The presently disclosed subject matter relates generally to contactless communication devices configured to communicate with other devices and, more particularly, to contactless cards configured to selectively communicate different types of data and/or using different protocols to different types of other devices.
Contactless cards may be used for many purposes including for payment, access, or identification. For example, some types of contactless cards, including contactless credit cards, are configured to communicate with a payment terminal to transmit payment data when purchasing an item or making a payment. It may be advantageous to configure such payment contactless cards, including contactless credit cards, to also enable communication of identification data (or perform other authentication functions) with a mobile device or another computing device distinct from a payment transaction with a payment terminal, such as when a user is logging into an application on the mobile device to access a secured feature or payment function. Care should be taken, however, to distinguish between the different uses or functions of the contactless card and to limit the communications to only the data required for each use or function between the contactless card and the device.
Accordingly, the present disclosure is directed to embodiments of contactless cards, devices, and related methods configured to provide selective communications for improving data security of the communications when capable of communicating with different devices and/or for different functions.
Aspects of the disclosed technology include devices and methods for a card capable of selective communications with a plurality of device types. Consistent with the disclosed embodiments, certain methods may utilize one or more communicating devices (e.g., mobile device, point-of-sale terminal device) and one or more contactless devices (e.g., radio frequency identification (RFID) cards). A method may include a first connection established between a card and a first device. After a data format of the first connection is determined to be a first data format, a first application of the card transmits payment data. The method may further include a second connection established between the card and a second device. After a data format of the second connection is determined to be a second data format, a second application of the card transmits identification data.
In some embodiments, the first device is a point-of-sale device and the first data format corresponds to a EuroPay-MasterCard-Visa (EMV) data standard. According to some embodiments, the second device is a mobile device, and the second data format corresponds to a near field communication data exchange format (NDEF) data standard. In the disclosed embodiments, the method may further include the card communicating with the mobile device and/or the point-of-sale device by using near field communication (NFC). The card may have a radio frequency identification (RFID) chip. Communication between the card and the device may occur when the RFID chip of the card is within an NFC range of a digital reader. The card may receive, from the mobile device, one or more instructions to generate a digital signature. In response, the card may generate the digital signature. The digital signature may be generated using a private key of a key pair or other secret. The card may transmit the digital signature to the mobile device.
In some embodiments, a card may have an antenna, one or more processors, and a memory storing instructions along with a first application and a second application. The card may receive and/or transfer data to a communicating device. Optionally, the card may include a sensor configured to detect, in cooperation with the antenna, an input of the card from a communicating device. Regardless of how the card input of the card is received, the card may be configured to determine a format (e.g., a data format) of the input in response to detecting the input of the card. In some embodiments, a data format may be determined from the input itself, in other embodiments, a data format may be determined based on an identifier associated with the first or second application, or any other indicia from which the data format may be determined. In response to determining the data format is a EuroPay-MasterCard-Visa (EMV) data standard, the card may be configured to activate the first application. The first application may be configured to communicate, via NFC, payment data to the communicating device via the antenna based on the EMV data standard. In response to determining the data format is a NDEF data standard, the processor may activate the second application. The second application may be configured to communicate, via NFC, identification data to the communicating device via the antenna based on the NDEF standard. The card may be a contactless payment card, contactless identification card, or any device capable of transmitting data through an NFC standard and/or an EMV standard. The card may be configured to send only one of the payment data and the identification data to a single communicating device. The first application may be unable to access the identification data and the second application may be unable to access the payment data.
In some embodiments, the card may further include a radio frequency identification (RFID) chip. In those embodiments, the communicating device may be a mobile device. The second application may be configured to communicate with the mobile device using the NFC standard when the RFID chip is within an NFC range of a digital reader associated with the mobile device. The second application may also transmit a public key of a key pair of the card to the mobile device and receive, from the mobile device, one or more instructions to generate a digital signature. The second application may further generate the digital signature using a private key of the key pair of the card and transmit the digital signature to the mobile device.
In further embodiments, a card may have an antenna, a radio frequency identification (RFID) chip, one or more processors, and a memory having a first application and a second application. The sensor may be configured to detect an input of the card via the antenna. The first application may be configured to communicate with a first device based on a first format of the input. The second application may be configured to communicate with a second device based on a second format of the input. The card may be configured to prevent communication between the first application and the second application. The card may be a contactless payment, contactless identification card, or any device capable of transmitting data through an NDEF data standard and/or an EMV data standard. The first format may be a EuroPay-MasterCard-Visa (EMV) data standard. The card may be configured to communicate, by the first application and through the EMV data standard, with the first device, which may be a point-of-sale device. The card may be further configured to transmit payment data, by the first application, and to the point-of-sale device. The second format may be a NDEF data standard. The card may be configured to communicate, by the second application and through the NDEF data standard, with the second device, which may be a mobile device. The card may be further configured to transmit identification data, by the second application, and to the mobile device.
In some embodiments, the second application may be further configured to communicate with the mobile device using the NDEF data standard when the RFID chip is within an NFC range of a digital reader associated with the mobile device. The second application may also transmit a public key of a key pair of the card to the mobile device and receive, from the mobile device, one or more instructions to generate a digital signature. The second application may generate the digital signature using a private key of the key pair of the card and transmit the digital signature to the mobile device.
In an exemplary use case, a cardholder may seek to make a payment with his credit card (e.g., contactless payment card). The cardholder may present the card at a merchant where the card is tapped against a point-of-sale device. The card may determine the device type as being a point-of-sale device. Accordingly, the card may transmit, from an application according to a communication protocol associated with the point-of-sale device, only the payment data to the point-of-sale device. When the payment data is received by the point-of-sale device, the data is used to make a transaction authorization decision. In this instance, the payment is approved, and the cardholder is able to complete his purchase.
Further features of the disclosed design, and the advantages offered thereby, are explained in greater detail hereinafter with reference to specific example embodiments illustrated in the accompanying drawings, wherein like elements are indicated be like reference designators.
Reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and which are incorporated into and constitute a portion of this disclosure, illustrate various implementations and aspects of the disclosed technology and, together with the description, serve to explain the principles of the disclosed technology. In the drawings:
Some implementations of the disclosed technology will be described more fully with reference to the accompanying drawings. The disclosed technology may, however, be embodied in many different forms and should not be construed as limited to the implementations set forth herein. The components described hereinafter as making up various elements of the disclosed technology are intended to be illustrative and not restrictive. Many suitable components that would perform the same or similar functions as components described herein are intended to be embraced within the scope of the disclosed electronic devices and methods. Such other components not described herein may include, but are not limited to, for example, components developed after development of the disclosed technology.
It is also to be understood that the mention of one or more method steps does not preclude the presence of additional method steps or intervening method steps between those steps expressly identified.
Reference will now be made in detail to exemplary embodiments of the disclosed technology, examples of which are illustrated in the accompanying drawings and disclosed herein. Wherever convenient, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
In certain embodiments, the cards 120a and 120b may be configured to receive an input from a communicating device (e.g., mobile device 140, point-of-sale device 150). The input may include a request for data from the card 120a-b. The input may include a request to establish communication with the card 120a-b. The sensor 124 may detect the input, e.g., by detecting specific input sequences. In detecting the input, the sensor 124 may receive the input via the antenna 122. For example, in some embodiments, an application executing on mobile device 140 may communicate with a card 120 after a card reader of the mobile device is brought sufficiently near the card 120 so that NFC data transfer is enabled between the mobile device 140 and the card 120. For communications involving card contact, the contact plates of the EMV chip may be involved in detecting the input. Detecting the input in contactless card communications may involve the communications method defined in ISO 14443. The one or more processors 126 may determine a format (e.g., data format) of the input. For example, the format may be an NDEF data standard, a EuroPay-MasterCard-Visa (EMV) data standard, and/or the like. In some cases, the communication between the card 120a-b and the communicating device may be through application protocol data units (APDUs).
According to some example embodiments consistent with the present disclosure, communication with cards 120a and 120b may involve Application Protocol Data Units (APDUs). When an application is selected, specific APDU messages are exchanged. For example, in EMV, there are various certificate exchanges, and requests for signing transaction data. For RFID type applications, the application is selected, and then File select and then File read commands are sent.
In response to receiving data consistent with an EMV data standard, the one or more processors 126 may activate the first application 132. As a non-limiting example, the one or more processors 126 may include a state machine with various transitions governed by the outcome of authenticity tests at various states. If the received data is consistent with the EMV standard, the data will pass an authentication check for the EMV standard, and the state machine may move to a state where the first application 132 is activated. Activating the first application 132 may include initiating communication directly and/or indirectly between the first application 132 and the point-of-sale device 150. Once activated, the first application 132 may communicate, via NFC, payment data to the point-of-sale device 150. Payment data may include a cardholder's information (e.g., first name, last name, address), card information (e.g., card number, expiration date, security code), and/or details of the transaction (e.g., transaction amount, merchant name). In some embodiments, the first application 132 is configured for communicating payment data specifically to payment terminals or other point-of-sale devices based on the EMV standard. In some embodiments, the first application 132 (or an additional application) may communicate identification data using similar EMV based techniques to non-point-of-sale devices for identification or authentication purposes without initiating a payment transaction, as described for example, in U.S. patent application Ser. No. 16/135,954, filed Sep. 19, 2018 titled “System and Methods for Providing Card Interactions,” the contents of which are expressly incorporated by reference herein in its entirety.
