end of the positioning device 442 can be pulled proximally to a desired tension. When the tether is drawn/pulled to the desired tension, e.g., such that the deployed prosthetic valve seats firmly in the native annulus and any regurgitation seen on fluoroscopy or echocardiography is no longer present, the practitioner can fine tune the tensioning by visually observing the tether within the transparent segment 423 and comparing the longitudinal distance travelled against an implant position scale. Further, as shown in FIG. 29, the transparent segment 423 includes markings or indications 415. In this example, the markings 415 include indications between 5 and 15 centimeters. Different indications and/or increments can be used as appropriate. A distal portion of the rod member 464 can be viewed through the transparent segment 423 and includes an indicator 418 at a distal end of the rod member 464. The indicator 418 can be a marking on the rod member 464 or a separate component coupled to the rod member 464. In some embodiments, the indicator 418 can be color coded. The indicator 418 shows the location of the rod member 464 as the rod member 464 is moved in a proximal and distal direction and corresponds to a distance between the bottom surface of the epicardial pad device 400 that contacts the heart and the annulus of the heart valve. For example, the markings 415 can be used to identify the location of the indicator 418 on the distal end of the rod member 464. The distance between the bottom surface of the epicardial pad device 400 that contacts the heart and annulus of the heart can be determined based on a known length of the tether. For example, a proximal end portion of the tether extending out of the positioning device 442 can have a marker 414 (see FIG. 39 illustrating a tether 428 with a marker 414 coupled thereto). The marker 414 can be for example, a stainless steel hypotube or band crimped or swaged onto the tether. The marker 414 on the tether can indicate a preset distance from where the prosthetic mitral valve is seated in the annulus. For example, the marker 414 can be a set distance of 40 mm from where the tether is attached at the cuff of the prosthetic mitral valve. From this, when the tether is extended through the positioning device 442, depending on the tension applied to the tether, the location of the indicator 418 on the rod member 464 can represent the distance between the epicardial pad device 400 that contacts the heart and annulus of the heart.


When the tether is suitably located, the locking pin assembly of the anchor device 400 can be actuated by the positioning device 442 to lock the tether in place on the epicardial anchor device 400. For example, the switch 427, which is operatively coupled to the driver member 417, can be actuated to rotate the driver member 417 and actuate the locking pin assembly of the anchor device 400 to pierce the tether and secure the tether to the anchor device 400. In some embodiments, the switch 427 can be moved or flipped 180 degrees. For example, the driver member 417 can be moved 180 degrees to rotate the driver inward to actuate the pin locking assembly of the anchor device 400 and secure the tether, and then back 180 degrees to move the driver member 417 in the opposite direction to release the tether.


Prior to pinning the tether to the anchor device 400, it may be desirable to make small adjustments or fine tuning to the position of the anchor device 400 and/or to the tension of the tether. To make such adjustments or fine tuning, the tether securing device (not shown) can be used to secure the tether at a fixed position on the positioning device 442, such that the anchor device 400 can be pushed distally snug to the outer wall of the heart in a similar manner as described above with respect to positioning device 242. For example, in this embodiment, the rod member 464 can move proximally and distally relative to the handle assembly 444. While holding the tether securing device, the tension member 429 can be actuated (e.g., rotated) such that the rod member 464 rotates proximally with the tether securing device (not shown). For example, the tension member 429 can be coupled to the rod member 464 such that rotating of the tension member 429 causes the rod member to move proximally or distally depending on the direction of rotation of the tension member 429. This can provide the ability to make fine adjustments to the tension on the tether. In addition, the release button(s) 419 on the tension member 429 can be pressed to allow the tension member 429 to disengage from the teeth 465 of the rod member 464 and be freely slid relative to the rod member 464. In this manner, the tension member 429 can be slid distally, which in turn moves the handle assembly 444, elongate member 445 and docking member 446 distally relative to the rod member 464 and tether securing device.


As with the previous embodiment, the tension on the tether can be measured and displayed for the practitioner via the force sensor device 448. For example, as described above, the tether securing device (not shown) can exert a compressive force on the load washer 474 as the tether is being pulled through.


When the anchor device and tether have been secured in a desired position and at a desired tension, the positioning device 442 can be actuated to pin the tether to the anchor device 400 as described above, and then the epicardial anchor device 400 can be released from the positioning device 442. The portion of the tether extending from the anchor device 400 can be cut to a desired length and/or tied off.



FIG. 31 illustrates a tension limiting device (also referred to as “tensioner”) that can be included in the positioning devices described herein. The tensioner 480 can be incorporated within, for example, the tension member 429′ and can be used to limit the amount of load (e.g. tension T) that can be set during prosthetic valve implantation. The tensioner 480 includes ratchet members 478 and 479 that skip over each other when maximum tension on the lead screw is achieved. A spring 483 is coupled to the rod member 464 and applies tension on the ratchet members 478 and 479. The ratchet member 479 can be coupled to the housing of the tension member 429 and can move axially along the rod member 464. The ratchet member 478 includes inner teeth that engage the teeth 465 of the rod member 464 such that the ratchet member 478 can be moved along the rod member 464 as the tension member 429 is rotated. For example, as the tension member 429 is rotated to adjust the tension on the tether, the ratchet member 479 will move with the tension member 429 and the ratchet member 478 will slide relative to the ratchet member 479 until the tension on the tether exceeds a set value, at which point the tensioner 480 will act like a slip clutch, preventing further tensioning. The tension limit can be a preset value of the device or can be set according to the particular procedure and/or patient.



FIGS. 36 and 37 illustrate an alternative embodiment of a force sensor device 648 that can be included on a positioning device described herein. The force sensor device 648 is similar to the force sensor device 448 and can function in the same or similar manner as the force sensor device 448. The force sensor device 648 includes a sensor housing 670, a fluid chamber 672 and a load washer 674. The fluid chamber 672 defines an interior region that can contain a fluid and that is in fluid communication with a conduit 676. The fluid chamber 672 is received within the sensor housing 670 and the conduit 676 extends out of the sensor housing 670 through an opening 675 defined by the sensor housing 670. The load washer 674 is disposed over the fluid chamber 672 and is coupled to the sensor housing 670 with a retainer 686 such that the load washer 674 can move or float relative to the sensor housing 670. For example, the load washer includes a perimeter flange (not shown) on which the retainer 686 rests on top of the sensor housing 670. This allows for the fluid chamber 672 to reduce and expand in size within the interior region defined collectively by the sensor housing 670 and the load washer 674. A spring 688 and adjuster screw 684 are disposed within an opening 690 (FIG. 38) defined in the sensor housing 670 and can be used to tune the pressure reading at a fixed load. The opening 690 is also used to couple the force sensor device 648 to a rod member (e.g., 464) of a positioning device (e.g., 642).


In this embodiment, a tether (not shown) extending through the positioning device to which the force sensor device 648 is coupled, extends through the rod member of the positioning device, through the adjuster screw 684 and spring 688, through load washer 674 and out a proximal opening 691 defined in the load washer 674 at a proximal end of the force sensor device 648. In this embodiment, a pinning mechanism incorporated into the force sensor device 648 can be used to pierce the tether and secure the tether to the force sensor device 648. The pinning mechanism includes a pin holder 685 coupled to a pin 687. The pin holder 685 can be manually moved inward to actuate or move the pin 687 inwardly into the opening 691 (see, e.g., FIG. 38) to pierce a tether extending therethrough.


A fluid port connector 673 is coupled to the conduit 676. The fluid port connector 673 can be for example, a Luer connector. The fluid port connector 673 can be coupled to a pressure transducer 649 via a conduit (not shown) which is disposed within a holder portion 689 defined in the sensor housing 670. The pressure transducer 649 being incorporated within the force sensor device 648 can compensate for tool height changes during a procedure that could change the pressure reading. The pressure transducer 649 can in turn be coupled to a device that can be used to display pressure readings received from the pressure transducer 649.


In this embodiment, during use, when the tether is pierced by the pin 687, the load is transferred to the load washer 674, which in turn exerts a compressive force on the fluid chamber 672 causing the pressure of the fluid in the interior region of the fluid chamber 672 to be increased. This increased pressure can be communicated through the fluid from the fluid chamber 672 to and through the conduit 676 and to the pressure transducer 649 via a conduit (not shown) connecting the conduit 676 to the pressure transducer 649 via the connector 673. The force sensor device 648 can be used to measure the load on a tether extending through the positioning device to which the force sensor device 648 is coupled.


For each of the embodiments of a positioning device described herein (242, 342, 442), in some cases, after deployment, the tether may be left having excess length, i.e. not trimmed, in order to facilitate later capture if necessary. If it is determined that the length of the tether is not suitable for some reason, e.g., regurgitation is seen post-procedure and the tether is too slack or the tension is too high and the apical tissue is invaginating or changing the shape of the heart in an unwanted manner, the positioning device can be used to capture the excess untrimmed tail of the tether, thread the tether through the positioning device, re-engage the epicardial anchor device, unlocking the pin assembly of anchor device and allowing for the tether length adjustment. The tether may then be adjusted length-wise, either shorter or longer, and the tether is then re-tested for tensioning force, re-pinned and locked into place with the epicardial anchor device.


