Epilepsy is characterized by a tendency to recurrent seizures that can lead to loss of awareness, loss of consciousness, and/or disturbances of movement, autonomic function, sensation (including vision, hearing and taste), mood, and/or mental function. The mean prevalence of active epilepsy (i.e., continuing seizures or the need for treatment) in developed and undeveloped countries combined is estimated to be 7 per 1,000 of the general population, or approximately 40 million people worldwide. Studies in developed countries suggest an annual incidence of epilepsy of approximately 50 per 100,000 of the general population. However, in other literature it is suggested that in developing countries this figure is nearly double at 100 per 100,000 of general population.
Epilepsy is often but not always the result of underlying brain disease. Any type of brain disease can cause epilepsy, but not all patients with the same brain pathology will develop epilepsy. The cause of epilepsy cannot be determined in a number of patients; however, the most commonly accepted theory posits that it is the result of an imbalance of certain chemicals in the brain, e.g., neurotransmitters. Children and adolescents are more likely to have epilepsy of unknown or genetic origin. The older the patient, the more likely it is that the cause is an underlying brain disease such as a brain tumor or cerebrovascular disease.
Trauma and brain infection can cause epilepsy at any age, and in particular, account for the higher incidence rate in developing countries. For example, in Latin America, neurocysticercosis (cysts on the brain caused by tapeworm infection) is a common cause of epilepsy; in Africa, AIDS and its related infections, malaria and meningitis, are common causes; in India, AIDS, neurocysticercosis and tuberculosis, are common causes. Febrile illness of any kind, whether or not it involves the brain, can trigger seizures in vulnerable young children, which seizures are called febrile convulsions. About 5% of such children go on to develop epilepsy later in life. Furthermore, for any brain disease, only a proportion of sufferers will experience seizures as a symptom of that disease. It is, therefore, suspected that those who do experience such symptomatic seizures are more vulnerable for similar biochemical/neurotransmitter reasons.
Studies in both developed and developing countries have shown that up to significant percentage of newly diagnosed children and adults with epilepsy can be successfully treated (i.e., complete control of seizures for several years) with anti-epileptic drugs. After two to five years of successful treatment, drugs can be withdrawn in a large portion of the children and of adult patients without the patient experiencing relapses. However, up to 30% of patients are refractory to medication. There is evidence that the longer the history of epilepsy, the harder it is to control. The presence of an underlying brain disease typically results in a worse prognosis in terms of seizure control. Additionally, partial seizures, especially if associated with brain disease, are more difficult to control than generalized seizures.
Vagus nerve stimulation is currently used as a therapy for refractory epilepsy, and studies have suggested that such stimulation may also be an efficacious therapy for tremor, depression, obesity, and gastroesophageal reflux disease (GERD). Currently available vagus nerve stimulators require a significant surgical procedure for placement and create the possibility of generating scar tissue adjacent the vagus nerve. Additionally, the pulse generator is battery-powered, which battery needs to be changed periodically, and the pulse generator may be uncomfortable and cosmetically unpleasing as well.
Patients suffering from tremor and other symptoms may undergo surgery to lesion a part of the brain, which may afford some relief. However, a lesion is irreversible, and it may lead to side effects such as dysarthria or cognitive disturbances. Additionally, lesions generally yield effects on only one side (the contralateral side), and bilateral lesions are significantly more likely to produce side effects. Other surgical procedures, such as fetal tissue transplants, are costly and unproven.
Patients suffering from epilepsy may undergo surgery to remove a part of the brain in which the seizures are believed to arise, i.e., the seizure focus. However, in many patients a seizure focus cannot be identified, and in others the focus is in an area that cannot be removed without significant detrimental impact on the patient. For example, in temporal lobe epilepsy, patients may have a seizure focus in the hippocampi bilaterally. However, both hippocampi cannot be removed without devastating impacts on long-term memory. Other patients may have a seizure focus that lies adjacent to a critical area such as the speech center.