In response to receiving data consistent with an NDEF data standard, the one or more processors 126 may activate the second application 134. As a non-limiting example, the one or more processors 126 may include a state machine with various transitions governed by the outcome of authenticity tests at various states. If the received data is consistent with the NDEF standard, the data will pass an authentication check for the NDEF standard, and the state machine may move to a state where the second application 134 is activated. In some embodiments, the received data may include a read request, such as an NFC read, of an NDEF tag, which may be created in accordance with the NDEF data standard. For example, a reader of the mobile device 140 may transmit a message, such as an applet select message, with an applet ID of an NDEF producing applet stored on the card 120. Processors 126 may thus determine that the form of the input is consistent with an NDEF request based on the applet ID or other indicia for example. Data consistent with an NDEF standard may be formatted in a modified form of Type Length Value (TLV) encoding with specific Type bytes encoding various parts of the NDEF message. NFC NDEF information is conveyed in a single NDEF message which can be broken into records. In some embodiments, each record may be further broken into multiple parts. Activating the second application 134 may include initiating communication directly and/or indirectly between the second application 134 and the mobile device 140. Once activated, the second application 134 may communicate, via NFC, identification data to the mobile device 140. Identification data may include any data used to verify or authenticate identity. For example, identification data may include a cryptogram or signature associated with the card 120. Further, identification data may, but need not include any actual identification information of the user. In some embodiments, identification data transmitted via NFC Data Exchange Format One True Pairing (NDEF OTP) may be used to validate an online transaction with an entered card number without requiring a merchant payment system for EMV.
In some embodiments, the card 120b may include a radio frequency identification (RFID) chip 136. The card 120a-b may communicate with the mobile device 140 when the card 120a-b is within an NFC range of a digital reader of the mobile device 140. More specifically, the second application 134 may communicate directly and/or indirectly with the mobile device 140. In some embodiments, communication may involve transmitting a public key of a key pair of the card 120b to the mobile device 140. The card 120b may receive from the mobile device 140 one or more instructions to generate a digital signature. Using a private key of the key pair of the card 120b, the second application 134 may generate the digital signature. The card 120b may transmit the digital signature to the mobile device 140, based on which card 120b (and/or its user) may be authenticated. In some embodiments, the card 120b may receive a request from the mobile device 140 (e.g. from an application on the mobile device configured to transmit the request) comprising an instruction to generate a cryptogram, from which the card 120b may be authenticated. For example, the cryptogram may be a message authentication code (MAC) cryptogram as described in U.S. patent application Ser. No. 16/205,119, filed on Nov. 29, 2018, titled “Systems and Methods for Cryptographic Authentication of Contactless Cards,” the contents of which are expressly incorporated by reference herein in its entirety.
The cards 120a-b may be configured to send only one of the payment data and the identification data to a single communicating device (e.g., mobile device 140, point-of-sale device 150). For example, cards 120a-b may isolate the payment data and the identification data from different applications (e.g., first and second applications 132 and 134). Accordingly, when the first application 132 is activated, a first set of data is available for transmission and when the second application 134 is activated, a second set of data is available for transmission. Further, the first application 132 may be unable to access the identification data and the second application may be unable to access the payment data. According to some embodiments, the cards 120a-b may transmit only payment data or only identification data based on a request from point-of-sale device 150 or mobile device 140, respectively.
Turning to the mobile device 140, in some embodiments, the mobile device 140 may include a digital card reader and/or one or more applications. The mobile device 140 may be configured to transmit an input to the card 120a-b. The input may provide data indicative of a particular data exchange format. For example, the data may be consistent with data transmitted in an EMV data standard, an NDEF data standard, and/or other comparable data exchange standards. For example, the mobile device 140 may communicate, via NFC, and based on the NDEF data standard with the second application 134. The mobile device 140 may receive identification data from the card 120a-b. The mobile device 140 may receive a public key of a key pair of the card 120b. In response, the mobile device 140 may transmit one or more instructions to generate a digital signature to the card 120b. The mobile device 140 may receive the generated digital signature from the card 120b.
The point-of-sale device 150 may include one or more of a monitor, one or more processors, and a digital reader capable of performing NFC. The point-of-sale device 150 may communicate, via NFC and based on the EMV data standard, with the first application 132. The point-of-sale device 150 may receive payment data from the card 120a-b.
At 216, the mobile device 140 may send a second input to the card 120a. The antenna 122 receives the second input. The input may be indicative of a data format (e.g., an NDEF data standard). At 218, the antenna 122 may communicate the second input to the sensor 124. The sensor 124 detects the second input at 220 (e.g., by differentiating the input from noise), and communicates the existence of the second input with the processor 126 at 221. Detecting the input may involve deciphering the input from the mobile device 140 such that the data format is at least recognized by the card 120a. At 222, the processor(s) 126 may determine the format of the input. At 224, in response to determining that the format is consistent with a contactless NDEF data standard, the processor 126 activates the second application 134. Activating the second application 134 may involve establishing communication between the processor(s) 126 and the second application 134. Further, the processor(s) 126 may communicate the input and/or the data format to the second application 134. At 226, the second application 134 may communicate the identification data, for output, to the antenna 122. At 228, the antenna 122 transmits the identification data the mobile device 140.
In an example scenario, a customer or user is seeking to pay a merchant who is using a smartphone (e.g., mobile device 140) equipped with a digital reader. The customer taps his credit card (e.g., 120a-b) against the merchant's smartphone such that NFC communication is established. The smartphone may be equipped with a payment application requiring both identification data and payment data in order to process a transaction. The credit card receives an input from the smartphone. The input includes data consistent with an NDEF data standard. Responsive to determining data consistent with the NDEF data standard, the credit card transmits identification data to the smartphone. The smartphone verifies the cardholder's identity and then sends a second input consistent with an EMV data standard. After determining the EMV data standard, the credit card transmits payment data to the smartphone. The smartphone verifies the payment information and completes the transaction.
At 308, a second connection between the card 120a-b and the second device (e.g., mobile device 140) is established. Establishing a second connection between the card 120a-b and the mobile device 140 may involve bringing the card 120a-b within an NFC range of a digital reader of the mobile device 140. Establishing a second connection may further involve receipt of an input by the card 120a-b from the mobile device 140. At 310, the data format of the second connection may be determined by the processor 126. The data format of the second connection may be consistent with an EMV data standard, an NDEF data standard, or another data standard capable of transmitting data via an NFC. Here, the processor 126 determines the data format of the second connection is consistent with an NDEF data standard. At 312, in response to determining the data format is consistent with an NDEF data standard, the card 120a-b transmits the identification data to the mobile device 140. In some embodiments, the second application 134 may output, for transmission, the identification data to the mobile device 140.
The computer system 500 includes a processing device 502, a main memory 504 (e.g., read-only memory (ROM), flash memory, dynamic random-access memory (DRAM) such as synchronous DRAM (SDRAM), etc.), a static memory 506 (e.g., flash memory, static random-access memory (SRAM), etc.), and a secondary memory 516 (e.g., a data storage device), which communicate with each other via a bus 508.
The processing device 502 represents one or more general-purpose processing devices such as a microprocessor, a microcontroller, a central processing unit, or the like. As non-limiting examples, the processing device 502 may be a reduced instruction set computing (RISC) microcontroller, a complex instruction set computing (CISC) microprocessor, a RISC microprocessor, very long instruction word (VLIW) microprocessor, a processor implementing other instruction sets, or one or more processors implementing a combination of instruction sets. The processing device 502 may also be one or more special-purpose processing devices such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), network processor, or the like. The processing device 502 is configured to execute the operations for electronically creating and trading derivative products based on one or more indices relating to volatility.
The computer system 500 may further include a network interface device 522, which is connectable to a network 530. The computer system 500 also may include a video display unit 510, i.e., a display (e.g., a liquid crystal display (LCD), a touch screen, or a cathode ray tube (CRT)), an alphanumeric input device 512 (e.g., a keyboard), a cursor control device 514 (e.g., a mouse), and a signal generation device 520 (e.g., a speaker).
The secondary memory 516 may include a non-transitory storage medium 524 on which is stored one or more sets of instructions 526 for the computer system 500 representing any one or more of the methodologies or functions described herein. For example, the instructions 526 may include instructions for implementing an asset tracking device including a power source and power management system or subsystem for a container or a trailer. The instructions 526 for the computer system 500 may also reside, completely or at least partially, within the main memory 504 and/or within the processing device 502 during execution thereof by the computer system 500, the main memory 504 and the processing device 502 also constituting computer-readable storage media.