In some cases, tether tightening or shortening may be, for example, in the range from about 1 mm-10 mm, or about 1 mm-8 mm, or about 1 mm-5 mm, or about 2 mm-8 mm, or about 2 mm-5 mm in length, and all ranges inclusive. Tether loosening or lengthening is contemplated as ranging from about 1 mm-10 mm, or about 1 mm-8 mm, or about 1 mm-5 mm, or about 2 mm-8 mm, or about 2 mm-5 mm in length and all ranges inclusive.


It is contemplated that the time range for which post-deployment adjustments to the tether length or position can be, for example, from about 0.5 hours-48 hours, or from about 24 hours-72 hours, or from about 1 day-7 days, or from about 1 day-15 days, or from about 1 day-30 days, post-implantation.


In an alternative embodiment of a positioning device, a force sensor device can be included that includes a mechanical indicator. For example, a spring device may be connected to a mechanical tension meter to show load range. A load of 1-2 lbs. or 1-4 lbs. are examples of a typical target load.


Although not shown, an alternative to the vice type of tether securing device described herein (e.g., 247, 347), a pinning device that can be used. For example, such a device can include a portion through which the tether can be threaded, and a pin member can be operatively coupled thereto and actuated to pierce through the tether to hold the tether in position. Such a device can be incorporated into a positioning device and be operatively coupled to an actuation mechanism. In some embodiments, such a pinning mechanism can be manually actuated.



FIGS. 32-35 illustrate an alternate embodiment of a tether release tool that can be used for capturing a tether, and engaging/re-engaging an epicardial pad after it has been deployed. As shown, for example, in FIGS. 32 and 33, the tether release tool 580 includes a handle 581 coupled to an elongate positioning rod 582. The positioning rod 582 includes a shaped anchor engagement tip 583 and defines a tether capture/recapture access port 584. As shown in FIG. 33, the anchor engagement tip 583 is shaped to be received in a corresponding mating opening 510 of an epicardial anchor device 500 (see, FIGS. 34 and 35), which can be configured the same and function the same as the epicardial anchor device 200 described above. The engagement tip 583 defines an opening 585 that is in fluid communication with the access port 584.


After the epicardial anchor device 500 has been deployed and the tether 528 has been pinned to the anchor device 500, the tether release tool 580 can be used to release the tether to allow the practitioner to make adjustments to the tension on the tether 528 and/or to the position of the anchor device 500. As shown in FIGS. 34 and 35, a portion of the tether 528 extending from the anchor device 528 is inserted through the distal opening 585 and out through the access port 584. The engagement tip 583 can be inserted into the mating opening 510 of the anchor device 500. The tether release tool 580 can be rotated to unlock the locking assembly of the anchor device 500 to release the tether 528 from the anchor device 500. With the tether 528 released, the tension on the tether can be adjusted and/or the position of the anchor device 500 on the heart can be adjusted and then the tether release tool 580 can be used to re-pin the tether 528 to the anchor device. For example, the engagement tip 583 can be inserted into the mating opening 510 of the anchor device 500 and rotated the opposite direction to re-actuate the locking pin assembly of the anchor device 500 and pin the tether 528 to the anchor device 500.


In some embodiments, there is a tether-bundle that attaches to the extended points (two or three or four) of the stent and which converge to a central nexus point to which the adjustable tether is attached and leads to the apical tissue anchor location within the heart. In some embodiments, the tether extends downward through the left ventricle, exiting the left ventricle at the apex of the heart to be fastened on the epicardial surface outside of the heart. Similar anchoring is contemplated herein as it regards the tricuspid, or other valve structure requiring a prosthetic.


As described herein, during deployment of a prosthetic heart valve, the operator is able to adjust or customize the tethers to the correct length for a particular patient's anatomy. The tethers also allow the operator to tighten the cuff onto the tissue around the valvular annulus by pulling the tethers, which creates a leak-free seal. In some embodiments, the tethers are optionally anchored to other tissue locations depending on the particular application of the prosthetic heart valve. In the case of a mitral valve, or the tricuspid valve, there are optionally one or more tethers anchored to one or both papillary muscles, septum, and/or ventricular wall.


The tethers, in conjunction with the cuff of the valve, provide for a compliant valve which has heretofore not been available. The tethers can be made from surgical-grade materials such as biocompatible polymer suture material. Examples of such material include 2-0 exPFTE (polytetrafluoroethylene) or 2-0 polypropylene. In one embodiment, the tethers are inelastic. It is also contemplated that one or more of the tethers may optionally be elastic to provide an even further degree of compliance of the valve during the cardiac cycle. In some embodiments the tether(s) may be bioresorbable/bioabsorbable and thereby provide temporary fixation until other types of fixation take hold such a biological fibrous adhesion between the tissues and prosthesis and/or radial compression from a reduction in the degree of heart chamber dilation.


While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. Where methods described above indicate certain events occurring in certain order, the ordering of certain events may be modified. Additionally, certain of the events may be performed concurrently in a parallel process when possible, as well as performed sequentially as described above


Where schematics and/or embodiments described above indicate certain components arranged in certain orientations or positions, the arrangement of components may be modified. While the embodiments have been particularly shown and described, it will be understood that various changes in form and details may be made. Any portion of the apparatus and/or methods described herein may be combined in any combination, except mutually exclusive combinations. The embodiments described herein can include various combinations and/or sub-combinations of the functions, components, and/or features of the different embodiments described. For example, although not necessarily described for each embodiment, the various positioning devices (242, 342, 442) can include any features and or functions described herein for the various embodiments.

Claims
  • 1. An apparatus, comprising: a handle assembly coupled to an elongate member;a docking member coupled to a distal end of the elongate member, the docking member configured to be releasably coupled to an epicardial anchor device configured to secure a tether extending from a prosthetic heart valve implanted within a heart at a location on an exterior of a ventricular wall of the heart; anda force sensor device coupled to the handle assembly and including a pinning mechanism, the force sensor device configured to measure a force exerted on the force sensor device, the force associated with a tension of the tether extending through the elongate member and handle assembly, the pinning mechanism configured to secure the tether to the force sensor device.
  • 2. The apparatus of claim 1, wherein the docking member further includes a plurality of arms configured to be releasably coupled to the epicardial anchor device.
  • 3. The apparatus of claim 1, further comprising: a rod member coupled to the handle assembly; anda tension member coupled to the rod member, the tension member configured to be moved distally relative to the rod member to adjust the tension on the tether extending through the elongate member and handle assembly.
  • 4. The apparatus of claim 1, further comprising: a rod member coupled to the handle assembly; anda tension member coupled to the rod member, the rod member configured to be moved proximally when the tension member is rotated to adjust the tension on the tether extending through the elongate member and handle assembly.
  • 5. The apparatus of claim 1, wherein the pinning mechanism includes a pin and a pin holder for receiving at least a portion of the pin, the pin configured to pierce and secure the tether to the force sensor device.
  • 6. The apparatus of claim 5, wherein the force sensor device includes a load washer, a first portion of the pin holder being received within the load washer and a second portion of the pin holder extending from the load washer.
  • 7. The apparatus of claim 6, wherein the load washer defines an opening configured to receive the tether, wherein, in a first position, the pin holder is at a first distance from the opening of the load washer and, in a second position, the pin holder is at a second distance from the opening of the load washer, the first distance being greater than the second distance.
  • 8. The apparatus of claim 7, wherein, in the first position, a second portion of the pin is outside of the opening of the load washer and, in the second position, the second portion of the pin is received within the opening of the load washer.
  • 9. The apparatus of claim 8, wherein the force sensor device includes a housing coupled to the elongate member, the housing defining an opening in communication with a lumen of the elongate member.
  • 10. The apparatus of claim 9, wherein the housing receives a screw and a spring, the screw and spring configured to tune a pressure reading at a fixed load.
  • 11. A method comprising: inserting a tether through an epicardial anchor device, the tether extending from a prosthetic heart valve implanted within a heart, the tether extending outside of the heart, coupling the epicardial anchor device to a docking member disposed at a first end of a positioning device;inserting the tether through the positioning device;actuating a pinning mechanism disposed at a second end of the positioning device to secure the tether to the positioning device;while the tether is secured to the positioning device, tensioning the tether until a desired tension on the tether is achieved; andreleasing the epicardial anchor device from the docking member.
  • 12. The method of claim 11, further comprising measuring a force exerted on a force sensor device, the force associated with a tension of the tether extending through the positioning device.
  • 13. The method of claim 12, wherein the force sensor device includes a sensor housing, a fluid chamber disposed within the sensor housing and a load washer coupled to the sensor housing such that the fluid chamber is disposed between the sensor housing and the load washer, and measuring the force includes measuring a displacement of a volume of fluid disposed within the fluid chamber when a force is exerted on the load washer.
  • 14. The method of claim 11, wherein the pinning mechanism includes a pin and a pin holder for receiving at least a portion of the pin, and wherein a first portion of the pin holder is received within a force sensor device and a second portion of the pin holder extends from the force sensor device, and actuating the pinning mechanism includes moving the second portion of the pin holder.
  • 15. The method of claim 14, wherein the force sensor device defines an opening, and moving the second portion of the pin holder includes moving the pin holder towards the opening.
  • 16. The method of claim 15, further comprising receiving the tether within the opening of the force sensor device and wherein moving the second portion of the pin holder includes securing the tether to the force sensor device.
  • 17. The method of claim 16, wherein moving the second portion of the pin holder includes piercing, with the pin, the tether received in the opening of the force sensor device.
  • 18. The method of claim 15, further comprising moving the second portion of the pin holder away from the opening of the force sensor device to release the tether.
  • 19. A system comprising: an epicardial anchor device;a flexible member;a positioning device comprising: a handle assembly coupled to an elongate member;a docking member coupled to a distal end of the elongate member, the docking member releasably coupled to the epicardial anchor device and configured to secure the flexible member extending from a prosthetic heart valve implanted within a heart at a location on an exterior of a ventricular wall of the heart; anda force sensor device coupled to the handle assembly and including a pinning mechanism, the force sensor device configured to measure a force exerted on the force sensor device, the force associated with a tension of the flexible member extending through the elongate member and handle assembly, the pinning mechanism configured to secure the flexible member to the force sensor device.
  • 20. The apparatus of claim 19, wherein the pinning mechanism includes a pin and a pin holder for receiving at least a portion of the pin, the pin configured to pierce and secure a tether to the force sensor device.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 15/251,269, filed on Aug. 30, 2016, which is a continuation of International Application No. PCT/US2015/019418, filed Mar. 9, 2015, which claims priority to and the benefit of U.S. Provisional Patent Application No. 61/950,429, filed Mar. 10, 2014, entitled “Devices and Methods for Monitoring Tether Load for Prosthetic Mitral Valve,” U.S. Provisional Patent Application No. 61/970,887, filed Mar. 26, 2014, entitled “Post-Deployment Adjustment of a Prosthetic Mitral Valve,” and U.S. Provisional Patent Application No. 61/970,882, filed Mar. 26, 2014, entitled “Post-Deployment Adjustment of a Prosthetic Mitral Valve.” The disclosure of each of the foregoing applications is incorporated herein by reference in its entirety.