As mentioned above, vagus nerve stimulation (VNS) has been applied with some success in patients with refractory epilepsy. In the existing procedure, an implantable pulse generator (IPG) is implanted in the patient's thorax, and an electrode lead is routed from the IPG to the left vagus nerve in the neck. Helix-shaped stimulation and indifferent electrodes are attached directly to the vagus nerve via an invasive surgical process that requires the carotid sheath to be fully exposed and excised to gain access to the vagus nerve. Based on some reported studies, approximately 5-15% of patients undergoing VNS are seizure-free, and an additional 30-40% of patients have a greater than 50% reduction in seizure frequency. The remaining patients receive little or no benefit from the implantation of the stimulation system.
Drawbacks of available VNS, such as size (of internal and/or external components), discomfort, inconvenience, and/or complex, risky, and expensive surgical procedures, has generally confined their use to patients with severe symptoms and the capacity to finance a surgery with unknown outcomes. Some side effects of VNS include voice alterations, cough, pharyngitis, and dyspnea.
Thus, there remains a need for a reliable screening method to determine stimulation efficacy as well as methods of lead placement. The present disclosure overcomes one or more shortcomings in the art.
The present invention relates to a method of screening for efficacy of vagus nerve stimulation to determine whether vagus nerve stimulation has an impact on patient symptoms. In one aspect, the method includes placing at least one temporary electrode adjacent the vagus nerve and securing the temporary electrode in position adjacent the vagus nerve. The electrode is energized to stimulate at least a portion of the vagus nerve and the patient is monitored to determine the response to the stimulation of the vagus nerve and whether the stimulation had a beneficial effect on the patient. After the screening period is complete, the temporary electrode is removed from the patient. In one aspect, the temporary electrode is positioned on the patient's skin adjacent the vagus nerve and secured using adhesive. In an alternative aspect, at least one temporary electrode is positioned beneath the patient's skin.
In another aspect, the method of screening for efficacy of vagus nerve stimulation includes forming an opening in the patient's skin and positioning a temporary electrode beneath the skin of the patient. In one aspect, the method includes performing a blunt needle stick adjacent the carotid sheath of the patient. In one form, a portion of the electrode is imaged with imaging equipment to monitor its position in the patient. In a further aspect, contrast media is applied in the vascular system while positioning the electrode to more fully visualize the anatomic structures in relation to the electrode position. During the method, the temporary electrode is advanced along the carotid sheath substantially parallel to the vagus nerve and temporarily secure in position within the patient. In one form, the method includes advancing the electrode to a position along the exterior of the carotid sheath. In a further aspect, the electrode is positioned posterior to the vagus nerve and exterior to the carotid sheath. In another form, the method includes advancing the temporary electrode within the carotid sheath. In still a further aspect, lead wires extending from the temporary stimulation electrodes extend outside of the patient's skin and are connected to a stimulation control unit. In an alternative form, the temporary electrode is part of a self contained stimulation generator system and no lead wires extend outside of the patient's skin. After the screening period, the temporary electrode may be removed from the patient.
In still another aspect, the method of screening for efficacy of vagus nerve stimulation includes creating an incision above the clavicle and forming a pocket generally parallel to and outside of the carotid sheath of the patient. A temporary lead with electrodes is then inserted into the pocket with the electrodes positioned to engage at least a portion of the carotid sheath facing the vagus nerve. In one form, the method includes inserting the temporary lead into the patient in an insertion configuration and positioning the temporary lead electrodes to extend about at least a portion of the carotid sheath by deploying the temporary lead to a stimulating configuration adjacent the carotid sheath. In one aspect, the step of deploying includes orienting the electrodes toward the vagus nerve and positioning an antimigration and/or antirotation stabilization member associated with the lead to maintain the electrodes position adjacent the carotid sheath and directed toward the vagus nerve. In still a further aspect, lead wires extending from the temporary stimulation electrode extend outside of the patient's skin and are connected to a stimulation control unit. In an alternative form, the temporary electrode is part of a self contained stimulation generator system and no lead wires extend outside of the patient's skin.
