Devices and methods for removal of acute blockages from blood vessels

Information

  • Patent Grant
  • 10357265
  • Patent Number
    10,357,265
  • Date Filed
    Wednesday, March 12, 2014
    10 years ago
  • Date Issued
    Tuesday, July 23, 2019
    5 years ago
Abstract
A clot retrieval device comprises an elongate shaft 104 and an expandable clot retrieval element 2101 on the shaft, the clot retrieval element comprising a framework formed from a substrate material such as Nitinol and having a plurality of struts 2105 and crowns 2102, at least some of the struts 2105 comprises at least one widened portion 2104 of the substrate material to provide enhanced radiopacity. The framework is coated with a radiopaque material such as gold. The device is rendered radiopaque with reduced damping effects.
Description
FIELD OF THE INVENTION

This invention relates to devices intended for removing acute blockages from blood vessels. The invention especially relates to means of rendering such devices visible under x-ray or fluoroscopy. Acute obstructions may include clot, misplaced devices, migrated devices, large emboli and the like. Thromboembolism occurs when part or all of a thrombus breaks away from the blood vessel wall. This clot (now called an embolus) is then carried in the direction of blood flow. An ischemic stroke may result if the clot lodges in the cerebral vasculature. A pulmonary embolism may result if the clot originates in the venous system or in the right side of the heart and lodges in a pulmonary artery or branch thereof. Clots may also develop and block vessels locally without being released in the form of an embolus—this mechanism is common in the formation of coronary blockages. The invention is particularly suited to removing clot from cerebral arteries in patients suffering acute ischemic stroke (AIS), from coronary native or graft vessels in patients suffering from myocardial infarction (MI), and from pulmonary arteries in patients suffering from pulmonary embolism (PE) and from other peripheral arterial and venous vessels in which clot is causing an occlusion.


BACKGROUND

Clot retrieval devices comprising a self-expanding Nitinol stent-like member disposed at the end of a long shaft are commonly used to remove clot from blood vessels, particularly from patients suffering from acute ischemic stroke. These devices are typically provided with small marker bands at either end of the self-expanding member which help to indicate the device's position. It would be very beneficial to a physician to be able to see the full expandable body of such a device under fluoroscopy, and thus receive visual information on the device's condition as rather than simply its position. Clot retrieval procedures are conducted under an x-ray field in order to allow the user visualise the anatomy and at a minimum the device position during a procedure. It is desirable, and enhances the user experience to be able to visualise the device state as well as position structure during a procedure, for example if the device is in an expanded configuration or a collapsed configuration. This means that the radiopaque sections must move closer to the device axis in a collapsed configuration and further from a device axis in an expanded configuration. It is generally desirable to make interventional devices such as clot retrieval devices more flexible and lower profile to improve deliverability in interventional procedures. This may be achieved by reducing the dimensions for device features, and the level of contrast seen under x-ray is generally reduced as the device dimensions are reduced. Radiopaque materials generally comprise noble metals such as gold, tantalum, tungsten, platinum, iridium and the like, and generally have poor elastic recovery from a strained condition and are therefore not optimal material for devices, particularly for the regions of these devices undergoing high strain in moving from a collapsed to an expanded state and vice versa. Radiopaque materials may be added through coating a structure comprising a highly recoverable elastic material such as Nitinol, but coating the entire structure has a dampening effect that inhibits device performance.


This invention overcomes limitations associated with the dampening effect of adding radiopaque material to an expandable clot retrieval device, while making the structure sufficiently radiopaque to allow full visualisation of the device condition as well as position.


STATEMENT OF THE INVENTION

Various devices and method are described in our PCT/IE2012/000011 which was published under the number WO2012/120490A. This PCT application claims the benefit of U.S. Provisional 61/450,810, filed Mar. 9, 2011 and U.S. Provisional 61/552,130 filed Oct. 27, 2011. The corresponding U.S. National stage is U.S. application Ser. No. 13/823,060 filed on Mar. 13, 2013. The entire contents of all of the above-listed applications are herein incorporated by reference.


This invention is particularly applicable to clot retrieval devices comprising expandable bodies made from a metallic framework. Such a framework might be a Nitinol framework of interconnected struts, formed by laser (or otherwise) cutting a tube or sheet of material, and may thus comprise a structure with a pattern of strut features and connector features. In some embodiments the clot retrieval device may comprise an inner expandable member and an outer expandable member, which may define a flow lumen through a clot and engage a clot.


In order to go from a collapsed to an expanded configuration, portions of the device undergo recoverable deformation and varying levels of strain. Some portions require a higher level of recoverable strain than others in order to work effectively. Where the framework or expandable member comprises a pattern of strut features and connector features, the struts typically comprise inflection regions or connection regions generally referred to as crowns, which typically experience higher strain than the struts or connectors when the device is collapsed or expanded.


The term detector is generally referred to as the part of the equipment which collects the beam for processing into useful images, and can include for example flat panel detectors or image intensifiers. X-ray beams are filtered through an anti-scatter grid during processing. This filters out scattered beams which deflect significantly from the trajectory of the source beam, and beams less significantly deflected off the original trajectory pass through the anti-scatter grid creating areas of overlap between non-scattered photon beams and scattered photon beams, referred to herein as shadow areas.


In an embodiment of this invention discrete markers are placed in low strain regions of the clot retrieval device members, and high strain regions comprise a super elastic material with little or no radiopaque material.


In use, it is desirable to maximise visibility and therefore maximise the area and volume of radiopaque markers located in the clot retrieval device. Increasing the ratio of radiopaque material to Nitinol generally improves radiopacity. For the effective operation of the device in moving between expanded and collapsed configurations, it is desirable to maintain a ratio of Nitinol to radiopaque material such that strain levels from an expanded to a collapsed configuration are substantially in the elastic region. This creates a conflict of requirements, and the solutions provided herein overcome this conflict.


Discrete markers placed in close proximity create overlapping shadow areas, referred to as intersection zones herein, which give the illusion under x-ray imaging of a continuous marker thereby providing fuller visual information to the user in an x-ray image.


Various embodiments of the invention are described in more detail below. Within these descriptions various terms for each portion of the devices may be interchangeably used. Each of the described embodiments are followed by a list of further qualifications (preceded by the word “wherein”) to describe even more detailed versions of the preceding headline embodiment. It is intended that any of these qualifications may be combined with any of the headline embodiments, but to maintain clarity and conciseness not all of the possible permutations have been listed.


According to the invention there is provided a clot retrieval device comprising an elongate shaft and an expandable clot engaging element on the shaft, the clot engaging element comprising a framework formed from a substrate material and having a plurality of struts and crowns, at least some of the struts comprising at least one widened portion of the substrate material to provide enhanced radiopacity.


In one embodiment the strut comprises a plurality of widened portions which are spaced-apart along a length of the strut.


The widened portion of the strut may be at least 50%, optionally at least 75%, optionally at least 100%, optionally at least 125%, optionally at least 150%, optionally at least 175%, optionally at least 200%, optionally at least 300% wider than the regions along the length of the strut between the widened portions.


The widened portions may have a length which is less than 100%, optionally less than 75%, optionally less than 50%, optionally less than 25% of the length of the regions of the strut between the widened portions.


The length of the regions of the strut between the widened portions may be greater than 300%, optionally greater than 400%, optionally greater than 500%, optionally greater than 600%, optionally greater than 700%, optionally greater than 800%, optionally greater than 900% of the width of the strut.


In one embodiment the clot engaging element is cut from a tube of uniform thickness.


In one embodiment wherein at least a portion of the framework is coated with a radiopaque material.


In one embodiment the substrate material is a superelastic material such as Nitinol or other super or pseudo elastic metallic alloy.


In one case the coating material is Gold, Tantalum, Tungsten, Platinum or an alloy of one of these elements or other dense element or alloy containing one or more radiodense elements.


In one embodiment the coating material comprises a polymer or adhesive filled with a dense or high atomic number material such as Barium Sulphate, Bismuth SubCarbonate, Barium OxyChloride, Gold, Tungsten, Platinum or Tantalum.


In one case the coating material is applied using an electroplating process, a dipping process, a plasma deposition process, an electrostatic process, a dip or spray coating process, a sputtering process, a soldering process, a cladding process or a drawing process.


The substrate material may have a density of less than 10 g/cm3, less than 8 g/cm3.


The coating material may have a density of more than 10 g/cm3, more than 15 g/cm3, more than 18 g/cm3.


One embodiment of a device of this invention comprises a clot retrieval device comprising an elongate shaft and an expandable section, the expandable section comprising a framework of interconnected strut elements, the connection region between adjacent strut elements comprising crown elements, said framework formed from a substrate material, at least a portion of a plurality of said strut elements coated with a coating material, and at least a portion of a plurality of said crown elements not coated with said coating material.


The substrate material may have a density of less than 10 g/cm3, less than 8 g/cm3.


The coating material may have a density of more than 10 g/cm3, more than 15 g/cm3, more than 18 g/cm3.


In one embodiment the substrate material is a superelastic material such as Nitinol or other super or pseudo elastic metallic alloy.


In one case the coating material is Gold, Tantalum, Tungsten, Platinum or an alloy of one of these elements or other dense element or alloy containing one or more radiodense elements.


In one embodiment the coating material comprises a polymer or adhesive filled with a dense or high atomic number material such as Barium Sulphate, Bismuth SubCarbonate, Barium OxyChloride, Gold, Tungsten, Platinum or Tantalum.


In one case the coating material is applied using an electroplating process, a dipping process, a plasma deposition process, an electrostatic process, a dip or spray coating process, a sputtering process, a soldering process, a cladding process or a drawing process.


Another aspect of this invention comprises a method of manufacturing the expandable body of a clot retrieval device, the expandable body comprising a substrate material and a coating material, the method comprising:

    • a first step of applying the coating material to the substrate material,
    • a second step of removing at least a portion of said coating material from at least one area of said substrate material,
    • and a third step of cutting away regions of both coating and substrate material to form an interconnected pattern of coated and uncoated regions.


In one embodiment the first step comprises an electroplating process, a dipping process, a plasma deposition process, an electrostatic process, a dip or spray coating process, a sputtering process, a soldering process, a cladding process or a drawing process.


In one case the second step comprises a grinding process, a polishing process, a buffing process, an etching process, a laser cutting or laser ablation process.


In one embodiment the third step comprises a laser cutting process, a wire cutting process, a water jet cutting process, a machining process or an etching process.


In one case the coating material is Gold, Tantalum, Tungsten, Platinum or an alloy of one of these elements or other dense element or alloy containing one or more radiodense elements.


In one embodiment the coating material comprises a polymer or adhesive filled with a dense or high atomic number material such as Barium Sulphate, Bismuth SubCarbonate, Barium OxyChloride, Gold, Tungsten, Platinum or Tantalum.


In one case the substrate material comprises Nitinol, or an alloy of Nitinol or another super or pseudo elastic alloy.


In one embodiment the interconnected pattern comprises a plurality of strut elements and connector elements.


In one case the interconnected pattern of the clot retrieval device comprises an expanded state and a collapsed state.


