Embodiments of the present invention relate generally to devices and methods and more particularly to promoting female sexual wellness and function. In particular, certain embodiments are useful for promoting, facilitating, stimulating, or enhancing sexual desire, arousal or satisfaction in a female.
Clitoral vascular engorgement plays an important role in female sexual desire, arousal and satisfaction. Sexual arousal results in smooth muscle relaxation and arterial vasodilation within the clitoris. The resultant increase in blood flow leads to tumescence of the glans clitoris and increased sexual arousal. A variety of conditions may cause clitoral erectile insufficiency and reduced clitoral arterial flow. This, in turn, may lead to difficulty or inability to achieve clitoral tumescence. Female sexual wellness may also be negatively affected by a lack of subjective excitement, genital lubrication or orgasmic function.
The incidence of symptoms ranging from dissatisfaction to dysfunction is high in women. For example, in the National Health and Social Life Survey of 1,749 women age 18-59, 43% experienced sexual. Further, female sexual dysfunction is altered with aging, is progressive and highly prevalent affecting 30-50% of women and 68 to 75% of women experience sexual dissatisfaction or “problems” (not dysfunctional in nature). In a national survey of more than 31,000 women in the United States, 44.2% of women reported experiencing a sexual problem. According to other studies, over 53 million women (43% of the U.S. population) have reported one or more sexual problems and over 14 million women meet the clinical criteria for Female Sexual Dysfunction (FSD), with low desire being by far the most common problem (reported by 46 million women). (See, e.g., Spector I, Carey M. Incidence and prevalence of the sexual dysfunctions: a critical review of the empirical literature. 19: 389-408, 1990; Rosen R C, Taylor J F, Leiblum S R, et al: Prevalence of sexual dysfunction in women: results of a survey study of 329 women in an outpatient gynecological clinic J Sex. Mar. Ther. 19:171-188, 1993; Read S, King M, Watson J: Sexual dysfunction in primary medical care: prevalence, characteristics and detection by the general practitioner. J. Public Health Med. 19:387-391, 1997; Laumann E, Paik A, Rosen R. Sexual Dysfunction in the United States Prevalance and Predictors. JAMA, 1, 281: 537-544; Read S, King M, Watson J. Sexual dysfunction in primary medical care: prevalence, characteristics and detection by the general practitioner. J Public Health Med. 1997; 19:387-91; Schein M, Zyzanski S J, Levine S, Medalie J H, Dickman R L, Alemagno S A. The frequency of sexual problems among family practice patients. Fam Pract Res J. 1988; 7:122-34; Shifren J L, Monz B U, Russo P A, Segreti A, Johannes C B. Sexual problems and distress in United States women: prevalence and correlates. Obstet Gynecol. 2008; 112(5):970-978; and Shifren, Obstet Gynecol 2008; 112: 970-8. Each of these publications is incorporated by reference herein.)
Research indicates that a sufficient blood supply is required for good clitoral and vaginal function and satisfying sexual experience at any age. Women at risk for Female Sexual Dysfunction include those using birth control pills, those with poor vascular health (such as those with diabetes, high cholesterol, or hypertension), aging women and those undergoing or having undergone cancer radiation treatment (which may adversely decrease lubrication, hormone levels, and/or genital sensation). Using birth control pills can lower the circulating levels of testosterone needed to regulate blood flow to genitals and stimulate sexual desire and can cause long-term permanent sex hormone insufficiency. Also, the prevalence of sexual problems increases dramatically by age, with 27.2% of women aged 18 to 44 years, 44.6% of women aged 45 to 64 years, and 80.1% of women aged 65 years and older reporting sexual problems.
While the majority of male and female sexual organ is similar, a subtle anatomical difference makes females more susceptible to inhibitors. While the glans penis in men and the glans clitoris in women similarly each have the highest concentration of sensory receptors than any other location in the body, the male anatomy provides more extensive structural support for the glans penis. Addressing male sexual dysfunction can take advantage of this structural support by augmenting or enhancing the venous trapping function of the corpus cavernosum. In contrast, no anatomical sustain mechanism exists in women for engorgement making women more susceptible to an array of powerful inhibitors. While the female corpus canvernosum does become engorged during stimulation (sec
The female sexual response cycle affects the incidence of a satisfying sexual experience (SSE) for women. The cycle includes the states of (i) emotional and physical satisfaction, leading to (ii) emotional intimacy, leading to (iii) being receptive to sexual stimuli, leading to (iv) sexual arousal, leading to (v) arousal and sexual desire, which takes the cycle back around to the state of (i) emotional and physical satisfaction. Spontaneous sex drive can occur between states (ii) and (iii), between states (iii) and (iv), and/or between states (iv) and (v).
These and other challenges can be addressed by embodiments of the present invention.
Certain embodiments of the present invention are related to a system or a method for promoting female sexual arousal; for clitoral engorgement using suction combined with vibratory stimulation; for providing variable and customizable control of vibration and suction; for providing a novel power-tissue optimization scheme based on stimulators mounted on a flexible membrane; for providing a novel suction attachment modality combined with multi-focal actuators; and for providing novel actuators for mechanical motion and suction.
Certain embodiments of the present invention are related to a system, or a method for providing a tissue-contacting chamber and at least two stimulators coupled to the chamber and controlled such that the user experiences spatially differentiated stimulation. The system can include a suction port in fluid communication with an interior of the tissue-contacting chamber. The system can include a suction adjustment mechanism integral to the tissue-contacting chamber. The system can include a plunger positioned within the interior of the tissue-contacting chamber and configured to adjust suction within the tissue-contacting chamber. The system can include a sealing surface attached to the tissue-contacting chamber and configured to maintain a substantially airtight seal against tissue. The system can include a controller and/or remote controller. The system can include that parameters of the stimulators are controlled and the parameters are selected from the group consisting of vibrational frequency, vibrational intensity, vibrational duration, sequence of motor vibration, and combinations thereof. The system can include that the stimulators are controlled by selecting from a pre-programmed algorithm, a user-customizable algorithm, or combinations thereof. The system can include a suction-generating device and a wearable device body, wherein the suction-generating device is detachable from the wearable device body. The system can include that the device body remains substantially in contact with tissue after the suction-generating device is detached. The system can include a membrane at least partially encapsulating at least one of the stimulators. The system can include that the membrane is coupled to the chamber. The system can include that the membrane is configured to be displaceable by the user's clitoris. The system can include that the stimulators are controlled such that the user experiences simulated macroscopic motion. The system can include that the stimulators generate macroscopic motion while contacting tissue. The system can include that vibration generated by one stimulator is isolated from vibration created by another stimulator. The system can include that vibration generated by one stimulator is isolated from a wall of the tissue-contacting chamber. The system can include that at least one of the stimulators are held in direct contact with the user's clitoris during an application of suction.
Certain embodiments of the present invention are related to a system, or a method for providing a mechanically-stabilized housing, a suction chamber within the housing, and a plurality of stimulators. The system can include a low-profile housing. The system can include that the housing is configured to be wearable. The system can include that the stimulators are configured to provide multivariate stimulation. The system can include that the stimulators are configured to provide a combination of macroscopic motion and vibratory stimulation. The system can include that the stimulators are configured to generate a stroking motion.
Certain embodiments of the present invention are related to a system, or a method for providing a tissue-contacting chamber including a suction chamber, the suction chamber being in fluid connection with a programmable suction pump, and at least two stimulators mounted within the suction chamber, wherein the motors and the suction pump are configured to be independently controllable via a control circuit. The system can include a controller block that includes pre-loaded vibration patterns and pre-loaded suction patterns. The system can include that the controller block is configured to allow a user to create vibration patterns and suction patterns. The system can include a wearable device body and a suction pump is mounted within the device body. The system can include that the controller block is configured to enable the user to set a first suction level and a second suction level. The system can include that the controller block is configured to enable the user to set a rate at which the suction pump alternates between the first suction level and the second suction level.
Embodiments of the present invention described herein, including the figures and examples, are useful for promoting female sexual wellness and function.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are now described. All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited.
