Devices and methods for the treatment of heart valve insufficiencies

Information

  • Patent Grant
  • 11103349
  • Patent Number
    11,103,349
  • Date Filed
    Tuesday, August 15, 2017
    7 years ago
  • Date Issued
    Tuesday, August 31, 2021
    3 years ago
Abstract
Disclosed herein are various embodiments directed to a device for minimally invasive medical treatment. The device being a hollow tube with a first end, a second end, and one or more anchors configured to extend outward from the exterior of the hollow tube. The hollow tube having a plurality of cutouts on the exterior, wherein the cutouts allow the hollow tube to be flexible. Additionally, the hollow tube may have at least one snap mechanism configured to connect the first end and the second end together.
Description
BACKGROUND

The present disclosure is generally related to a device for minimally invasive treatment of human tricuspid valve regurgitation.


Tricuspid valve regurgitation is a condition evidenced by leakiness of the tricuspid valve, which is the valve between the upper and lower chambers of the right side of the heart. An individual exhibiting tricuspid valve regurgitation will have blood leak backwards through the tricuspid valve each time the right ventricle contracts. More particularly, when the right ventricle contracts to pump blood toward the lungs, some of the blood leaks backward into the right atrium. This increases the volume of blood in the atrium, which can cause the right atrium to enlarge. Enlargement of the right atrium can result in a change in the pressure in both the nearby heart chambers and adjacent blood vessels.


Functional tricuspid valve regurgitation is the most common type of valve pathology and is usually associated with mitral valve disease. Currently, the majority of patients with both mitral valve disease and tricuspid valve regurgitation receive surgical treatment for the mitral valve only. Tricuspid valve regurgitation is most often under-diagnosed and/or ignored. Asymptotic dilation of the tricuspid annulus may benefit from repair independent of regurgitation. Without treatment for tricuspid dilation, mitral valve disease can lead to biventricular failure and even death.


Thus, a device and method for a minimally invasive treatment of human tricuspid valve regurgitation is needed.


SUMMARY

An embodiment of a device for minimally invasive medical treatment comprising: a hollow tube comprising: a first end; a second end; an exterior having a plurality of cutouts, wherein the cutouts allow the hollow tube to be flexible; at least one snap mechanism configured to connect the first end and the second end together; and one or more anchors configured to extend outward from the exterior.





BRIEF DESCRIPTION OF THE DRAWINGS

Aspects, features, benefits and advantages of the embodiments described herein will be apparent with regard to the following description, appended claims, and accompanying drawings where:



FIG. 1 depicts an illustrated tricuspid valve in normal and dilated conditions.



FIG. 2 depicts an illustrated pattern cut into a hollow tube, which is used to form a tricuspid ring.



FIG. 3 depicts another illustrated pattern cut into a hollow tube, which is used to form a tricuspid ring.



FIG. 4 depicts the back side of the hollow tube and the pattern of the cuts for anchor deployment windows.



FIG. 5 depicts an illustrated shape of a tricuspid ring.



FIG. 6 depicts an illustrated schematic laser cut pattern.



FIG. 7 depicts an illustrated schematic laser cut tube.



FIG. 8 depicts a perspective view of an illustrated tricuspid ring with the deployed anchors.



FIG. 9 depicts a perspective view of an illustrated tricuspid ring with zone distributions.



FIG. 10 depicts a perspective view of an illustrated laser cut fluorinated ethylene propylene (FEP) material.



FIG. 11 depicts an illustrative laser cut pattern of an FEP tube.



FIG. 12 depicts an illustrative laser cut FEP in a tubular configuration.



FIG. 13 depicts an illustrated geometric view of septal anchors.



FIG. 14 depicts an illustrated geometric view of posterior anchors.



FIG. 15 depicts an illustrated geometric view of anterior anchors in zone A.



FIG. 16 depicts an illustrated geometric view of anterior anchors in zone B.



FIG. 17 depicts an illustrated laser cut pattern for a posterior and/or anterior zone.



FIG. 18 depicts an illustrated laser cut pattern for a septal zone.



FIG. 19 depicts detail view of an illustrated harpoon.



FIG. 20 depicts a detail view an illustrated anchor stop feature.



FIG. 21 depicts a detail view of another illustrated anchor stop feature



FIG. 22 depicts a detail view of another illustrated anchor stop feature.



FIG. 23 depicts a detail view of another illustrated anchor stop feature.