In yet a further aspect, the present invention includes a kit for performing temporary trial stimulation of the vagus nerve to screen. In one form, the kit includes a base member having thereon one or more electrodes, the base member is configured for mechanical coupling to a releasable anchoring system that can be attached to the patient and be atraumatically removed from the patient. In one aspect, the releasable anchoring system can be manually removed from the patient without surgical access to the electrode. In still another aspect, a movable stabilization member is provided adjacent the one or more electrodes and acts to orient the electrodes toward the vagus nerve. In another aspect, the kit includes a retrieval instrument to move the stabilization member to a collapsed condition so the electrode may be removed from the patient.
In still a further aspect, the disclosure includes a method of screening for non-responding patients that are not responsive to vagus nerve stimulation therapies. In a further aspect, the method identifies the magnitude of the beneficial effect of patients' responsive vagus nerve stimulation.
Further aspects, forms, embodiments, objects, features, benefits, and advantages of the present invention shall become apparent from the detailed drawings and descriptions provided herein.
The above and other aspects of the present invention will be more apparent from the following more particular description thereof, presented in conjunction with the following drawings wherein:
For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments, or examples, illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any alterations and further modifications in the described embodiments, and any further applications of the principles of the invention as described herein are contemplated as would normally occur to one skilled in the art to which the invention relates.
In accordance with the teachings of the present disclosure and as discussed in more detail presently, screening for efficacy of electrical stimulation at one or more locations along the vagus nerve 100 and/or its branches is provided to evaluate the efficacy of permanent stimulation implantation to treat, control, and/or prevent epilepsy, metabolic disorders (including obesity), mood disorders (including depression and bipolar disorder), anxiety disorders (including generalized anxiety disorder and obsessive-compulsive disorder), chronic pain (including visceral pain, neuropathic pain and nociceptive pain), gastrointestinal disorders (including gastroesophageal reflux disease (GERD), fecal dysfunction, gastrointestinal ulcer, gastroparesis, and other gastrointestinal motility disorders), hypertension, cardiac disorders (including tachycardia, bradycardia, other arrhythmias, congestive heart failure, and angina pectoris), psychotic disorders (including schizophrenia), cognitive disorders, dementia (including Alzheimer's disease, Pick's disease, and multi-infarct dementia), eating disorders (including anorexia nervosa and bulimia), sleep disorders (including insomnia, hypersomnia, narcolepsy, and sleep apnea), endocrine disorders (including diabetes), movement disorders (including Parkinson's disease and essential tremor), and/or headache (including migraine and chronic daily headache). A temporary electrode may be positioned transdermally or percutaneously adjacent the vagus nerve. Although the drawings illustrate stimulation methods associated with the left vagus nerve, it is intended that similar trial and screening techniques can be applied bilaterally or separately to the right vagus nerve or any branches thereof to screen the patient for the intended beneficial result expected from permanent implantation of a stimulation electrode.
Trial stimulation of the vagus nerve may occur distal to (i.e., below) the superior cervical cardiac branch, or distal to both the superior cervical cardiac branch and the inferior cervical cardiac branch, and may, for instance, be applied to the left vagus nerve. Stimulation of the left vagus nerve distal to the superior cervical cardiac branch and/or the inferior cervical cardiac branch does not pose the cardiac risks that can be associated with vagus nerve stimulation applied proximal to one or both of these nerve branches. Alternatively, some patients may benefit from vagus nerve stimulation applied distal to the thoracic cardiac branch.