US Referenced Citations (727)
Number Name Date Kind
2697008 Ross Dec 1954 A
3409013 Berry Nov 1968 A
3472230 Fogarty et al. Oct 1969 A
3476101 Ross Nov 1969 A
3548417 Kischer Dec 1970 A
3587115 Shiley Jun 1971 A
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3714671 Edwards et al. Feb 1973 A
3755823 Hancock Sep 1973 A
3976079 Samuels et al. Aug 1976 A
4003382 Dyke Jan 1977 A
4035849 Angell et al. Jul 1977 A
4056854 Boretos et al. Nov 1977 A
4073438 Meyer Feb 1978 A
4106129 Carpentier et al. Aug 1978 A
4222126 Boretos et al. Sep 1980 A
4265694 Boretos et al. May 1981 A
4297749 Davis et al. Nov 1981 A
4339831 Johnson Jul 1982 A
4343048 Ross et al. Aug 1982 A
4345340 Rosen Aug 1982 A
4373216 Klawitter Feb 1983 A
4406022 Roy Sep 1983 A
4470157 Love Sep 1984 A
4490859 Black et al. Jan 1985 A
4535483 Klawitter et al. Aug 1985 A
4574803 Storz Mar 1986 A
4585705 Broderick et al. Apr 1986 A
4592340 Boyles Jun 1986 A
4605407 Black et al. Aug 1986 A
4612011 Kautzky Sep 1986 A
4626255 Reichart et al. Dec 1986 A
4638886 Marietta Jan 1987 A
4643732 Pietsch et al. Feb 1987 A
4655771 Wallsten Apr 1987 A
4692164 Dzemeshkevich et al. Sep 1987 A
4733665 Palmaz Mar 1988 A
4759758 Gabbay Jul 1988 A
4762128 Rosenbluth Aug 1988 A
4777951 Cribier et al. Oct 1988 A
4787899 Lazarus Nov 1988 A
4787901 Baykut Nov 1988 A
4796629 Grayzel Jan 1989 A
4824180 Levrai Apr 1989 A
4829990 Thuroff et al. May 1989 A
4830117 Capasso May 1989 A
4851001 Taheri Jul 1989 A
4856516 Hillstead Aug 1989 A
4878495 Grayzel Nov 1989 A
4878906 Lindemann et al. Nov 1989 A
4883458 Shiber Nov 1989 A
4922905 Strecker May 1990 A
4923013 De Gennaro May 1990 A
4960424 Grooters Oct 1990 A
4966604 Reiss Oct 1990 A
4979939 Shiber Dec 1990 A
4986830 Owens et al. Jan 1991 A
4994077 Dobben Feb 1991 A
4996873 Takeuchi Mar 1991 A
5007896 Shiber Apr 1991 A
5026366 Leckrone Jun 1991 A
5032128 Alonso Jul 1991 A
5037434 Lane Aug 1991 A
5047041 Samuels Sep 1991 A
5059177 Towne et al. Oct 1991 A
5064435 Porter Nov 1991 A
5080668 Bolz et al. Jan 1992 A
5085635 Cragg Feb 1992 A
5089015 Ross Feb 1992 A
5152771 Sabbaghian et al. Oct 1992 A
5163953 Vince Nov 1992 A
5167628 Boyles Dec 1992 A
5192297 Hull Mar 1993 A
5201880 Wright et al. Apr 1993 A
5266073 Wall Nov 1993 A
5282847 Trescony et al. Feb 1994 A
5295958 Shturman Mar 1994 A
5306296 Wright et al. Apr 1994 A
5332402 Teitelbaum Jul 1994 A
5336616 Livesey et al. Aug 1994 A
5344442 Deac Sep 1994 A
5360444 Kusuhara Nov 1994 A
5364407 Poll Nov 1994 A
5370685 Stevens Dec 1994 A
5397351 Pavcnik et al. Mar 1995 A
5411055 Kane May 1995 A
5411552 Andersen et al. May 1995 A
5415667 Frater May 1995 A
5443446 Shturman Aug 1995 A
5480424 Cox Jan 1996 A
5500014 Quijano et al. Mar 1996 A
5545209 Roberts et al. Aug 1996 A
5545214 Stevens Aug 1996 A
5549665 Vesely et al. Aug 1996 A
5554184 Machiraju Sep 1996 A
5554185 Block et al. Sep 1996 A
5571175 Vanney et al. Nov 1996 A
5591185 Kilmer et al. Jan 1997 A
5607462 Imran Mar 1997 A
5607464 Trescony et al. Mar 1997 A
5609626 Quijano et al. Mar 1997 A
5639274 Fischell et al. Jun 1997 A
5662704 Gross Sep 1997 A
5665115 Cragg Sep 1997 A
5674279 Wright et al. Oct 1997 A
5697905 d'Ambrosio Dec 1997 A
5702368 Stevens et al. Dec 1997 A
5716417 Girard et al. Feb 1998 A
5728068 Leone et al. Mar 1998 A
5728151 Garrison et al. Mar 1998 A
5741333 Frid Apr 1998 A
5749890 Shaknovich May 1998 A
5756476 Epstein et al. May 1998 A
5769812 Stevens et al. Jun 1998 A
5792179 Sideris Aug 1998 A
5800508 Goicoechea et al. Sep 1998 A
5833673 Ockuly et al. Nov 1998 A
5840081 Andersen et al. Nov 1998 A
5855597 Jayaraman Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5855602 Angell Jan 1999 A
5904697 Gifford, III et al. May 1999 A
5925063 Khosravi Jul 1999 A
5957949 Leonhardt et al. Sep 1999 A
5968052 Sullivan, III et al. Oct 1999 A
5968068 Dehdashtian et al. Oct 1999 A
5972030 Garrison et al. Oct 1999 A
5993481 Marcade et al. Nov 1999 A
6027525 Suh et al. Feb 2000 A
6042607 Williamson, IV et al. Mar 2000 A
6045497 Schweich, Jr. et al. Apr 2000 A
6063112 Sgro May 2000 A
6077214 Mortier et al. Jun 2000 A
6099508 Bousquet Aug 2000 A
6132473 Williams et al. Oct 2000 A
6168614 Andersen et al. Jan 2001 B1
6171335 Wheatley et al. Jan 2001 B1
6174327 Mertens et al. Jan 2001 B1
6183411 Mortier et al. Feb 2001 B1
6210408 Chandrasekaran et al. Apr 2001 B1
6217585 Houser et al. Apr 2001 B1
6221091 Khosravi Apr 2001 B1
6231602 Carpentier et al. May 2001 B1
6245102 Jayaraman Jun 2001 B1
6260552 Mortier et al. Jul 2001 B1
6261222 Schweich, Jr. et al. Jul 2001 B1
6264602 Mortier et al. Jul 2001 B1
6287339 Vazquez et al. Sep 2001 B1
6299637 Shaolian et al. Oct 2001 B1
6302906 Goicoechea et al. Oct 2001 B1
6312465 Griffin et al. Nov 2001 B1
6332893 Mortier et al. Dec 2001 B1
6350277 Kocur Feb 2002 B1
6358277 Duran Mar 2002 B1
6379372 Dehdashtian et al. Apr 2002 B1
6402679 Mortier et al. Jun 2002 B1
6402680 Mortier et al. Jun 2002 B2
6402781 Langberg et al. Jun 2002 B1
6406420 McCarthy et al. Jun 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440164 DiMatteo et al. Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6461382 Cao Oct 2002 B1
6468660 Ogle et al. Oct 2002 B2
6482228 Norred Nov 2002 B1
6488704 Connelly et al. Dec 2002 B1
6537198 Vidlund et al. Mar 2003 B1
6540782 Snyders Apr 2003 B1
6569196 Vesely May 2003 B1
6575252 Reed Jun 2003 B2
6582462 Andersen et al. Jun 2003 B1
6605112 Moll et al. Aug 2003 B1
6616684 Vidlund et al. Sep 2003 B1
6622730 Ekvall et al. Sep 2003 B2
6629534 St. Goar et al. Oct 2003 B1
6629921 Schweich, Jr. et al. Oct 2003 B1
6648077 Hoffman Nov 2003 B2
6648921 Anderson et al. Nov 2003 B2
6652578 Bailey et al. Nov 2003 B2
6669724 Park et al. Dec 2003 B2
6706065 Langberg et al. Mar 2004 B2
6709456 Langberg et al. Mar 2004 B2
6723038 Schroeder et al. Apr 2004 B1
6726715 Sutherland Apr 2004 B2
6730118 Spenser et al. May 2004 B2
6733525 Yang et al. May 2004 B2
6740105 Yodfat et al. May 2004 B2
6746401 Panescu Jun 2004 B2
6746471 Mortier et al. Jun 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6764510 Vidlund et al. Jul 2004 B2