While the storage medium 524 is shown in an example to be a single medium, the term “storage medium” should be taken to include a single medium or multiple media that store the one or more sets of instructions for a processing device. The term “storage medium” shall also be taken to include any medium that is capable of storing or encoding a set of instructions for execution by the machine that cause the machine to perform any one or more of the methodologies of the disclosure. The term “storage medium” shall accordingly be taken to include, but not be limited to, solid-state memories, and optical and magnetic media.
Throughout the specification and the claims, the following terms take at least the meanings explicitly associated herein, unless the context clearly dictates otherwise. The term “or” is intended to mean an inclusive “or.” Further, the terms “a,” “an,” and “the” are intended to mean one or more unless specified otherwise or clear from the context to be directed to a singular form.
In this description, numerous specific details have been set forth. It is to be understood, however, that implementations of the disclosed technology may be practiced without these specific details. In other instances, well-known methods, structures and techniques have not been shown in detail in order not to obscure an understanding of this description. References to “one embodiment,” “an embodiment,” “some embodiments,” “example embodiment,” “various embodiments,” “one implementation,” “an implementation,” “example implementation,” “various implementations,” “some implementations,” etc., indicate that the implementation(s) of the disclosed technology so described may include a particular feature, structure, or characteristic, but not every implementation necessarily includes the particular feature, structure, or characteristic. Further, repeated use of the phrase “in one implementation” does not necessarily refer to the same implementation, although it may.
As used herein, unless otherwise specified the use of the ordinal adjectives “first,” “second,” “third,” etc., to describe a common object, merely indicate that different instances of like objects are being referred to, and are not intended to imply that the objects so described must be in a given sequence, either temporally, spatially, in ranking, or in any other manner.
While certain implementations of the disclosed technology have been described in connection with what is presently considered to be the most practical and various implementations, it is to be understood that the disclosed technology is not to be limited to the disclosed implementations, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
This written description uses examples to disclose certain implementations of the disclosed technology, including the best mode, and also to enable any person skilled in the art to practice certain implementations of the disclosed technology, including making and using any devices or systems and performing any incorporated methods. The patentable scope of certain implementations of the disclosed technology is defined in the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
The following example use cases describe examples of particular implementations of a cardholder using a contactless card for selective communication. These examples are intended solely for explanatory purposes and not limitation. In one case, a cardholder seeks to pay a merchant for items purchased at the merchant's store. When the merchant rings up the item on the register (e.g., point-of-sale device 150), a total is presented to the cardholder. The cardholder takes his credit card (e.g., card 120a-b) out his wallet and taps it against the digital card reader associated with the register. Once the card taps the digital reader, communication between the digital card reader and the card is initiated. The card recognizes the data sent from the digital card reader as being consistent with an EMV data standard. In response, an application on the card solely responsible for communicating data associated with the EMV data standard transmits only payment data (e.g. data required for facilitating payment) to the digital reader associated with the register. The register receives the payment data and processes the payment. Because the credit card only transmitted payment data, the cardholder is afforded a more secure transaction as data unrelated to the transaction is not transmitted.
In another case, a cardholder seeks to login to a banking app associated with his debit card. The banking app may require multi-level authentication, i.e., first level authentication requires a username/password combination or some form of biometric data (e.g., optical data, face recognition, thumbprint data) and second level authentication requires identity data associated with the card (e.g., first and last name, social security information) to match at least some of the first level authentication data. The cardholder taps his debit card against a digital reader associated with his smartphone (e.g., mobile device 140). Once the debit card taps the digital reader, communication between the digital card reader and the debit card is initiated. The debit card recognizes the data sent from the digital card reader as being consistent with an NDEF data standard. In response, an application on the debit card solely responsible for communicating data associated with the NDEF data standard transmits only identification data (e.g., data required for facilitating identification/authentication purposes) to the digital reader associated with the smartphone. The smartphone, via an application, receives the identification data and authenticates the cardholder's identity (e.g., compares the identification data to first level authentication data). Because the debit card only transmitted identification data, the cardholder is afforded a more secure transaction as data unrelated to authentication is not transmitted.
This application is a continuation of, and claims priority under 35 U.S.C. § 120 to, U.S. patent application Ser. No. 18/310,097, filed May 1, 2023, which is a continuation of U.S. patent application Ser. No. 17/960,301, now U.S. Pat. No. 11,682,001, filed Oct. 5, 2022, which is a continuation of U.S. patent application Ser. No. 17/836,834, now U.S. Pat. No. 11,468,428, filed Jun. 9, 2022, which is a continuation of U.S. patent application Ser. No. 16/848,063, now U.S. Pat. No. 11,397,941, filed Apr. 14, 2020, which is a continuation of U.S. patent application Ser. No. 16/223,403, now U.S. Pat. No. 10,664,830, filed on Dec. 18, 2018, the entire contents of each of which are fully incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4683553 | Mollier | Jul 1987 | A |
4827113 | Rikuna | May 1989 | A |
4910773 | Hazard et al. | Mar 1990 | A |
5036461 | Elliott et al. | Jul 1991 | A |
5363448 | Koopman, Jr. et al. | Nov 1994 | A |
5377270 | Koopman, Jr. et al. | Dec 1994 | A |
5533126 | Hazard | Jul 1996 | A |
5537314 | Kanter | Jul 1996 | A |
5590038 | Pitroda | Dec 1996 | A |
5592553 | Guski et al. | Jan 1997 | A |