As used herein, trial stimulation screening of the vagus nerve may include stimulation of the vagus nerve and/or one or more of its branches. For instance, to relieve sleep disorders (such as insomnia, hypersomnia, narcolepsy, sleep apnea, and the like), the vagus nerve may be stimulated. More specifically, one or more of the pharyngeal branch of the vagus nerve, the superior laryngeal branch of the vagus nerve, the pharyngeal plexus (not shown), the left and/or right recurrent laryngeal branch of the vagus nerve, and/or other branches of the vagus nerve may be stimulated to relieve sleep disorders. As another example, the vagus nerve may be stimulated to relieve gastrointestinal disorders (such as including gastroesophageal reflux disease (GERD), fecal dysfunction, gastrointestinal ulcer, gastroparesis, and other gastrointestinal motility disorders). More specifically, one or more of the gastrointestinal branches of the vagus nerve, such as the anterior gastric branch of the anterior vagal trunk, the right gastric plexus, and/or the left gastric plexus may be stimulated to relieve gastrointestinal disorders. As yet another example, to relieve endocrine disorders (including diabetes), the vagus nerve may be stimulated. More specifically, one or more branches innervating the pancreas, such as the anterior superior and anterior inferior pancreaticoduodenal plexus, the posterior pancreaticoduodenal plexus (not shown), the inferior pancreaticoduodenal plexus, or the like may be stimulated to relieve endocrine disorders.
Referring now to
Referring now to
The electrode assembly 200 is utilized for vagus nerve trialing procedures in the following manner. Adhesive layer 212 is exposed and the healthcare provider positions the electrode array 210 to extend along the skin substantially in alignment with the carotid sheath. Pressure is applied to the electrode array 210 to cause adhesive layer 212 to releasable adhere to the patient's skin. The lead wires 220 are then coupled to the pulse generator 230 by connection through coupling 226. Once the electrode array has been positioned and anchored, the pulse generator is controlled to provide one or more pulse to the electrode array 210. The patient is monitored to determine if sufficient energy is reaching the vagus nerve to cause the desired stimulation. If not, the energy applied may be increased by controlling the pulse generator to create a higher energy output. In the alternative or in combination, the electrode array 210 may be removed from the patient and repositioned on the skin to better align the electrodes with the vagus nerve 100 positioned within the carotid sheath. Pressure may be applied to the electrode array 210 to cause the adhesive layer 212 to adhere to the skin to secure the array in position. Once sufficient energy is reaching the vagus nerve 100 to cause the desired stimulation, the screening method may proceed. If the patient has been monitored for seizure frequency and intensity to establish a baseline before attachment of the temporary electrodes, then the pulse generator may be started to begin stimulation. If no baseline for the patient is available, then the patient will be observed for an initial period to establish a seizure baseline. Once the baseline is established, the pulse generator will be controlled to deliver the desired stimulation.
The present disclosure contemplates use of several stimulation strategies depending on patient symptoms and professional judgment. In one aspect, the pulse generator is controlled to deliver constant stimulation to the electrode array 210 and thereby to the vagus nerve. In another strategy, the pulse generator is controlled to deliver intermittent pulses to the electrode array 220 to periodically stimulate the vagus nerve on a set schedule. In yet another strategy, the pulse generator delivers reactive pulse based on the sensed onset of a seizure. Still further, the pulse generator can be controlled manually by the patient or by an observer. Additionally, the method may include the attachment of one or more sensors to detect evidence, such as electrical signals, of the onset or occurrence of seizure activity. The sensed data is analyzed to determine the seizure onset or occurrence and the pulse generator is controlled in response to the sensed data to generate pulses to stimulate the vagus nerve. Regardless of the stimulation strategies utilized, the patient's response to vagus nerve stimulation is observed. The patient's seizure activity during one or more of the vagus nerve stimulation strategies is compared to the previously acquired baseline seizure activity. From this comparison, it can be determined whether the patient is likely to benefit from an implanted pulse generator electrically connected to leads fixed directly to the vagus nerve as shown in
Referring now to