Short summaries of certain terms are presented in the description of the invention. Each term is further explained and exemplified throughout the description, figures, and examples. Any interpretation of the terms in this description should take into account the full description, figures, and examples presented herein.
The singular terms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to an object can include multiple objects unless the context clearly dictates otherwise. Similarly, references to multiple objects can include a single object unless the context clearly dictates otherwise.
The terms “substantially,” “substantial,” and the like refer to a considerable degree or extent. When used in conjunction with an event or circumstance, the terms can refer to instances in which the event or circumstance occurs precisely as well as instances in which the event or circumstance occurs to a close approximation, such as accounting for typical tolerance levels or variability of the embodiments described herein.
The term “about” refers to a value, amount, or degree that is approximate or near the reference value. The extent of variation from the reference value encompassed by the term “about” is that which is typical for the tolerance levels or measurement conditions.
The term “stimulator” refers to elements that provide stimulation using mechanical motion (such as vibration), electrical stimulation, temperature, or other sensory stimulation.
Certain biological molecules and anatomical structures exist in a healthy female to create engorgement of the vulvar and clitoris erectile tissues. These molecules and structures facilitate stiffening the underlying stratum upon which the nerves in the clitoris are deployed. The effect of the stiffening is to allow for the more rigid projection and presentation of the clitoral structures for stimulation, as well as mechanically allowing energy waves to be propagated across the surface more efficiently with less energy absorption by the tissues. As a result, a rigid clitoris stimulated mechanically via deflection, vibration, and the like propagates these forces across the tensed surface of the structure rather than being lost within the loose connective tissue. Thus, means for producing an engorged environment (via drugs or via suction, for example) can enhance sensation and produce other reflexive responses (e.g., lubrication and oxytocin release). Further, the type and distribution of sensory nerve endings within the tissues of the clitoris and surrounding tissue explain why certain motions, pressures, vibrations, and other stimuli more optimally deliver pleasurable sensations than others. Vibration and suction both have the capacity to stimulate engorgement via the nitrous oxide pathway and thus both can increase sensitivity to sexual stimulation. The two follow different neuronal/physiologic pathways. Dual-triggering with the use of vibration and suction combined provide additive effects. Pacinian or pacini corpusles also called Vater-pacini receptors conduct signals in response to vibratory “pressure” (tissue vibration is conducted via a pressure wave)—the reflex responses utilize NOS pathways which deploy into the same structures that are engorged in the embodiments of the suction elements described herein. Motion/slippage in a repetitive pattern also produces a “pressure” pattern and vibratory nerve signaling. Nerves can adapt to stimuli quickly, thus vibration in one spot will typically become less impactful, therefore moving the site of vibration is beneficial, whether manually or automatically. All of the above are mediated by DH testosterone and other hormonal components (and thus testosterone therapy can help improve the quality of the tissues as well as their “activity”) but we have discovered through mechanical stimulation—either through suction or vibration or both—many of the hormonal pathways can be bypassed and the reflex responses can be triggered directly.
We have discovered that engorgement and vibration together are a powerful combination such that engorgement creates a more suitable mechanical back-board for the pacinian corpusles to be stimulated and that applying both simultaneously should produce more profound effects than either applied alone. In both sexes, engorgement of the sexual organs is the key physiological target in that engorgement is fundamental to achieve an SSE. As illustrated in
Certain prior art stimulation devices, such as vibrators, provide relatively diffuse stimuli. That is, the vibrating motion supplied by a vibrator is applied relatively evenly over the clitoris and surrounding tissue. In certain vibrating devices that are capable of delivering vibration over a more tightly focused area, the frequency and magnitude of the vibration may still present a relatively diffuse vibratory motion to clitoral tissue. Additionally, much of the vibration of prior art vibrators is lost in vibrating the handle, housing and the user's hand or other portion of their body.
Advantageously, certain embodiments described herein are capable of providing complex patterns of suction. Such complex suction waveforms can provide a comparatively organic stimulation experience as compared to prior art mechanical stimulation devices. For some users, the variable suction patterns, algorithms waveforms of certain embodiments can provide engorgement and stimulation such that effective arousal is achieved without the use of vibration.
Advantageously, and in contrast to prior art devices, embodiments described herein are capable of providing spatially-differentiated vibratory motion. That is, a woman experiences spatially-differentiated vibratory motion. In certain embodiments, such spatially-differentiated vibratory motion may simulate an experience of macroscopic motion about the clitoris. Macroscopic motion can be understood as analogous to stroking motion, lingual motion, or motion consistent with intercourse. For some users, the spatially-differentiated vibratory motion of certain embodiments can provide engorgement and stimulation such that effective arousal is achieved without the use of suction. For some users, the macroscopic motion about the clitoris of certain embodiments can provide engorgement and stimulation such that effective arousal is achieved without the use of suction.
An aspect of spatially-differentiated stimulation is the isolation of the stimulation generated by a stimulator(s) from the stimulation generated by another, nearby stimulator. By isolating the stimulation generated by one motor from another, a device simulates and/or mimics macroscopic motion about the clitoris. Another aspect of spatially-differentiated stimulation is isolation of the stimulation generated by a stimulator(s) from the housing which minimizes loss of stimulation and allows the stimulation to be focused on the tissue of interest.
A further benefit of isolating vibration in devices according to embodiments disclosed herein, is that a small device may be discreetly worn which produces little noise while a focused, isolated vibration is applied and clitoral tissue is engorged.
Certain embodiments of devices disclosed herein use suction to draw tissue into contact with vibrating elements. Certain devices remain in contact with tissue by virtue of the suction applied to the tissue. Yet another benefit of isolating vibration in devices is that the airtight seal between the device and tissue is not substantially disrupted by the vibration. This type of vibration isolation involves substantially isolating the sealing elements of the device from the vibrating elements in the device.
The compact size of devices disclosed herein makes them capable of being discreetly worn and capable of being carried in a purse. Yet, devices disclosed herein are sized and configured to be accessible and controllable while being worn. Devices disclosed herein may be usable prior to and during intercourse or as a program for recruitment of blood flow and nerve sensitization of tissue. Devices disclosed herein may be adjustable and customizable and provide selectable, variable suction and vibrational properties. Devices disclosed herein may be capable of being controlled remotely, such as by a smartphone. Devices discloses herein may be capable of promoting and/or sustaining female sexual arousal.
Advantageously, devices disclosed herein use relatively low power motors to produce focused, spatially-differentiated vibration.
According to certain embodiments, the device has some or all of the following characteristics: (i) has a suitable fit; (ii) provides appropriate stimulation; (ii) is sufficiently comfortable or tolerable; and (iv) performs reliably and safely.
Regarding suitable fit, the following attributes may be present in a device having a suitable fit: (i) the device is wearable while ambulatory without the need for a tether or additional garment; (ii) the device is sized such that the attachment area fits between the labia majora inferior to the clitoris and the housing may exit the labia majora superior to the clitoris; (iii) the device continues to fit throughout the engorgement process; and (iv) the device is wearable during sexual intercourse. Further, the device can be configured such that placement of a portion of the device posterior of the labia majora is sufficient to securely hold the device in place, with or without additional suction.
According to certain embodiments, suitable fit can be achieved by providing some or all of the following parameters: (i) the device design and center of gravity allow the device to hold to the tissue for at least 5 minutes without a tether; (ii) the device may be worn under clothing; (iii) the mass of the device allows for attachment by suction only; (iv) the device stay in place for at least 5 minutes without adjustment; (v) the device has a compliant tissue interface region; (vi) the device stays in place while standing and walking while wearing the device; (vii) the footprint of device attachment area is anatomically appropriate; (viii) the device is designed to fit over at least a woman's clitoral region; (ix) the device provides space for the tissue to expand; (x) the external device envelope allows for discreet use; (xi) the device is designed such it does not occlude or limit access to the vaginal opening; (xii) the device body can withstand a force compressing it against a soft surface, such as a body; (xiii) the device height does not limit interaction of partners and the edge geometry is comfortable for both partners.