5616901 | Crandall | Apr 1997 | A |
5666415 | Kaufman | Sep 1997 | A |
5763373 | Robinson et al. | Jun 1998 | A |
5764789 | Pare, Jr. et al. | Jun 1998 | A |
5768373 | Lohstroh et al. | Jun 1998 | A |
5778072 | Samar | Jul 1998 | A |
5796827 | Coppersmith et al. | Aug 1998 | A |
5832090 | Raspotnik | Nov 1998 | A |
5883810 | Franklin et al. | Mar 1999 | A |
5901874 | Deters | May 1999 | A |
5929413 | Gardner | Jul 1999 | A |
5960411 | Hartman et al. | Sep 1999 | A |
6021203 | Douceur et al. | Feb 2000 | A |
6049328 | Vanderheiden | Apr 2000 | A |
6058373 | Blinn et al. | May 2000 | A |
6061666 | Do et al. | May 2000 | A |
6098890 | Kreft et al. | Aug 2000 | A |
6105013 | Curry et al. | Aug 2000 | A |
6199114 | White et al. | Mar 2001 | B1 |
6199762 | Hohle | Mar 2001 | B1 |
6216227 | Goldstein et al. | Apr 2001 | B1 |
6227447 | Campisano | May 2001 | B1 |
6282522 | Davis et al. | Aug 2001 | B1 |
6324271 | Sawyer et al. | Nov 2001 | B1 |
6342844 | Rozin | Jan 2002 | B1 |
6367011 | Lee et al. | Apr 2002 | B1 |
6402028 | Graham, Jr. et al. | Jun 2002 | B1 |
6438550 | Doyle et al. | Aug 2002 | B1 |
6501847 | Helot et al. | Dec 2002 | B2 |
6631197 | Taenzer | Oct 2003 | B1 |
6641050 | Kelley et al. | Nov 2003 | B2 |
6655585 | Shinn | Dec 2003 | B2 |
6662020 | Aaro et al. | Dec 2003 | B1 |
6721706 | Strubbe et al. | Apr 2004 | B1 |
6731778 | Oda et al. | May 2004 | B1 |
6779115 | Naim | Aug 2004 | B1 |
6792533 | Jablon | Sep 2004 | B2 |
6829711 | Kwok et al. | Dec 2004 | B1 |
6834271 | Hodgson et al. | Dec 2004 | B1 |
6834795 | Rasmussen et al. | Dec 2004 | B1 |
6852031 | Rowe | Feb 2005 | B1 |
6865547 | Brake, Jr. et al. | Mar 2005 | B1 |
6873260 | Lancos et al. | Mar 2005 | B2 |
6877656 | Jaros et al. | Apr 2005 | B1 |
6889198 | Kawan | May 2005 | B2 |
6905411 | Nguyen et al. | Jun 2005 | B2 |
6910627 | Simpson-Young et al. | Jun 2005 | B1 |
6971031 | Haala | Nov 2005 | B2 |
6990588 | Yasukura | Jan 2006 | B1 |
7006986 | Sines et al. | Feb 2006 | B1 |
7085931 | Smith et al. | Aug 2006 | B1 |
7127605 | Montgomery et al. | Oct 2006 | B1 |
7128274 | Kelley et al. | Oct 2006 | B2 |
7140550 | Ramachandran | Nov 2006 | B2 |
7152045 | Hoffman | Dec 2006 | B2 |
7165727 | de Jong | Jan 2007 | B2 |
7175076 | Block et al. | Feb 2007 | B1 |
7202773 | Oba et al. | Apr 2007 | B1 |
7206806 | Pineau | Apr 2007 | B2 |
7232073 | de Jong | Jun 2007 | B1 |
7246752 | Brown | Jul 2007 | B2 |
7252242 | Ho | Aug 2007 | B2 |
7254569 | Goodman et al. | Aug 2007 | B2 |
7263507 | Brake, Jr. et al. | Aug 2007 | B1 |
7270276 | Vayssiere | Sep 2007 | B2 |
7278025 | Saito et al. | Oct 2007 | B2 |
7287692 | Patel et al. | Oct 2007 | B1 |
7290709 | Tsai et al. | Nov 2007 | B2 |
7306143 | Bonneau, Jr. et al. | Dec 2007 | B2 |
7319986 | Praisner et al. | Jan 2008 | B2 |
7325132 | Takayama et al. | Jan 2008 | B2 |
7373515 | Owen et al. | May 2008 | B2 |
7374099 | de Jong | May 2008 | B2 |
7375616 | Rowse et al. | May 2008 | B2 |
7380710 | Brown | Jun 2008 | B2 |
7424977 | Smets et al. | Sep 2008 | B2 |
7453439 | Kushler et al. | Nov 2008 | B1 |
7472829 | Brown | Jan 2009 | B2 |
7487357 | Smith et al. | Feb 2009 | B2 |
7527208 | Hammad | May 2009 | B2 |
7568631 | Gibbs et al. | Aug 2009 | B2 |
7584153 | Brown et al. | Sep 2009 | B2 |
7597250 | Finn | Oct 2009 | B2 |
7628322 | Holtmanns et al. | Dec 2009 | B2 |
7652578 | Braun et al. | Jan 2010 | B2 |
7689832 | Talmor et al. | Mar 2010 | B2 |
7703142 | Wilson et al. | Apr 2010 | B1 |
7748609 | Sachdeva et al. | Jul 2010 | B2 |
7748617 | Gray | Jul 2010 | B2 |
7748636 | Finn | Jul 2010 | B2 |
7762457 | Bonalle et al. | Jul 2010 | B2 |
7789302 | Tame | Sep 2010 | B2 |
7793851 | Mullen | Sep 2010 | B2 |
7796013 | Murakami et al. | Sep 2010 | B2 |
7801799 | Brake, Jr. et al. | Sep 2010 | B1 |
7801829 | Gray et al. | Sep 2010 | B2 |
7805755 | Brown et al. | Sep 2010 | B2 |
7809643 | Phillips et al. | Oct 2010 | B2 |
7827115 | Weller et al. | Nov 2010 | B2 |
7828214 | Narendra et al. | Nov 2010 | B2 |
7848746 | Juels | Dec 2010 | B2 |
7882553 | Tuliani | Feb 2011 | B2 |
7900048 | Andersson | Mar 2011 | B2 |
7908216 | Davis et al. | Mar 2011 | B1 |
7922082 | Muscato | Apr 2011 | B2 |
7933589 | Mamdani et al. | Apr 2011 | B1 |
7949559 | Freiberg | May 2011 | B2 |
7954716 | Narendra et al. | Jun 2011 | B2 |
7954723 | Charrat | Jun 2011 | B2 |
7962369 | Rosenberg | Jun 2011 | B2 |
7993197 | Kaminkow | Aug 2011 | B2 |
8005426 | Huomo et al. | Aug 2011 | B2 |
8010405 | Bortolin et al. | Aug 2011 | B1 |
RE42762 | Shin et al. | Sep 2011 | E |
8041954 | Plesman | Oct 2011 | B2 |
8060012 | Sklovsky et al. | Nov 2011 | B2 |
8074877 | Mullen et al. | Dec 2011 | B2 |
8082450 | Frey et al. | Dec 2011 | B2 |
8095113 | Kean et al. | Jan 2012 | B2 |
8099332 | Lemay et al. | Jan 2012 | B2 |
8103249 | Markison | Jan 2012 | B2 |
8108307 | Kawan et al. | Jan 2012 | B1 |
8108687 | Ellis et al. | Jan 2012 | B2 |
8127143 | Abdallah et al. | Feb 2012 | B2 |
8135648 | Oram et al. | Mar 2012 | B2 |
8140010 | Symons et al. | Mar 2012 | B2 |
8141136 | Lee et al. | Mar 2012 | B2 |
8150321 | Winter et al. | Apr 2012 | B2 |
8150767 | Wankmueller | Apr 2012 | B2 |
8186602 | Itay et al. | May 2012 | B2 |
8196131 | von Behren et al. | Jun 2012 | B1 |
8215563 | Levy et al. | Jul 2012 | B2 |
8224753 | Atef et al. | Jul 2012 | B2 |
8232879 | Davis | Jul 2012 | B2 |
8233841 | Griffin et al. | Jul 2012 | B2 |
8245292 | Buer | Aug 2012 | B2 |
8249654 | Zhu | Aug 2012 | B1 |
8266451 | Leydier et al. | Sep 2012 | B2 |
8276814 | Davis | Oct 2012 | B1 |
8285329 | Zhu | Oct 2012 | B1 |
8302872 | Mullen | Nov 2012 | B2 |
8312519 | Bailey et al. | Nov 2012 | B1 |
8316237 | Felsher et al. | Nov 2012 | B1 |
8332272 | Fisher | Dec 2012 | B2 |
8346670 | Hasson | Jan 2013 | B2 |
8365988 | Medina, III et al. | Feb 2013 | B1 |
8369960 | Tran et al. | Feb 2013 | B2 |
8371501 | Hopkins | Feb 2013 | B1 |
8381307 | Cimino | Feb 2013 | B2 |
8391719 | Alameh et al. | Mar 2013 | B2 |
8417231 | Sanding et al. | Apr 2013 | B2 |
8439271 | Smets et al. | May 2013 | B2 |
8475367 | Yuen et al. | Jul 2013 | B1 |
8489112 | Roeding et al. | Jul 2013 | B2 |
8511542 | Pan | Aug 2013 | B2 |
8511547 | Rans | Aug 2013 | B2 |
8519822 | Riegebauer | Aug 2013 | B2 |
8559872 | Butler | Oct 2013 | B2 |
8566916 | Bailey et al. | Oct 2013 | B1 |
8567670 | Stanfield et al. | Oct 2013 | B2 |
8572386 | Takekawa et al. | Oct 2013 | B2 |
8577810 | Dalit et al. | Nov 2013 | B1 |
8583454 | Beraja et al. | Nov 2013 | B2 |
8589335 | Smith et al. | Nov 2013 | B2 |
8594730 | Bona et al. | Nov 2013 | B2 |
8615468 | Varadarajan | Dec 2013 | B2 |
8620218 | Awad | Dec 2013 | B2 |
8667285 | Coulier et al. | Mar 2014 | B2 |
8723941 | Shirbabadi et al. | May 2014 | B1 |
8726405 | Bailey et al. | May 2014 | B1 |
8740073 | Vijayshankar et al. | Jun 2014 | B2 |
8750514 | Gallo et al. | Jun 2014 | B2 |
8752189 | de Jong | Jun 2014 | B2 |
8794509 | Bishop et al. | Aug 2014 | B2 |
8799668 | Cheng | Aug 2014 | B2 |
8806592 | Ganesan | Aug 2014 | B2 |
8807440 | Von Behren et al. | Aug 2014 | B1 |
8811892 | Khan et al. | Aug 2014 | B2 |
8814039 | Bishop et al. | Aug 2014 | B2 |