A surgical procedure for implantation of the temporary electrode 310 will be explained with reference to
In still a further aspect, temporary electrode 310 may include a lubricious coating. The lubricious coating may help ease insertion of the electrode into the position shown in
In an alternative surgical approach, the procedure includes gaining percutaneous surgical access through opening 307 to the interior of the carotid sheath 104 as shown in
In still a further surgical approach for temporary lead placement, a small transverse incision a few centimeters above the clavicle is made in the patient's skin 101. Utilizing a blunt instrument or a finger, a pocket is formed between the interior of the patient's skin and the carotid sheath 104 to make room for a paddle electrode such as electrode 310. As shown in
Referring now to
Referring now to
Referring now to
Referring now to
As shown in
In still a further aspect, the wings 732 and 734 are formed of a resilient material. The wings are compressed in the delivery cannula 765 into a collapsed insertion configuration and resiliently expand to substantially the stabilizing configuration shape shown in
After placement of the temporary electrode assembly 730, various stimulation protocols can be utilized to screen the response of the patient to vagus nerve stimulation as described above. In a further exemplary method, the electrode is removed from the patient after a given trial period of screening. In one aspect, the electrode assembly is removed from the patient by pulling on the lead wire 750 to dislodge the electrodes and securing assembly. In an alternative approach, a tubular retrieval instrument, similar to delivery sheath 765, is advanced along the lead wire 750. As the end of the retrieval instrument engages the trailing tapers 736 and 738, the wings will be collapsed inside the retrieval instrument. Continued advancement of the tubular retrieval instrument toward the distal end 718′ of the lead will completely collapse the winged assembly and position it inside the retrieval instrument. After the wings are collapsed and inside the retrieval instrument, the instrument with included lead can be withdrawn from the patient.
If screening of vagus nerve stimulation during the trial period provided a beneficial effect, the method may further include placement of a permanent electrode assembly and an implantable pulse generator similar to the system of
Referring now to
Referring now to
In a further aspect of the present disclosure, capsules or microstimulators 600 or 600′ such as shown in
The following documents describe various features and details associated with the manufacture, operation, and use of BION implantable microstimulators, and are all incorporated herein by reference: U.S. Pat. Nos. 5,193,539; 5,193,540; 5,312,439; 5,324,316; 5,405,367; 6,051,017 and PCT Publications WO 98/37926; WO 98/43700; WO 98/43701.
As shown in
Certain configurations of implantable microstimulator 600 are sufficiently small to permit its placement adjacent to the structures to be stimulated. (As used herein, “adjacent” and “near” mean as close as reasonably possible to the target nerve, including touching or even being positioned within the target nerve, but in general, may be as far as about 150 mm from the target nerve.) A single microstimulator 600 may be implanted, or two or more microstimulators may be implanted to achieve greater stimulation of the nerve fibers, or for a longer period of time.
Capsule 616 of
Microstimulator 600 may be implanted with a surgical insertion tool specially designed for the purpose, or may be placed, for instance, via a small incision and through an insertion cannula as has been previously described above. Alternatively, device 600 may be implanted via conventional surgical methods, or may be inserted using other endoscopic or laparoscopic techniques. A more complicated surgical procedure may be required for sufficient access to a nerve or a portion of a nerve (e.g., nerve fibers surrounded by scar tissue, or more distal portions of the nerve) and/or for fixing the neurostimulator in place. As explained above, tether 640 may be included with capsule 616 to allow the temporary trialing electrode to be removed without gaining renewed surgical access to the stimulation site.
The external surfaces of stimulator 600 may advantageously be composed of biocompatible materials. Capsule 616 may be made of, for instance, glass, ceramic, or other material that provides a hermetic package that will exclude water vapor but permit passage of electromagnetic fields used to transmit data and/or power. Electrodes 610 and 612 may be made of a noble or refractory metal or compound, such as platinum, iridium, tantalum, titanium, titanium nitride, niobium, or alloys of any of these, in order to avoid corrosion or electrolysis which could damage the surrounding tissues and the device.