In one embodiment the second step removes at least a portion of the coating from those areas of the interconnected pattern which experience the highest strain in moving from the expanded state to the collapsed state, and/or from the collapsed state to the expanded state.


In one case the strut elements terminate in crown elements.


In one embodiment the second step removes some or all of the coating from the crown elements.


In one case the second step removes some or all of the coating from discrete sections of the strut elements; in one embodiment these discrete sections comprising stripes across the width of the struts.


Another embodiment of a device of this invention comprises a clot retrieval device comprising an elongate shaft and an expandable section, the expandable section formed from a substrate material, at least a portion of the substrate material coated with a first coating material and at least a portion of the first coating material coated with a second coating material.


In one case the substrate material is a superelastic material such as Nitinol or other super or pseudo elastic metallic alloy.


In one embodiment the first coating material is Gold, Tantalum, Tungsten, Platinum or an alloy of one of these elements or other dense element or alloy containing one or more radiodense elements.


In one case the first coating material is applied by a plasma deposition process, an electrostatic process, a dip or spray coating process, a sputtering process, a sputtering process using a cylindrical magnetron, a soldering process, a cladding process or a drawing process.


In one embodiment the first coating material comprises a porous or non-porous columnar structure.


In one case the first coating material comprises a porous columnar structure, comprising generally independent columns of the coating material which extend substantially perpendicularly to the substrate surface.


In one embodiment said columns have a first end and a second end, said first end being adjacent the substrate surface, and the spacing between the second ends of adjacent columns varying with deformation of the substrate material/expandable body.


In one case the second ends of the first coating material define an outer surface, and said outer surface is a rough surface.


In one embodiment the second coating material comprises a smooth surface, and/or a soft surface. In one case the second coating material is a polymeric material.


In one embodiment the elastic modulus of the second coating material is lower than that of the first coating material.


In one case the elastic modulus of the second coating material is lower than that of the substrate material.


In one embodiment the elastic modulus of the second coating material is less than 50% of that of the first coating material and/or substrate material.


In one case the elastic modulus of the second coating material is less than 40% of that of the first coating material and/or substrate material.


In one embodiment the elastic modulus of the second coating material is less than 30% of that of the first coating material and/or substrate material.


In one case the elastic modulus of the second coating material is less than 20% of that of the first coating material and/or substrate material.


In one embodiment the elastic modulus of the second coating material is less than 10% of that of the first coating material and/or substrate material.


In one case the second coating material is a hydrophilic material or a hydrogel.


In one embodiment the coefficient of friction of the first coating material is greater than 0.2, greater than 0.3, greater than 0.4, greater than 0.5.


In one embodiment the coefficient of friction of the second coating material is less than 0.2, less than 0.15, less than 0.1, less than 0.08.


Another embodiment of a device of this invention comprises a clot retrieval device comprising an elongate shaft and an expandable member, the expandable member comprising a proximal section, a body section and a distal section, the body section comprising a metallic framework of a first (or substrate) material, the metallic framework comprising a plurality of strut elements, said strut elements comprising an outer surface, an inner surface and side wall surfaces, at least one of said surfaces comprising a smooth surface and recessed features, at least some of said recessed features at least partially filled with a second (coating) material.


In one embodiment the recessed features comprise grooves or slots in the top surface of a strut element.


In one case the recessed features comprise holes in the top surface of a strut element.


In one embodiment the recessed features comprise holes through a strut element.


In one case the above holes are circular, or oblong, or square or rectangular.


In one embodiment the recessed features comprise grooves or slots in the side wall of a strut element.


In one case all of the recessed features are filled with the second (coating) material.


In one embodiment at least one of the smooth surfaces are coated with the second (coating) material.


In one case all of the smooth surfaces are coated with the second (coating) material.


In one embodiment the thickness of coating material in the recessed features is greater than the thickness of coating material on the smooth surfaces.


Another aspect of this invention comprises a method of manufacturing the expandable body of a clot retrieval device, the expandable body comprising a substrate material and a coating material, the method comprising: a first step of removing material from discrete areas of the substrate material to form recesses, a second step of applying the coating material to the substrate material and recesses, and a third step of removing some or all of the coating from the non-recessed areas of the substrate.


Another aspect of this invention comprises a method of applying a radiopaque coating to selective areas of the expandable body of a clot retrieval device, the method involving a masking material and comprising:

    • a first step of applying a masking material to selective areas of the expandable body,
    • a second step of applying a coating material to the expandable body,
    • and a third step of removing the masking material from the expandable body.


Another aspect of this invention comprises a method of manufacturing the expandable body of a clot retrieval device, the expandable body comprising a substrate material and a coating material, the method involving a masking material and comprising:

    • a first step of applying the masking material to the substrate material,
    • a second step of removing at least a portion of said masking material from at least one area of said substrate material,
    • a third step of cutting away regions of both masking and substrate material to form an expandable body with masked and unmasked regions,
    • a fourth step of applying a coating material to the expandable body, such that the coating material adheres to the unmasked areas but does not adhere to the masked areas of the expandable body,
    • and a fifth step of removing the masking material from the expandable body.


In one embodiment the fourth step comprises an electroplating process, a dipping process, a plasma deposition process, an electrostatic process, a dip or spray coating process, a sputtering process, a soldering process, a cladding process or a drawing process.


In one case the second step comprises a grinding process, a polishing process, a buffing process, an etching process, a laser cutting or laser ablation process.


In one case the third step comprises a laser cutting process, a wire cutting process, a water jet cutting process, a machining process or an etching process.


In one embodiment the coating material is Gold, Tantalum, Tungsten, Platinum or an alloy of one of these elements or other dense element or alloy containing one or more radiodense elements.


In one case the coating material comprises a polymer or adhesive filled with a dense or high atomic number material such as Barium Sulphate, Bismuth SubCarbonate, Barium OxyChloride, Gold, Tungsten, Platinum or Tantalum.


In one embodiment the substrate material comprises Nitinol, or an alloy of Nitinol or another super or pseudo elastic alloy.


In one case the expandable body comprises a plurality of strut elements and connector elements.


In one embodiment the expandable body of the Clot Retrieval device comprises an expanded state and a collapsed state.


In one case the third step results in the masking material being positioned on those areas of the expandable body which experience the highest strain in moving from the expanded state to the collapsed state, and/or from the collapsed state to the expanded state.


Another embodiment of a device of this invention comprises a clot retrieval device comprising an expandable body and an elongate shaft, the expandable body comprising a proximal section, a body section and a distal section, the body section comprising a framework of strut elements and at least one fibre assembly, the fibre assembly comprising a radiodense material.


In one embodiment the distal section comprises a clot capture scaffold.


In one case the clot capture scaffold comprises a net.


In one embodiment the fibre assembly comprises at least one fibre and at least one floating element, the floating element comprising a radiodense material.


In one case the fibre comprises a polymer monofilament, or plurality of polymer filaments.


In one embodiment the polymer filament is of LCP, Aramid, PEN, PET, or UHMWPE.


In one case the fibre comprises at least one metallic filament.


In one embodiment the metallic filament is a nitinol wire, or plurality of such wires.


In one case the metallic filament comprises a nitinol outer layer with an inner core of a radiodense material such as Gold, Platinum, Tantalum or Tungsten.


In one embodiment the floating element is a coil, a tube, or a bead.


In one case the material of the floating element comprises Gold, Tantalum, Tungsten, Platinum or an alloy of one of these elements or other dense element or alloy containing one or more radiodense elements.


In one embodiment the material of the floating element comprises a polymer filled with a dense and/or high atomic number material such as Barium Sulphate, Bismuth SubCarbonate, Barium OxyChloride or Tantalum.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side view of a clot retrieval device of the invention;



FIG. 2a is an isometric view of a portion of a clot retrieval device comprising standard material under x-ray imaging;



FIG. 2b is a representation of an x-ray image of FIG. 2a;



FIG. 2c is an isometric view of a portion of another clot retrieval device comprising a radiopaque material under x-ray imaging;



FIG. 2d is a representation of an x-ray image of FIG. 2c;



FIG. 3a is an isometric view of a portion of another clot retrieval device comprising standard material and radiopaque material under x-ray imaging;



FIG. 3b is a representation of an x-ray image of FIG. 3a;



FIG. 4a is a cross section view of a strut feature of a clot retrieval device comprising standard material and radiopaque material;



FIG. 4b is a representation of an x-ray image of FIG. 4a;



FIG. 5 schematically represents the resulting x-ray image from two adjacent shadow zones;



FIG. 6a is a cross section of a strut feature of a clot retrieval device comprising standard material and spaced apart radiopaque material features;



FIG. 6b is the a representation of an x-ray image from FIG. 6a;



FIG. 7a is an isometric view of a portion of a clot retrieval device;



FIG. 7b is a developed plan view of the portion of a clot retrieval device from FIG. 7a;



FIG. 8 is a developed plan view of a portion of another clot retrieval device;



FIG. 9 is a developed plan view of a portion of another clot retrieval device;



FIG. 10a is a view of a portion of a clot retrieval device;



FIG. 10b is a detail view of a region of the device shown in FIG. 10a;



FIG. 10c is an isometric view of the device shown in FIG. 10a;



FIG. 11 is an isometric view of a portion of a clot retrieval device;



FIG. 12 is an isometric view of a portion of a clot retrieval device;



FIG. 13a is an isometric view of a tube used to form a part of a clot retrieval device;



FIG. 13b is an isometric view of a tube used to form a part of a clot retrieval device;



FIG. 14 is an isometric view of a portion of a clot retrieval device;



FIG. 15 is an isometric view of a portion of a clot retrieval device;



FIG. 16 is an isometric view of a portion of a clot retrieval device;



FIG. 17a is a side view of an element of a clot retrieval device;



FIG. 17b is a view of the element shown in FIG. 17a in bending;



FIG. 18a is a side view of an element of a clot retrieval device;



FIG. 18b is a view of the element shown in FIG. 18a in bending;



FIG. 19a is a stress-strain curve of a material used in the construction of a clot retrieval device;



FIG. 19b is a stress-strain curve of another material used in the construction of a clot retrieval device;



FIG. 19c is a stress-strain curve of an element of a clot retrieval device;



FIG. 19d is a stress-strain curve of another element of a clot retrieval device;



FIG. 20a is a side view of part of a clot retrieval device;



FIG. 20b is a side view of part of a clot retrieval device;



FIG. 20c is a side view of part of a clot retrieval device;



FIG. 21a is an isometric view of part of a clot retrieval device;



FIG. 21b is a detail view of a region of the device of FIG. 21a;



FIG. 21c is a section through one embodiment of a part of FIG. 21a;



FIG. 21d is a section through another embodiment of a part of FIG. 21a;



FIG. 22 is a view of a portion of a clot retrieval device;



FIG. 23 is an isometric view of part of a clot retrieval device;



FIG. 24 is an isometric view of part of another clot retrieval device;



FIG. 25 is a cross sectional view of a portion of the device of FIG. 24; and



FIGS. 26 to 27 are enlarged views illustrating different profiles of corrugations or ribs.