6797002 Spence et al. Sep 2004 B2
6810882 Langberg et al. Nov 2004 B2
6830584 Seguin Dec 2004 B1
6854668 Wancho et al. Feb 2005 B2
6855144 Lesh Feb 2005 B2
6858001 Aboul-Hosn Feb 2005 B1
6890353 Cohn et al. May 2005 B2
6893460 Spenser et al. May 2005 B2
6896690 Lambrecht et al. May 2005 B1
6908424 Mortier et al. Jun 2005 B2
6908481 Cribier Jun 2005 B2
6936067 Buchanan Aug 2005 B2
6945996 Sedransk Sep 2005 B2
6955175 Stevens et al. Oct 2005 B2
6974476 McGuckin, Jr. et al. Dec 2005 B2
6976543 Fischer Dec 2005 B1
6997950 Chawla Feb 2006 B2
7018406 Seguin et al. Mar 2006 B2
7018408 Bailey et al. Mar 2006 B2
7044905 Vidlund et al. May 2006 B2
7060021 Wilk Jun 2006 B1
7077862 Vidlund et al. Jul 2006 B2
7087064 Hyde Aug 2006 B1
7100614 Stevens et al. Sep 2006 B2
7101395 Tremulis et al. Sep 2006 B2
7108717 Freidberg Sep 2006 B2
7112219 Vidlund et al. Sep 2006 B2
7115141 Menz et al. Oct 2006 B2
7141064 Scott et al. Nov 2006 B2
7175656 Khairkhahan Feb 2007 B2
7198646 Figulla et al. Apr 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7247134 Vidlund et al. Jul 2007 B2
7252682 Seguin Aug 2007 B2
7267686 DiMatteo et al. Sep 2007 B2
7275604 Wall Oct 2007 B1
7276078 Spenser et al. Oct 2007 B2
7276084 Yang et al. Oct 2007 B2
7316706 Bloom et al. Jan 2008 B2
7318278 Zhang et al. Jan 2008 B2
7326236 Andreas et al. Feb 2008 B2
7329278 Seguin et al. Feb 2008 B2
7331991 Kheradvar et al. Feb 2008 B2
7335213 Hyde et al. Feb 2008 B1
7374571 Pease et al. May 2008 B2
7377941 Rhee et al. May 2008 B2
7381210 Zarbatany et al. Jun 2008 B2
7381218 Schreck Jun 2008 B2
7393360 Spenser et al. Jul 2008 B2
7404824 Webler et al. Jul 2008 B1
7416554 Lam et al. Aug 2008 B2
7422072 Dade Sep 2008 B2
7429269 Schwammenthal et al. Sep 2008 B2
7442204 Schwammenthal et al. Oct 2008 B2
7445631 Salahieh et al. Nov 2008 B2
7462191 Spenser et al. Dec 2008 B2
7470285 Nugent et al. Dec 2008 B2
7500989 Solem et al. Mar 2009 B2
7503931 Kowalsky et al. Mar 2009 B2
7510572 Gabbay Mar 2009 B2
7510575 Spenser et al. Mar 2009 B2
7513908 Lattouf Apr 2009 B2
7524330 Berreklouw Apr 2009 B2
7527647 Spence May 2009 B2
7534260 Lattouf May 2009 B2
7556646 Yang et al. Jul 2009 B2
7579381 Dove Aug 2009 B2
7585321 Cribier Sep 2009 B2
7591847 Navia et al. Sep 2009 B2
7618446 Andersen et al. Nov 2009 B2
7618447 Case et al. Nov 2009 B2
7621948 Herrmann et al. Nov 2009 B2
7632304 Park Dec 2009 B2
7632308 Loulmet Dec 2009 B2
7635386 Gammie Dec 2009 B1
7674222 Nikolic et al. Mar 2010 B2
7674286 Alfieri et al. Mar 2010 B2
7695510 Bloom et al. Apr 2010 B2
7708775 Rowe et al. May 2010 B2
7748389 Salahieh et al. Jul 2010 B2
7766961 Patel et al. Aug 2010 B2
7789909 Andersen et al. Sep 2010 B2
7803168 Gifford et al. Sep 2010 B2
7803184 McGuckin, Jr. et al. Sep 2010 B2
7803185 Gabbay Sep 2010 B2
7806928 Rowe et al. Oct 2010 B2
7837727 Goetz et al. Nov 2010 B2
7854762 Speziali et al. Dec 2010 B2
7892281 Seguin et al. Feb 2011 B2
7896915 Guyenot et al. Mar 2011 B2
7901454 Kapadia et al. Mar 2011 B2
7927370 Webler et al. Apr 2011 B2
7931630 Nishtala et al. Apr 2011 B2
7942928 Webler et al. May 2011 B2
7955247 Levine et al. Jun 2011 B2
7955385 Crittenden Jun 2011 B2
7972378 Tabor et al. Jul 2011 B2
7988727 Santamore et al. Aug 2011 B2
7993394 Hariton et al. Aug 2011 B2
8007992 Tian et al. Aug 2011 B2
8029556 Rowe Oct 2011 B2
8043368 Crabtree Oct 2011 B2
8052749 Salahieh et al. Nov 2011 B2
8052750 Tuval et al. Nov 2011 B2
8052751 Aklog et al. Nov 2011 B2
8062355 Figulla et al. Nov 2011 B2
8062359 Marquez et al. Nov 2011 B2
8070802 Lamphere et al. Dec 2011 B2
8109996 Stacchino et al. Feb 2012 B2
8142495 Hasenkam et al. Mar 2012 B2
8152821 Gambale et al. Apr 2012 B2
8157810 Case et al. Apr 2012 B2
8167932 Bourang et al. May 2012 B2
8167934 Styrc et al. May 2012 B2
8187299 Goldfarb et al. May 2012 B2
8206439 Gomez Duran Jun 2012 B2
8216301 Bonhoeffer et al. Jul 2012 B2
8226711 Mortier et al. Jul 2012 B2
8236045 Benichou et al. Aug 2012 B2
8241274 Keogh et al. Aug 2012 B2
8252051 Chau et al. Aug 2012 B2
8303653 Bonhoeffer et al. Nov 2012 B2
8308796 Lashinski et al. Nov 2012 B2
8323334 Deem et al. Dec 2012 B2
8353955 Styrc et al. Jan 2013 B2
RE44075 Williamson et al. Mar 2013 E
8449599 Chau et al. May 2013 B2
8454656 Tuval Jun 2013 B2
8470028 Thornton et al. Jun 2013 B2
8480730 Maurer et al. Jul 2013 B2
8486138 Vesely Jul 2013 B2
8506623 Wilson et al. Aug 2013 B2
8506624 Vidlund et al. Aug 2013 B2
8578705 Sindano et al. Nov 2013 B2
8579913 Nielsen Nov 2013 B2
8591573 Barone Nov 2013 B2
8591576 Hasenkam et al. Nov 2013 B2
8597347 Maurer et al. Dec 2013 B2
8685086 Navia et al. Apr 2014 B2
8790394 Miller et al. Jul 2014 B2
8845717 Khairkhahan et al. Sep 2014 B2
8888843 Khairkhahan et al. Nov 2014 B2
8900214 Nance et al. Dec 2014 B2
8900295 Migliazza et al. Dec 2014 B2
8926696 Cabiri et al. Jan 2015 B2
8932342 McHugo et al. Jan 2015 B2
8932348 Solem et al. Jan 2015 B2
8945208 Jimenez et al. Feb 2015 B2
8956407 Macoviak et al. Feb 2015 B2
8979922 Jayasinghe et al. Mar 2015 B2
8986376 Solem Mar 2015 B2
9011522 Annest Apr 2015 B2
9023099 Duffy et al. May 2015 B2
9034032 McLean et al. May 2015 B2
9034033 McLean et al. May 2015 B2
9039757 McLean et al. May 2015 B2
9039759 Alkhatib et al. May 2015 B2
9078749 Lutter et al. Jul 2015 B2
9084676 Chau et al. Jul 2015 B2
9095433 Lutter et al. Aug 2015 B2
9125742 Yoganathan et al. Sep 2015 B2
9149357 Seguin Oct 2015 B2
9161837 Kapadia Oct 2015 B2
9168137 Subramanian et al. Oct 2015 B2
9232998 Wilson et al. Jan 2016 B2
9232999 Maurer et al. Jan 2016 B2
9241702 Maisano et al. Jan 2016 B2
9254192 Lutter et al. Feb 2016 B2
9265608 Miller et al. Feb 2016 B2
9289295 Aklog et al. Mar 2016 B2
9289297 Wilson et al. Mar 2016 B2
9345573 Nyuli et al. May 2016 B2
9480557 Pellegrini et al. Nov 2016 B2
9480559 Vidlund et al. Nov 2016 B2
9526611 Tegels et al. Dec 2016 B2
9597181 Christianson et al. Mar 2017 B2
9610159 Christianson et al. Apr 2017 B2
9675454 Vidlund et al. Jun 2017 B2
9730792 Lutter et al. Aug 2017 B2
20010018611 Solem et al. Aug 2001 A1
20010021872 Bailey et al. Sep 2001 A1
20010025171 Mortier et al. Sep 2001 A1