FIG. 24 depicts another illustrated anchor stop feature and an illustrated harpoon.



FIG. 25 depicts a perspective view of an illustrative non-deployed anchor parked adjacent to a deployment window.



FIG. 26 depicts an illustrative view of non-deployed an anchor.



FIG. 27 depicts an illustrative view of a deployed anchor.



FIG. 28 depicts a detail view of a segment of the tricuspid ring with a deployed anchor.



FIG. 29 depicts an illustrative initial geometry of a tricuspid ring.



FIG. 30 depicts an illustrative tricuspid ring in a “D” shape geometry.



FIG. 31 depicts another illustrative tricuspid ring with a snap mechanism.



FIG. 32 depicts a detail view of an illustrative snapping mechanism in a closed configuration.



FIG. 33 depicts a detail view of an illustrative snapping mechanism in an open configuration.



FIG. 34 depicts an isolated detail view of an illustrative snapping mechanism in a closed configuration.



FIG. 35 depicts an isolated detail view of an illustrative female snapping mechanism.



FIG. 36 depicts a cross-sectional view of an illustrative female snapping mechanism.



FIG. 37 depicts a detail view of an illustrative male snapping mechanism.



FIG. 38 depicts a view of an illustrative delivery system that is connected to a snapped ring.



FIG. 39 depicts another view of an illustrative delivery system that is connected to a ring with deployed anchors with the stabilizing tool in the center.



FIG. 40 depicts an illustrative view of the delivery system.



FIG. 41 depicts another illustrative view of the delivery system connected to a deployed ring.



FIG. 42 depicts another illustrative view of the delivery system that is connected to a ring.



FIG. 43 depicts another illustrative view of a hinge system associated with the delivery system and a stabilizing tool.



FIG. 44 depicts an illustrative view of a delivery system connected to a fully deployed ring and stabilizing tool.



FIG. 45 depicts another illustrative view of a hinge system associated with the delivery system.



FIG. 46 depicts another illustrative view of a delivery system that is connected to a deployed ring while being manipulated by a stabilizing tool and before anchors are deployed.



FIG. 47 depicts another illustrative view of a hinge system associated with the delivery system.



FIG. 48 depicts another illustrative view of a hinge system associated with the delivery system.



FIG. 49 depicts an illustrative view of a stabilizing tool and tricuspid ring.



FIG. 50 depicts an isolated illustrative view of a stabilizing tool.



FIG. 51 depicts an illustrative view of deployed anchors at the septal zone.



FIG. 52 depicts another illustrative view of deployed anchors at the septal and posterior zones.



FIG. 53 depicts another illustrative view of deployed anchors at the septal zone, posterior zone, and first anterior zone.



FIG. 54 depicts another illustrative view of a stabilizing tool and tricuspid ring with deployed anchors at all zones.



FIG. 55 depicts an illustrative view of a tricuspid valve.



FIG. 56 depicts another illustrative view of a tricuspid valve.





DETAILED DESCRIPTION

This disclosure is not limited to the particular systems, devices and methods described, as these may vary. The terminology used in the description is for the purpose of describing the particular versions or embodiments only, and is not intended to limit the scope.


As used in this document, the singular forms “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art. Nothing in this disclosure is to be construed as an admission that the embodiments described in this disclosure are not entitled to antedate such disclosure by virtue of prior invention. As used in this document, the term “comprising” means “including, but not limited to.”


As discussed herein, the existing treatment for tricuspid valve regurgitation is invasive and potentially dangerous. For example, current treatment may include repair methods such as DeVega Repair and utilization of annuloplasty rings or tricuspid rings that require open heart surgery. Open heart surgery may introduce several comorbidities in addition to any existing conditions. Thus, many patients who suffer from tricuspid valve regurgitation may not be appropriate candidates for open heart surgery, and would therefore greatly benefit from a new device and/or method for percutaneous or minimally invasive treatment of tricuspid valve regurgitation.


An implant and delivery system for introduction of a semi-rigid ring for treatment of tricuspid valve regurgitation includes a tricuspid annuloplasty ring comprising an outer hollow member with a plurality of segments. In a further embodiment, segments may be adjustable and may cooperate with one another in order to change the outer hollow member from an elongated insertion shaped geometry to an annular operable shaped geometry. The tricuspid annuloplasty ring may include one or more zones comprising internal anchor members located at least partially within the outer hollow member. In one non-limiting embodiment, the tricuspid annuloplasty ring may include up to four different anchor zones, which are further discussed herein. In an embodiment, the internal anchor members may be configured to emerge sequentially from windows (i.e., openings) along the hollow tube, thereby engaging the tissue of the tricuspid valve annulus under treatment, potentially in a predetermined sequence.