DETAILED DESCRIPTION

Specific embodiments of the present invention are now described in detail with reference to the Figures, wherein identical reference numbers indicate identical or functionality similar elements. The terms “distal” or “proximal” are used in the following description with respect to a position or direction relative to the treating physician. “Distal” or “distally” are a position distant from or in a direction away from the physician. “Proximal” or “proximally” or “proximate” are a position near or in a direction toward the physician.


The following detailed description is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Although the description of the invention is in the context of treatment of intracranial arteries, the invention may also be used in other body passageways as previously described.



FIG. 1 is an isometric view of a clot retrieval device 100 with an inner expandable member 101 and outer member 102. In use, inner member 101 creates a flow channel through a clot and its freely expanded diameter is less than that of outer member 102. The inner and outer members are connected at their proximal ends to an elongate shaft 104, whose proximal end 105 extends outside of the patient in use. A distal fragment capture net 103 may be attached to the distal end of the device.


Positional visualization of this device may be provided by a proximal radiopaque coil 109 and distal radiopaque markers 108. User visualization of device 100 would be enhanced by providing visual information to the user on device expansion in a vessel or clot. This information may allow the user to visualise the profile of a clot and provide a fuller map of the luminal space created upon device deployment. As the device is withdrawn, the user will see the device response as it tracks through the anatomy with clot incorporated. It is therefore desirable to add radiopaque materials to outer member 102 and/or to inner tubular member 101 to provide the highest quality information to the user. One of the challenges with incorporating radiopaque material in such a manner is the dampening effect such materials have on superelastic Nitinol. The inventions disclosed in this document facilitate incorporation of radiopaque material and therefore product visualization without compromising the superelastic response of the outer member or inner tubular member. It is intended that any of the designs and inventions disclosed may be adopted to enhance the radiopacity of a clot retrieval device such as shown in FIG. 1, or any clot retrieval device comprising an expandable body.


In the embodiment shown the radiopacity of the outer member is enhanced by the presence of radiopaque elements 107, which are attached to the outer member by supporting fibres 106. These fibres may be connected to the framework of the outer member by a variety of means, including threading the fibres through eyelets or attachment features. Radiopaque elements 107 may comprise tubes, beads or coils of a radiodense material such as Gold, Tungsten, Tantalum, Platinum or alloy containing these or other high atomic number elements. Polymer materials might also be employed, containing a radiopaque filler such as Barium Sulphate, Bismuth SubCarbonate, Barium OxyChloride or Tantalum.



FIG. 2a is an isometric view of a portion of a clot retrieval device 1001 with strut feature 1002 and crown feature 1007 comprising a superelastic material such as Nitinol. The portion of the clot retrieval device is shown is an expanded configuration. It can be appreciated that in the collapsed configuration, for clot retrieval device delivery, the struts 1002 may move to a position adjacent each other. During an interventional procedure, such as a neurothrombectomy procedure, the patient anatomy and device location in visualized with the aid of x-ray equipment such as a fluoroscope. Source x-ray beam 1003 originates at a photon beam source and targets device 1001. Partially scattered x-ray beam 1004 is the photon beam deflected by device 1001 which passes to detector 1008. Partially scattered x-ray beam generically refers to a photon beam which may be absorbed or scattered by a material (e.g. photoelectric absorption or Compton scattering). For materials, such as Nitinol that is relatively non-radiopaque relative to the treatment environment, source photon beams 1004 may pass through the device relatively uninterrupted, without being absorbed, changing trajectory, or without a significant wavelength change.



FIG. 2b is a representation of resulting image 1011 captured by detector 1008 in FIG. 2a. Low contrast image 1013 represents the outline of device 1012 under x-ray. Device 1012 may not be visible or barely visible if it comprises standard material such as Nitinol and/or if device strut feature dimensions are small enough to be below a detectable range. This is due to the level of scattering of the x-ray or photon beam being relatively uninterrupted by device 1012 relative to the tissue environment in which it is placed.



FIG. 2c is an isometric view of a portion of a clot retrieval device 1021 with strut feature 1022 and crown feature 1027 comprising a radiopaque material, or a superelastic material such as Nitinol fully covered with radiopaque material through a process such as electroplating or sputtering. Source x-ray beam 1023 is a source photon beam between and x-ray source and device 1021. Highly scattered x-ray beam 1025 is the photon beam between device 1001 and detector 1008. As an source x-ray beam 1023 passes through radiopaque materials, such as noble metals such as gold, platinum, and the like, the level of scattering of a beam is relatively much greater than the level of scattering of either an adjacent non-radiopaque device comprising Nitinol or relative to the treatment environment where source x-ray beams 1023 pass through relatively uninterrupted.



FIG. 2d is a representation of resulting image 1031 captured by detector 1028 in FIG. 2c. High contrast image 1034 represents the outline of device 1032 under x-ray. Device 1032 is highly visible as it comprises a radiopaque material or material combination such as Nitinol coated with a radiopaque material. This is due to the difference high level of scattering of the x-ray or photon beam, highly uninterrupted by device 1032 relative to the tissue environment in which it is placed.



FIG. 3a is an isometric view of a portion of a clot retrieval device 1041 with strut feature 1042 and crown feature 1047. The device structure substantially comprises superelastic Nitinol material, especially at crown feature 1047 where a high level of elastic recovery is desirable for effective device operation. Discrete radiopaque marker 1045 is located on strut feature 1042 as an example of a location on a structural feature of the device which deflects less and requires less elastic recovery than other features of the device, for example crown feature 1047. Several embodiments of devices incorporating discrete radiopaque marker 1045 are disclosed later. Source x-ray beam 1043 is used to image device 1041 and in this example a mixture of highly scattered x-ray beam 1046 and partially scattered x-ray beam 1044 reach detector 1048.



FIG. 3b is a representation of x-ray image 1051 of device 1052 captured by detector 1048 (FIG. 3a). Low contrast image 1053 represents areas of device 1041 in FIG. 3a comprising superelastic materials such as Nitinol and high contrast image 1054 represents the location of discrete radiopaque marker 1045 in FIG. 3a which interrupts the path of x-ray source beam 1043. Device 1052 is partially visible to the user as it comprises sections of a radiopaque material and non-radiopaque material. This is due to the difference level of scattering of the x-ray or photon beam, highly uninterrupted by discrete radiopaque marker 1045 relative to the tissue environment and strut feature 1042 and crown feature 1047 comprising superelastic material such as Nitinol which has a partially scattered x-ray beam.



FIG. 4a and FIG. 4b further represent the scattering of x-ray beams and interruption of beam patterns as they pass through a medical device such as a clot retrieval device. FIG. 4a is a cross section view of clot retrieval device 1061 comprising strut feature 1062 with discrete radiopaque marker 1065. Source x-ray beam 1063 passes through the device, and the photon beam reaches x-ray detector 1068 to image device 1061. The wavelength and trajectory of partially scattered photon beam 1066 passed through strut feature 1062 comprising nitinol material without significant disruption. The wavelength and trajectory of highly scattered photon beam 1066 passed through discrete radiopaque marker 1065 is significantly changed or absorbed by said discrete radiopaque marker.



FIG. 4b is an illustration of x-ray image 1071 with low contrast image 1074, high contrast image 1073, and shadow zone 1075. Shadow zone 1075 in FIG. 4b occurs as a result of a mixture of partially scattered photon beams 1064 and highly scattered photon beams 1066 reaching the same area of detector 1068 in FIG. 4a.



FIG. 5 is a graphical representation of an x-ray image resulting from of two adjacent shadow zones 1085 combining to create an intersection zone 1086.



FIG. 6a is a cross section view of a portion of a clot retrieval device 1091 with strut feature 1092 and a plurality of discrete radiopaque markers 1095. The device structure substantially comprises superelastic Nitinol material, especially strut feature 1092 and especially areas where a high level of elastic recovery is desirable for effective device operation such as crown features not shown in this drawing. A plurality of discrete radiopaque markers 1095 are located on strut feature 1092 as an example of a location on a structural feature of the device which deflects less and requires less elastic recovery than other features of the device. Source x-ray beam 1093 is used to image device 1091 and in this example a mixture of highly scattered x-ray beams 1096 and partially scattered x-ray beam 1094 reach detector 1098 after filtration through an anti-scatter grid.



FIG. 6b is a representation of x-ray image 1101 of device 1092 (FIG. 6a) captured by detector 1098 (FIG. 6a). Low contrast image 1104 represents areas of device 1091 in FIG. 6a comprising superelastic materials such as Nitinol and high contrast image 1104 represents the location of discrete radiopaque markers 1095 in FIG. 6a which interrupts the path of x-ray source beam 1043. Shadow Zone 1105 in FIG. 6a corresponds with, referring back to FIG. 6a, a location where a mixture of highly scattered x-ray beams 1096 and partially scattered x-ray beams 1094 reach the same location of x-ray detector 1098. Intersection zone 1106 in FIG. 6b represents a zone where, referring back to FIG. 6a, a mixture of highly scattered x-ray beams 1096 and partially scattered x-ray beams 1094 reach the same location of x-ray detector 1098 in a region where discrete radiopaque markers 1095 are located in relatively close proximity. The configuration has the advantage of creating the illusion for the user of a continuous marker under x-ray imaging, thereby providing fuller information on the geometry of the device.



FIG. 7a and FIG. 7b are respective isometric and developed plan views of a repeating pattern of clot retrieval device 1201, comprising strut features 1202 and crown features 1203. Clot retrieval device has an expanded configuration as shown in FIGS. 7a and 7b and a collapsed configuration for delivery. In the collapsed configuration areas of high strain, preferably high elastic strain, are concentrated at crown features 1203. Force is transmitted to crown features 1203 via structural strut features 1202. Low strain, preferably low elastic strain, regions are concentrated in strut features 1202.



FIG. 8 is a developed plan view of a portion of another clot retrieval device 1301, comprising strut features 1302 and crown features 1303. In this embodiment, discrete elongate radiopaque markers 1304 are located in strut features 1302, and undergo low levels of strain as clot retrieval device 1301 moves from a collapsed to an expanded configuration. As described previously, radiopaque markers generally comprise noble metals which have lower yield points and therefore reduced elastic recovery in contrast to a superelastic material such as Nitinol.



FIG. 9 is developed plan view of another clot retrieval device 1401 comprising crown features 1403, strut features 1402, discrete radiopaque markers 1404, and inter-marker strut region 1405. In this embodiment, limitations associated with conflicting requirements of highly recoverable elastic strain and incorporating radiopaque features to optimise visibility are overcome. The location of discrete radiopaque markers 1404 in low strain strut features 1402 away from high strain location crown features 1403 reduces overall plastic strain and spacing discrete radiopaque markers apart in a strut to create inter-marker strut regions 1405 further reduces accumulated plastic strain to optimise device operation, particularly in moving from a collapsed configuration to an expanded configuration and transmission of force by clot retrieval device 1401 in a radial direction, which is desirable for effective clot retrieval. Referring back to FIGS. 6a and 6b, it will be appreciated that spacing marker bands apart will provide high quality visual information to the user due as high contrast regions are created both from radiopaque markers and from combined shadow zones where radiopaque markers are located adjacent each other.