20010032517 Reinemann et al. Oct 2001 A1
20020010427 Scarfone et al. Jan 2002 A1
20020116054 Lundell et al. Aug 2002 A1
20020139056 Finnell Oct 2002 A1
20020151961 Lashinski et al. Oct 2002 A1
20020161377 Rabkin Oct 2002 A1
20020173842 Buchanan Nov 2002 A1
20030010509 Hoffman Jan 2003 A1
20030036698 Kohler et al. Feb 2003 A1
20030050694 Yang et al. Mar 2003 A1
20030078652 Sutherland Apr 2003 A1
20030100939 Yodfat et al. May 2003 A1
20030105519 Fasol et al. Jun 2003 A1
20030105520 Alferness et al. Jun 2003 A1
20030120340 Liska et al. Jun 2003 A1
20030130731 Vidlund et al. Jul 2003 A1
20030149476 Damm et al. Aug 2003 A1
20030212454 Scott et al. Nov 2003 A1
20040039436 Spenser et al. Feb 2004 A1
20040049266 Anduiza et al. Mar 2004 A1
20040064014 Melvin et al. Apr 2004 A1
20040092858 Wilson et al. May 2004 A1
20040093075 Kuehne May 2004 A1
20040097865 Anderson et al. May 2004 A1
20040127983 Mortier et al. Jul 2004 A1
20040133263 Dusbabek et al. Jul 2004 A1
20040147958 Lam et al. Jul 2004 A1
20040152947 Schroeder et al. Aug 2004 A1
20040162610 Liska et al. Aug 2004 A1
20040163828 Silverstein et al. Aug 2004 A1
20040181239 Dorn et al. Sep 2004 A1
20040186565 Schreck Sep 2004 A1
20040186566 Hindrichs et al. Sep 2004 A1
20040260317 Bloom et al. Dec 2004 A1
20040260389 Case et al. Dec 2004 A1
20050004652 van der Burg et al. Jan 2005 A1
20050004666 Altieri et al. Jan 2005 A1
20050075727 Wheatley Apr 2005 A1
20050080402 Santamore et al. Apr 2005 A1
20050096498 Houser et al. May 2005 A1
20050107661 Lau et al. May 2005 A1
20050113798 Slater et al. May 2005 A1
20050113810 Houser et al. May 2005 A1
20050113811 Houser et al. May 2005 A1
20050119519 Girard et al. Jun 2005 A9
20050121206 Dolan Jun 2005 A1
20050125012 Houser et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050137698 Salahieh et al. Jun 2005 A1
20050148815 Mortier et al. Jul 2005 A1
20050177180 Kaganov et al. Aug 2005 A1
20050197695 Stacchino et al. Sep 2005 A1
20050203614 Forster et al. Sep 2005 A1
20050203615 Forster et al. Sep 2005 A1
20050203617 Forster et al. Sep 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20050240200 Bergheim Oct 2005 A1
20050251209 Saadat et al. Nov 2005 A1
20050256567 Lim et al. Nov 2005 A1
20050288766 Plain et al. Dec 2005 A1
20060004442 Spenser et al. Jan 2006 A1
20060025784 Starksen et al. Feb 2006 A1
20060025857 Bergheim et al. Feb 2006 A1
20060030885 Hyde Feb 2006 A1
20060042803 Gallaher Mar 2006 A1
20060047338 Jenson et al. Mar 2006 A1
20060052868 Mortier et al. Mar 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060094983 Burbank et al. May 2006 A1
20060129025 Levine et al. Jun 2006 A1
20060142784 Kontos Jun 2006 A1
20060161040 McCarthy et al. Jul 2006 A1
20060161249 Realyvasquez et al. Jul 2006 A1
20060167541 Lattouf Jul 2006 A1
20060195134 Crittenden Aug 2006 A1
20060195183 Navia et al. Aug 2006 A1
20060229708 Powell et al. Oct 2006 A1
20060229719 Marquez et al. Oct 2006 A1
20060241745 Solem Oct 2006 A1
20060247491 Vidlund et al. Nov 2006 A1
20060259135 Navia et al. Nov 2006 A1
20060259136 Nguyen et al. Nov 2006 A1
20060259137 Artof et al. Nov 2006 A1
20060276874 Wilson et al. Dec 2006 A1
20060282161 Huynh et al. Dec 2006 A1
20060287716 Banbury et al. Dec 2006 A1
20060287717 Rowe et al. Dec 2006 A1
20070005131 Taylor Jan 2007 A1
20070005231 Seguchi Jan 2007 A1
20070010877 Salahieh et al. Jan 2007 A1
20070016286 Herrmann et al. Jan 2007 A1
20070016288 Gurskis et al. Jan 2007 A1
20070027535 Purdy et al. Feb 2007 A1
20070038291 Case et al. Feb 2007 A1
20070050020 Spence Mar 2007 A1
20070061010 Hauser et al. Mar 2007 A1
20070066863 Rafiee et al. Mar 2007 A1
20070073387 Forster et al. Mar 2007 A1
20070078297 Rafiee et al. Apr 2007 A1
20070083076 Lichtenstein Apr 2007 A1
20070083259 Bloom et al. Apr 2007 A1
20070093890 Eliasen et al. Apr 2007 A1
20070100439 Cangialosi et al. May 2007 A1
20070112422 Dehdashtian May 2007 A1
20070112425 Schaller et al. May 2007 A1
20070118151 Davidson May 2007 A1
20070118154 Crabtree May 2007 A1
20070118210 Pinchuk May 2007 A1
20070118213 Loulmet May 2007 A1
20070142906 Figulla et al. Jun 2007 A1
20070161846 Nikolic et al. Jul 2007 A1
20070162103 Case et al. Jul 2007 A1
20070168024 Khairkhahan Jul 2007 A1
20070185565 Schwammenthal et al. Aug 2007 A1
20070185571 Kapadia et al. Aug 2007 A1
20070203575 Forster et al. Aug 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070215362 Rodgers Sep 2007 A1
20070221388 Johnson Sep 2007 A1
20070233239 Navia et al. Oct 2007 A1
20070239265 Birdsall Oct 2007 A1
20070256843 Pahila Nov 2007 A1
20070265658 Nelson et al. Nov 2007 A1
20070267202 Mariller Nov 2007 A1
20070270932 Headley et al. Nov 2007 A1
20070270943 Solem et al. Nov 2007 A1
20070293944 Spenser et al. Dec 2007 A1
20080009940 Cribier Jan 2008 A1
20080065011 Marchand et al. Mar 2008 A1
20080071361 Tuval et al. Mar 2008 A1
20080071362 Tuval et al. Mar 2008 A1
20080071363 Tuval et al. Mar 2008 A1
20080071366 Tuval et al. Mar 2008 A1
20080071368 Tuval et al. Mar 2008 A1
20080071369 Tuval et al. Mar 2008 A1
20080082163 Woo Apr 2008 A1
20080082166 Styrc et al. Apr 2008 A1
20080091264 Machold et al. Apr 2008 A1
20080114442 Mitchell et al. May 2008 A1
20080125861 Webler et al. May 2008 A1
20080147179 Cai et al. Jun 2008 A1
20080154355 Benichou et al. Jun 2008 A1
20080154356 Obermiller et al. Jun 2008 A1
20080161911 Revuelta et al. Jul 2008 A1
20080172035 Starksen et al. Jul 2008 A1
20080177381 Navia et al. Jul 2008 A1
20080183203 Fitzgerald et al. Jul 2008 A1
20080188928 Salahieh et al. Aug 2008 A1
20080208328 Antocci et al. Aug 2008 A1
20080208332 Lamphere et al. Aug 2008 A1
20080221672 Lamphere et al. Sep 2008 A1
20080243150 Starksen et al. Oct 2008 A1
20080243245 Thambar et al. Oct 2008 A1
20080255660 Guyenot et al. Oct 2008 A1
20080255661 Straubinger et al. Oct 2008 A1
20080281411 Berreklouw Nov 2008 A1
20080288060 Kaye et al. Nov 2008 A1
20080293996 Evans et al. Nov 2008 A1
20090005863 Goetz et al. Jan 2009 A1
20090048668 Wilson et al. Feb 2009 A1
20090054968 Bonhoeffer et al. Feb 2009 A1
20090054974 McGuckin, Jr. et al. Feb 2009 A1