Disclosed herein are various embodiments related to minimally invasive or percutaneous trans-catheter delivery of a tricuspid ring. In addition, an embodiment may comprise methods for reducing or adjusting the dimension between the anterior and septal leaflets and/or reducing or adjusting the dimension between the anteroposterior commissure to septal leaflet, thereby minimizing or eliminating the issue of tricuspid valve regurgitation.


The illustrated example embodiments will be best understood by reference to the figures. The following description is intended only by way of example, and simply illustrates certain example embodiments.


Referring to FIG. 1, a perspective view of a tricuspid valve 100, as it relates to various embodiments discussed herein, is shown. As shown, in an embodiment, the tricuspid valve 100 may have an anterior-septal direction and an anterior-posterior to septal leaflet direction. Additionally, FIG. 1 illustrates an outline of a normal sized annulus 101, a dilated annulus 102, a desired shape of a tricuspid ring 103, and an Atrioventricular (AV) node 104. FIG. 1 further shows the annular reduction directions (i.e., the plurality of arrows 105) that may be required to reduce tricuspid valve regurgitation.


As would be understood by one skilled in the art, the AV node 104 is a part of the electrical conduction system of the heart that coordinates the top of the heart. The AV node 104 is an area of specialized tissue between the atria and the ventricles of the heart, specifically in the posteroinferior region of the interatrial septum near the opening of the coronary sinus, which conducts the normal electrical impulse from the atria to the ventricles. Puncturing or introducing any impulse into this node causes adverse effects such as Arrhythmia, irregular heart rhythm, and, in the worst, case heart failure. Therefore, in an embodiment, the design of a tricuspid ring may not include anchors in the segment of the ring that will be located adjacent to the AV node.


In FIGS. 2 and 3, a perspective view of an illustrative embodiment may include a hollow tube 201/301, which may be made of various materials (e.g., a shape memory hypotube (nickel titanium (Ni—Ti) super elastic alloy)) cut to form a plurality of segments 202/302. In one embodiment, the cuts 203/303 in the hollow tube may allow for the tube to be used as an outer tube of a segmented tricuspid annuloplasty ring. Additionally, FIG. 4 shows an illustrative schematic diagram further detailing the cutting pattern used for laser processing (e.g., the cutting of windows 402 through which anchors (not shown) may be deployed) of the hypo tube 401 as illustrated in FIGS. 2 and 3.


In an embodiment, as shown by the schematic diagram in FIG. 5, the shape of the memory hypotube 501, as discussed and shown in FIGS. 2 and 3, may have an operable geometry. For example, the hypotube may be annular and/or D shaped (as shown in FIG. 5). Furthermore, an embodiment may, as shown, comprise a delivery system interface point 502.


Referring now to FIG. 6, a schematic laser cut pattern 600 for use in laser processing is shown. In one embodiment, the laser cut pattern 100 may integrate a plurality of segments (e.g., the windows for the anchors and the specific attachment holes for additional members. In one embodiment, a closing feature(s) may utilize the specific attachment holes in order to secure a connection and close the tricuspid ring. Thus, as shown in FIG. 6, an illustrative embodiment may include one or more laser cut patterns 600, one or more laser cut slots for flexibility 601, one or more windows for anchors 602, one or more windows for sutures 603, one or more holes for fabric attachment and fluorinated ethylene propylene (FEP) attachment 604, one or more holes for a suture pin 605, and one or more snap features for the suture pin 606.


Fluorinated ethylene propylene or FEP is a copolymer of hexafluoropropylene and tetrafluoroethylene. It differs from polytetrafluoroethylene resins in that it is melt-processable using conventional injection molding and screw extrusion techniques. Moreover, it has a very low coefficient of friction and thus, in an embodiment, may make an exceptional material to serve as an anchor track and/or anchor the assemblies within the laser cut Ni—Ti rings. FEP provides various benefits over current methods, such require a significant pulling force to retrieve a metal end of a metal ring, particularly one that has a bend radius, after deployment from a catheter. In contrast, an embodiment may utilize an FEP tube that is laser cut and allows easy sliding of the anchor assembly within the laser cut Ni—Ti ring.