FIG. 10a is a sectioned plan view of a portion of partially coated clot retrieval device 1501 having crown feature 1510, uncoated strut feature 1516, and partially coated strut feature 1511 partially covered in a radiopaque coating 1515. The strut and crown features may comprise a highly elastic material such as Nitinol, and the radiopaque material may comprise noble metals such as gold or platinum or the like or a polymer material such as polyurethane, pebax, nylon, polyethylene, or the like, filled with radiopaque filler such as tungsten, barium sulphate, bismuth subcarbonate, bismuth oxychloride or the like or an adhesive filled with radiopaque filler. Strut features and crown features may comprise Nitinol material with strut sidewall recess feature 1512. In the example shown, strut sidewall recess feature comprises a series of grooves in the sidewall of the strut. Grooves may be incorporated in a sidewall using cutting process such as laser cutting or other cutting means of incorporated through mechanical abrasion, cutting, grinding, or selective chemical etching. Other recess features may be incorporated such as dimples, knurls, or highly roughened surface to achieve a non-planar, textured, or rough surface. The coating can be applied as a single step (a partially coated device is shown for illustration purposes) through a process such as electroplating, sputtering, dipping, spraying, cladding, physical deposition, or other means.



FIG. 10b is a detailed view of partially coated strut feature 1511 showing uncoated groove 1512 for illustration purposes on one side and coating 1515 on the other side. Device 1501 has strut sidewall recess feature 1512 and device 1501 is preferentially coated in these areas with thick coating section 1513 resulting, which is located in a low-strain area for effective operation. The elastic recovery dampening effect of coating material 1515 has less impact on low strain strut features. Crown feature 1510 has a thin coating 1514 and is less preferentially coated because of its non-recessed, non-textured, or smooth surface, so potential dampening effect of radiopaque coating is minimised in parts of the clot retrieval device 1501 features requiring more elastic recovery such as crown feature 1510.



FIG. 10c is a partially cut isometric view of clot retrieval device 1501. The device is shown with coating 1515 partially cut away for illustration purposes. Clot retrieval device 1501 has crown features 1510, uncoated strut feature 1516 with strut sidewall recess feature 1512 to promote thick coating layer 1513 in on low strain parts of the device and thin coating layer 1514 on high strain parts of the device.



FIG. 11 is an isometric view of a repeating cell of clot retrieval device 1601 comprising crown feature 1602 and strut feature 1603. Strut feature 1603 has top surface grooves 1604 to promote preferential radiopaque coating adherence now on the top surface in a similar manner to preferential coating deposition or adherence described previously.



FIG. 12 is an isometric view of a repeating cell of clot retrieval device 1701 comprising crown feature 1702 and strut feature 1703. Strut feature 1703 has top surface dimples 1704 to promote preferential radiopaque coating adherence on the top surface in a similar manner to preferential coating deposition or adherence described previously. Grooves 1604 or dimples 1704 in FIG. 11 and FIG. 12 respectively may be added through processing techniques such as laser ablation, laser cutting, mechanical abrasion such as grinding, mechanical deformation process such as knurling or indentation and the radiopaque covering described previously.



FIG. 13a is an isometric view of tubing 1801 comprising Nitinol material 1803 and radiopaque cladding 1802 comprising a radiopaque material such as a gold, platinum, iridium or tantalum. This material may be processed by means such as electroplating, sputtering, or a mechanical compression process such as crimping or drawing.



FIG. 13b is an isometric view of tubing 1806 with comprising Nitinol material 1803 and cladding 1302 comprising rings of radiopaque material, with intermittent gaps 1304 between cladding rings 1302. Tubing 1806 may be manufactured from applying a secondary process to tubing 1801 in FIG. 13a by removing annular sections of radiopaque material through a process such as laser ablation, laser cutting, or mechanical removal such as grinding or cutting for example on a lathe.



FIG. 14 is an isometric view of clot retrieval device 1901. Clot retrieval device 1901 may be constructed of tubing 1806 as shown in FIG. 13. Device 1901 may be made through a series of processing steps wherein tubing 1806 is cut to form strut and crown patterns, deburred, expanded and heat treated, and electropolished. Crown features 1903, which are areas requiring high elastic recovery, are located in areas in which cladding 1902 is absent, and strut feature 1904, which undergoes less strain and requiring less elastic recovery, is located in areas where cladding 1902 remains.



FIG. 15 is an isometric view of clot retrieval device 2001 with radiopaque material free crowns 2003 as in device 1901 of FIG. 14 but the spacing of cladding rings in device 2001 is such that strut 2004 also has clad-free areas 2005 to further promote elastic behaviour of strut feature 2004. In transitioning from collapsed configuration to expanded configuration or vice versa, areas of high strain are located at crown feature 2003 and elastic recovery is less of a requirement for strut features 2004. It may however by desirable in use, particularly if a device is required to conform to a tortuous vessel such in use, for strut feature 2004 to deflect in bending and recover elastically. Device 2001 with radiopaque-material-free areas 2005 has the advantage of facilitating more recoverable strain. Devices 2001 and 1901 may be manufactured from clad tubing 1806 and cutting a pattern whereby crown features and strut features are located in clad-free and clad areas respectively, they may also be constructed from tubing 1801 and cladding removed during or subsequent to the laser cutting process.



FIG. 16 is an isometric view of clot retrieval device 2101 comprising crown features 2102 and strut features 2105. In this case the clot engaging framework is formed for example by laser cutting from a tube of uniform wall thickness. Strut 2105 comprises widened strut sections 2104 and regular strut sections 2103, which respectively provide enhanced radiopacity and flexibility. Radiopacity of device 2101 is enhanced by the addition of widened strut sections 2104 in strut feature 2105. The increased material volume in the widened strut section 2104 blocks x-ray/photon beams in contrast to crown feature 2102 and regular strut section 2013 without compromising device flexibility performance.


A particular advantage of this design is that effective radiopacity may be achieved through the addition of a much lower volume of radiopaque material than would otherwise be possible. For example, if an endovascular medical device comprised a Nitinol strut of width and thickness of between 50 and 100 microns approximately, such a strut would typically be very difficult for a physician to see under fluoroscopy. If portions of such a strut were made wider as per sections 2104 of FIG. 16, these widened sections would create a greater surface area and might somewhat improve visibility under fluoroscopy. If such a strut with widened sections were coated with a radiopaque material (such as any of those previously mentioned) it could be rendered highly visible under fluoroscopy, and because of the greater surface area of the widened regions 2104, a lesser thickness of radiopaque coating would be needed to make such a device radiopaque than would be the case if the widened sections were absent. Thus a device with such widened strut features can be rendered radiopaque with significantly reduced adverse damping effects. The width of the widened sections will directly affect the resultant radiopacity of the device, and will ideally be greater than 150 microns, and more preferably greater than 200 microns. Thus the width of the widened sections will typically be greater than 1.5 times that of the strut, and preferably 2 or more times that of the strut. In order to minimize impact on the wrapped profile of the device the widened areas will be staggered on adjacent struts, so that they do not contact each other when the device is in the collapsed state. The shape of the widened sections may (in plan view) be circular or elliptical or square or rectangular or any shape that serves to increase the surface of the strut and hence increase visibility. In one embodiment a hole or eyelet is provided within the widened area, which could serve as an attachment point for another component, or simply serve to remove mass from the device and enhance flexibility. Any number of widened areas may be provided on a device or strut, but ideally two or more widened areas are provided so that visual information is provided to the observer of the condition as well as the position of the strut in question.


The widened portion of the strut may be at least 50%, optionally at least 75%, optionally at least 100%, optionally at least 125%, optionally at least 150%, optionally at least 175%, optionally at least 200%, optionally at least 300% wider than the regions along the length of the strut between the widened portions.


The widened portions may have a length which is less than 100%, optionally less than 75%, optionally less than 50%, optionally less than 25% of the length of the regions of the strut between the widened portions.


The length of the regions of the strut between the widened portions may be greater than 300%, optionally greater than 400%, optionally greater than 500%, optionally greater than 600%, optionally greater than 700%, optionally greater than 800%, optionally greater than 900% of the width of the strut.



FIG. 17a is a cross section of a structural element 2204 in a non-strained condition of clot retrieval device 2201 comprising Nitinol material, with radiopaque material coating 2202. Line 2203 represents a line or plane within structural element 2204 away from the neutral axis of bending.



FIG. 17b is a cross section of structural element 2204 in a strained configuration through a bending load.



FIG. 18a is a cross section of structural element 2304 of clot retrieval device 2301 comprising superelastic material such as Nitinol and discontinuous radiopaque coating 2302. Line 2303 is a reference line close to device surface away from the neutral axis of structural element 2304. In FIG. 18b, structural element 2304 is shown in the deformed or bent configuration with line 2303, which is between the neutral axis and the outer surface, representing a line or plane of constant strain. Discontinuous radiopaque coating 2302 may be deposited through means such as a sputter coating process, growing single crystals on the surface in a discrete fibre-like micro or nano-structure or columnar structure. Other means of achieving discontinuous radiopaque coating include micro-laser ablation of layers or mechanical separation such as slicing. One advantage of such a coating structure is that a high strain (or deformation) can be induced in the substrate material without a high strain being induced in the coating material. This is because the discrete micro-fibres or micro-columns from which the coating is composed have minimal connectivity between each other. Thus the outer ends of the micro-fibres or micro-columns simply move further apart when a convex bend is applied to the substrate material as shown in FIG. 18b. A smooth surface may subsequently be achieved on the device by coating with a polymer coating, such as a layer of Pebax for example, or Parylene, or a hydrophilic material and/or a hydrogel.


Deformation, such as the applied bending load shown in FIG. 17 by way of example, causes material to deform in tension along line 2203. For materials such as Nitinol, the stress-strain or force-deflection deformation generally follows a curve shown in FIG. 19a where material along line 2204 starts at point A in and follows the arrows to generate a typical flag-shaped stress-strain curve. Stress or force is shown on the y-axis and strain or deflection is shown along the x-axis of FIG. 19. When an applied load or deflection is removed, for nitinol, the load is reversed at point R and the material follows the unloading curve shown until it reaches point B. For a perfectly elastic of pseudoelastic material, point A and point B are coincident and there is no residual or plastic strain in the material, and therefore no permanent deformation.


Referring now to FIG. 19b, a pattern of stress-strain is shown which is more typical of a radiopaque material such as gold, where loading begins at point A and the stress-strain behaviour follows the loading pattern shown until the load is removed and the strain reduces to point B. Since point A and point B are not coincident, plastic or permanent deformation results, which is quantified as the distance between point B and point A. Considering the structural element 2201 comprising material such as Nitinol combined with radiopaque material such as Gold, the loading and unloading pattern is illustrated in FIG. 19c wherein load or strain is applied, and when the load is removed at point R, the internal material stress-strain response follows the curve from point R to point B. The combined material properties are such that plastic strain, defined by the distance between B and A along the x-axis, results. In this configuration the plastic strain is less than that of pure radiopaque material but more than that of pure Nitinol. The dampening effect on device recovery is generally not desirable for effective operation of clot retrieval device performance.