In certain embodiments, proper placement can be achieved by activating one or more motors to a detectable level of vibration to allow the user to center the stimulatory effect about the clitoris. By pre-activating the motors during placement, the user can customize the fit and determine the most effective location for vibrational simulation and/or suction stimulation.
Regarding appropriate stimulation, one or more of the following attributes can be present in a device providing appropriate stimulation: (i) the device applies suction to the vulvar region or more specifically the clitoral region to facilitate engorgement of the clitoral tissues; (ii) the device is capable of applying vibrational energy to at least the region of clitoral tissues; and (iii) the device provides stimulation for a sufficient period of time to achieve the desired degree of arousal.
According to certain embodiments, appropriate stimulation may be achieved by providing some or all of the following parameters: (i) the device provides suction to the clitoral region in a range of about 0.7 in Hg to about 9 in Hg; (ii) the device provides suction with the optional addition of personal lubricant in an environment in which pubic hair is present; (iii) the device maintains the selected level of suction for a minimum of 5 minutes; (iv) the user can control the level and pattern of suction including via use of wireless remote control; (v) the device generates vibration within the frequency range of 100-300 Hz; (vi) the vibrational forces (peak to peak) under load promote arousal; (vii) the vibratory elements are held in direct contact with tissue when suction is applied; (viii) the device provides full power stimulation for a minimum of 30 minutes on a single battery charge; and (ix) the device is capable of moving the vibration between sources as directed by the user.
Regarding comfort and tolerability, one or more of the following attributes may be present in a device that is sufficiently comfortable and tolerable: (i) the device allows for the user to release suction when desired; (ii) the device does not produce excessive noise; (iii) the device does not cause irritation of the urethra; and (iv) the device is comfortable to wear, with tissue contact surfaces that are soft and pliable and/or smooth with no protrusions.
According to certain embodiments, sufficient comfort and tolerability may be achieved by providing some or all of the following parameters: (i) the user can release the suction within 5 seconds when desired; (ii) the device does not produce sound that exceeds 70 dB, as measured at a distance of 2 inches from the outside of the shell when attached to the user; and (iii) the device fits over a woman's vulvar or clitoral region without occluding the urethral opening.
Regarding reliable and safe performance, the following attributes may be present in a device that performs safely and reliably: (i) the device does not pose a hazard of electrical shock; and (ii) the device allows for proper cleaning or disposal after each use.
According to certain embodiments, reliable and safe performance may be achieved by providing some or all of the following parameters: (i) the battery and electronics compartment(s) isolated from incidental contact with fluids; (ii) the maximum discharge rate of battery is not considered hazardous; (iii) the device life may be rated at 2-3 years; (iv) the stimulators are rated for at least sufficient use; (v) the device is water resistant when cleaned as recommended; and (vi) the device protects regions from contact with tissue/fluids or allows access to region behind the tissue interface for cleaning.
Certain embodiments have some or all of the following features: (i) the user is able to customize the suction and vibratory stimulation to suit their needs; (ii) the device withstands stresses of normal use; and (iii) the device may not have any user-replaceable parts.
Specific aspects of the device features may include some or all of the following: (i) the user is able to set suction to the level that is comfortable to them; (ii) the user is able to detach the suction tube from the device without losing vacuum pressure that leads to device detachment; (iii) the user is able to control vibration function by means of wireless remote control; (iv) the user interface is via iOS, Android, or other mobile operating system application on a Bluetooth enabled device or via an RF or Bluetooth key fob styled controller; (v) the user is able to control vibration parameters such as pattern transition speed and vibration amplitude; (vi) power is provided via an internal rechargeable battery, not accessible to the user; (vii) the user is able to control/direct vibration focus through pointing with finger on a wireless enabled device; (viii) the user is able to control degree of motor overlap; (ix) the motor overlap optimized for organic feel; (x) the device is enabled with basic rotational motor patterns; (xi) the device withstands an external force applied to the external shell (over the attachment area) by the user; (xii) the shell withstands sufficient vacuum cycles without loss of integrity; (xiii) the user is able to customize the motor pattern including direction, motor selection, looping, and save/recall the customized pattern; and (xiv) the user is able to customize the suction pattern and save/recall the customized pattern. Studies have shown that different areas of the female brain are activated when the clitoris is self-stimulated than when the clitoris is stimulated by a partner and that often times a female can achieve orgasm easier through self-stimulation than when stimulated by a partner. With the certain embodiments of the devices described herein, the female can record the stimulation pattern that allows her to achieve orgasm through self-stimulation and store it in the devices memory. Subsequently, the device can be used during intercourse to play the saved pattern such that the female can achieve orgasm as if she were self-stimulating.
Preferred attributes of certain embodiments include: (i) user adjustable suction for fixation and blood flow recruitment; (ii) user adjustable vibration for blood flow recruitment and nerve stimulation; (iii) spatially differentiated stimulation via macro-motion or isolation & control of multiple stimulation sources; (iv) tether-less and wearable during intercourse; and (v) customizable & reusable.
One embodiment of a device includes: (i) a shell that houses a circuit and battery and connects to suction zone; (ii) compliant wings to improve attachment; (iii) multiple stimulators attached to inner walls of compliant suction zone; (iv) motors isolated from outer shell to minimize damping and non-specific vibration; and (v) suction applied from removable applicator causes walls to move inward improving tissue contact.
In one embodiment of the device, a receptacle is coupled to a squeeze bulb for providing suction to the receptacle. The squeeze bulb can be integral to the housing or it may be removable. The receptacle is coupled to adhesive wings capable of conforming to interact with tissue. The wings are designed to conform to the anatomy and may include, for example, a butterfly-like shape. The wings may help stabilize the device and maintain contact with the device in the relevant anatomy. The edges of the wings and of the tissue contacting surfaces of the device are soft or radiused or both.
Certain embodiments of the device include onboard circuitry, power, pump, or other electronic features. For example, the device includes an antenna for interacting with the remote controller, such as an RF antenna. The device includes a battery.
Certain embodiments of the device are controlled by a remote drive connected via drive cable to vibratory and/or suction elements inside the wearable part of the device.
Certain embodiments of the invention provide mechanical motion, preferably macroscopic motion, to simulate the motions naturally used by women to stimulate the clitoris in contrast to high-frequency mechanical vibrations of certain prior art devices. Some embodiments provide multivariate stimulation of the clitoris via a stabilized platform. By mechanically stabilizing a platform, such as through suction attachment, it is possible to create a broad array of stimulating effects directly against the target clitoral tissues. Such effects may be difficult to achieve on a non-mounted platform. Examples of macroscopic motions include a rotary motion, a linear stroking motion, a low frequency “thumping” motion, and combinations above. Such macroscopic motions may be combined with vibration, for example, simple vibration or multiple and/or complex waveform vibration.
Certain embodiments of the device provide variable suction. In such embodiments, the user may rapidly and easily adjust the suction levels. Further, in certain embodiments the variable suction is programmable such that the amount of suction applied by the device can vary according to a pattern. In some instances, the suction pattern is complementary to the vibration and/or macroscopic motion patterns. The device controller includes a means for controlling the suction patterns, pre-loaded suctions patterns, user-configurable suctions patterns, or combinations thereof. The device controller enables the user to selected pre-loaded combinations of a suction pattern, a vibrational pattern, and/or a macroscopic motion pattern and also enables the user to design and select customized combinations.
Suction ports can connect to suction devices using various types of fluid connectors, including but not limited to snap fittings, quick-release fittings, screw fittings, luer lock fittings, push-in fittings, magnetic couplers, and their equivalents.
Device body 210 includes a firm but flexible shell, which houses electronics and couples the electronics to suction chamber 220. Device body 210 may further include a charging port to recharge the power source included in controller block 215. Activation buttons present in the user control area may be recessed or otherwise made comfortable, safe, and reliable.
