This invention is in the field of devices and methods used to prevent the formation of scar tissue that often occurs as a result of a surgical procedure.
Post-operative scar tissue formation, adhesions and blood vessel narrowing are major problems following abdominal, neurological, vascular or other types of surgery. For example, narrowing of a blood vessel at the site of an anastamosis is often caused by the unwanted proliferation of scar tissue at that location.
U.S. patent application Ser. No. 09/772,693 by R. E. Fischell, et al, filed on Jan. 1, 2001 describes various means and methods to reduce scar tissue formation resulting from a surgical procedure. However, this patent application does not describe a cytostatic anti-proliferative surgical wrap that is placed around some human tissue where there is a risk of formation of scar tissue. Although several companies have developed products (such as sheets of biodegradable mesh, gels, foams and barrier membranes of various materials) that can be placed between these structures to reduce the tissue growth, none are entirely effective.
U.S. Pat. No. 5,795,286 describes the use of a beta emitting radioisotope placed onto a sheet of material to reduce scar tissue formation by means of irradiation of the local tissue.. Although radioisotopes may be effective at preventing cellular proliferation associated with adhesions, the limited shelf life and safety issues associated with radioisotopes make them less than ideal for this purpose.
Recent publications (Transcatheter Cardiovascular Therapeutics 2001 Abstracts) report a greatly reduced cellular proliferation and reduced restenosis within angioplasty injured arteries when vascular stents used for recannalization are coated with a cytostatic anti-proliferative drug such as Rapamycin (sirolmus), Actinomycin-D or Taxol. However, these drugs have never been used for reducing cellular proliferation at the site of a surgical procedure.
In U.S. Pat. No. 6,063,396, P. J. Kelleher describes the use of highly toxic, antimitotic drugs such as ricin, anthracycline, daunomycin, mitomycin C and doxorubin for reducing scar tissue formation and for wound healing. However, he makes no mention of any cytostatic anti-proliferative drug such as sirolimus or similar acting compounds.
In U.S. Pat. No. 5,981,568 Kunz et al describe the use of certain cytostatic agents that are used to inhibit or reduce restenosis of an artery that is treated from inside that artery. However, Kunz et al does not address the problem of restenosis at an anastamosis which is the surgical connection of two blood vessels. Kunz et al also fails to consider the drug sirolimus or its functional analogs as the drug to be applied for reducing cellular proliferation that can result in scar tissue formation or adhesions.
One embodiment of this invention is a device consisting of cytostatic anti-proliferative drug impregnated into, coated onto or placed onto a material sheet or mesh designed to be placed generally around human tissue that has been surgically joined or surgically treated; the goal being the prevention of formation of excess post-operative scar tissue. A drug that is impregnated into a suture or gauze-like material or sheet or coated onto the material or joined to the material by adhesion and/or capillary action is defined herein as a drug “attached” to a suture or mesh or sheet This suture, mesh or gauze onto which the drug is attached may be either a permanent implant or it may be biodegradable. The drug can be attached to an existing product such as the Johnson & Johnson SURGICEL™ absorbable hemostat gauze-like sheet or a Vicryl mesh product. With a cytostatic anti-proliferative drug such as sirolimus or its functional analogs which have a known effect on proliferating cells, the drug released from the biodegradable mesh would decrease cellular proliferation and hence be a deterrent to the. formation of excess scar tissue at the surgical site.
It is also envisioned that a cytostatic anti-proliferative drug could be attached to surgical suture material. This suture/drug combination could be used (for example) to join together two blood vessels; i.e., an anastomosis, with the attached drug causing a reduction in cellular proliferation in the vicinity where the sutures penetrate through the wall of the vessel. A suture material with a cytostatic, antiproliferative drug attached that decreases scar tissue formation would also be useful for sutures in the skin, particularly for plastic surgery. A very important application would be for sutures that are required for eye surgery where reduced scar tissue formation is very much needed. It should be understood that the suture material could be either soluble or insoluble and could be used for any application for which sutures are used.
Still another embodiment of the present invention is a cytostatic anti-proliferative drug coated onto a surgical staple thus reducing scar tissue around that staple.