FIG. 19d is a stress-strain curve of structural element 2301 in bending, taking line 2303 as an example, where the device is loaded from point A to point R and when the load is removed the device unloads from point R to point B. The magnitude of plastic strain is reduced (reduced distance between point B and A when comparing FIGS. 19c and 19d) as the coating becomes more discontinuous, and approaches zero as the number of discontinuities increases.



FIG. 20a is a side view of clot retrieval device outer member 2401 comprising strut features 2402 and crown features 2403. Radiopaque filaments 2405 are connected between crown features or strut features to enhance device radiopacity. Radiopaque filaments are located along the outer circumference of clot retrieval device outer member 2401 in order to enhance fluoroscopic visualisation of the expanded or collapsed configuration of the device. The circumferential location of the filaments may also aid visualisation of device interaction with a clot during use. The filaments may run parallel to the axis of the device, or in a helical path from crown to crown, crown to strut, or strut to strut in order to maintain clot reception space 2406 for clot retrieval. Radiopaque filaments may comprise single of multiple strands of radiopaque wire such as tungsten, platinum/iridium or gold, or similar materials.



FIG. 20b is a side view of clot retrieval device outer member 2501 comprising strut features 2502 and crown features 2503. Filaments 2505 incorporating radiopaque beads 2506 are connected between crown features or strut features to enhance device radiopacity. Sequenced radiopaque beads 2505 along filaments 2505 do not contribute to the mechanical stiffness of the device or contribute to or detract from radial force in any way, and in a collapsed configuration wrap into inter-strut spaces in a versatile manner. The filaments may run parallel to the axis of the device, or in a helical path from crown to crown, crown to strut, or strut to strut in order to maintain clot reception space 2507 for clot retrieval as in FIG. 20a. While radiopaque beads are spaced apart to maintain beaded-filament flexibility, adjacent beads create the illusion of a continuous radiopaque member, providing high quality visual information to the user. Filaments may comprise high ultimate tensile strength monofilament or multifilament polymers such as UHMWPE, Kevlar, aramid, LCP, PEN or wire such as Nitinol and radiopaque beads may comprise polymer filled with radiopaque filler such as tungsten powder, barium sulphate, of solid radiopaque material such as gold or platinum.



FIG. 20c is a side view of clot retrieval device outer member 2601 comprising strut features 2602 and crown features 2603. Filaments 2605 are incorporated in device outer member 2601 in a similar matter detailed in FIG. 20b, with radiopaque coils 2608 located on filament 2605. Radiopaque coils may comprise wound wire such as platinum/iridium or platinum/tungsten or similar radiopaque wire wound into a spring-like coil structure. Filaments 2605 incorporating radiopaque coils 2608 maintain flexibility in bending so device performance characteristics such as flexibility, trackability, radial force, deliverability, etc. are not compromised.



FIG. 21a is an isometric view of clot retrieval device outer member 2701 comprising strut features 2702 and crown features 2703. An elongate radiopaque thread 2405 is incorporated in the structural elements, i.e. struts or crowns, of clot retrieval device outer member. Elongate radiopaque thread 2704 threads the perimeter of outer member 2704 to define the outer boundary of device in an axial and circumferential direction under fluoroscopic imaging. A plurality of radiopaque threads may be incorporated to further define the boundary of the outer member.



FIG. 21b illustrates a means of incorporating elongate thread 2804 in strut 2802 through eyelet 2805. Elongate radiopaque thread may be incorporated through other means such as surface adhesion.



FIG. 21c and FIG. 21d are cross section views of bifilar elongate radiopaque threads 2901 and 3001 respectively incorporated in outer member 2701 in FIG. 21a. Thread 2904 is a single material radiopaque thread such as platinum/iridium, platinum/tungsten, or gold. Thread 3001 in FIG. 21d comprises Nitinol outer material 3003 with inner radiopaque core such as a gold core. The coaxial configuration of radiopaque thread 3001 part retains the elasticity/elastic recovery, in particular at low strains, and has the advantage of contributing to the structural integrity of clot retrieval device 2701, for example it may be used to enhance the radial force of the device. The bifilar configuration of thread 2901 enhances radiopacity by increasing the effective area or volume of material scattering the x-ray field while maintaining good flexibility.



FIG. 22 is a plan view of clot retrieval device cell 3101 comprising structural strut 3102 and structural crown 3102 with radiopaque markers 3106 traversing cell 3101, connected via non-structural struts 3107. Non-structural struts 3107 are connected to structural struts 3102 at connection crown 3105, and have minimal structural integrity and therefore minimal contribution to the structural rigidity in bending and in the radial direction. The cell may comprise a Nitinol material with radiopaque markers incorporated in eyelets using a crimping process.



FIG. 23 is an isometric view of clot retrieval device cell 3201 comprising crown features 3203 and strut features 3202. A radiopaque filament 3204 is threaded through side holes 3205 in strut 3202. Side holes 3205 facilitate incorporation of radiopaque filament in inter-strut space, therefore not adding to the outer or inner profile of the device. Radiopaque filament may comprise radiopaque material, or polymer or wire monofilaments or yarns with radiopaque beads or coils described previously.



FIG. 24 is an isometric view of a portion of clot retrieval device 3301 comprising crown features 3303 and strut features 3302. Strut 3302 comprises thickened strut sections 3304 which provide enhanced radiopacity through the additional material volume and surface area provided. In one embodiment the device 3301 also compromises a radiopaque coating, which covers some or all of the outer surface of the device. This coating may be one of the various coatings previously described herein. In one preferred embodiment the clot retrieval device is made of Nitinol and the radiopaque coating is Gold. In the most preferred version of this embodiment the Gold coating is applied by a sputter coating or plasma deposition process, rather than by an electroplating process. A strike layer may be placed between the Gold radiopaque layer and the Nitinol to improve adhesion.


In the embodiment shown the sidewalls 3307 of struts 3302 and crown features 3303 are profiled with a corrugated shape 3305. This corrugated shape serves to increase the surface area of the device and helps to reduce the damping effect of the radiopaque coating on the recovery of the Nitinol device. When device 3301 is wrapped down for delivery, the struts and crowns deform and bend. As the struts bend the side walls either elongate or compress depending on whether they are in tension or compression. The strain induced by this elongation or compression can cause plastic deformation in the radiopaque coating if it is greater than the elastic strain limit of the material, which is typically less than 1%. However the corrugated surface has the effect of increasing the effective length of the side wall of the strut and thus reducing the effective strain on the radiopaque coating, so that the damping effect can be reduced or eliminated.



FIG. 25 shows one embodiment of a section view through strut 3302 of FIG. 24. Strut 3302 is comprised of a Nitinol core 3309 and a radiopaque coating 3308. In this embodiment the top surface 3306 of strut 3302 has a corrugated profile 3310, providing an additional damping reduction to that described for the side walls above.



FIGS. 26 and 27 show alternative corrugation profiles 3331 and 3351, which might be adopted in place of corrugations 3305 and 3310 shown in FIGS. 24 and 25.


Modification and additions can be made to the embodiments of the invention described herein without departing from the scope of the invention. For example, while the embodiments described herein refer to particular features, the invention includes embodiments having different combinations of features. The invention also includes embodiments that do not include all of the specific features described.


The invention is not limited to the embodiments hereinbefore described which may be varied in construction and detail.

Claims
  • 1. A clot retrieval device comprising an elongate shaft and an expandable clot engaging element on the shaft, the clot engaging element comprising a framework formed from a substrate material and having a plurality of sequentially spaced struts and crowns,wherein to provide enhanced radiopacity, each strut comprises a plurality of widened portions each separated by a narrower regular strut section, wherein each widened portion is at least 50% wider than the narrower regular strut section along a length of the strut between the widened portions.
  • 2. The clot retrieval device as claimed in claim 1 wherein the widened portion of the strut is at least 75%, at least 100%, at least 125%, at least 150%, at least 175%, at least 200%, at least 300% wider than the narrower regular strut section along a length of the strut between the widened portions.
  • 3. The clot retrieval device as claimed in claim 1 wherein the widened portions have a length which is less than 100%, less than 75%, less than 50%, less than 25% of a length of the narrower regular strut section.
  • 4. The clot retrieval device as claimed in claim 1 wherein the length of the regions of the strut between the widened portions is greater than 300%, greater than 400%, greater than 500%, greater than 600%, greater than 700%, greater than 800%, greater than 900% of the width of the strut.
  • 5. The clot retrieval device as claimed in claim 1 wherein the clot engaging element is cut from a tube of uniform thickness.
  • 6. The clot retrieval device as claimed in claim 1 wherein at least a portion of the framework is coated with a radiopaque material.
  • 7. The clot retrieval device as claimed in claim 6 wherein the coating material is Gold, Tantalum, Tungsten, Platinum or an alloy of one of these elements or other dense element or alloy containing one or more radiodense elements.
  • 8. The clot retrieval device as claimed in claim 6 wherein the coating material comprises a polymer or adhesive filled with a dense or high atomic number material such as Barium Sulphate, Bismuth SubCarbonate, Barium OxyChloride, Gold, Tungsten, Platinum or Tantalum.
  • 9. The clot retrieval device as claimed in claim 6 wherein the coating material is applied using an electroplating process, a dipping process, a plasma deposition process, an electrostatic process, a dip or spray coating process, a sputtering process, a soldering process, a cladding process or a drawing process.
  • 10. The clot retrieval device as claimed in claim 1 wherein the substrate material has a density of less than 10 g/cm3, optionally less than 8 g/cm3.
  • 11. The clot retrieval device as claimed in claim 1 wherein the substrate material is a superelastic material such as Nitinol or other super or pseudo elastic metallic alloy.
  • 12. A clot retrieval device comprising an elongate shaft and an expandable section, the expandable section comprising a framework of sequentially spaced strut elements and connections between the strut elements,the framework being formed from a substrate material,wherein to provide enhanced radiopacity, each strut element comprises a plurality of widened portions each separated by a narrower regular strut section, wherein each widened portion is at least 50% wider than the narrower regular strut section along a length of the strut between the widened portions.
  • 13. The clot retrieval device as claimed in claim 12 wherein the connections comprise crown elements.
  • 14. The clot retrieval device as claimed in claim 13 comprising a second coating on at least portion of the crown elements.
  • 15. The clot retrieval device as claimed in claim 13 comprising a first coating on the strut elements and a second coating on the crown elements.
  • 16. The clot retrieval device as claimed in claim 15 wherein the first and second coatings are of the same material.
  • 17. The clot retrieval device as claimed in claim 15 wherein the first and second coatings are of different materials.
  • 18. The clot retrieval device as claimed in claim 17 wherein at least a portion of the framework is coated with a radiopaque material such as gold.
  • 19. The clot retrieval device as claimed in claim 15 wherein the thickness of the first coating varies along a length of a strut element.
  • 20. The clot retrieval device as claimed in claim 12 comprising a first coating on at least portion of the strut elements.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a U.S. national phase entry under 35 U.S.C. § 371 of International PCT Application No. PCT/EP2014/054828, filed on Mar. 12, 2014, which claims priority to U.S. Provisional Application No. 61/784,940, filed on Mar. 14, 2013.