20090062908 Bonhoeffer et al. Mar 2009 A1
20090076598 Salahieh et al. Mar 2009 A1
20090082619 De Marchena Mar 2009 A1
20090088836 Bishop et al. Apr 2009 A1
20090099410 De Marchena Apr 2009 A1
20090112309 Jaramillo et al. Apr 2009 A1
20090131849 Maurer et al. May 2009 A1
20090132035 Roth et al. May 2009 A1
20090137861 Goldberg et al. May 2009 A1
20090138079 Tuval et al. May 2009 A1
20090157175 Benichou Jun 2009 A1
20090164005 Dove et al. Jun 2009 A1
20090171432 Von Segesser et al. Jul 2009 A1
20090171447 Von Segesser et al. Jul 2009 A1
20090171456 Kveen et al. Jul 2009 A1
20090177266 Powell et al. Jul 2009 A1
20090192601 Rafiee et al. Jul 2009 A1
20090210052 Forster et al. Aug 2009 A1
20090216322 Le et al. Aug 2009 A1
20090222076 Figulla et al. Sep 2009 A1
20090224529 Gill Sep 2009 A1
20090234318 Loulmet et al. Sep 2009 A1
20090234435 Johnson et al. Sep 2009 A1
20090234443 Ottma et al. Sep 2009 A1
20090240320 Tuval et al. Sep 2009 A1
20090248149 Gabbay Oct 2009 A1
20090276040 Rowe et al. Nov 2009 A1
20090281619 Le et al. Nov 2009 A1
20090287299 Tabor et al. Nov 2009 A1
20090319037 Rowe et al. Dec 2009 A1
20090326575 Galdonik et al. Dec 2009 A1
20100016958 St. Goar et al. Jan 2010 A1
20100021382 Dorshow et al. Jan 2010 A1
20100023117 Yoganathan et al. Jan 2010 A1
20100036479 Hill et al. Feb 2010 A1
20100049313 Alon et al. Feb 2010 A1
20100082094 Quadri et al. Apr 2010 A1
20100161041 Maisano et al. Jun 2010 A1
20100168839 Braido et al. Jul 2010 A1
20100179641 Ryan et al. Jul 2010 A1
20100185277 Braido et al. Jul 2010 A1
20100185278 Schankereli Jul 2010 A1
20100191326 Alkhatib Jul 2010 A1
20100192402 Yamaguchi et al. Aug 2010 A1
20100204781 Alkhatib Aug 2010 A1
20100210899 Schankereli Aug 2010 A1
20100217382 Chau et al. Aug 2010 A1
20100249489 Jarvik Sep 2010 A1
20100249923 Alkhatib et al. Sep 2010 A1
20100280604 Zipory et al. Nov 2010 A1
20100286768 Alkhatib Nov 2010 A1
20100298755 McNamara et al. Nov 2010 A1
20100298931 Quadri et al. Nov 2010 A1
20100305576 Ferguson et al. Dec 2010 A1
20110004296 Lutter et al. Jan 2011 A1
20110015616 Straubinger et al. Jan 2011 A1
20110015728 Jimenez et al. Jan 2011 A1
20110015729 Jimenez et al. Jan 2011 A1
20110029072 Gabbay Feb 2011 A1
20110066231 Cartledge et al. Mar 2011 A1
20110066233 Thornton et al. Mar 2011 A1
20110112632 Chau et al. May 2011 A1
20110137397 Chau et al. Jun 2011 A1
20110137408 Bergheim Jun 2011 A1
20110224655 Asirvatham et al. Sep 2011 A1
20110224678 Gabbay Sep 2011 A1
20110224728 Martin et al. Sep 2011 A1
20110224784 Quinn Sep 2011 A1
20110245911 Quill et al. Oct 2011 A1
20110251682 Murray, III et al. Oct 2011 A1
20110264206 Tabor Oct 2011 A1
20110288637 De Marchena Nov 2011 A1
20110319988 Schankereli et al. Dec 2011 A1
20110319989 Lane et al. Dec 2011 A1
20120010694 Lutter et al. Jan 2012 A1
20120016468 Robin et al. Jan 2012 A1
20120022640 Gross et al. Jan 2012 A1
20120035703 Lutter et al. Feb 2012 A1
20120035713 Lutter et al. Feb 2012 A1
20120035722 Tuval Feb 2012 A1
20120059487 Cunanan et al. Mar 2012 A1
20120089171 Hastings et al. Apr 2012 A1
20120101571 Thambar et al. Apr 2012 A1
20120101572 Kovalsky et al. Apr 2012 A1
20120116351 Chomas et al. May 2012 A1
20120123529 Levi et al. May 2012 A1
20120165930 Gifford, III et al. Jun 2012 A1
20120179244 Schankereli et al. Jul 2012 A1
20120203336 Annest Aug 2012 A1
20120215303 Quadri et al. Aug 2012 A1
20120283824 Lutter et al. Nov 2012 A1
20130030522 Rowe et al. Jan 2013 A1
20130053950 Rowe et al. Feb 2013 A1
20130066341 Ketai et al. Mar 2013 A1
20130079873 Migliazza et al. Mar 2013 A1
20130131788 Quadri et al. May 2013 A1
20130172978 Vidlund et al. Jul 2013 A1
20130184811 Rowe et al. Jul 2013 A1
20130190860 Sundt, III Jul 2013 A1
20130190861 Chau et al. Jul 2013 A1
20130197622 Mitra et al. Aug 2013 A1
20130226288 Goldwasser et al. Aug 2013 A1
20130231735 Deem et al. Sep 2013 A1
20130274874 Hammer Oct 2013 A1
20130282101 Eidenschink et al. Oct 2013 A1
20130310928 Morriss et al. Nov 2013 A1
20130317603 McLean et al. Nov 2013 A1
20130325041 Annest et al. Dec 2013 A1
20130325110 Khalil et al. Dec 2013 A1
20130338752 Geusen et al. Dec 2013 A1
20140081323 Hawkins Mar 2014 A1
20140094918 Vishnubholta et al. Apr 2014 A1
20140142691 Pouletty May 2014 A1
20140163668 Rafiee Jun 2014 A1
20140194981 Menk et al. Jul 2014 A1
20140214159 Vidlund et al. Jul 2014 A1
20140222142 Kovalsky et al. Aug 2014 A1
20140243966 Garde et al. Aug 2014 A1
20140277419 Garde et al. Sep 2014 A1
20140296969 Tegels et al. Oct 2014 A1
20140296970 Ekvall et al. Oct 2014 A1
20140296971 Tegels et al. Oct 2014 A1
20140296972 Tegels et al. Oct 2014 A1
20140296975 Tegels et al. Oct 2014 A1
20140303718 Tegels et al. Oct 2014 A1
20140309732 Solem Oct 2014 A1
20140316516 Vidlund et al. Oct 2014 A1
20140324160 Benichou et al. Oct 2014 A1
20140324161 Tegels et al. Oct 2014 A1
20140324164 Gross et al. Oct 2014 A1
20140358224 Tegels et al. Dec 2014 A1
20140364944 Lutter et al. Dec 2014 A1
20140379076 Vidlund et al. Dec 2014 A1
20150005874 Vidlund et al. Jan 2015 A1
20150011821 Gorman et al. Jan 2015 A1
20150025553 Del Nido et al. Jan 2015 A1
20150057705 Vidlund Feb 2015 A1
20150073542 Heldman Mar 2015 A1
20150073545 Braido Mar 2015 A1
20150105856 Rowe et al. Apr 2015 A1
20150119936 Gilmore et al. Apr 2015 A1
20150119978 Tegels et al. Apr 2015 A1
20150127096 Rowe et al. May 2015 A1
20150142100 Morriss et al. May 2015 A1
20150142101 Coleman et al. May 2015 A1
20150142103 Vidlund May 2015 A1
20150142104 Braido May 2015 A1
20150173897 Raanani et al. Jun 2015 A1
20150196393 Vidlund et al. Jul 2015 A1
20150196688 James Jul 2015 A1
20150202044 Chau et al. Jul 2015 A1
20150216653 Freudenthal Aug 2015 A1
20150216660 Pintor Aug 2015 A1
20150223820 Olson Aug 2015 A1
20150238729 Jenson et al. Aug 2015 A1
20150272731 Racchini et al. Oct 2015 A1
20150305860 Wang et al. Oct 2015 A1
20150305864 Quadri et al. Oct 2015 A1
20150305868 Lutter et al. Oct 2015 A1
20150327995 Morin et al. Nov 2015 A1
20150328001 McLean Nov 2015 A1
20150335424 McLean Nov 2015 A1
20150335429 Morriss et al. Nov 2015 A1