8814052 | Bona et al. | Aug 2014 | B2 |
8818867 | Baldwin et al. | Aug 2014 | B2 |
8850538 | Vernon et al. | Sep 2014 | B1 |
8861733 | Benteo et al. | Oct 2014 | B2 |
8870081 | Olson | Oct 2014 | B2 |
8880027 | Darringer | Nov 2014 | B1 |
8888002 | Marshall Chesney et al. | Nov 2014 | B2 |
8898088 | Springer et al. | Nov 2014 | B2 |
8934837 | Zhu et al. | Jan 2015 | B2 |
8977569 | Rao | Mar 2015 | B2 |
8994498 | Agrafioti et al. | Mar 2015 | B2 |
9004365 | Bona et al. | Apr 2015 | B2 |
9038893 | Kirkham | May 2015 | B2 |
9038894 | Khalid | May 2015 | B2 |
9042814 | Royston et al. | May 2015 | B2 |
9047531 | Showering et al. | Jun 2015 | B2 |
9069976 | Toole et al. | Jun 2015 | B2 |
9081948 | Magne | Jul 2015 | B2 |
9104853 | Venkataramani et al. | Aug 2015 | B2 |
9118663 | Bailey et al. | Aug 2015 | B1 |
9122964 | Krawczewicz | Sep 2015 | B2 |
9129199 | Spodak | Sep 2015 | B2 |
9129280 | Bona et al. | Sep 2015 | B2 |
9152832 | Royston et al. | Oct 2015 | B2 |
9183490 | Moreton | Nov 2015 | B2 |
9203800 | Izu et al. | Dec 2015 | B2 |
9209867 | Royston | Dec 2015 | B2 |
9251330 | Boivie et al. | Feb 2016 | B2 |
9251518 | Levin et al. | Feb 2016 | B2 |
9258715 | Borghei | Feb 2016 | B2 |
9270337 | Zhu et al. | Feb 2016 | B2 |
9275325 | Newcombe | Mar 2016 | B2 |
9286606 | Diamond | Mar 2016 | B2 |
9306626 | Hall et al. | Apr 2016 | B2 |
9306942 | Bailey et al. | Apr 2016 | B1 |
9324066 | Archer et al. | Apr 2016 | B2 |
9324067 | Van Os et al. | Apr 2016 | B2 |
9332587 | Salahshoor | May 2016 | B2 |
9338622 | Bjontegard | May 2016 | B2 |
9373141 | Shakkarwar | Jun 2016 | B1 |
9379841 | Fine et al. | Jun 2016 | B2 |
9413430 | Royston et al. | Aug 2016 | B2 |
9413768 | Gregg et al. | Aug 2016 | B1 |
9420496 | Indurkar | Aug 2016 | B1 |
9426132 | Alikhani | Aug 2016 | B1 |
9432339 | Bowness | Aug 2016 | B1 |
9455968 | Machani et al. | Sep 2016 | B1 |
9473509 | Arsanjani et al. | Oct 2016 | B2 |
9491626 | Sharma et al. | Nov 2016 | B2 |
9501776 | Martin | Nov 2016 | B2 |
9553637 | Yang et al. | Jan 2017 | B2 |
9619952 | Zhao et al. | Apr 2017 | B1 |
9635000 | Muftic | Apr 2017 | B1 |
9665858 | Kumar | May 2017 | B1 |
9674705 | Rose et al. | Jun 2017 | B2 |
9679286 | Colnot et al. | Jun 2017 | B2 |
9680942 | Dimmick | Jun 2017 | B2 |
9710744 | Wurmfeld | Jul 2017 | B2 |
9710804 | Zhou et al. | Jul 2017 | B2 |
9740342 | Paulsen et al. | Aug 2017 | B2 |
9740988 | Levin et al. | Aug 2017 | B1 |
9763097 | Robinson et al. | Sep 2017 | B2 |
9767329 | Forster | Sep 2017 | B2 |
9769662 | Queru | Sep 2017 | B1 |
9773151 | Mil'shtein et al. | Sep 2017 | B2 |
9780953 | Gaddam et al. | Oct 2017 | B2 |
9891823 | Feng et al. | Feb 2018 | B2 |
9940571 | Herrington | Apr 2018 | B1 |
9949065 | Zarakas | Apr 2018 | B1 |
9953323 | Candelore et al. | Apr 2018 | B2 |
9961194 | Wiechman et al. | May 2018 | B1 |
9965632 | Zarakas | May 2018 | B2 |
9965756 | Davis et al. | May 2018 | B2 |
9965911 | Wishne | May 2018 | B2 |
9977890 | Alberti | May 2018 | B2 |
9978056 | Seo | May 2018 | B2 |
9978058 | Wurmfeld et al. | May 2018 | B2 |
9990795 | Wurmfeld | Jun 2018 | B2 |
10007873 | Heo | Jun 2018 | B2 |
10013693 | Wyatt | Jul 2018 | B2 |
10043164 | Dogin et al. | Aug 2018 | B2 |
10075437 | Costigan et al. | Sep 2018 | B1 |
10121130 | Pinski | Nov 2018 | B2 |
10129648 | Hernandez et al. | Nov 2018 | B1 |
10133979 | Eidam et al. | Nov 2018 | B1 |
10210505 | Zarakas | Feb 2019 | B2 |
10217105 | Sangi et al. | Feb 2019 | B1 |
10242368 | Poole | Mar 2019 | B1 |
10296910 | Templeton | May 2019 | B1 |
10332102 | Zarakas | Jun 2019 | B2 |
10360557 | Locke | Jul 2019 | B2 |
10380471 | Locke | Aug 2019 | B2 |
10395244 | Mossler et al. | Aug 2019 | B1 |
10453054 | Zarakas | Oct 2019 | B2 |
10474941 | Wurmfeld | Nov 2019 | B2 |
10475027 | Guise | Nov 2019 | B2 |
10482453 | Zarakas | Nov 2019 | B2 |
10482457 | Poole | Nov 2019 | B2 |
10489774 | Zarakas | Nov 2019 | B2 |
10510070 | Wurmfeld | Dec 2019 | B2 |
10515361 | Zarakas | Dec 2019 | B2 |
10535068 | Locke | Jan 2020 | B2 |
10546444 | Osborn | Jan 2020 | B2 |
10581611 | Osborn et al. | Mar 2020 | B1 |
10685349 | Brickell | Jun 2020 | B2 |
10797882 | Rule | Oct 2020 | B2 |
10880741 | Zarakas | Dec 2020 | B2 |
10970691 | Koeppel | Apr 2021 | B2 |
11138593 | Ho | Oct 2021 | B1 |
11138605 | Aabye | Oct 2021 | B2 |
11188908 | Locke | Nov 2021 | B2 |
11334872 | Phillips | May 2022 | B2 |
11461764 | Rule | Oct 2022 | B2 |
11481764 | Shakkarwar | Oct 2022 | B2 |
20010010723 | Pinkas | Aug 2001 | A1 |
20010029485 | Brody et al. | Oct 2001 | A1 |
20010034702 | Mockett et al. | Oct 2001 | A1 |
20010054003 | Chien et al. | Dec 2001 | A1 |
20020078345 | Sandhu et al. | Jun 2002 | A1 |
20020093530 | Krothapalli et al. | Jul 2002 | A1 |
20020100808 | Norwood et al. | Aug 2002 | A1 |
20020120583 | Keresman, III et al. | Aug 2002 | A1 |
20020152116 | Yan et al. | Oct 2002 | A1 |
20020153424 | Li | Oct 2002 | A1 |
20020165827 | Gien et al. | Nov 2002 | A1 |
20030023554 | Yap et al. | Jan 2003 | A1 |
20030034873 | Chase et al. | Feb 2003 | A1 |
20030055727 | Walker et al. | Mar 2003 | A1 |
20030078882 | Sukeda et al. | Apr 2003 | A1 |
20030167350 | Davis et al. | Sep 2003 | A1 |
20030208449 | Diao | Nov 2003 | A1 |
20040015958 | Veil et al. | Jan 2004 | A1 |
20040039919 | Takayama et al. | Feb 2004 | A1 |
20040127256 | Goldthwaite et al. | Jul 2004 | A1 |
20040215674 | Odinak et al. | Oct 2004 | A1 |
20040230799 | Davis | Nov 2004 | A1 |
20050044367 | Gasparini et al. | Feb 2005 | A1 |
20050075985 | Cartmell | Apr 2005 | A1 |
20050081038 | Arditti Modiano et al. | Apr 2005 | A1 |
20050138387 | Lam et al. | Jun 2005 | A1 |
20050156026 | Ghosh et al. | Jul 2005 | A1 |
20050160049 | Lundholm | Jul 2005 | A1 |
20050195975 | Kawakita | Sep 2005 | A1 |
20050247797 | Ramachandran | Nov 2005 | A1 |
20060006230 | Bear et al. | Jan 2006 | A1 |
20060040726 | Szrek et al. | Feb 2006 | A1 |
20060041402 | Baker | Feb 2006 | A1 |
20060044153 | Dawidowsky | Mar 2006 | A1 |
20060047954 | Sachdeva et al. | Mar 2006 | A1 |
20060085848 | Aissi et al. | Apr 2006 | A1 |
20060136334 | Atkinson et al. | Jun 2006 | A1 |
20060173985 | Moore | Aug 2006 | A1 |
20060174331 | Schuetz | Aug 2006 | A1 |
20060242698 | Inskeep et al. | Oct 2006 | A1 |
20060280338 | Rabb | Dec 2006 | A1 |
20070033642 | Ganesan et al. | Feb 2007 | A1 |
20070055630 | Gauthier et al. | Mar 2007 | A1 |
20070061266 | Moore et al. | Mar 2007 | A1 |
20070061487 | Moore et al. | Mar 2007 | A1 |
20070116292 | Kurita et al. | May 2007 | A1 |
20070118745 | Buer | May 2007 | A1 |
20070197261 | Humbel | Aug 2007 | A1 |
20070224969 | Rao | Sep 2007 | A1 |
20070241182 | Buer | Oct 2007 | A1 |
20070256134 | Lehtonen et al. | Nov 2007 | A1 |
20070258594 | Sandhu et al. | Nov 2007 | A1 |
20070278291 | Rans et al. | Dec 2007 | A1 |
20080008315 | Fontana et al. | Jan 2008 | A1 |
20080011831 | Bonalle et al. | Jan 2008 | A1 |
20080014867 | Finn | Jan 2008 | A1 |
20080035738 | Mullen | Feb 2008 | A1 |
20080071681 | Khalid | Mar 2008 | A1 |
20080072303 | Syed | Mar 2008 | A1 |
20080086767 | Kulkarni et al. | Apr 2008 | A1 |
20080103968 | Bies et al. | May 2008 | A1 |