FEP is very similar in composition to the fluoropolymers PTFE (polytetrafluoroethylene) and PFA (perfluoroalkoxy polymer resin). FEP and PFA both share PTFE's useful properties of low friction and non-reactivity, but are more easily formable. FEP is softer than PTFE and melts at 260° C. It is also highly transparent and resistant to sunlight.


As shown in FIG. 7, a further embodiment may include a schematic laser cut tube 700. In one embodiment, the schematic laser cut tube 700 configuration may integrate a plurality of segments (e.g., the windows for the anchors and the specific attachment holes for additional members such as a closing feature(s) to close the tricuspid ring). Thus, as shown in FIG. 7, an illustrative embodiment may include one or more laser cut slots for flexibility 701, one or more windows for anchors 702, one or more windows for sutures 703, one or more holes for fabric and FEP attachment 704, one or more holes for a suture pin 705, and a snap feature for the suture pin 706.


Referring now to FIG. 8, a perspective view of an illustrative embodiment is shown including a tricuspid annuloplasty ring 800 with four zones of internal anchors being deployed. Specifically, an embodiment may have a first anterior anchoring zone 801, a second an anterior anchoring zone 802, a posterior anchoring zone 803, a septal anchoring zone 804, and an AV node 805. In some embodiments, the AV node may comprise no anchors.


Additionally or alternatively, FIG. 9 illustrates alternative zone distributions in a tricuspid ring. In this configuration, the septal zones may overlap and thus create an improved attachment to the septal annulus. As shown in FIG. 9, an illustrative embodiment may include a tricuspid ring with four zones of anchors 900, an outer ring 901, a first septal zone 902, a second septal zone 903, a posterior zone 904, and an anterior zone 905, a snapping/closure mechanism 906, and a pivot pin attachment point 907, wherein the pivot pin attachment point attaches to a snapping mechanism of a delivery system.


Referring now to FIG. 10, a perspective view of a laser cut FEP 1001 that is used as a lining for the inside diameter of the hollow laser cut tube is shown. In one embodiment, the laser cut FEP may include laser cut anchor deployment windows 1002 that correspond to the laser cut windows on the hollow segmented tube (i.e., 700 shown in FIG. 7). Additionally, an embodiment may, as shown in FIG. 11, include a laser cut pattern 1100 for the FEP to enable it to properly line the inside diameter of the hollow laser cut tube. Moreover, as shown in FIG. 11, the laser cut pattern may include laser cut windows 1103 that correspond to laser cut windows on the hollow segmented tube, wherein both patterns allow for the flexibility of the FEP tube to bend along with the outer ring. As shown in FIG. 11, an illustrative embodiment may include a laser cut FEP 1100, a material release to allow flexibility 1101, one or more corresponding holes for sutures and coding of the FEP to the ring tube 1102, and one or more corresponding windows for the anchors 1103.



FIG. 12 shows an alternate perspective view of an embodiment including a laser cut FEP in its tubular configuration 1200. As shown, the laser cut FEP 1200 may provide a lining for the inside diameter of the hollow laser cut tube, and include one or more laser cut windows that correspond to one or more laser cut windows 1203 on the hollow segmented tube, as discussed herein. A further embodiment may have a pattern that allows the FEP tube 1200 to be flexible and bend with the outer ring, such as that shown in FIG. 12. As shown in FIG. 12, an embodiment may include a laser cut FEP 1200, a material release to allow flexibility 1201, one or more corresponding holes for sutures and coding of the FEP to the tricuspid ring tube 1202, and one or more corresponding windows 1203 for the anchors.


Referring to FIGS. 13-16, embodiments are shown that illustrate the geometry and view of four anchor rails. For example, FIG. 13 depicts the anchor rail for the septal zone of the tricuspid ring and FIG. 14 depicts the anchor rail for the posterior leaflet. FIGS. 15 and 16 depict two anchor rails which are each designed to anchor the tricuspid ring to the anterior section of the tricuspid valve (e.g., Zone A and Zone B of the anterior section).


A further embodiment, as illustrated in FIG. 17, may have an anchor system for a posterior/anterior zone. By way of non-limiting example, an illustrative embodiment, such as is shown in FIG. 17, may include an anchor zone 1700, a harpoon 1702, a harpoon barb 1703 an anchor stop (AS) feature 1704, an anchor zone rail 1706, an anchor zone deployment hole 1719, and a loading hole 1720.