Sealing flange 225 may include soft, flexible, compliant material, such as silicone, gel or closed cell polyurethane foam, and may optionally be mildly adhesive to tissue or may be adapted to contain an adhesive material. Also, the foam or other material could contain a lubricant that serves to fill gaps in the seal between the sealing flange and tissue. Other structures, such as filaments structures like velour or corduroy or other woven or non-woven fabrics can be used at the sealing flange in conjunction with adhesives and/or lubricants to provide a secure fit and help minimize leak paths. In some embodiments a fabric used in the sealing flange may be moisture responsive such that it “clings” or otherwise forms a close bond with skin and mucosa when the fabric becomes wet. The moisture may come from the user's body or may be applied in the form of lubricant, adhesive, or simply water or saline.
Specifically, the front section 225f of sealing flange 225 is placed superior to the clitoris and tucked under the anterior commissure of the labia majora. In that position, the labia majora inferior to the anterior commissure can snugly engage the tapered section 220t of suction chamber 220 such that substantially the entire front and lateral portions of the sealing flange 225 are tucked under the labia majora. Advantageously, the tapered section 220t of suction chamber 220 allows the labia majora to comfortably engage a comparatively narrower section of the device while vaginal tissue superior to the vaginal orifice engages the comparatively wider sealing flange 225.
Proper placement of device 200 can be easily and repeatably achieved by following a few steps. For example, when a user first attempts to place the device, they may benefit from the use of a mirror such that the user's head and shoulders are propped up and they can use the mirror to observe themselves placing the device. The user can open their outer labia so that they can see their inner labia and the hooded glans of the clitoris. Users can identify a groove within their outer labia that runs along the inner labia at the bottom and the hooded clitoris at the top. Device 200 can be effective when the sealing flange 225 is centered over the clitoris and the comparatively soft edges of the sealing flange 225 fit into the groove. In some cases the user can tug their outer labia to make space for the outer ring to fit snugly in the groove. The vibratory motors can then fit snugly around the glans of the clitoris. In some instances, the user can apply an amount of a lubricant (such as a water-based lubricant) to coat their inner and outer labia, the glans of the clitoris, the hood of the clitoris, and the comparatively soft edges of the sealing flange 225. The user can activate the vibratory motors at a relatively low power setting to help place the device. By using the sensation from the low power vibrations as a guide, the user can ensure that the clitoris is placed snugly within the space defined by the inner portions of the vibratory motors. In some cases, the user can apply stimulation with their inner labia separated. A properly placed device will be high enough on the user's vulva to effectively cup the clitoris and not block the urethra or the vaginal opening.
In certain embodiments, multiple vibratory-disc, or miniature coin-style, motors are embedded in the wall of a flexible suction chamber. In certain embodiments, the motors are embedded in a flexible membrane, which is attached to the walls of the suction chamber. When suction is applied, tissue is brought into contact with the stimulator. The motors can be controlled by controller circuitry to produce one or more of the following patterns: (i) all on; (ii) clockwise; (iii) counter clockwise; (iv) up-down; (v) lateral; (vi) all pulse; (vii) selected motor pulse; (viii) gradients in frequency; and (ix) gradients in amplitude. The translation of the vibratory pattern and spatial isolation of the motors may produce a desired effect of simulating macroscopic motion without incorporation parts that actually move in macroscopic dimensions. Stiffening members may be added to the motor mounts to vary and/or isolate vibration. The inner surface of the membrane may be textured to transmit vibration to tissue. The flexible membrane reduces or eliminates the coupling of the motor vibration to the device housing and increases or maximizes energy delivery into the tissue.
In one embodiment depicted in
The patterns described above and equivalent patterns can be created by arrays with more than three motors. Rotational patterns, lateral patterns, vertical patterns, and combination thereof can be created by selectively activating and deactivating motors. All such patterns are within the scope of the invention disclosed herein regardless of the number of motors. Further, in embodiments herein in which vibratory motors are depicted as providing the stimulation, other stimulators can be used in place of or in addition to the vibratory motors. That is, one or more of the vibratory motors can instead be an electrical stimulator, temperature stimulator, or other stimulator.
In certain embodiments, multiple vibratory motors create resonance or diphasic amplification. Resonant or diphasic amplification patterns may be advantageous because they may create unique vibratory patterns that would be difficult to achieve with a single vibrating source, and they may create amplification in vibratory power that exceeds the capability of a single motor. Such amplification may be useful in the case of certain electrical power or space constraints. Resonance or diphasic amplification created through the use of multiple vibratory sources may employ different sources including rotary motors, linear motors, and piezoelectrics. The combination of multiple sources may create a large range of customizable and selectable resonant patterns. Further, motors of different sizes and/or power can be used to create multiple resonant frequencies to amplify the vibration effect.
Multiple, isolated and independent motors may combine to produce diphasic amplification or resonant patterns and/or may simulate macroscopic motions. Transitions between motors are smoother with sine wave than square wave. Optimizing the timing and the amplitude of the motion during transition improves the “organic” feel of the stimulation. Preferably, multiple small motors are used to provide easily-differentiated stimulation and simulation of macroscopic motion. Small eccentric motors placed on edge provide a focused vibration point, which promotes differentiation among several vibration sources. Slower vibration transitions promote differentiation among several vibration sources as compared to more rapid transitions.
In certain embodiments, devices provide macroscopic motion in addition to, or instead of, simulating macroscopic motion.
Alternately, the motion of the dome may be driven magnetically. For example, dome 420 may include a single offset magnet. Device body 410 may include several electromagnets, which are individually addressable by a controller. The motion of the dome can be driven by selectively charging each electromagnet in a sequence or pattern.
In one embodiment of the device, the device could create a sweeping wave motion. The speed and amplitude of the wave is variable, selectable and adjustable in real time. The wave motion can also be used to deliver therapeutic substances directly to the genital region. The substances can be stored in the polymeric adhesive region or immediately behind the adhesive region. The mechanical displacement algorithm or, alternately, an algorithm focused on delivery, could be used to meter out drug at the desired rate. Thin-film actuators include shape memory polymers and metals, ferroelectric thin films, polymer thin films, piezoelectric films, polymer/metal composites, and combinations thereof. Light or electromagnetic radiation can be used to power the actuators.
In certain embodiments of the invention, wave motion can be achieved by sequentially charging regions of the thin-film actuator. As each region is energized, that region undergoes a conformational change that causes a local displacement of the structure. Various temporo-spatial patterns can be created to stimulate a stroking motion. Alternatively, some regions may be made to vibrate all other regions provide a simulated stroking motion. The thin-film may be electrically activatable polymer, a piezoelectric material, shape memory polymer, a shape memory metal, or composite material containing one or more of the following materials: metals, polymers, particles, strips, charge elements, water, salt, bases, acids, etc. In some embodiments, the thin film actuator is formed from graphene, which is capable of being driven by current to deliver vibration stimulation, simulated macroscopic motion, and/or macroscopic motion.
In another embodiment, a controller may be placed in an interior space of the vagina and physically tethered to a device placed about the clitoris. The controller and the device may be connected using a malleable connector to allow comfortable or tolerable positioning of the device. Advantageously, by moving the relatively heavier control and power components from the clitoral device to the vaginal device, the clitoral device may be more comfortable and wearable. The vaginal device may also include stimulating features such as vibrational motors.
Certain embodiments of the invention take advantage of a wide spectrum of input, wider than the input available from certain prior art devices. For example, input may include complex waveforms such as literal music, or superimposed waveforms that make up a type of “song.” The multiple oscillations of a “song” can produce a desired mechanical effect on the actuators in contact with tissue. The location or spatial placement of these “songs” could be distributed differentially across the target tissue surfaces to produce enhanced effects. For example, some regions may be more optimally stimulated through low-frequency patterns in other areas through higher frequency patterns. High amplitude patterns in combination with variable mid to high vibrations are also possible. By adjusting these effects spatially, the simulation of manual stimulation, lingual stimulation, or intercourse may be achieved. Multiple stimulation signatures are available to the user to produce different effects. Nominally, some tissue may respond more to a simulated “rubbing” effect and others to a more cyclic “depression” or thumping effect. The “songs” may be downloadable to a remote player or to the device itself through web-based media marketplaces, such as iTunes.