In addition to applying the cytostatic anti-proliferative drug at the surgical site by means of a device to which the cytostatic anti-proliferative drug is attached, it is also envisioned to apply the cytostatic anti-proliferative drug systemically by any one or more of the well known means for introducing a drug into a human subject. For example, a cytostatic anti-proliferative drug could be systemically applied by oral ingestion, by a transdermal patch, by a cream or ointment applied to the skin, by inhalation or by a suppository. Any of these methods being a systemic application of a cytostatic anti-proliferative drug. It should be understood that such a drug could be applied systemically starting at least one day prior to a surgical procedure but could be started as long as 5 days prior to a surgical procedure. Furthermore, the drug could be applied for a period of at least one day after the procedure and for some cases as long as 60 days. It should be understood that a cytostatic anti-proliferative drug could be given systemically without using any of the devices described herein. It should be understood that the cytostatic anti-proliferative drug could be given systemically in addition to the application of a cytostatic anti-proliferative drug attached to any one or more of the devices described herein. It should also be understood that an optimum result might be obtained with using one cytostatic anti-proliferative drug attached to a device with a second and/or third drug being used for systemic administration. The dose of the drug(s) would, of course, depend on the cytostatic anti-proliferative drug that was used and the characteristics of the patient such as his/her weight.
The optimal result in reducing scar tissue formation will be obtained if the cytostatic anti-proliferative drug that is used is both cytostatic and anti-inflammatory. Sirolimus and its functional analogs are therefore the ideal cytostatic anti-proliferative drugs for this application. Cytotoxic drugs such as Taxol, though they are anti-proliferative, are not nearly as efficient as cytostatic drugs such as sirolimus for reducing scar tissue formation resulting from a surgical procedure. Therefore, this invention involves only the use of cytostatic drugs that are slowly released to reduce the formation of scar tissue following a surgical procedure. These drugs are attached to devices/meshes/sheets/gels in such a way that the drugs slowly elute (for a time of at least one day) from the material onto which they are attached. In describing this invention, the use of the terms “mesh” or “sheet” or “gel” shall mean the same thing (i.e., a material to which or into which a cytostatic drug is attached) and these words will be used interchangeably. The present invention ideally utilizes those cytostatic drugs, such as sirolimus or Everolimus, that interfere with the initiation of mitosis by means of interaction with TOR protein complex formation and cyclin signaling. These drugs prevent the initiation of DNA replication by acting on cells in close proximity to the mesh from which the drug slowly elutes as very early. cell cycle mitosis inhibitors that act at or before the S-phase of cellular mitosis.
Thus it is an object of this invention to have a sheet of material that can be placed into or wrapped generally around some human tissue at the site of a surgical procedure, the material having a cytostatic anti-proliferative drug attached for reducing scar tissue formation at the site of the surgical procedure.
Another object of this invention to have a sheet of material that can be wrapped around a blood vessel, a ureter, a bile duct, a fallopian tube, or any other vessel of the human body at the site of a surgically created anastamosis, the material having a cytostatic anti-proliferative drug attached to reduce scar tissue formation that can result in a narrowing of the vessel or duct at the site of anastamosis.
Still another object of this invention is to have a biodegradable sheet of material or mesh suitable for placement between body tissues including an attached drug that elutes slowly from the sheet of material to prevent cellular proliferation associated with post-surgical adhesions and/or scar tissue formation.
Still another object of the invention is to have a suture material or surgical staple to which a cyt6static anti-proliferative drug is attached.
Still another object of this invention is to have the cytostatic anti-proliferative drug be sirolimus or a fuinctionally equivalent cytostatic and anti-inflammatory drug.
Still another object of the invention is to employ a device placed into the body of a human subject, which device has an attached cytostatic anti-proliferative drug, plus using the same or a different cytostatic anti-proliferative drug as a medication to be applied systemically to the human subject from some time prior to a surgical procedure and/or for some time after that procedure in order to reduce excessive post-surgical scar tissue formation.
These and other objects and advantages of this invention will become obvious to a person of ordinary skill in this art upon reading of the detailed description of this invention including the associated drawings.