PCT Information
Filing Document Filing Date Country Kind
PCT/EP2014/054828 3/12/2014 WO 00
Publishing Document Publishing Date Country Kind
WO2014/140092 9/18/2014 WO A
US Referenced Citations (593)
Number Name Date Kind
4793348 Palmaz Dec 1988 A
4873978 Ginsburg Oct 1989 A
5011488 Ginsburg Apr 1991 A
5092839 Kipperman Mar 1992 A
5122136 Guglielmi et al. Jun 1992 A
5171233 Amplatz Dec 1992 A
5234437 Sepetka Aug 1993 A
5387219 Rappe Feb 1995 A
5387226 Miraki Feb 1995 A
5449372 Schmaltz Sep 1995 A
5538512 Zenzon et al. Jul 1996 A
5549626 Miller et al. Aug 1996 A
5558652 Henke Sep 1996 A
5609627 Goicoechea et al. Mar 1997 A
5624461 Mariant Apr 1997 A
5639277 Mariant Jun 1997 A
5645558 Horton Jul 1997 A
5658296 Bates Aug 1997 A
5695519 Summers et al. Dec 1997 A
5709704 Nott et al. Jan 1998 A
5713853 Clark Feb 1998 A
5769871 Mers Kelly Jun 1998 A
5779716 Cano Jul 1998 A
5810874 Lefebvre Sep 1998 A
5814064 Daniel et al. Sep 1998 A
5827304 Hart Oct 1998 A
5855598 Pinchuk Jan 1999 A
5893869 Barnhart et al. Apr 1999 A
5895398 Wensel Apr 1999 A
5897567 Ressemann Apr 1999 A
5904698 Thomas et al. May 1999 A
5911725 Boury Jun 1999 A
5935139 Bates Aug 1999 A
5947995 Samuels Sep 1999 A
6063113 Kavteladze et al. May 2000 A
6066149 Samson et al. May 2000 A
6066158 Engelson May 2000 A
6093196 Okada Jul 2000 A
6093199 Brown et al. Jul 2000 A
6096053 Bates Aug 2000 A
6099534 Bates Aug 2000 A
6102932 Kurz Aug 2000 A
6106548 Roubin et al. Aug 2000 A
6129739 Khosravi Oct 2000 A
6146404 Kim Nov 2000 A
6165194 Denardo Dec 2000 A
6165199 Barbut Dec 2000 A
6168604 Cano Jan 2001 B1
6174318 Bates et al. Jan 2001 B1
6179861 Khosravi Jan 2001 B1
6203561 Ramee Mar 2001 B1
6214026 Lepak Apr 2001 B1
6221006 Dubrul Apr 2001 B1
6238412 Dubrul May 2001 B1
6245087 Addis Jun 2001 B1
6251122 Tsukernik Jun 2001 B1
6254571 Hart Jul 2001 B1
6264663 Cano Jul 2001 B1
6312444 Barbut Nov 2001 B1
6325819 Pavenik et al. Dec 2001 B1
6336934 Gilson et al. Jan 2002 B1
6348056 Bates Feb 2002 B1
6350271 Kurz et al. Feb 2002 B1
6361545 Macoviak et al. Mar 2002 B1
6364895 Greenhalgh Apr 2002 B1
6383205 Samson et al. May 2002 B1
6383206 Gillick May 2002 B1
6402771 Palmer Jun 2002 B1
6416541 Denardo Jul 2002 B2
6425909 Dieck et al. Jul 2002 B1
6432122 Gilson et al. Aug 2002 B1
6436112 Wensel Aug 2002 B2
6458139 Palmer Oct 2002 B1
6485497 Wensel Nov 2002 B2
6485501 Green Nov 2002 B1
6485502 Don Michael Nov 2002 B2
6511492 Rosenbluth Jan 2003 B1
6530935 Wensel Mar 2003 B2
6530939 Hopkins Mar 2003 B1
6540768 Diaz et al. Apr 2003 B1
6544279 Hopkins Apr 2003 B1
6551341 Boylan et al. Apr 2003 B2
6551342 Shen et al. Apr 2003 B1
6575997 Palmer et al. Jun 2003 B1
6582448 Boyle Jun 2003 B1
6585756 Strecker Jul 2003 B1
6589265 Palmer et al. Jul 2003 B1
6592607 Palmer et al. Jul 2003 B1
6592616 Stack Jul 2003 B1
6602271 Adams Aug 2003 B2
6602272 Boylan et al. Aug 2003 B2
6610077 Hancock et al. Aug 2003 B1
6616679 Khosravi Sep 2003 B1
6632241 Hancock et al. Oct 2003 B1
6638245 Miller Oct 2003 B2
6638293 Makower et al. Oct 2003 B1
6641590 Palmer et al. Nov 2003 B1
6656218 Denardo et al. Dec 2003 B1
6660021 Palmer et al. Dec 2003 B1
6663650 Sepetka Dec 2003 B2
6673089 Yassour et al. Jan 2004 B1
6685722 Rosenbluth Feb 2004 B1
6692504 Kurz et al. Feb 2004 B2
6692508 Wensel Feb 2004 B2
6692509 Wensel Feb 2004 B2
6702782 Miller Mar 2004 B2
6712834 Yassour et al. Mar 2004 B2
6726701 Gilson et al. Apr 2004 B2
6730104 Sepetka May 2004 B1
6824545 Sepetka Nov 2004 B2
6855155 Denardo et al. Feb 2005 B2
6878163 Denardo et al. Apr 2005 B2
6890340 Duane May 2005 B2
6913612 Palmer Jul 2005 B2
6913618 Denardo et al. Jul 2005 B2
6953472 Palmer et al. Oct 2005 B2
6989019 Mazzocchi Jan 2006 B2
6989021 Bosma et al. Jan 2006 B2
6994718 Groothuis et al. Feb 2006 B2
7004954 Voss et al. Feb 2006 B1
7004955 Shen Feb 2006 B2
7004956 Palmer Feb 2006 B2
7008434 Kurz et al. Mar 2006 B2
7033376 Tsukernik Apr 2006 B2
7041116 Goto May 2006 B2
7048758 Boyle May 2006 B2
7058456 Pierce Jun 2006 B2
7063707 Bose Jun 2006 B2
7175655 Malaei Feb 2007 B1
7179273 Palmer et al. Feb 2007 B1
7220271 Clubb May 2007 B2
7229472 DePalma et al. Jun 2007 B2
7288112 Denardo et al. Oct 2007 B2
7306618 Demond Dec 2007 B2
7316692 Huffmaster Jan 2008 B2
7323001 Clubb Jan 2008 B2
7331976 McGuckin, Jr. et al. Feb 2008 B2
7344550 Carrison et al. Mar 2008 B2
7399308 Borillo et al. Jul 2008 B2
7410491 Hopkins Aug 2008 B2
7452496 Brady et al. Nov 2008 B2
7491215 Vale et al. Feb 2009 B2
7491216 Brady Feb 2009 B2
7510565 Gilson et al. Mar 2009 B2
7534252 Sepetka May 2009 B2
7556636 Mazzocchi Jul 2009 B2
7582111 Krolik et al. Sep 2009 B2
7594926 Linder Sep 2009 B2
7604649 McGuckin, Jr. et al. Oct 2009 B2
7618434 Santra Nov 2009 B2
7662165 Gilson et al. Feb 2010 B2
7670356 Mazzocchi Mar 2010 B2
7691121 Rosenbluth Apr 2010 B2
7691124 Balgobin Apr 2010 B2
7708770 Linder May 2010 B2
7736385 Agnew Jun 2010 B2
7766934 Pal Aug 2010 B2
7771452 Pal Aug 2010 B2
7780694 Palmer Aug 2010 B2
7828815 Mazzocchi Nov 2010 B2
7846176 Mazzocchi Nov 2010 B2
7846175 Bonnette et al. Dec 2010 B2
7850708 Pal Dec 2010 B2
7887560 Kusleika Feb 2011 B2
7901426 Gilson et al. Mar 2011 B2
7914549 Morsi Mar 2011 B2
7922732 Mazzocchi Apr 2011 B2
7927784 Simpson Apr 2011 B2
7931659 Bose et al. Apr 2011 B2
7998165 Huffmaster Aug 2011 B2
8002822 Glocker et al. Aug 2011 B2
8021379 Thompson et al. Sep 2011 B2
8021380 Thompson et al. Sep 2011 B2
8043326 Hancock et al. Oct 2011 B2
8048151 O'Brien et al. Nov 2011 B2
8052640 Fiorella et al. Nov 2011 B2
8057497 Raju et al. Nov 2011 B1
8066757 Ferrera et al. Nov 2011 B2
8070791 Ferrera et al. Dec 2011 B2
8088140 Ferrera et al. Jan 2012 B2
8100935 Rosenbluth et al. Jan 2012 B2
8109941 Richardson Feb 2012 B2
8118829 Carrison et al. Feb 2012 B2
8123769 Osborne Feb 2012 B2
8137377 Palmer et al. Mar 2012 B2
8142422 Makower et al. Mar 2012 B2
8142442 Palmer et al. Mar 2012 B2
8182508 Magnuson et al. May 2012 B2
8187298 Pal May 2012 B2
8246641 Osborne et al. Aug 2012 B2
8246672 Osborne et al. Aug 2012 B2
8252017 Paul, Jr. et al. Aug 2012 B2
8252018 Valaie Aug 2012 B2
8357178 Grandfield et al. Jan 2013 B2
8357179 Grandfield et al. Jan 2013 B2
8361095 Osborne Jan 2013 B2
8366663 Fiorella et al. Feb 2013 B2
8409215 Sepetka et al. Apr 2013 B2
8419748 Valaie Apr 2013 B2
8460312 Bose et al. Jun 2013 B2
8460313 Huffmaster Jun 2013 B2
8486104 Samson et al. Jul 2013 B2
8529596 Grandfield et al. Sep 2013 B2
8574262 Ferrera et al. Nov 2013 B2
8579915 French et al. Nov 2013 B2
8585713 Ferrera et al. Nov 2013 B2
8608761 Osborne et al. Dec 2013 B2
8679142 Slee et al. Mar 2014 B2
8696622 Fiorella et al. Apr 2014 B2
8702652 Fiorella et al. Apr 2014 B2
8702724 Olsen et al. Apr 2014 B2
8784434 Rosenbluth et al. Jul 2014 B2
8784441 Rosenbluth et al. Jul 2014 B2
8795305 Martin et al. Aug 2014 B2
8795317 Grandfield et al. Aug 2014 B2
8795345 Grandfield et al. Aug 2014 B2
8814925 Hilaire et al. Aug 2014 B2
8900265 Ulm, III Dec 2014 B1
8939991 Krolik et al. Jan 2015 B2
8945143 Ferrera et al. Feb 2015 B2
8945172 Ferrera et al. Feb 2015 B2
8968330 Rosenbluth et al. Mar 2015 B2
9039749 Shrivastava et al. May 2015 B2
9072537 Grandfield et al. Jul 2015 B2
9113936 Palmer et al. Aug 2015 B2
9119656 Bose et al. Sep 2015 B2
9138307 Valaie Sep 2015 B2
9155552 Ulm, III Oct 2015 B2
9161766 Slee et al. Oct 2015 B2