In certain embodiments, the controller is designed to map the user's motions on a control surface to the tissue-contacting surface of the stimulating part of the device. By pressing their fingers on the control surface, the user can create various levels of pressure a vibration in the corresponding location on the tissue-contacting surface. As the user moves their fingers across the control surface and optimally desired way, a sequence of motions, pressures, vibrations, and/or stimuli that mimic these actions are created on the tissue-contacting surface. These movements and inputs can be stored either locally on the device or a controller level and played back when desired to create desired effect without requiring the user to repeat their input pattern.
In certain embodiments, a remote controller is a controller configured to send radio-frequency signals to the device worn by the user. The controller may be sized similar to a key fob remote control commonly associated with automobiles. A key fob styled remote can include several buttons capable of controlling the full range of functions of the device discussed herein.
Devices using low power Bluetooth or other radio antennae may experience dropped connections when the remote/device pair is separated by distance or by a physical obstruction (such as a user's or partner's body). In such cases, it is desirable for the device to remain operating under its pre-drop operating conditions while the remote attempts to automatically pair again with the device. Said differently, it is undesirable to require the user or partner to have to manually re-establish the Bluetooth pairing between the remote and the device if the pair connection is lost during device use. And, it is undesirable for the device to cease operating under its existing pre-drop conditions if a pair connection is lost. Thus, certain remotes are configured to automatically re-establish the pair connection with the device without requiring user intervention.
In situations where the remote automatically re-establishes the pair connection with the device, it can be important for the remote to query the device for the current device operating conditions. That is, since the device has maintained a state of operating conditions when the pairing was lost, it is desirable that the remote not interrupt the device operating conditions when the pair connection is re-established. As a counter example, in some Bluetooth pairings, after the pair connection is established the “master” controller will send a reset signal to the “slave” device. Such a reset would be undesirable in the circumstance where a device is operating under a given set of parameters, patterns, or programs because those parameters, patterns, or programs would be interrupted by the reset signal. Such an interruption could be detrimental to the user experience.
In certain embodiments, the controller is physically tethered to the device worn by the user. The tether can include electrical connection as well as a fluid connection to provide suction to the suction chamber on the device.
In certain embodiments, the stiffness of parts of the device, such as the suction chamber, an arm suspending a vibratory motor, or stimulating feature, can be controlled by moved a stiffening member, such as a stylet, in or out of a receiving lumen in the part whose stiffness is being controlled.
Some of the embodiments of the device deliver suction to engorge and stiffen the tissues and vibration to provide stimulation to the region. In other embodiments, the device delivers suction to engorge and stiffen the tissues and electrical or neural stimulation provides stimulation to the region. In other embodiments, warming or cooling is applied, including light or infrared energy (e.g., near infrared light emitting diodes), instead of vibration or electrical or neural stimulation or in combination with those stimulation types. The stimulation source preferably is in intimate contact with the tissue to optimize energy transfer.
The mounting of the vibration sources may also allow for isolation so that there is spatial differentiation between sources and minimal diffusion of vibratory energy to adjacent structures in the device or tissue. Mounting stimulators on a flexible membrane which travels with the tissue as it becomes engorged with suction may accomplish these goals. However, the membrane should have a direct path between the suction source and tissue—if there is no path the amount of suction delivered will be significantly lower. Placing holes or slits in the membrane may allow for sufficient vacuum and energy transfer. However, holes or slits are placed in the membrane may allow fluid from the tissues to travel through the membrane into the interior vibration source region of the device.
In embodiments including a suction tube, there is a pressure differential between the chamber above and below the membrane. When suction is applied, the area above the membrane is at higher pressure than the area below the membrane which can encourage the membrane to move down toward tissue, thereby increasing contact forces between the motors and tissue. This pressure differential mechanism can be actively used to increase energy transmission.
The challenge of cleaning fluid from interior regions of the device is addressed by enabling the flexible portion of the suction cup to be removed from the housing so it can be cleaned by the user. Alternately, as depicted in
To address the challenge of cleaning, in another embodiment as shown in
Certain materials may be preferable for use as actuators in devices disclosed herein. For example, electro-active polymers expand and contract with the application of electrical current and can incorporate taxels (focal points) to increase resolution. Electro-active polymers can be packed in dense arrays, are highly customizable, and show good frequency range. Some designs are extremely low profile. Piezoelectric materials are another example. Piezoelectric crystals generate stepping function movement that can be used for rotary or linear motion and/or vibration. Piezoelectric materials can be miniaturized and incorporated into electronics and show good frequency range. Another example is voice coils in which linear motion is caused by generation of electrical field around a magnet. Voice coils can achieve high amplitude with low voltage and are smaller size than miniature coin cell motors.
Voice coils can also allow more control flexibility than rotary motors—the frequency and amplitude can be decoupled from each other. Voice coils also allow for greater isolation of vibrational energy because only the moving element vibrates and the housing is essentially stationary. This can allow for greater spatial differentiation.
Certain actuator materials may be used to form an actuator array that provides high spatial resolution for vibrations. For example, an array that provides for 14 vibratory sources could improve the sensation of motion delivered to the user and provide for significant customization modes. In this example, each vibration node is 4 mm in diameter, significantly smaller than the 8 to 15 mm diameter coin cell motors. A vibration node of 4 to 6 mm in diameter would be desirable for this application to achieve the intended resolution.
Certain embodiments are capable of approximating kinesthetic forces (or macroscopic motions such as palpation or rubbing) using an array of vibrational motors. Devices disclosed herein are capable of achieving (or at least simulating) kinesthetic (or macroscopic) sensations using actuators that typically produce only tactile sensations. Devices capable of producing a convincing, organic-feeling palpation sensation rely on the coordination of: (i) motor spacing in the array (preferably, motors are spaced at about 1-4 mm); (ii) breadth of field of each motor; (iii) traversal rate for a pattern played on the motors; and (iv) overlap.
According to certain embodiments, devices fabricated as described herein are able to tune strength, traversal rate, and overlap, to the fixed physical parameters like the motor spacing, skin contact, etc. Various algorithms allow independent control of motor strength, traversal rate, and overlap. In a device fabricated according to embodiments disclosed herein, an algorithm was implemented in a low-cost embedded microcontroller. Three input parameters were varied, by radio control using Bluetooth Low Energy components communicating from an iOS device (iPod of iPhone 5 generation) to an embedded microcontroller (Texas Instruments CC2540), to ultimately set those algorithm input parameters. The algorithm output controlled pulse width modulated drives for all 3 to 5 motors simultaneously. The algorithm also allowed for unique patterns such that the user could specify order of traversal through the motor array. Different profiles, e.g. square, sine, ramp, were used to turn on the different motors at different rates as the pattern progressed through the motor array.
For motors with a non-linear response curve, feed-forward techniques (or feed-back if sensors are incorporated in the device) can compensate for such a response curve. Thus, motors turn on when commanded as opposed to with a lag, so that the coordination discussed above can be achieved. In some embodiments, an accelerometer may compensate for effects of gravity.
Miniature coin-style vibratory motors having an eccentric mass are used in certain embodiments. Generally speaking, coin-style motors require larger masses and higher power in order to increase the stimulating force delivered to tissue. Thus, the stimulating force in eccentric motors is a function of mass, and more power is required to drive that mass. In certain embodiments described herein, despite the relatively high mass and relatively high power of the motors the devices can provide spatially-differentiated vibration via the isolation structures and methods described herein. Even when the motors are positioned relatively close together to provide a close fit to the clitoris, embodiments described herein can provide substantial vibrational isolation and provide the user with a spatially-differentiated stimulation experience.
In certain embodiments, modified voice coils are used as the stimulators. As described above, voice coils can achieve high amplitude with low voltage and are smaller size than miniature coin style motors. Voice coils can be modified to include a mass attached to the membrane driven by the electromagnetic field. Advantageously, such mass-bearing voice coils retain the desirable properties of voices coils, including rapid response time, independent control of frequency and amplitude, high acceleration, high precision force control, and relatively low power consumption.