20080109309 | Landau et al. | May 2008 | A1 |
20080110983 | Ashfield | May 2008 | A1 |
20080120711 | Dispensa | May 2008 | A1 |
20080156873 | Wilhelm et al. | Jul 2008 | A1 |
20080162312 | Sklovsky et al. | Jul 2008 | A1 |
20080164308 | Aaron et al. | Jul 2008 | A1 |
20080207307 | Cunningham, II et al. | Aug 2008 | A1 |
20080209543 | Aaron | Aug 2008 | A1 |
20080223918 | Williams et al. | Sep 2008 | A1 |
20080285746 | Landrock et al. | Nov 2008 | A1 |
20080308641 | Finn | Dec 2008 | A1 |
20090037275 | Pollio | Feb 2009 | A1 |
20090048026 | French | Feb 2009 | A1 |
20090132417 | Scipioni et al. | May 2009 | A1 |
20090143104 | Loh et al. | Jun 2009 | A1 |
20090171682 | Dixon et al. | Jul 2009 | A1 |
20090210308 | Toomer et al. | Aug 2009 | A1 |
20090235339 | Mennes et al. | Sep 2009 | A1 |
20090249077 | Gargaro et al. | Oct 2009 | A1 |
20090282264 | Ameil et al. | Nov 2009 | A1 |
20100023449 | Skowronek et al. | Jan 2010 | A1 |
20100023455 | Dispensa et al. | Jan 2010 | A1 |
20100029202 | Jolivet et al. | Feb 2010 | A1 |
20100033310 | Narendra et al. | Feb 2010 | A1 |
20100036769 | Winters et al. | Feb 2010 | A1 |
20100078471 | Lin et al. | Apr 2010 | A1 |
20100082491 | Rosenblatt et al. | Apr 2010 | A1 |
20100094754 | Bertran et al. | Apr 2010 | A1 |
20100095130 | Bertran et al. | Apr 2010 | A1 |
20100100480 | Altman et al. | Apr 2010 | A1 |
20100114731 | Kingston et al. | May 2010 | A1 |
20100192230 | Steeves et al. | Jul 2010 | A1 |
20100207742 | Buhot et al. | Aug 2010 | A1 |
20100211797 | Westerveld et al. | Aug 2010 | A1 |
20100240413 | He et al. | Sep 2010 | A1 |
20100257357 | McClain | Oct 2010 | A1 |
20100312634 | Cervenka | Dec 2010 | A1 |
20100312635 | Cervenka | Dec 2010 | A1 |
20110028160 | Roeding et al. | Feb 2011 | A1 |
20110035604 | Habraken | Feb 2011 | A1 |
20110060631 | Grossman et al. | Mar 2011 | A1 |
20110068170 | Lehman | Mar 2011 | A1 |
20110084132 | Tofighbakhsh | Apr 2011 | A1 |
20110101093 | Ehrensvard | May 2011 | A1 |
20110113245 | Varadarajan | May 2011 | A1 |
20110125638 | Davis et al. | May 2011 | A1 |
20110131415 | Schneider | Jun 2011 | A1 |
20110153437 | Archer et al. | Jun 2011 | A1 |
20110153496 | Royyuru | Jun 2011 | A1 |
20110208658 | Makhotin | Aug 2011 | A1 |
20110208965 | Machani | Aug 2011 | A1 |
20110211219 | Bradley et al. | Sep 2011 | A1 |
20110218911 | Spodak | Sep 2011 | A1 |
20110238564 | Lim et al. | Sep 2011 | A1 |
20110246780 | Yeap et al. | Oct 2011 | A1 |
20110258452 | Coulier et al. | Oct 2011 | A1 |
20110280406 | Ma et al. | Nov 2011 | A1 |
20110282785 | Chin | Nov 2011 | A1 |
20110294418 | Chen | Dec 2011 | A1 |
20110312271 | Ma et al. | Dec 2011 | A1 |
20120024947 | Naelon | Feb 2012 | A1 |
20120030047 | Fuentes et al. | Feb 2012 | A1 |
20120030121 | Grellier | Feb 2012 | A1 |
20120047071 | Mullen et al. | Feb 2012 | A1 |
20120079281 | Lowenstein et al. | Mar 2012 | A1 |
20120109735 | Krawczewicz et al. | May 2012 | A1 |
20120109764 | Martin et al. | May 2012 | A1 |
20120143703 | Wall | Jun 2012 | A1 |
20120143754 | Patel | Jun 2012 | A1 |
20120150737 | Rottink et al. | Jun 2012 | A1 |
20120178366 | Levy et al. | Jul 2012 | A1 |
20120196583 | Kindo | Aug 2012 | A1 |
20120207305 | Gallo et al. | Aug 2012 | A1 |
20120209773 | Ranganathan | Aug 2012 | A1 |
20120238206 | Singh et al. | Sep 2012 | A1 |
20120239560 | Pourfallah et al. | Sep 2012 | A1 |
20120252350 | Steinmetz et al. | Oct 2012 | A1 |
20120254394 | Barras | Oct 2012 | A1 |
20120284194 | Liu et al. | Nov 2012 | A1 |
20120290472 | Mullen et al. | Nov 2012 | A1 |
20120296818 | Nuzzi et al. | Nov 2012 | A1 |
20120316992 | Oborne | Dec 2012 | A1 |
20120317035 | Royyuru et al. | Dec 2012 | A1 |
20120317628 | Yeager | Dec 2012 | A1 |
20130005245 | Royston | Jan 2013 | A1 |
20130008956 | Ashfield | Jan 2013 | A1 |
20130026229 | Jarman et al. | Jan 2013 | A1 |
20130048713 | Pan | Feb 2013 | A1 |
20130054474 | Yeager | Feb 2013 | A1 |
20130065564 | Conner et al. | Mar 2013 | A1 |
20130080228 | Fisher | Mar 2013 | A1 |
20130080229 | Fisher | Mar 2013 | A1 |
20130099587 | Lou et al. | Apr 2013 | A1 |
20130104251 | Moore et al. | Apr 2013 | A1 |
20130106576 | Hinman et al. | May 2013 | A1 |
20130119130 | Braams | May 2013 | A1 |
20130130614 | Busch-Sorensen | May 2013 | A1 |
20130144793 | Royston | Jun 2013 | A1 |
20130171929 | Adams et al. | Jul 2013 | A1 |
20130179351 | Wallner | Jul 2013 | A1 |
20130185772 | Jaudon et al. | Jul 2013 | A1 |
20130191279 | Calman et al. | Jul 2013 | A1 |
20130200999 | Spodak et al. | Aug 2013 | A1 |
20130211937 | Elbirt | Aug 2013 | A1 |
20130216108 | Hwang et al. | Aug 2013 | A1 |
20130226791 | Springer et al. | Aug 2013 | A1 |
20130226796 | Jiang et al. | Aug 2013 | A1 |
20130232082 | Krawczewicz et al. | Sep 2013 | A1 |
20130238894 | Ferg et al. | Sep 2013 | A1 |
20130282360 | Shimota et al. | Oct 2013 | A1 |
20130303085 | Boucher et al. | Nov 2013 | A1 |
20130304651 | Smith | Nov 2013 | A1 |
20130312082 | Izu et al. | Nov 2013 | A1 |
20130314593 | Reznik et al. | Nov 2013 | A1 |
20130344857 | Berionne et al. | Dec 2013 | A1 |
20140002238 | Taveau et al. | Jan 2014 | A1 |
20140019352 | Shrivastava | Jan 2014 | A1 |
20140027506 | Heo et al. | Jan 2014 | A1 |
20140032409 | Rosano | Jan 2014 | A1 |
20140032410 | Georgiev et al. | Jan 2014 | A1 |
20140040120 | Cho et al. | Feb 2014 | A1 |
20140040139 | Brudnicki et al. | Feb 2014 | A1 |
20140040147 | Varadarakan et al. | Feb 2014 | A1 |
20140047235 | Lessiak et al. | Feb 2014 | A1 |
20140067690 | Pitroda et al. | Mar 2014 | A1 |
20140074637 | Hammad | Mar 2014 | A1 |
20140074655 | Lim et al. | Mar 2014 | A1 |
20140081720 | Wu | Mar 2014 | A1 |
20140081785 | Valadas Preto | Mar 2014 | A1 |
20140138435 | Khalid | May 2014 | A1 |
20140171034 | Aleksin et al. | Jun 2014 | A1 |
20140171039 | Bjontegard | Jun 2014 | A1 |
20140172700 | Teuwen et al. | Jun 2014 | A1 |
20140180851 | Fisher | Jun 2014 | A1 |
20140208112 | McDonald et al. | Jul 2014 | A1 |
20140214674 | Narula | Jul 2014 | A1 |
20140229375 | Zaytzsev et al. | Aug 2014 | A1 |
20140245391 | Adenuga | Aug 2014 | A1 |
20140256251 | Caceres et al. | Sep 2014 | A1 |
20140258099 | Rosano | Sep 2014 | A1 |
20140258113 | Gauthier et al. | Sep 2014 | A1 |
20140258125 | Gerber et al. | Sep 2014 | A1 |
20140274179 | Zhu et al. | Sep 2014 | A1 |
20140279479 | Maniar et al. | Sep 2014 | A1 |
20140337235 | Van Heerden et al. | Nov 2014 | A1 |
20140339315 | Ko | Nov 2014 | A1 |
20140346860 | Aubry et al. | Nov 2014 | A1 |
20140365780 | Movassaghi | Dec 2014 | A1 |
20140379361 | Mahadkar et al. | Dec 2014 | A1 |
20150012444 | Brown et al. | Jan 2015 | A1 |
20150032635 | Guise | Jan 2015 | A1 |
20150071486 | Rhoads et al. | Mar 2015 | A1 |
20150088757 | Zhou et al. | Mar 2015 | A1 |
20150089586 | Ballesteros | Mar 2015 | A1 |
20150134452 | Williams | May 2015 | A1 |
20150140960 | Powell et al. | May 2015 | A1 |
20150154595 | Collinge et al. | Jun 2015 | A1 |
20150170138 | Rao | Jun 2015 | A1 |
20150178724 | Ngo et al. | Jun 2015 | A1 |
20150186871 | Laracey | Jul 2015 | A1 |
20150199673 | Savolainen | Jul 2015 | A1 |
20150205379 | Mag et al. | Jul 2015 | A1 |