20150342717 O'Donnell et al. Dec 2015 A1
20150351903 Morriss et al. Dec 2015 A1
20150351906 Hammer et al. Dec 2015 A1
20160008131 Christianson et al. Jan 2016 A1
20160067042 Murad et al. Mar 2016 A1
20160074160 Christianson et al. Mar 2016 A1
20160106537 Christianson et al. Apr 2016 A1
20160113764 Sheahan Apr 2016 A1
20160143736 Vidlund May 2016 A1
20160151155 Lutter et al. Jun 2016 A1
20160206280 Vidlund et al. Jul 2016 A1
20160242902 Morriss Aug 2016 A1
20160262879 Meiri et al. Sep 2016 A1
20160317290 Chau Nov 2016 A1
20160324635 Vidlund et al. Nov 2016 A1
20160331527 Vidlund et al. Nov 2016 A1
20160346086 Solem Dec 2016 A1
20160367365 Conklin Dec 2016 A1
20160367367 Maisano et al. Dec 2016 A1
20170079790 Vidlund et al. Mar 2017 A1
20170100248 Tegels et al. Apr 2017 A1
20170128208 Christianson et al. May 2017 A1
20170181854 Christianson et al. Jun 2017 A1
20170196688 Christianson et al. Jul 2017 A1
20170252153 Chau et al. Sep 2017 A1
20170266001 Vidlund et al. Sep 2017 A1
Foreign Referenced Citations (118)
Number Date Country
1486161 Mar 2004 CN
1961845 May 2007 CN
2902226 May 2007 CN
101146484 Mar 2008 CN
101180010 May 2008 CN
101984938 Mar 2011 CN
102869317 Jan 2013 CN
102869318 Jan 2013 CN
102869321 Jan 2013 CN
103220993 Jul 2013 CN
102639179 Oct 2014 CN
2246526 Mar 1973 DE
19532846 Mar 1997 DE
19546692 Jun 1997 DE
19857887 Jul 2000 DE
19907646 Aug 2000 DE
10049812 Apr 2002 DE
10049813 Apr 2002 DE
10049815 Apr 2002 DE
102006052564 Dec 2007 DE
102006052710 May 2008 DE
102007043831 Apr 2009 DE
0103546 Mar 1984 EP
1057460 Dec 2000 EP
1088529 Apr 2001 EP
1469797 Nov 2005 EP
2111800 Oct 2009 EP
2193762 Jun 2010 EP
2278944 Feb 2011 EP
2747707 Jul 2014 EP
2918248 Sep 2015 EP
2788217 Jul 2000 FR
2815844 May 2002 FR
2003505146 Feb 2003 JP
2004045217 Feb 2004 JP
2009514628 Apr 2009 JP
1017275 Aug 2002 NL
1271508 Nov 1986 SU
9217118 Oct 1992 WO
9301768 Feb 1993 WO
9829057 Jul 1998 WO
9940964 Aug 1999 WO
9947075 Sep 1999 WO
2000018333 Apr 2000 WO
2000030550 Jun 2000 WO
2000041652 Jul 2000 WO
2000047139 Aug 2000 WO
2001035878 May 2001 WO
2001049213 Jul 2001 WO
2001054624 Aug 2001 WO
2001054625 Aug 2001 WO
2001056512 Aug 2001 WO
2001061289 Aug 2001 WO
2001076510 Oct 2001 WO
2001082840 Nov 2001 WO
2002004757 Jan 2002 WO
2002022054 Mar 2002 WO
2002028321 Apr 2002 WO
2002036048 May 2002 WO
2002041789 May 2002 WO
2002043620 Jun 2002 WO
2002049540 Jun 2002 WO
2002076348 Oct 2002 WO
2003003943 Jan 2003 WO
2003030776 Apr 2003 WO
2003047468 Jun 2003 WO
2003049619 Jun 2003 WO
2004019825 Mar 2004 WO
2005102181 Nov 2005 WO
2006014233 Feb 2006 WO
2006034008 Mar 2006 WO
2006070372 Jul 2006 WO
2006113906 Oct 2006 WO
2006127756 Nov 2006 WO
2007081412 Jul 2007 WO
2008005405 Jan 2008 WO
2008035337 Mar 2008 WO
2008091515 Jul 2008 WO
2008125906 Oct 2008 WO
2008147964 Dec 2008 WO
2009024859 Feb 2009 WO
2009026563 Feb 2009 WO
2009045338 Apr 2009 WO
2009132187 Oct 2009 WO
2010090878 Aug 2010 WO
2010098857 Sep 2010 WO
2010121076 Oct 2010 WO
2011017440 Feb 2011 WO
2011022658 Feb 2011 WO
2011069048 Jun 2011 WO
2011072084 Jun 2011 WO
2011106735 Sep 2011 WO
2011109813 Sep 2011 WO
2011159342 Dec 2011 WO
2011163275 Dec 2011 WO
2012027487 Mar 2012 WO
2012036742 Mar 2012 WO
2012095116 Jul 2012 WO
2012177942 Dec 2012 WO
2013028387 Feb 2013 WO
2013045262 Apr 2013 WO
2013059747 Apr 2013 WO
2013096411 Jun 2013 WO
2013175468 Nov 2013 WO
2014121280 Aug 2014 WO
2014144937 Sep 2014 WO
2014162306 Oct 2014 WO
2014189974 Nov 2014 WO
2015051430 Apr 2015 WO
2015058039 Apr 2015 WO
2015063580 May 2015 WO
2015065646 May 2015 WO
2015120122 Aug 2015 WO
2015138306 Sep 2015 WO
2016112085 Jul 2016 WO
2016126942 Aug 2016 WO
2016168609 Oct 2016 WO
2016196933 Dec 2016 WO
Non-Patent Literature Citations (50)
Entry
US 9,155,620 B2, 10/2015, Gross et al. (withdrawn)
“Shape Memory Alloys,” Retrieved from the Internet: <http://webdocs.cs.ualberta.ca/˜database/MEMS/sma.html>, Feb. 5, 2016, 3 pages.
Al Zaibag, Muayed, et al., “Percutaneous Balloon Valvotomy in Tricuspid Stenos's,” British Heart Journal, Jan. 1987, vol. 57, No. 1, pp. 51-53.
Al-Khaja, N. et al., “Eleven Years' Experience with Carpentier-Edwards Biological Valves in Relation to Survival and Complications,” European Journal of Cardiothoracic Surgery, Jun. 30, 1989, 3:305-311.
Almagor, Y. et al., “Balloon Expandable Stent Implantation in Stenotic Right Heart Valved Conduits,” Journal of the American College of Cardiology, Nov. 1, 1990, 16(6):1310-1314.
Andersen, H. R., “History of Percutaneous Aortic Valve Prosthesis,” Herz, Aug. 2009, 34(5):343-346.
Andersen, H. R., “Transluminal catheter implanted prosthetic heart valves,” International Journal of Angiology, 1998, 7(2):102-106.
Benchimol, A. et al., “Simultaneous Left Ventricular Echocardiography and Aortic Blood Velocity During Rapid Right Ventricular Pacing in Man,” The American Journal of the Medical Sciences, Jan.-Feb. 1977, 273(1):55-62.
Boudjemline, Y. et al., “Steps Toward the Percutaneous Replacement of Atrioventricular Valves: An Experimental Study,” Journal of the American College of Cardiology, Jul. 2005, 46(2):360-365.
Buckberg, G. et al., “Restoring Papillary Muscle Dimensions During Restoration In Dilated Hearts,” Interactive Cardiovascular and Thoracic Surgery, 2005, 4:475-477.
Chamberlain, G., “Ceramics Replace Body Parts,” Design News, Jun. 9, 1997, Issue 11, vol. 52, 5 pages.
Choo, S. J. et al., “Aortic Root Geometry: Pattern of Differences Between Leaflets and Sinuses of Valsava,” The Journal of Heart Valve Disease, Jul. 1999, 8:407-415.
Declaration of Malcolm J. R. Dalrymple-Hay, Nov. 9, 2012, pp. 1-11; with Curriculum Vitae, Oct. 4, 2012.
Dotter, C. T. et al., “Transluminal Treatment of Arteriosclerotic Obstruction. Description of a New Technic and a Preliminary Report of its Application,” Circulation, Nov. 1964, 30:654-670.
Drawbaugh, K., “Feature—Heart Surgeons Explore Minimally Invasive Methods,” Reuters Limited, Jul. 16, 1996, 3 pages.
G. M. Bernacca, et al., “Polyurethane Heart Valves: Fatigue Failure, Calcification, and Polyurethane Structure,” Journal of Biomedical Materials Research, Mar. 5, 1997, Issue 3, vol. 34, pp. 371-379.