Embodiments of the device may have variable suction controlled by the user or another remote controller. A user may remotely select a pressure and the device will change to that pressure within seconds. The device may include an onboard pump that maintains suction and/or goes up/down from that initial established suction. Certain diaphragm pumps may be used as onboard pumps. Further, the motor driving the diaphragm pump may be used to produce vibratory motion. In certain embodiments, the onboard pump can be a modified voice coil designed to mimic the action of a diaphragm pump. The onboard pump can alternately be made with using a voice coil actuator that moves a membrane in a sealed and valved chamber.
In embodiments using an onboard pump or in embodiments using a remote pump, the suction may be programmed to complement the vibratory motion of the motors or the macroscopic motion of stimulators in the device. The algorithms described herein to drive vibration are adapted to vacuum pump system to provide fast response times and physically differentiable levels of suction to the clitoris. Further, certain embodiments use simultaneous or sequential suction waveforms or algorithms and vibration waveforms or algorithms to amplify the effect of the device.
In some embodiments of the device and method, variations in the stimulation parameters are particularly useful in providing the desired results in a user. For example, the stimulators can be varied between a high power and/or a high frequency level and a comparatively lower power and/or lower frequency setting. In the case of coin cell type stimulators, power and frequency are coupled such that driving the stimulator at higher frequency of oscillation also drives the stimulator at a higher power. To achieve the preferred variations in stimulation, the coin cell type stimulators can be switched between a high power threshold and a low power threshold. In the case of voice coil type stimulators, power and frequency can be decoupled such that a given power of stimulation can be driven at any frequency. Without being bound to a specific mechanism or mode of action, it is believed that comparatively large variations in the power or intensity of the stimulation will produce as desirable user experience.
One of the advantages of embodiments of the invention with multiple stimulators and suction patterns is that different parts of the anatomy can be stimulated at different frequencies. For example, different parts of the frenulum can be stimulated at different frequencies. It is generally understood that different nerve types will be stimulated to a different degree at a given frequency and that different nerves are more fully stimulated at different frequencies. One of the advantages of certain embodiments is the capability of delivering the appropriate frequency and intensity stimulation and/or suction to the different parts of the vaginal anatomy. For example, with the three stimulators positioned as shown the center stimulator primarily stimulates the glans of the clitoris and the right and left stimulators stimulate the right and left crus, respectively, (and/or frenulum) of the clitoris. The device can also enable the user to select and/or tune the desired frequency for their anatomy and nerve distribution, thereby customizing the user experience.
In certain embodiments, it is desirable to release suction during use. For example, the edge of the suction cup could be pulled back, squeezed, or manipulated to create a leak path. Further, a valve in line with the suction tube that can be manually manipulated by the user to release suction. In embodiments using an onboard suction pump, the pump can be configured to include a constant leak path that the pump overcomes—therefore, if the pump stops the device will automatically release. Still further, the device can be configured with a button that the user presses which opens a valve in the pump to release suction. Still further, the valve needed for the suction pump could be normally open. When power is supplied, the valve closes, completing the seal. However, if power goes out, the valve will open and the device will release automatically.
Certain embodiments of the present invention are designed and configured to increase blood circulation in vaginal tissue to promote engorgement to the clitoris and external genitalia while simultaneously applying stimulation to the clitoris and/or other vaginal tissue. The clitoris is a sexual organ that is filled with capillaries that supply blood to a high concentration of nerves. Certain embodiments increase blood flow to stimulate the clitoris and enhance a woman's sexual response.
In women presenting symptoms ranging from sexual dissatisfaction to sexual dysfunction, methods and devices of certain embodiments can provide: (i) increased genital sensation; (ii) improved vaginal lubrication; (iii) improved sexual satisfaction; (iv) improved sexual desire; and/or (v) improved orgasm. Certain embodiments of the invention are designed and configured to be used to treat women with diminished (i) arousal, (ii) lubrication, (iii) sexual desire, and/or (iv) ability to achieve orgasm.
Certain embodiments of the invention are designed and configured to be a wearable device designed to increase sexual satisfaction. Certain embodiments of the invention are designed and configured to be used as a “conditioning” product, to prime the user before a sexual event. Certain embodiments can be: used to help a woman prepare her body in advance of a sexual experience, typically with 5-30 minutes of use prior to sex; worn during a sexual experience with a partner, including intercourse; used by a woman alone for recreational purposes to reach orgasm; used as a regime, typically used a few minutes every day, to help facilitate a more intense and pleasurable experience during intercourse with or without a partner; or used over time to help train the body to achieve a better natural sexual response.
The device 200 is placed over the clitoris (
The portions of the device illustrated in
In some embodiments of the device, a removable flange assembly is provided. The flange assembly couples to the device body and is removable from the device body.
For example, the width of the sealing flange 223′ of the removable flange assembly 225′ can be varied from a comparatively narrow width to a comparatively wide width. As another example, the curvature of the scaling flange can be varied from a comparatively steep curvature to a comparatively shallow curvature. Further, a sealing flange on a single removable flange assembly may have a combination of widths and curvatures on its sealing flange. In still another example, the removable flange assembly can be made of a combination of materials or from a single material with varying properties. For example, the sealing flange can be comparatively softer and more flexible (e.g., 0030A durometer silicone) while the removable flange body can be comparatively more rigid (e.g., 20A durometer silicone). A comparatively more rigid removable flange body can help join the immovable flange to the device body. In yet another example, the sealing flange of the removable flange assembly can have a variety of textures or coatings (such as a lubricious or pre-lubricated coating) that potentially improve the comfort, fit, and/or reliability of the seal between the device and tissue.
For examples,
For some tissue types and geometries, additional features help to create a seal either at the sealing edge or along the sealing surface. In the embodiment of
In the embodiment of
The embodiment of
As shown in the bottom view of
In some embodiments, the sealing edge has a wavy texture that provides excess material to conform to variations in the tissue surface. The period and amplitude of the wave on the sealing surface will vary with the material chosen for the sealing surface to promote a secure and leak-resistance seal. In general, the sealing flange is made as thin as possible while still maintaining sufficient durability.
In some embodiments, the inferior portion of the sealing edge may be configured with a seam, line or weakness, thinned-out section, or other feature that induces a pinching motion at the tissue interface. A gentle pinching of the soft tissue can close leak pathways in the area where the inferior section of the sealing flange interacts with the labia minora.
Without being bound to a specific mechanism or mode of action, the flanges and flange assemblies of certain embodiments can provide one or more of the following beneficial properties: (i) smoothing the vaginal tissue underneath and in the area of the flange; (ii) distributing the engagement forces between the device and the vaginal tissue; (iii) providing physical features that can fit underneath the labia majora; and/or (iv) increasing the leak path from the suction chamber to the outside environment. Each of these beneficial properties can help provide a reliable, comfortable, and customizable anatomical fit.
In certain embodiments, the outer rim portion 220e of the suction chamber 220 and/or the inner portion of the sealing flange 223′ such as the sealing edge 226 are the primary part(s) of the device that form the seal with tissue. That is, until the seal between the outer rim portion 220e of the suction chamber and/or the sealing edge/inner portion of the sealing flange 223′ is substantially disrupted, the device can maintain a sufficient seal with tissue. In these embodiments, the sealing flange provides the above beneficial properties to augment the seal as well as providing a reliable, comfortable, and customizable anatomical fit. This can be true for devices with integral flange and sealing edges and devices using a removable flange assembly.
The flange membrane contributes several beneficial properties to the removable flange assembly. For example, the perforations in the flange membrane are sized to allow for airflow through the membrane while reducing the likelihood of capturing tissue within the membrane perforation or allowing tissue to be captured within the suction port of the device. The presence of the flange membrane enables larger openings in the motor membrane to assist in cleaning of the device. In another example, the flange membrane can provide further user customization by providing a range of textures for interaction with tissue. Further, the flange membrane can have a range of perforation sizes and/or patterns that can increase or decrease the suction applied to tissue in concert with the suction mechanism of the device.