20150302409 | Malek et al. | Oct 2015 | A1 |
20150317626 | Ran et al. | Nov 2015 | A1 |
20150332266 | Friedlander et al. | Nov 2015 | A1 |
20150339474 | Paz et al. | Nov 2015 | A1 |
20150371234 | Huang et al. | Dec 2015 | A1 |
20160012465 | Sharp | Jan 2016 | A1 |
20160021230 | Watanabe | Jan 2016 | A1 |
20160026997 | Tsui et al. | Jan 2016 | A1 |
20160048913 | Rausaria et al. | Feb 2016 | A1 |
20160055480 | Shah | Feb 2016 | A1 |
20160057619 | Lopez | Feb 2016 | A1 |
20160065370 | Le Saint et al. | Mar 2016 | A1 |
20160078430 | Douglas | Mar 2016 | A1 |
20160087957 | Shah et al. | Mar 2016 | A1 |
20160092696 | Guglani et al. | Mar 2016 | A1 |
20160125370 | Grassadonia | May 2016 | A1 |
20160148193 | Kelley et al. | May 2016 | A1 |
20160189143 | Koeppel | Jun 2016 | A1 |
20160232523 | Venot et al. | Aug 2016 | A1 |
20160239672 | Khan et al. | Aug 2016 | A1 |
20160253651 | Park et al. | Sep 2016 | A1 |
20160255072 | Liu | Sep 2016 | A1 |
20160267486 | Mitra et al. | Sep 2016 | A1 |
20160277383 | Guyomarc'H et al. | Sep 2016 | A1 |
20160307187 | Guo et al. | Oct 2016 | A1 |
20160307189 | Zarakas et al. | Oct 2016 | A1 |
20160314472 | Ashfield | Oct 2016 | A1 |
20160330027 | Ebrahimi | Nov 2016 | A1 |
20160335531 | Mullen et al. | Nov 2016 | A1 |
20160379217 | Hammad | Dec 2016 | A1 |
20170004502 | Quentin et al. | Jan 2017 | A1 |
20170011395 | Pillai et al. | Jan 2017 | A1 |
20170011406 | Tunnell et al. | Jan 2017 | A1 |
20170017957 | Radu | Jan 2017 | A1 |
20170017964 | Janefalkar et al. | Jan 2017 | A1 |
20170024716 | Jiam et al. | Jan 2017 | A1 |
20170039566 | Schipperheijn | Feb 2017 | A1 |
20170041759 | Gantert et al. | Feb 2017 | A1 |
20170068950 | Kwon | Mar 2017 | A1 |
20170103388 | Pillai et al. | Apr 2017 | A1 |
20170104739 | Lansler et al. | Apr 2017 | A1 |
20170109509 | Baghdasaryan | Apr 2017 | A1 |
20170109730 | Locke et al. | Apr 2017 | A1 |
20170116447 | Cimino et al. | Apr 2017 | A1 |
20170124568 | Moghadam | May 2017 | A1 |
20170140379 | Deck | May 2017 | A1 |
20170154328 | Zarakas et al. | Jun 2017 | A1 |
20170154333 | Gleeson et al. | Jun 2017 | A1 |
20170161978 | Wishne | Jun 2017 | A1 |
20170180134 | King | Jun 2017 | A1 |
20170230189 | Toll et al. | Aug 2017 | A1 |
20170237301 | Elad et al. | Aug 2017 | A1 |
20170289127 | Hendrick | Oct 2017 | A1 |
20170295013 | Claes | Oct 2017 | A1 |
20170316696 | Bartel | Nov 2017 | A1 |
20170317834 | Smith et al. | Nov 2017 | A1 |
20170330173 | Woo et al. | Nov 2017 | A1 |
20170374070 | Shah et al. | Dec 2017 | A1 |
20180034507 | Wobak et al. | Feb 2018 | A1 |
20180039986 | Essebag et al. | Feb 2018 | A1 |
20180039987 | Molino | Feb 2018 | A1 |
20180068316 | Essebag et al. | Mar 2018 | A1 |
20180129945 | Saxena et al. | May 2018 | A1 |
20180160255 | Park | Jun 2018 | A1 |
20180189527 | Kim | Jul 2018 | A1 |
20180191501 | Lindemann | Jul 2018 | A1 |
20180205712 | Versteeg et al. | Jul 2018 | A1 |
20180240106 | Garrett et al. | Aug 2018 | A1 |
20180254909 | Hancock | Sep 2018 | A1 |
20180268132 | Buer et al. | Sep 2018 | A1 |
20180270214 | Caterino et al. | Sep 2018 | A1 |
20180294959 | Traynor et al. | Oct 2018 | A1 |
20180300716 | Carlson | Oct 2018 | A1 |
20180302396 | Camenisch et al. | Oct 2018 | A1 |
20180315050 | Hammad | Nov 2018 | A1 |
20180316666 | Koved et al. | Nov 2018 | A1 |
20180322486 | Deliwala et al. | Nov 2018 | A1 |
20180359100 | Gaddam et al. | Dec 2018 | A1 |
20190014107 | George | Jan 2019 | A1 |
20190019375 | Foley | Jan 2019 | A1 |
20190036678 | Ahmed | Jan 2019 | A1 |
20190172055 | Hale | Jun 2019 | A1 |
20190238517 | D'Agostino et al. | Aug 2019 | A1 |
20190303945 | Mitra | Oct 2019 | A1 |
Number | Date | Country |
---|---|---|
2835508 | Nov 2012 | CA |
3010336 | Jul 2017 | CA |
101192295 | Jun 2008 | CN |
103023643 | Apr 2013 | CN |
103417202 | Dec 2013 | CN |
1085424 | Mar 2001 | EP |
1223565 | Jul 2002 | EP |
1265186 | Dec 2002 | EP |
1469419 | Oct 2004 | EP |
1783919 | May 2007 | EP |
2139196 | Dec 2009 | EP |
2852070 | Mar 2015 | EP |
2457221 | Aug 2009 | GB |
2516861 | Feb 2015 | GB |
2551907 | Jan 2018 | GB |
101508320 | Apr 2015 | KR |
2015140132 | Dec 2015 | KR |
0049586 | Aug 2000 | WO |
2006070189 | Jul 2006 | WO |
2008055170 | May 2008 | WO |
2009025605 | Feb 2009 | WO |
2010049252 | May 2010 | WO |
2011112158 | Sep 2011 | WO |
2012001624 | Jan 2012 | WO |
2013039395 | Mar 2013 | WO |
2013155562 | Oct 2013 | WO |
2013192358 | Dec 2013 | WO |
2014043278 | Mar 2014 | WO |
2014170741 | Oct 2014 | WO |
2015179649 | Nov 2015 | WO |
2015183818 | Dec 2015 | WO |
2016097718 | Jun 2016 | WO |
2016160816 | Oct 2016 | WO |
2016168394 | Oct 2016 | WO |
2017042375 | Mar 2017 | WO |
2017042400 | Mar 2017 | WO |
2017047855 | Mar 2017 | WO |
2017157859 | Sep 2017 | WO |
2017208063 | Dec 2017 | WO |
2018063809 | Apr 2018 | WO |
2018137888 | Aug 2018 | WO |
2019022585 | Jan 2019 | WO |
Entry |
---|
Kiernam, John S., “What is EMV?” May 29, 2012 (https://wallethub.com/edu/cc/what-is-emv/25671/). |
Batina, L. and Poll, E., “SmartCards and RFID”, Course PowerPoint Presentation for IPA Security Course, Digital Security at University of Nijmegen, Netherlands (date unknown) 75 pages. |
Haykin, M. and Warnar, R., “Smart Card Technology: New Methods for Computer Access Control”, Computer Science and Technology NIST Special Publication 500-157:1-60 (1988). |
Lehpamer, H., “Component of the RFID System”, RFID Design Principles, 2nd edition pp. 133-201 (2012). |
Author Unknown, “CardrefresherSM from American Express®”, [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://merchant-channel.americanexpress.com/merchant/en_US/cardrefresher, 2 pages. |
Author Unknown, “Add Account Updater to your recurring payment tool”, [online] 2018-19 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.authorize.net/our-features/account-updater/, 5 pages. |
Author Unknown, “Visa® Account Updater for Merchants”, [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://usa.visa.com/dam/VCOM/download/merchants/visa-account-updater-product-information-fact-sheet-for-merchants.pdf, 2 pages. |
Author Unknown, “Manage the cards that you use with Apple Pay”, Apple Support [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://support.apple.com/en-us/HT205583, 5 pages. |
Author Unknown, “Contactless Specifications for Payment Systems”, EMV Book B—Entry Point Specification [online] 2016 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.emvco.com/wp-content/uploads/2017/05/BookB_Entry_Point_Specification_v2_6_20160809023257319.pdf, 52 pages. |
Author Unknown, “EMV Integrated Circuit Card Specifcations for Payment Systems, Book 2, Security and Key Management,” Version 3.4, [online] 2011 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.emvco.com/wp-content/uploads/2017/05/EMV_v4.3_Book_2_Security_and_Key_Management_20120607061923900.pdf, 174 pages. |
Author Unknown, “NFC Guide: All You Need to Know About Near Field Communication”, Square Guide [online] 2018 [retrieved on Nov. 13, 2018]. Retrieved from Internet URL: https://squareup.com/guides/nfc, 8 pages. |