Gray, H., The Aorta, Anatomy of the Human Body, 1918, Retrieved from the Internet <http://www.bartleby.com/107/142.html>, Dec. 10, 2012, 5 pages.
Gray, H., The Heart, Anatomy of the Human Body, 1918, Retrieved from the Internet <http://education.yahoo.com/reference/gray/subjects/subject/138>, Aug. 10, 2012, 9 pages.
Greenhalgh, E. S., “Design and characterization of a biomimetic prosthetic aortic heart valve,” 1994, ProQuest Dissertations and Theses, Department of Fiber and Polymer Science, North Carolina State University at Raleigh, 159 pages.
H. R. Andersen et al., “Transluminal Implantation of Artificial Heart Valves: Description of a New Expandable Aortic Valve and Initial Results with Implantation by Catheter Technique in Closed Chest Pigs,” European Heart Journal, 1992, Issue 5, vol. 13, pp. 704-708.
Inoue, K. et al., “Clinical Application of Transvenous Mitral Commissurotomy by a New Balloon Catheter,” The Journal of Thoracic and Cardiovascular Surgery, 1984, 87:394-402.
Jin, X. Y. et al., “Aortic Root Geometry and Stentless Porcine Valve Competence,” Seminars in Thoracic and Cardiovascular Surgery, Oct. 1999, 11(4):145-150.
Kolata, G., “Device That Opens Clogged Arteries Gets a Failing Grade in a New Study,” New York Times [online], <http://www.nytimes.com/1991/01/03/health/device-that-opens-clogged-ar-teries-gets-a-faili . . . ,>, published Jan. 3, 1991,retrieved from the Internet on Feb. 5, 2016, 3 pages.
L. L. Knudsen et al., “Catheter-Implanted Prosthetic Heart Valves. Transluminal Catheter Implantation of a New Expandable Artificial Heart Valve in the Descending Thoracic Aorta in Isolated Vessels and Closed Chest Pigs,” International Journal ofArtificial Organs, 1993, Issue 5, vol. 16, pp. 253-262.
Lawrence, D. D., “Percutaneous Endovascular Graft: Experimental Evaluation,” Radiology, 1987, 163:357-360.
Lozonschi, L., et al. “Transapical mitral valved stent implantation: A survival series in swine,” The Journal of Thoracic and Cardiovascular Surgery, 140(2):422-426 (Aug. 2010) published online Mar. 12, 2010, 1 page.
Lutter, Georg, et al., Mitral valved stent implantation, European Journal of Cardio-Thoracic Surgery, 2010, vol. 38, pp. 350-355.
Ma, L. et al., “Double-crowned valved stents for off-pump mitral valve replacement,” European Journal of Cardio-Thoracic Surgery, Aug. 2005, 28(2): 194-198.
Moazami, N. et al., “Transluminal aortic valve placement: A feasibility study with a newly designed collapsible aortic valve,” ASAIO Journal, Sep./ Oct. 1996, 42(5):M381-M385.
Orton, C., “Mitralseal: Hybrid Transcatheter Mitral Valve Replacement,” Symposium: Small Animal Proceedings, 2011, pp. 311-312.
Pavcnik, M.D., Ph.D., Dusan, et al. “Development and Initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement,” Cardiovascular Radiology 1992; 183:151-154.
Porstmann, W. et al., “Der Verschluβ des Ductus Arteriosus Persistens ohne Thorakotomie,” Thoraxchirurgie Vaskuläre Chirurgie, Band 15, Heft 2, Stuttgart, Apr. 1967, pp. 199-203.
Rashkind, W. J., “Creation of an Atrial Septal Defect Without Thoracotomy,” The Journal of the American Medical Association, Jun. 13, 1966, 196( 11 ): 173-174.
Rashkind, W. J., “Historical Aspects of Interventional Cardiology: Past, Present, Future,” Texas Heart Institute Journal, Dec. 1986, 13(4):363-367.
Reul, H. et al., “The Geomety of the Aortic Root in Health, at Valve Disease and After Valve Replacement,” J. Biomechanics, 1990, 23(2):181-191.
Robert C. Ashton Jr., “Development of an Intraluminal Device for the Treatment of Aortic Regurgitation: Prototype and in Vitro Testing System,” Journal of Thoracic and Cardiovascular Surgery, 1996, Issue/vol. 112, pp. 979-983.
Rosch, J. et al., “The Birth, Early Years and Future of Interventional Radiology,” J Vasc Interv Radiol., Jul. 2003, 4:841-853.
Ross, D. N., “Aortic Valve Surgery,” Guys Hospital, London, 1968, pp. 192-197.
Rousseau, E. P. M. et al., “A Mechanical Analysis of the Closed Hancock Heart Valve Prosthesis,” Journal of Biomechanics, 1998, 21(7):545-562.
Sabbah, A. N. et al., “Mechanical Factors in the Degeneration of Porcine Bioprosthetic Valves: An Overview,” Dec. 1989, Journal of Cardiac Surgery, 4(4):302-309.
Selby, M.D., J. Bayne, “Experience with New Retrieval Forceps for Foreign Body Removal in the Vascular, Urinary, and Biliary Systems,” Radiology 1990; 176:535-538.
Serruys, P.W., et al., “Stenting of Coronary Arteries. Are we the Sorcerer's Apprentice?,” European Heart Journal (1989) 10, 774-782, pp. 37-45, Jun. 13, 1989.
Sigwart, U., “An Overview of Intravascular Stents: Old and New,” Chapter 48, Interventional Cardiology, 2nd Edition, W.B. Saunders Company, Philadelphia, PA, © 1994, 1990, pp. 803-815.
Tofeig, M. et al., “Transcatheter Closure of a Mid-Muscular Ventricular Septal Defect with an Amplatzer VSD Occluder Device,” Heart, 1999, 81:438-440.
Uchida, Barry T., et al., “Modifications of Gianturco Expandable Wire Stents,” AJR:150, May 1988, Dec. 3, 1987, pp. 1185-1187.
Watt, A.H., et al. “Intravenous Adenosine in the Treatment of Supraventricular Tachycardia; a Dose-Ranging Study and Interaction with Dipyridamole,” British Journal of Clinical Pharmacology (1986), 21, pp. 227-230.
Webb, J. G. et al., “Percutaneous Aortic Valve Implantation Retrograde from the Femoral Artery,” Circulation, 2006, 113:842-850.
Wheatley, M.D., David J., “Valve Prostheses,” Rob & Smith's Operative Surgery, Fourth Edition, pp. 415-424, ButtenNorths 1986.
Yoganathan, A. P. et al., “The Current Status of Prosthetic Heart Valves,” In Polymetric Materials and Artificial Organs, Mar. 20, 1983, pp. 111-150, American Chemical Society.
Japanese Office Action for Application No. 2020-007399, dated Feb. 2, 2021, 4 pages.
Related Publications (1)
Number Date Country
20200113696 A1 Apr 2020 US
Provisional Applications (3)
Number Date Country
61970882 Mar 2014 US
61970887 Mar 2014 US
61950429 Mar 2014 US
Continuations (2)
Number Date Country
Parent 15251269 Aug 2016 US
Child 16681282 US
Parent PCT/US2015/019418 Mar 2015 US
Child 15251269 US