The removable flange assembly provides the advantage of improving the ease and reliability of cleaning the entire device. In some embodiments, the removable flange assembly is formed of materials that allow the removable flange assembly to be cleaned inside a dishwasher while the remaining device body is simply rinsed or otherwise cleaned by hand. In such an embodiment, the tissue-contacting parts of the device can be cleaned more thoroughly than if the flange assembly was not removable. Alternatively, the removable flange assembly may be single use and disposable. A device may be packaged with several removable flange assemblies, and these assemblies may be identical or they may have a variety of different features. Further, a user can purchase more removable flange assemblies for use with the originally purchased device body.
Another benefit of a flange membrane is improved ease and reliability of cleaning the device body. In embodiments without a flange membrane, the flexible membrane of the suction chamber includes ports that are configured and sized to reduce the possibility of tissue capture and injury. That is, the ports are small and/or offset from tissue. Small and/or offset ports can be more challenging to clean reliably and thoroughly than larger ports or non-offset ports. Further, the ports 220h can be located toward the perimeter of the suction chamber 220 as depicted in
Referring again to
In some embodiments, heat generation in the device can be monitored using a component such as a thermistor. Thermistors can be positioned within the device body 210 or be integral to the controller block 215. When the thermistor detects a threshold temperature, it can turn off power to the device and/or vent external air into the device to help the cool the device and then release suction.
In some embodiments, the onboard pump is controlled by the controller block via a closed feedback loop. That is, the controller block is configured to maintain a target pressure, which can be set by the user or can be loaded as part of a pre-programmed suction algorithm. To do so, the controller block reads real-time data from an onboard pressure sensor that is configured to monitor pressure (negative pressure in the case of suction) within the suction chamber. Based on the real-time data, the controller block can engage the onboard pump to draw more suction within the suction chamber or it can engage a check valve in fluid connection with the exhaust port to vent air into the suction chamber. In typical operation, after the device has generated sufficient suction to seal it in place on the user the controller block with periodically engage the onboard pump as suction is slowly lost through leakage.
Certain embodiments of the invention include device and methods to enhance female sexual wellness and female sexual pleasure and some methods are for treatment of female sexual dysfunction. Certain embodiments of the invention include device and methods to treat (i) female sexual arousal disorder, (ii) hypoactive sexual desire disorder, and/or (iii) female orgasmic disorder. The methods naturally enhance a woman's own sexual response without undesirable, lasting side-effects. A woman will enjoy sexual intimacy again and feel confident in her body's ability to respond to sexual stimulation.
In embodiments described herein, coin-style vibrating motors can be placed edge-on to tissue, in a planar configuration against tissue, or at an angle with respect to tissue therebetween. The angle with respect to tissue can provide a varying degree of intensity.
In some embodiments, the device is configured such that the motor angle can be adjusted by the user directly (as in manually) or indirectly by selecting certain stimulation patterns from the controller.
In related embodiments illustrated in
In many of the embodiments described herein, it is advantageous to minimize the number or moving parts. It is also advantageous to minimize the number of relatively expensive parts. The embodiments that use an array of stimulating elements that are in some way driven by comparatively fewer motors, magnets, or other energy sources achieve the advantages or fewer moving parts and/or fewer expensive parts.
In another embodiment illustrated in
In embodiments of the device and method illustrated in
In some embodiments, the suction chamber includes end effectors that are coupled to and driven by a motor on the outside of the suction chamber. As depicted in a schematic view in
Advantageously, in some embodiments multiple motors can be arranged in a layered configuration with connecting rods of varied lengths. This is an advantage because multiple motors can be arrayed in a comparatively small space and transmit vibration to a larger vibration member. Such an arrangement can also be combined with a stimulator, such as a vibratory motor, suspended within the suction chamber. Alternatively, the multiple motors can be layered and/or configured such that they transmit vibration to at a comparatively higher resolution. That is, the motors can communicate via rods, for example, to a vibratory element whose footprint is comparatively smaller than the footprint of the motor configuration. Further, the vibratory element can have a high density of the stimulating elements that are individually or multiply addressable by the motors.
In contrast to some prior art devices, these embodiments directly interact with a stimulating member having an array of projections. That is, some prior art devices simply shake an entire array of projections rather than providing a series of transmission point that efficiently transmit vibration from a motor to discrete parts of a stimulating array.
In some embodiments, the motor or motors can be located remotely from the stimulating and/or suction chamber such that the motors are contained in a separate housing. The motors can transmit vibration to the site of stimulation via a cable or rod assembly or other similar member. The motor housing can be mounted on a garment or other wearable item. Or, the motor housing can be placed nearby the user without actually being worn or held by the user.
The stimulation-coupling element 4000 can be a network of comparatively rigid nodes 4010 connected by comparatively rigid spokes 4020. The stimulation-coupling element 4000 can also have less rigid regions 4030 that help isolate the vibration to the nodes. That is, the presence of less rigid regions 4030 serves to help spatially differentiate the areas that are vibrating in resonance or harmony with the drive motor 4050.
Alternately, the nodes 4010 can include passive actuators that can couple with the drive motor to provide spatially differentiated stimulation. A passive actuator can include piston and cylinder configuration that stores energy, such as via a spring or its equivalent, and the stored energy can be released and reloaded through resonant coupling of the node 4010 to the drive motor 4050. In some embodiments, passive actuators at nodes 4010 can be selectively controlled by activating or deactivating local dampers. For example, passive actuators have selectively addressable locking mechanisms. Such mechanisms can be electronically controlled by the device controller block that provides patterns for spatially differentiated stimulation. Micro-Electro-Mechanical Systems (MEMS) technology provides various routes for local, selectively addressable control of active and passive actuators and can be implemented in the embodiments described herein.
Devices described herein are advantageously attached securely and comfortable to a user's body. In some embodiments, the tissue chamber is configured to fit under the labia majora such that the device is wearable without any other attachment mechanisms (although suction is an optional attachment mechanism). In some embodiments, additional features on the device provide additional ways of comfortably securing the device. For example, adhesives (such as gummy, sticky, or otherwise tacky materials) can be applied to the tissue flange on the device. Still further, flexible wings 294, as depicted in
Another method for providing secure and comfortable attachment is through the use of lateral projections 292 on the sides of the device 200 as depicted in
Still another method for providing secure and comfortable attachment is through the use of soft and comparatively compliant extensions 293 attached to the inferior portion of the device 200, as depicted in
In some embodiments, the system 4100 includes an intravaginal unit 4160 coupled to a clitoral stimulation device 4110. The intravaginal unit 4160 can deliver stimulation, including all the types of stimulation disclosed herein. Additionally or alternatively, the intravaginal unit 4160 can house any of the components of the system disclosed herein. Alternatively, intravaginal unit 460 can be passive and act as a unit to provide additional compression/stabilization of the clitoral stimulation device 4110. For example, in some embodiments the intravaginal unit 4160 includes a motor that is coupled to stimulating elements within the clitoral stimulation device 4110. The motor can be configured to provide both intravaginal vibration and clitoral stimulation by transmitting vibration through the stimulating elements. A transmission element, such as a cable, connects the motor in the intravaginal unit 4160 with the clitoral stimulation device 4110. The intravaginal unit 4160 can be configured to engage and stimulate erogenous zone(s) on the anterior vaginal wall (the “G-spot”).
The coupling between the intravaginal unit 4160 and the clitoral stimulation device can be a “C” shaped connector 4150, which is configured to provide a secure and comfortable fit. For example, the connector 4150 could be reversibly deformable or it could be capable of flexing open and closed to return to an original position. The connector 4150 can be formed from a resilient or malleable wire encased in a protective cover. The connector can have a hinge point 4155 to facilitate placement. The intravaginal unit 4160 can be configured to vibrate or otherwise stimulate the G-spot via a stimulation source (such as a motor) located near where the unit 4160 meets the connector 4150. In another aspect, the stimulator for the intravaginal unit 4160 can be located in the housing of the clitoral stimulation device 4110.