As discussed herein, various embodiments may employ an anchor stop (e.g., 1704). The need for an anchor stop arises from the fact that the anchors may move after a tricuspid ring is deployed from the catheter (e.g., in linear shape) and takes on the “D” shape, as discussed herein. Specifically, the anchor assemblies that were held stationary when the ring was held in a linear position (e.g., the anchors held beneath and adjacent to the windows in the laser cut tube) may start moving and emitting prematurely from the windows because of the bend radius of the ring.


Thus, in order to combat premature deployment, which may render the ring useless and cause serious issues during the procedure, an embodiment utilizes the anchor stops to hold the anchors in place until the ring has reached its final location and deployment is appropriate. Once the assembly has reached its final location, the anchor stop may be overcome when an operator pulls a suture that is connected to the anchor assembly and forces the assembly and its stopper to slide, thus deploying the anchor systems, in the method discussed herein. Generally, an anchor stop is a bump geometrical feature, or step that prevents the anchor assembly from moving when the ring is deployed out of the delivery system; however, various embodiments and configurations are discussed herein and shown in the corresponding figures.


In another embodiment, illustrated in FIG. 18, a laser cut pattern may be used for a septal zone. As shown in FIG. 18, an embodiment may include an anchor zone 1800, a harpoon 1801, a harpoon barb 1802, an anchor stop (AS) feature 1803, an anchor zone rail 1804, an anchor zone deployment hole 1819, and a loading zone 1820. Additional detail regarding the harpoon 1801 is shown in FIG. 19. As illustrated by the embodiment in FIG. 19, the harpoon 1801 may have one or more harpoon barbs 1902. Additional detail regarding the anchor stop feature 1803 is shown in FIG. 20. As illustrated by the embodiment in FIG. 20, the anchor stop feature 1803 may include a first connecting strut 2011, a second connecting strut 2012, a deployment angle 2013, and an anchor stop feature height 2014.


Additionally or alternatively, as shown in FIG. 21, an embodiment may include an anchor stop feature 1803 attached with one strut to an anchor zone having a negative deployment angle 2113. In a further embodiment, the anchor stop feature 1803 may include one or more deployment holes 2115. Thus, as illustrated in FIG. 21, an embodiment may include a typical anchor stop feature 1803, a first connecting strut 2111, a deployment angle 2113, an anchor stop feature height 2114, an anchor stop deployment hole 2115, and an anchor zone suture routing hole 2118.



FIG. 22 depicts another illustrative embodiment of an anchor stop feature 1803. As shown, the anchor stop feature 1803 may include a first connecting strut 2211, a second connecting strut 2212, a deployment angle 2213, and an anchor stop feature height 2214. Additionally or alternatively an embodiment, as shown in FIG. 23, may include an anchor stop feature 1803 with a weak point 2216 to direct an anchor stop disconnection at a certain point. Thus, an embodiment, as shown in FIG. 23, may include a first connecting strut 2311, a deployment angle 2313, an anchor stop feature height 2314, an anchor stop deployment hole 2315, and a weak point of the anchor stop feature strut 2316.


Referring now to FIG. 24, an embodiment may include an active anchor stop feature with activation holes 2417 on the anchor zone rail. Thus, as shown in FIG. 24, an illustrated embodiment may include a first connecting strut 2411, a deployment angle 2413, an anchor stop feature deployment hole 2415, an activation hole 2417 for transforming the suture direction from horizontal to vertical, an anchor zone suture routing hole 2418, and an anchor zone deployment hole 2419.


As discussed herein, an embodiment may take the shape of the memory hypotube and may have an operable geometry, for example, an annular and/or D shaped geometry (as shown in FIG. 5). Referring now to FIG. 25, a perspective view of an illustrative distal end of a delivery system 2501 with an implant interface member connected to the tricuspid ring 2502 is shown.



FIGS. 26 and 27 illustrate a general view of one or more typical anchors in an initial and deployed position, respectively. In FIG. 26, the anchor 2601 is tucked within the hollow laser cut tube 2602 under its respective deployment window. In FIG. 27, a non-limiting illustration shows a deployed anchor 2701 after it has been deployed from its respective deployment window 2702. Further detail of a deployed anchor 2701 is shown in FIG. 28, which depicts a magnified view of a segment of the tricuspid ring 2803 that includes a deployment window 2802 (see also 602 of FIG. 6) and a deployment anchor 2801.