In certain embodiments of the present disclosure, microstimulator 600 comprises two, leadless electrodes. However, either or both electrodes 610 and 612 may alternatively be located at the ends of short, flexible leads as described in U.S. patent application Ser. No. 09/624,130, filed Jul. 24, 2000, which is incorporated herein by reference in its entirety. The use of such leads permits, among other things, electrical stimulation to be directed more locally to a specific nerve structure(s) a short distance from the surgical fixation of the bulk of the implantable stimulator 600, while allowing most elements of stimulator 600 to be located in a more surgically convenient site. This minimizes the distance traversed and the surgical planes crossed by the device and any lead(s). In most uses of this disclosure, the leads are no longer than about 150 mm.
Microstimulator contains, when necessary and/or desired, electronic circuitry 620 for receiving data and/or power from outside the body by inductive, radio-frequency (RF), or other electromagnetic coupling. In some embodiments, electronic circuitry 620 includes an inductive coil 614 for receiving and transmitting RF data and/or power, an integrated circuit (IC) chip for decoding and storing stimulation parameters and generating stimulation pulses (either intermittent or continuous), and additional discrete electronic components required to complete the electronic circuit functions, e.g. capacitor(s), resistor(s), coil(s), and the like.
Neurostimulator 600 includes, when necessary and/or desired, a programmable memory for storing a set(s) of data, stimulation, and control parameters. Among other things, memory may allow stimulation and control parameters to be adjusted to settings that are safe and efficacious with minimal discomfort for each individual. Specific parameters may provide therapeutic advantages for various medical conditions, their forms, and/or severity. For instance, some patients may respond favorably to intermittent stimulation, while others may require continuous stimulation to alleviate their symptoms.
In addition, stimulation parameters may be chosen to target specific neural populations and to exclude others, or to increase neural activity in specific neural populations and to decrease neural activity in others. For example, relatively low frequency neurostimulation (i.e., less than about 50 100 Hz) typically has an excitatory effect on surrounding neural tissue, leading to increased neural activity, whereas relatively high frequency neurostimulation (i.e., greater than about 50 100 Hz) may have an inhibitory effect, leading to decreased neural activity.
Some embodiments of implantable stimulator 600 also include a power source and/or power storage device 600. Possible power options for a stimulation device of the present disclosure, described in more detail below, include but are not limited to an external power source coupled to stimulator 600, e.g., via an RF link, a self-contained power source utilizing any suitable means of generation or storage of energy (e.g., a primary battery, a replenishable or rechargeable battery such as a lithium ion battery, an electrolytic capacitor, a super- or ultra-capacitor, or the like), and if the self-contained power source is replenishable or rechargeable, means of replenishing or recharging the power source (e.g., an RF link, an optical link, a thermal link, or other energy-coupling link).
According to certain embodiments of the present disclosure, a microstimulator operates independently. According to various embodiments of the present disclosure, a microstimulator operates in a coordinated manner with other microstimulator(s), other implanted device(s), or other device(s) external to the patient's body. For instance, a microstimulator may control or operate under the control of another implanted microstimulator(s), other implanted device(s), or other device(s) external to the patient's body. A microstimulator may communicate with other implanted microstimulators, other implanted devices, and/or devices external to a patient's body via, e.g., an RF link, an ultrasonic link, a thermal link, an optical link, or the like. Specifically, a microstimulator may communicate with an external remote control (e.g., patient and/or physician programmer) that is capable of sending commands and/or data to a microstimulator and that may also be capable of receiving commands and/or data from a microstimulator.
Applicants note that the procedures disclosed herein are merely exemplary and that the systems and methods disclosed herein may be utilized for numerous other medical processes and procedures. Although several selected embodiments have been illustrated and described in detail, it will be understood that they are exemplary, and that a variety of substitutions and alterations are possible without departing from the spirit and scope of the present invention, as defined by the following claims.