Profis, S., “Everything you need to know about NFC and mobile payments” CNET Directory [online], 2014 [retrieved on Mar. 25, 2019]. Retrieved from the Internet URL: https://www.cnet.com/how-to/how-nfc-works-and-mobile-payments/, 6 pages. |
Cozma, N., “Copy data from other devices in Android 5.0 Lollipop setup”, CNET Directory [online] 2014 [retrieved on Mar. 25, 2019]. Retrieved from the Internet URL: https://www.cnet.com/how-to/copy-data-from-other-devices-in-android-5-0-lollipop-setup/, 5 pages. |
Kevin, Android Enthusiast, “How to copy text string from nfc tag”, StackExchange [online] 2013 [retrieved on Mar. 25, 2019]. Retrieved from the Internet URL: https://android.stackexchange.com/questions/55689/how-to-copy-text-string-from-nfc-tag, 11 pages. |
Author Unknown, “Tap & Go Device Setup”, Samsung [online] date unknown [retrieved on Mar. 25, 2019]. Retrieved from the Internet URL: https://www.samsung.com/us/switch-me/switch-to-the-galaxy-s-5/app/partial/setup-device/tap-go.html, 1 page. |
Author Unknown, “Multiple encryption”, Wikipedia [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://en.wikipedia.org/wiki/Multiple_encryption, 4 pages. |
Krawczyk, et al., “HMAC: Keyed-Hashing for Message Authentication”, Network Working Group RFC:2104 memo [online] 1997 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://tools.ietf.org/html/rfc2104, 12 pages. |
Song, et al., “The AES-CMAC Algorithm”, Network Working Group RFC: 4493 memo [online] 2006 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://tools.ietf.org/html/rfc4493, 21 pages. |
Katz, J. and Lindell, Y., “Aggregate Message Authentication Codes”, Topics in Cryptology [online] 2008 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.cs.umd.edu/˜jkatz/papers/aggregateMAC.pdf, 11 pages. |
Adams, D., and Maier, A-K., “Goldbug Big Seven open source crypto-messengers to be compared - or: Comprehensive Confidentiality Review & Audit of GoldBug Encrypting E-Mail-Client & Secure Instant Messenger”, Big Seven Study 2016 [online] [retrieved on Mar. 25, 2018]. Retrieved from Internet URL: https://sf.net/projects/goldbug/files/bigseven-crypto-audit.pdf, 309 pages. |
Author Unknown, “Triple DES”, Wikipedia [online] 2018 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://simple.wikipedia.org/wiki/Triple_DES, 2 pages. |
Song F., and Yun, A.I., “Quantum Security of NMAC and Related Constructions—PRF domain extension against quantum attacks”, IACR Cryptology ePrint Archive [online] 2017 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://eprint.iacr.org/2017/509.pdf, 41 pages. |
Saxena, N., “Lecture 10: NMAC, HMAC and Number Theory”, CS 6903 Modern Cryptography [online] 2008 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: http://isis.poly.edu/courses/cs6903/Lectures/lecture10.pdf, 8 pages. |
Berg, G., “Fundamentals of EMV”, Smart Card Alliance [online] date unknown [retrieved on Mar. 27, 2019]. Retrieveed from Internet URL: https://www.securetechalliance.org/resources/media/scap13_preconference/02.pdf, 37 pages. |
Pierce, K., “Is the amazon echo nfc compatible?”, Amazon.com Customer Q&A [online] 2016 [retrieved on Mar. 26, 2019]. Retrieved from Internet URL: https://www.amazon.com/ask/questions/Tx1RJXYSPE6XLJD?_ encodi . . . , 2 pages. |
Author Unknown, “Multi-Factor Authentication”, idaptive [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.centrify.com/products/application-services/adaptive-multi-factor-authentication/risk-based-mfa/, 10 pages. |
Author Unknown, “Adaptive Authentication”, SecureAuth [online] 2019 [retrieved on Mar. 25, 2019}. Retrieved from Internet URL: https://www.secureauth.com/products/access-management/adaptive-authentication, 7 pages. |
Van den Breekel, J., et al., “EMV in a nutshell”, Technical Report, 2016 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.cs.ru.nl/E.Poll/papers/EMVtechreport.pdf, 37 pages. |
Author Unknown, “Autofill”, Computer Hope [online] 2018 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.computerhope.com/jargon/a/autofill.htm, 2 pages. |
Author Unknown, “Fill out forms automatically”, Google Chrome Help [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://support.google.com/chrome/answer/142893?co=GENIE.Platform%3DDesktop&hl=en, 3 pages. |
Author Unknown, “Autofill credit cards, contacts, and passwords in Safari on Mac”, Apple Safari User Guide [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://support.apple.com/guide/safari/use-autofill-ibrw1103/mac, 3 pages. |
Menghin, M.J., “Power Optimization Techniques for Near Field Communication Systems”, 2014 Dissertation at Technical University of Graz [online]. Retrieved from Internet URL: https://diglib.tugraz.at/download.php?id=576a7b910d2d6&location=browse, 135 pages. |
Mareli, M., et al., “Experimental evaluation of NFC reliability between an RFID tag and a smartphone”, Conference paper (2013) IEEE AFRICON at Mauritius [online] [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://core.ac.uk/download/pdf/54204839.pdf, 5 pages. |
Davison, A., et al., “MonoSLAM: Real-Time Single Camera SLAM”, IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6): 1052-1067 (2007). |
Barba, R., “Sharing your location with your bank sounds creepy, but it's also useful”, Bankrate, LLC [online] 2017 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.bankrate.com/banking/banking-app-location-sharing/, 6 pages. |
Author Unknown: “onetappayment™”, [online] Jan. 24, 2019, [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.payubiz.in/onetap, 4 pages. |
Vu, et al., “Distinguishing users with capacitive touch communication”, Proceedings of the Annual International Conference on Mobile Computing and Networking, 2012, MOBICOM. 10.1145/2348543.2348569. |
Pourghomi, P., et al., “A Proposed NFC Payment Application,” International Journal of Advanced Computer Science and Applications, 4(8):173-181 (2013). |
Author unknown, “EMV Card Personalization Specification”, EMVCo., LLC., specification version 1.0, (2003) 81 pages. |
Ullmann et al., “On-Card” User Authentication for Contactless Smart Cards based on Gesture Recognition, paper presentation LNI proceedings, (2012) 12 pages. |
Faraj, S.T., et al., “Investigation of Java Smart Card Technology for Multi-Task Applications”, J of Al-Anbar University for Pure Science, 2(1):23 pages (2008). |
Dhamdhere, P., “Key Benefits of a Unified Platform for Loyalty, Referral Marketing, and UGC” Annex Cloud [online]May 19, 2017 [retrieved on Jul. 3, 2019]. Retrieved from Internet URL: https://www.annexcloude.com/blog/benefits-unified-platform/, 13 pages. |
Smart Card Alliance, “Co-Branded Multi-Application Contactless Cards for Transit and Financial Payment,” A Smart Card Alliance Transportation Council White Paper (40 pages), Mar. 2008. |
Number | Date | Country | |
---|---|---|---|
20240144239 A1 | May 2024 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 18310097 | May 2023 | US |
Child | 18407210 | US | |
Parent | 17960301 | Oct 2022 | US |
Child | 18310097 | US | |
Parent | 17836834 | Jun 2022 | US |
Child | 17960301 | US | |
Parent | 16848063 | Apr 2020 | US |
Child | 17836834 | US | |
Parent | 16223403 | Dec 2018 | US |
Child | 16848063 | US |