9173668 Ulm, III Nov 2015 B2
9186487 Dubrul et al. Nov 2015 B2
9198687 Fulkerson et al. Dec 2015 B2
9204887 Cully et al. Dec 2015 B2
9211132 Bowman Dec 2015 B2
9532792 Galdonik et al. Jan 2017 B2
9532873 Kelley Jan 2017 B2
9533344 Monetti et al. Jan 2017 B2
9539011 Chen et al. Jan 2017 B2
9539022 Bowman Jan 2017 B2
9539122 Burke et al. Jan 2017 B2
9539382 Nelson Jan 2017 B2
9549830 Bruszewski et al. Jan 2017 B2
9554805 Tompkins et al. Jan 2017 B2
9561125 Bowman et al. Feb 2017 B2
9572982 Burnes et al. Feb 2017 B2
9579484 Barnell Feb 2017 B2
9585642 Dinsmoor et al. Mar 2017 B2
9615832 Bose et al. Apr 2017 B2
9615951 Bennett et al. Apr 2017 B2
9622753 Cox Apr 2017 B2
9636115 Henry et al. May 2017 B2
9636439 Chu et al. May 2017 B2
9642675 Werneth et al. May 2017 B2
9655633 Leynov et al. May 2017 B2
9655645 Staunton May 2017 B2
9655989 Cruise et al. May 2017 B2
9662129 Galdonik et al. May 2017 B2
9662238 Dwork et al. May 2017 B2
9662425 Lilja et al. May 2017 B2
9668898 Wong Jun 2017 B2
9675477 Thompson Jun 2017 B2
9675782 Connolly Jun 2017 B2
9676022 Ensign Jun 2017 B2
9692557 Murphy Jun 2017 B2
9693852 Lam et al. Jul 2017 B2
9700262 Janik et al. Jul 2017 B2
9700399 Acosta-Acevedo Jul 2017 B2
9717421 Griswold et al. Aug 2017 B2
9717500 Tieu et al. Aug 2017 B2
9717502 Teoh et al. Aug 2017 B2
9724103 Cruise et al. Aug 2017 B2
9724526 Strother et al. Aug 2017 B2
9750565 Bloom et al. Sep 2017 B2
9757260 Greenan Sep 2017 B2
9764111 Gulachenski Sep 2017 B2
9770251 Bowman Sep 2017 B2
9770577 Li Sep 2017 B2
9775621 Tompkins et al. Oct 2017 B2
9775706 Peterson Oct 2017 B2
9775732 Khenansho Oct 2017 B2
9788800 Mayoras, Jr. Oct 2017 B2
9795391 Saatchi et al. Oct 2017 B2
9801980 Karino et al. Oct 2017 B2
9808599 Bowman Nov 2017 B2
9833252 Sepetka Dec 2017 B2
9833604 Lam Dec 2017 B2
9833625 Waldhauser et al. Dec 2017 B2
20010001315 Bates May 2001 A1
20010016755 Addis Aug 2001 A1
20010051810 Dubrul Dec 2001 A1
20020016609 Wensel Feb 2002 A1
20020022859 Hogendijk Feb 2002 A1
20020026211 Khosravi Feb 2002 A1
20020049468 Streeter et al. Apr 2002 A1
20020052620 Barbut May 2002 A1
20020068954 Foster Jun 2002 A1
20020072764 Sepetka Jun 2002 A1
20020082558 Samson Jun 2002 A1
20020091407 Zadno-Azizi et al. Jul 2002 A1
20020095171 Belef Jul 2002 A1
20020123765 Sepetka Sep 2002 A1
20020143362 Macoviak et al. Oct 2002 A1
20020156455 Barbut Oct 2002 A1
20020161393 Demond Oct 2002 A1
20020165576 Boyle et al. Nov 2002 A1
20020173819 Leeflang et al. Nov 2002 A1
20020188276 Evans Dec 2002 A1
20030004536 Boylan et al. Jan 2003 A1
20030004538 Secrest Jan 2003 A1
20030004542 Wensel Jan 2003 A1
20030009146 Muni Jan 2003 A1
20030009191 Wensel Jan 2003 A1
20030040772 Hyodoh et al. Feb 2003 A1
20030050663 Khachin Mar 2003 A1
20030125798 Martin Jul 2003 A1
20030144687 Brady et al. Jul 2003 A1
20030153943 Michael et al. Aug 2003 A1
20030153944 Phung Aug 2003 A1
20030163064 Vrba Aug 2003 A1
20030163158 White Aug 2003 A1
20030171769 Barbut Sep 2003 A1
20030176884 Berrada et al. Sep 2003 A1
20030195537 Dubrul Oct 2003 A1
20030195554 Shen Oct 2003 A1
20030199917 Knudson Oct 2003 A1
20030204202 Palmer Oct 2003 A1
20030212430 Bose Nov 2003 A1
20030236533 Wilson Dec 2003 A1
20040068288 Palmer et al. Apr 2004 A1
20040073243 Sepetka Apr 2004 A1
20040079429 Miller Apr 2004 A1
20040082962 Demarais et al. Apr 2004 A1
20040093065 Yachia et al. May 2004 A1
20040133231 Maitland Jul 2004 A1
20040138692 Phung Jul 2004 A1
20040153118 Clubb Aug 2004 A1
20050033348 Sepetka Feb 2005 A1
20050038447 Huffmaster Feb 2005 A1
20050038468 Panetta et al. Feb 2005 A1
20050049619 Sepetka Mar 2005 A1
20050049669 Jones Mar 2005 A1
20050049670 Jones et al. Mar 2005 A1
20050055033 Leslie et al. Mar 2005 A1
20050055047 Greenhalgh Mar 2005 A1
20050059995 Sepetka Mar 2005 A1
20050085849 Sepetka Apr 2005 A1
20050090857 Kusleika et al. Apr 2005 A1
20050125024 Sepetka Jun 2005 A1
20050171566 Kanamaru Aug 2005 A1
20050216030 Sepetka Sep 2005 A1
20050216050 Sepetka Sep 2005 A1
20050228417 Teitelbaum et al. Oct 2005 A1
20050267491 Kellett et al. Dec 2005 A1
20050288686 Sepetka Dec 2005 A1
20060009799 Kleshinski et al. Jan 2006 A1
20060058836 Bose Mar 2006 A1
20060058837 Bose Mar 2006 A1
20060058838 Bose Mar 2006 A1
20060064151 Guterman et al. Mar 2006 A1
20060149313 Arguello et al. Jul 2006 A1
20060155305 Freudenthal Jul 2006 A1
20060161187 Levine et al. Jul 2006 A1
20060195137 Sepetka Aug 2006 A1
20060224177 Finitsis Oct 2006 A1
20060224179 Kucharczyk Oct 2006 A1
20060229638 Abrams et al. Oct 2006 A1
20060282111 Morsi Dec 2006 A1
20060287701 Pal Dec 2006 A1
20070088383 Pal et al. Apr 2007 A1
20070156170 Hancock Jul 2007 A1
20070165170 Fukuda Jul 2007 A1
20070191866 Palmer et al. Aug 2007 A1
20070198028 Miloslavski Aug 2007 A1
20070198051 Clubb et al. Aug 2007 A1
20070198075 Levy Aug 2007 A1
20070208367 Fiorella Sep 2007 A1
20070208371 French Sep 2007 A1
20070225749 Martin Sep 2007 A1
20070244505 Gilson et al. Oct 2007 A1
20070270902 Slazas et al. Nov 2007 A1
20080045881 Teitelbaum et al. Feb 2008 A1
20080082107 Miller et al. Apr 2008 A1
20080086190 Ta Apr 2008 A1
20080091223 Pokorney Apr 2008 A1
20080109031 Sepetka May 2008 A1
20080109032 Sepetka May 2008 A1
20080119886 Greenhalgh et al. May 2008 A1
20080177296 Sepetka Jul 2008 A1
20080183197 Sepetka Jul 2008 A1
20080183198 Sepetka Jul 2008 A1
20080183205 Sepetka Jul 2008 A1
20080188876 Sepetka Aug 2008 A1
20080188885 Sepetka Aug 2008 A1
20080200946 Braun Aug 2008 A1
20080215077 Sepetka Sep 2008 A1
20080221600 Dieck et al. Sep 2008 A1
20080228209 DeMello et al. Sep 2008 A1
20080234706 Sepetka Sep 2008 A1
20080243170 Jenson Oct 2008 A1
20080255596 Jenson Oct 2008 A1
20080262528 Martin Oct 2008 A1
20080262532 Martin Oct 2008 A1
20080275488 Fleming Nov 2008 A1
20080275493 Farmiga Nov 2008 A1
20080312681 Ansel Dec 2008 A1
20090024157 Anukhin Jan 2009 A1
20090069828 Martin Mar 2009 A1
20090076539 Valaie Mar 2009 A1
20090105722 Fulkerson Apr 2009 A1
20090105737 Fulkerson Apr 2009 A1
20090281610 Parker Nov 2009 A1
20090292297 Ferrere Nov 2009 A1
20090292307 Razack Nov 2009 A1
20090299393 Martin Dec 2009 A1
20090306702 Miloslavski Dec 2009 A1
20100004607 Wilson et al. Jan 2010 A1
20100087908 Hilaire Apr 2010 A1
20100114017 Lenker May 2010 A1
20100125326 Kalstad May 2010 A1
20100125327 Agnew May 2010 A1
20100191272 Keating Jul 2010 A1
20100211094 Sargent, Jr. Aug 2010 A1
20100268264 Bonnett et al. Oct 2010 A1
20100268265 Krolik et al. Oct 2010 A1
20100318178 Rapaport et al. Dec 2010 A1
20100331949 Habib Dec 2010 A1
20110009875 Grandfield et al. Jan 2011 A1
20110009940 Grandfield et al. Jan 2011 A1
20110022149 Cox et al. Jan 2011 A1
20110054514 Arcand Mar 2011 A1
20110054516 Keegan Mar 2011 A1
20110060359 Hannes Mar 2011 A1
20110054504 Wolf et al. May 2011 A1
20110125181 Brady et al. May 2011 A1
20110152920 Eckhouse et al. Jun 2011 A1
20110160763 Ferrera et al. Jun 2011 A1
20110166586 Sepetka et al. Jul 2011 A1
20110196414 Porter et al. Aug 2011 A1
20110202088 Eckhouse et al. Aug 2011 A1
20110213403 Aboytes Sep 2011 A1
20110224707 Miloslavaski et al. Sep 2011 A1
20110276120 Gilson et al. Nov 2011 A1
20120041449 Eckhouse et al. Feb 2012 A1
20120041474 Eckhouse et al. Feb 2012 A1
20120059356 di Palma et al. Mar 2012 A1
20120089216 Rapaport et al. Apr 2012 A1
20120143237 Cam et al. Jun 2012 A1