In some embodiments, the intravaginal unit is not physically connected to the clitoral stimulation device. In such embodiments, the intravaginal unit can communicate by near-field radiofrequency technology or other interdevice communication methods. In such embodiments in which the intravaginal unit is not physically connected to the clitoral stimulation device, the intravaginal unit can still provide vibratory of other stimulation by virtue of stimulation elements included in the intravaginal unit.
An intravaginal unit can be used to provide clitoral stimulation by vibrating or resonating with a comparatively small device applied to the clitoris. Advantageously, such embodiments can use a soft clip or similar device applied to the clitoris, and the soft clip can be driven to provide stimulation by the intravaginal unit. In one embodiment, the soft clip contains permanent or electromagnets that can be driven to squeeze together and come apart to provide stimulation to clitoral tissue. An intravaginal unit or a separate unit can provide the external magnetic field used to drive the soft clip.
Other embodiments of the device, depicted in
In certain embodiments, the suction chamber is flexible and/or capable of expanding. The suction chamber is brought into contact with clitoral and/or vulvar tissue. When suction is applied, tissue is captured and the flexible suction chamber displaces and optionally expands to further capture tissue and to present tissue to stimulating elements, such as vibratory motors. In these embodiments, the vibratory motors can be located outside the suction chamber, as opposed to being suspended with the suction chamber. Further, clitoral and/or vulvar tissue may be gently squeezed towards the stimulating elements in addition to, or instead of, being drawn by suction towards the stimulating elements. Squeezing tissue can be accomplished using a variety of methods. For example, the walls of the suction chamber can be plastically deformable such that a user can manually manipulate the chamber to squeeze tissue. In another example, the suction chamber walls can be biased to squeeze together and the user can manually separate them during placement on clitoral and/or vulvar tissue.
In some embodiments, electromagnetic actuators that are configured differently than a conventional voice coil are used. For example, planar magnetic transducers can be used as actuators to deliver stimulation to clitoral and/or vulvar tissue. Planar magnetic transducers can provide direct mechanical stimulation via a diaphragm or membrane that directly contacts tissue, or they can provide acousto-mechanical stimulation that drives air against clitoral and/or vulvar tissue.
Planar magnetic transducers typically consist of a diaphragm having a printed circuit spread across the surface of a thin-film substrate and a magnetic array. The magnetic array creates a magnetic field parallel to the diaphragm. The thin diaphragm is highly responsive to electrical signals and can be used to generate spatially differentiated kinesthetic sensations and forces.
In other embodiments, magnets can be embedded in a thin membrane that is positioned and configured to stimulate clitoral and/or vulvar tissue. An electromagnetic array can be positioned above the membrane to drive specific magnets and create spatially differentiated stimulation. That is, selective activation of the electromagnetic array can drive individual or groups of embedded magnets. Alternatively, instead of an electromagnetic array, one or more moveable permanent magnets can be used to selectively drive individual or groups of embedded magnets. The permanent magnet can be moved by a variety of mechanical or electromechanical means and according to various programmable or pre-programmed patterns.
In certain embodiments, the system includes a vacuum reservoir. That is, the system includes a chamber that is capable of holding negative pressure that can be applied to the suction chamber of the device through a valve system. During initial attachment, after achieving the desired level of suction in the suction chamber, such as with an on-board pump, the vacuum source continues to run to supply the vacuum reservoir with excess negative pressure. The on-board pump can stop running, and if a small leak develops the negative pressure in the vacuum reservoir can supply suction to the suction chamber until it is exhausted, and then the pump can turn back on to replenish the reservoir and suction chamber and then stop running again. One advantage of the vacuum reservoir is that the desired level of suction can be maintained while having the suction source operate comparatively less than a system without a vacuum reservoir.
Systems described herein can be equipped with sensors and sensing capabilities. The data collected from sensing can be used in a variety of ways, such as display to the user and/or feedback to the device control systems. Sensed parameters include tissue temperature, tissue impedance, blood flow, tissue turgidity and/or engorgement, heart rate, and blood pressure. The data can be represented on the user control device, such as a smartphone. The data can be represented graphically and/or numerically and can be mapped over a visual representation of the anatomy. In a sense, the displayed data can be an “arousal meter” that provides information to the user. Further, the state of the user's arousal can be used to provide a biofeedback loop to control the device. For example, the user can set an arousal level on the device prior to use and the device can monitor the user's arousal state. By sensing the arousal state, the device control systems can increase or decrease stimulation to meet the user-set state.
In some embodiments, actuators are used rather than coin-style or other vibratory motors. One style of actuator is a linear actuator in which a member is driven back and forth. The electromagnetic voice coils described herein are an example of a type of linear actuator wherein a membrane is driven in response to an electromagnetic coil. Other linear actuators involve electromagnets and passive magnets arranged in a piston-type configuration to create linear motion.
In certain embodiments, the linear actuators used are not driven solely, or at all, by electromagnetic fields. For example, pneumatic actuators can be used in which a reservoir is charged with compressed gas (including air) by a pump. The pump can be a manual pump such as a bellows or a syringe pump. The linear drive element of the pneumatic actuator can be biased in a first position and driven to a second position by a burst of gas released from the reservoir through a valve system. Other configurations of pneumatic actuators are useful in these embodiments.
In certain embodiments, miniature scale actuators of other types are used to generate stimulating forces. For example, various types of thermomechanical and thermoelectric actuators can be used to drive stimulating elements in a device. Such actuators include those that use thermoelectricity to expand a fluid, and such fluid expansion can drive a mechanical element (a piston, for example). Other thermoelectric actuators that are useful in some embodiments include shape memory alloys, such as nitinol, which can be used to produce mechanical motion when thermoelectrically heated. More generally, actuators capable of producing kinesthetic forces and sensations, including each of the types of actuators disclosed herein, are applicable as stimulators.
In some embodiments, pneumatic systems can be used to provide stimulation. Pneumatic systems having miniature ports can deliver rapid puffs of air (or other gas) to produce tactile and/or kinesthetic sensations and forces. The rate and volume of the puffs of air can be varied to produce a variety of stimuli. Multiple ports for delivery of puffs of air can be used to achieve spatially differentiated stimulation of clitoral and/or vulvar tissue. Multiple ports can be configured using a valve and port array that delivers air from one or more pneumatic sources. Alternately, an array of pneumatic sources can be used.
In some embodiments, circulating air can be used to provide stimulation. As with the pulsed or puffs of air, a pneumatic source or sources can deliver air through a valve and port system. In contrast to the pulsed air system, a circulating air system can be used to stimulate tissue by blowing across tissue rather than pulsing against tissue. Certain embodiments employ both types of pneumatic systems in which air is circulated and pulsed. Further, pulsed air may also be directed across the surface of tissue. And, pneumatic stimulators can be used on conjunction with any of the other stimulator types disclosed herein.
Referring still to systems including multiple valve and ports, in some embodiments a suction source is used to apply suction through a valve and port array. Such a system can engage clitoral and/or vulvar tissue at multiple, spatially differentiated locations. Alternately, multiple and separately controlled suction sources can be used in conjunction with, or in place of an array of valves and ports. In some embodiments, rapid fluctuation of suction can be used to produce kinesthetic sensations and forces.
In many of the embodiments described herein, it can be desirable to apply therapeutic energy to clitoral and/or vulvar tissue, such as light energy or electromagnetic energy. Certain light frequencies can decrease tissue inflammation and certain light frequencies can increase local blood flow.
In many of the embodiment described herein, it can be desirable to provide ambient sounds via the device or system. Ambient sounds can be soundscapes that promote feelings of well-being and/or arousal in the user. Additionally, the ambient sound can be a “white noise” that provides a relatively constant background sound and thereby masks or de-emphasizes sounds made by the device during device operation. To that end, the device or system could include an active noise cancellation system.
While the invention has been described with reference to certain embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from its scope. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.
Number | Date | Country | |
---|---|---|---|
61731487 | Nov 2012 | US | |
61839792 | Jun 2013 | US | |
61856717 | Jul 2013 | US | |
61864558 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14759707 | Jul 2015 | US |
Child | 15014278 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13798085 | Mar 2013 | US |
Child | 14759707 | US |