The anti-proliferative drugs that are less suitable for this purpose include cytotoxic cancer drugs such as Taxol, Actinomycin-D, Alkeran, Cytoxan, Leukeran, Cis-platinum, BiCNU, Adriamycin, Doxorubicin, Cerubidine, Idamycin, Mithracin, Mutamycin, Fluorouracil, Methotrexate, Thoguanine, Toxotere, Etoposide, Vincristine, Irinotecan, Hycamptin, Matulane, Vumon, Hexalin, Hydroxyurea, Gemzar, Oncovin and Etophophos. The optimum drugs for this purpose do include cytostatic drugs such as sirolimus, anti-sense to c-myc (Resten-NG), tacrolimus (FK506), Everolimus and any other analog of sirolimus including: SDZ-RAD, CCI-779, 7-epi-rapamycin, 7-thiomethyl-rapamycin, 7-epi-trinethoxyphenyl-rapamycin, 7-epi-thiomethyl-rapamycin, 7-demethoxy-rapamycin, 32-demethoxy, 2-desmethyl and proline.
Although a mesh has been discussed herein, more generally, a cytostatic anti-proliferative drug can be made to be part of any sheet of material that is or is not biodegradable, as long as the sheet of material is biocompatible. In any case, this material should gradually release the cytostatic anti-proliferative drug into the surrounding surgically injured tissue over a period from as short as a day to as long as a few months. The rate of release being controlled by the type of material into which the drug is placed. It is also envisioned that a polymer coating could be placed over the drug to slow the eluting of the drug into the surrounding tissue. Such polymer materials are well known in the field of slow release of medications, and one example is described in some detail in U.S. Pat. No. 6,143,037 by S. Goldstein et al. The effect of the cytostatic anti-proliferative drug that is attached to at least part of the sheet of material will decrease cellular proliferation and therefore decrease the formation of scar tissue and/or adhesions. Most importantly, such a mesh 10 wrapped around a vascular anastamosis would reduce the narrowing of that vessel which often occurs at the site of the anastamosis.
Another alternative embodiment of the invention is a suture material to which a cytostatic anti-proliferative drug is attached. A drawing of a highly enlarged cross section of such a suture would be shown by FIGS. 2 or 3. That is,
When cytostatic anti-proliferative sutures are used on the skin's surface, it should be understood that an ointment that includes a cytostatic anti-proliferative agent could be applied to the skin at the site of a surgical incision. The cytostatic anti-proliferative agent would be selected from the group that includes sirolimus, anti-sense to c-myc (Resten-NG), tacrolimus (FK506), Everolimus and any other analog of sirolimus including: SDZ-RAD, CCI-779, 7-epi-rapamycin, 7-thiomethyl-rapamycin, 7-epi-trimethoxyphenyl-rapamycin, 7-epi-thiomethyl-rapamycin, 7-demethoxy-rapamycin, 32-demethoxy, 2-desmethyl and proline.
If an arterio-venus fistula shunt is placed into the arm of a dialysis patient, then the same type of cytostatic anti-proliferative agent(s) as described above could be attached to that shunt device to increase the time during which the associated vein in the arm would remain patent. Ideally, the cytostatic anti-proliferative drug could be placed throughout the inner surface of the shunt or it could be placed near the ends where the shunt attaches to the vein or to the artery.
For any of the applications described herein, the systemic application of one or more of the cytostatic anti-proliferative agents that have been described could be used conjunctively to further minimize the creation of scar tissue.
Although only the use of certain cytostatic anti-proliferative agents has been discussed herein, it should be understood that other medications could be added to the cytostatic anti-proliferative drugs to provide an improved outcome for the patients. Specifically, for applications on the skin, an antiseptic, and/or anti-biotic, and/or analgesic, and/or anti-inflammatory agent could be added to a cytostatic anti-proliferative ointment to prevent infection and/or to decrease pain. These other agents could also be applied for any other use of the cytostatic anti-proliferative drugs that are described herein. It is further understood that any human subject in whom a cytostatic anti-proliferative agent is used plus at least one of the other drugs listed above could also benefit from the systemic administration of one or more cytostatic anti-proliferative agent that has been listed herein.
Various other modifications, adaptations, and alternative designs are of course possible in light of the above teachings. Therefore, it should be understood at this time that within the scope of the appended claims, the invention can be practiced otherwise than as specifically described herein.
Number | Date | Country | |
---|---|---|---|
Parent | 10072177 | Feb 2002 | US |
Child | 11585697 | Oct 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09772693 | Jan 2001 | US |
Child | 10072177 | Feb 2002 | US |
Parent | 09705999 | Nov 2000 | US |
Child | 09772693 | Jan 2001 | US |