20120150147 Leynov et al. Jun 2012 A1
20120165858 Eckhouse et al. Jun 2012 A1
20120165859 Eckhouse et al. Jun 2012 A1
20120277788 Cattaneo Nov 2012 A1
20120296362 Cam et al. Nov 2012 A1
20130030461 Marks et al. Jan 2013 A1
20130046330 McIntosh et al. Feb 2013 A1
20130046333 Jones et al. Feb 2013 A1
20130046334 Jones et al. Feb 2013 A1
20130116774 Strauss et al. May 2013 A1
20130144326 Brady et al. Jun 2013 A1
20130158592 Porter Jun 2013 A1
20130184739 Brady et al. Jul 2013 A1
20130197567 Brady et al. Aug 2013 A1
20130226146 Tekulve Aug 2013 A1
20130268050 Wilson et al. Oct 2013 A1
20130281788 Garrison Oct 2013 A1
20130325055 Eckhouse et al. Dec 2013 A1
20130325056 Eckhouse et al. Dec 2013 A1
20130345739 Brady et al. Dec 2013 A1
20140046359 Bowman et al. Feb 2014 A1
20140121672 Folk May 2014 A1
20140128905 Molaei May 2014 A1
20140180377 Bose et al. Jun 2014 A1
20140194919 Losordo et al. Jul 2014 A1
20140200608 Brady et al. Jul 2014 A1
20140236220 Inoue Aug 2014 A1
20140257362 Eidenschink Sep 2014 A1
20140276922 McLain et al. Sep 2014 A1
20140277079 Vale et al. Sep 2014 A1
20140309657 Ben-Ami Oct 2014 A1
20140309673 Dacuycuy et al. Oct 2014 A1
20140330302 Tekulve et al. Nov 2014 A1
20140343585 Ferrera et al. Nov 2014 A1
20140371769 Vale et al. Dec 2014 A1
20140371779 Vale et al. Dec 2014 A1
20140371780 Vale et al. Dec 2014 A1
20140372779 Wong et al. Dec 2014 A1
20140379023 Brady et al. Dec 2014 A1
20150018859 Quick et al. Jan 2015 A1
20150018860 Quick et al. Jan 2015 A1
20150080937 Davidson Mar 2015 A1
20150112376 Molaei et al. Apr 2015 A1
20150133990 Davidson May 2015 A1
20150164523 Brady et al. Jun 2015 A1
20150250497 Marks et al. Sep 2015 A1
20150257775 Gilvarry et al. Sep 2015 A1
20150297252 Miloslayski et al. Oct 2015 A1
20150313617 Grandfield et al. Nov 2015 A1
20150320431 Ulm, III Nov 2015 A1
20150352325 Quick Dec 2015 A1
20150359547 Vale et al. Dec 2015 A1
20150374391 Quick et al. Dec 2015 A1
20150374393 Brady et al. Dec 2015 A1
20150374479 Vale Dec 2015 A1
20160015402 Brady et al. Jan 2016 A1
20160022296 Brady et al. Jan 2016 A1
20160066921 Seifert et al. Mar 2016 A1
20160106448 Brady et al. Apr 2016 A1
20160106449 Brady et al. Apr 2016 A1
20160113663 Brady et al. Apr 2016 A1
20160113664 Brady et al. Apr 2016 A1
20160113665 Brady et al. Apr 2016 A1
20160120558 Brady et al. May 2016 A1
20160143653 Vale et al. May 2016 A1
20160192953 Brady et al. Jul 2016 A1
20160192954 Brady et al. Jul 2016 A1
20160192955 Brady et al. Jul 2016 A1
20160192956 Brady et al. Jul 2016 A1
20160256180 Vale et al. Sep 2016 A1
20160317168 Brady et al. Nov 2016 A1
20170007264 Cruise et al. Jan 2017 A1
20170007265 Guo et al. Jan 2017 A1
20170020670 Murray et al. Jan 2017 A1
20170020700 Bienvenu Jan 2017 A1
20170027640 Kunis et al. Feb 2017 A1
20170027692 Bonhoeffer Feb 2017 A1
20170027725 Argentine Feb 2017 A1
20170035436 Morita Feb 2017 A1
20170035567 Duffy Feb 2017 A1
20170042548 Lam Feb 2017 A1
20170049596 Schabert Feb 2017 A1
20170071737 Kelley Mar 2017 A1
20170072452 Monetti et al. Mar 2017 A1
20170079671 Morero Mar 2017 A1
20170079680 Bowman Mar 2017 A1
20170079766 Wang Mar 2017 A1
20170079767 Leon-Yip Mar 2017 A1
20170079812 Lam et al. Mar 2017 A1
20170079817 Sepetka Mar 2017 A1
20170079819 Pung et al. Mar 2017 A1
20170079820 Lam et al. Mar 2017 A1
20170086851 Wallace Mar 2017 A1
20170086996 Peterson et al. Mar 2017 A1
20170095259 Tompkins et al. Apr 2017 A1
20170100126 Bowman et al. Apr 2017 A1
20170100141 Morero et al. Apr 2017 A1
20170100143 Ryan M Granfield Apr 2017 A1
20170100183 Iaizzo Apr 2017 A1
20170113023 Steingisser et al. Apr 2017 A1
20170147765 Mehta May 2017 A1
20170151032 Loisel Jun 2017 A1
20170165062 Rothstein Jun 2017 A1
20170165065 Rothstein Jun 2017 A1
20170165454 Tuohy Jun 2017 A1
20170172581 Bose et al. Jun 2017 A1
20170172766 Vong et al. Jun 2017 A1
20170172772 Khenansho Jun 2017 A1
20170189033 Sepetka et al. Jul 2017 A1
20170189035 Porter Jul 2017 A1
20170215902 Leynov et al. Aug 2017 A1
20170216484 Cruise et al. Aug 2017 A1
20170224350 Shimizu et al. Aug 2017 A1
20170224355 Bowman et al. Aug 2017 A1
20170224467 Piccagli et al. Aug 2017 A1
20170224511 Dwork et al. Aug 2017 A1
20170224953 Tran et al. Aug 2017 A1
20170231749 Perkins et al. Aug 2017 A1
20170252064 Staunton Sep 2017 A1
20170265983 Lam et al. Sep 2017 A1
20170281192 Tieu et al. Oct 2017 A1
20170281331 Perkins et al. Oct 2017 A1
20170281344 Costello Oct 2017 A1
20170281909 Northrop et al. Oct 2017 A1
20170281912 Melder Oct 2017 A1
20170290593 Cruise et al. Oct 2017 A1
20170290654 Sethna Oct 2017 A1
20170296324 Argentine Oct 2017 A1
20170296325 Marrocco et al. Oct 2017 A1
20170303939 Greenhalgh Oct 2017 A1
20170303942 Greenhalgh et al. Oct 2017 A1
20170303947 Greenhalgh Oct 2017 A1
20170303948 Wallace et al. Oct 2017 A1
20170304041 Argentine Oct 2017 A1
20170304097 Corwin et al. Oct 2017 A1
20170304595 Nagasrinivasa Oct 2017 A1
20170312109 Le Nov 2017 A1
20170312484 Shipley et al. Nov 2017 A1
20170316561 Helm et al. Nov 2017 A1
20170319826 Bowman Nov 2017 A1
20170333228 Orth et al. Nov 2017 A1
20170333236 Greenan Nov 2017 A1
20170333678 Bowman Nov 2017 A1
20170340383 Bloom et al. Nov 2017 A1
20170348014 Wallace Dec 2017 A1
20170348514 Guyon et al. Dec 2017 A1
Foreign Referenced Citations (69)
Number Date Country
202009001951 Mar 2010 DE
102009056450 Jun 2011 DE
102010010849 Sep 2011 DE
10 2010 014778 Oct 2011 DE
102010024085 Dec 2011 DE
102011014586 Sep 2012 DE
2301450 Mar 2011 EP
2628455 Aug 2013 EP
H0919438 Jan 1997 JP
WO 9424926 Nov 1994 WO
WO 9727808 Aug 1997 WO
1997038631 Oct 1997 WO
WO 9920335 Apr 1999 WO
WO 9960933 Dec 1999 WO
WO 9956801 Apr 2000 WO
WO 0121077 Mar 2001 WO
WO 2004056275 Jul 2001 WO
WO 0202162 Jan 2002 WO
WO 0211627 Feb 2002 WO
WO 0243616 Jun 2002 WO
WO 02070061 Sep 2002 WO
WO 02094111 Nov 2002 WO
WO 03002006 Jan 2003 WO
WO 03030751 Apr 2003 WO
WO 03051448 Jun 2003 WO
WO 2004028571 Apr 2004 WO
2005000130 Jan 2005 WO
WO 2005027779 Mar 2005 WO
WO 2006021407 Mar 2006 WO
WO 2006031410 Mar 2006 WO
WO 2006107641 Oct 2006 WO
2006135823 Dec 2006 WO
WO 2007054307 May 2007 WO
WO 2007068424 Jun 2007 WO
WO 2008034615 Mar 2008 WO
2008051431 May 2008 WO
WO 2008131116 Oct 2008 WO
2009031338 Mar 2009 WO
WO 2009076482 Jun 2009 WO
WO 2009086482 Jul 2009 WO
2009105710 Aug 2009 WO
WO 2010010545 Jan 2010 WO
WO 2010046897 Apr 2010 WO
2010075565 Jul 2010 WO
2010102307 Sep 2010 WO
WO 2010146581 Dec 2010 WO
WO 2011013556 Feb 2011 WO
2011066961 Jun 2011 WO
2011082319 Jul 2011 WO
WO 2011095352 Aug 2011 WO
2011110316 Sep 2011 WO
WO 2012052982 Apr 2012 WO
2012064726 May 2012 WO
WO 2012081020 Jun 2012 WO
2012110619 Aug 2012 WO
2012120490 Sep 2012 WO
WO 2012120490 Sep 2012 WO
2013016435 Jan 2013 WO
2013072777 May 2013 WO
2013105099 Jul 2013 WO
WO 2013109756 Jul 2013 WO
2014081892 May 2014 WO
2014139845 Sep 2014 WO
2014169266 Oct 2014 WO
2014178198 Nov 2014 WO
2015061365 Apr 2015 WO
2015134625 Sep 2015 WO
2015179324 Nov 2015 WO
2016010995 Jan 2016 WO
Non-Patent Literature Citations (2)
Entry
US 6,348,062 B1, 02/2002, Hopkins (withdrawn)
International Search Report and Written Opinion of International Application No. PCT/EP2014/054828, dated Sep. 15, 2014 (17 pages).
Related Publications (1)
Number Date Country
20160015402 A1 Jan 2016 US
Provisional Applications (1)
Number Date Country
61784940 Mar 2013 US