Referring now to FIG. 29, an embodiment is depicted that includes an initial geometry of the tricuspid ring when deployed from the delivery system (e.g., the solid lines) and the geometry of the tricuspid ring after deployment of all anchors (e.g., the dashed lines). In some embodiments the tricuspid ring may comprise a first anterior zone, a second anterior zone, a posterior zone, and a septal zone. Thus, as shown in FIG. 29, the solid lines may depict the initially deployed geometry, while the dashed lines may depict one possible final geometry after the anterior leaflet (e.g., at zone 2) has been transferred to reduce the anterior septal height.



FIG. 30 shows a perspective view of an embodiment wherein a tricuspid ring 3000 may include one or more snap mechanisms 3001 that connect a proximal and distal end of the laser cut hollow tube to create a geometric shape (e.g., a “D” shape). In a further embodiment, the geometrically shaped tricuspid ring may include one or more anchors 3002 which can be deployed from the deployment windows 3003.



FIG. 31 shows a perspective view of an embodiment wherein a tricuspid ring 3100 includes a snap mechanism 3105 that connects a proximal and a distal end of the laser cut hollow tube (700 of FIG. 7) to create a shape that mimics the native shape of the tricuspid annulus. In a further embodiment, the tricuspid ring 3100 may also include one or more anchors deployed from the one or more deployment windows. In one embodiment, as shown in FIG. 31, the anchors may exit from the deployment windows at an angle within a range of about 30 degrees to the horizontal plane to about 75 degrees to the horizontal plane.


Thus, as shown in FIG. 31, an embodiment may include a tricuspid ring 3100, an anterior zone 3101 where the anchors exit from the tricuspid ring at an angle to provide anchoring forces in both the radial and axial directions, a posterior zone 3102 where the anchors exit from the tricuspid ring at an angle to provide anchoring forces in both the radial and axial directions, a first septal zone 3103 where the anchors exit the ring at an angle to provide anchoring forces in both the radial and axial directions, a second septal zone 3104 where the anchors exit from the ring at an angle to provide anchoring forces in both the radial and axial directions, a snapping mechanism (e.g., closure mechanism) 3105, and a suture pin to provide a rotational pin for the sutures 3106.



FIG. 32 shows a perspective view of an embodiment wherein a snapping mechanism 3200 is utilized to secure the tricuspid ring in a closed configuration. Thus, as shown in FIG. 32, an embodiment may include a snapping mechanism 3200, a suture pin (e.g., attachment of female and male parts of the ring tube) 3201, a female part of the snapping mechanism 3202, a pivot pin (e.g., attachment of the snapping mechanism to the delivery system with a safety wire) 3203, a cover part (e.g., a component to hold the nitinol disk that snaps the male part into the female) 3204, and a male part of the snapping mechanism 3205.



FIG. 33 shows a detailed view of an embodiment, wherein the snapping mechanism 3300 is in an open configuration. Again, similar to embodiments discussed herein, the snapping mechanism 3300 is utilized to secure the tricuspid ring in a closed configuration. Thus, as shown in FIG. 33, an embodiment may include a snapping mechanism 3300, a female part of the snapping mechanism 3301, a pivot pin (e.g., attachment of the snapping mechanism to the delivery system with a safety wire) 3302, a cover part (e.g., a component to hold the Nitinol disk that snaps the male part into the female) 3303, a cup (e.g., an interface of the female to the ring tube) 3304, and a male part of the snapping mechanism 3305.


A detailed view of an embodiment where the snapping mechanism is in a closed configuration is shown in FIG. 34. Similar to embodiments discussed herein, the snapping mechanism 3400 is utilized to secure the tricuspid ring in a closed configuration. Thus, as shown in FIG. 34, an embodiment may include a snapping mechanism 3400, a female part of the snapping mechanism 3401, a pivot pin (e.g., attachment of the snapping mechanism to the delivery system with a safety wire) 3402, a cover part (e.g., part to hold the Nitinol disk that snaps the male part into the female) 3403, a cup (e.g., an interface of the female to the ring tube) 3404, and a male part of the snapping mechanism 3405.


A detailed view of the female part 3401 of the snapping mechanism 3400 according to one embodiment is shown in FIG. 35. As shown in FIG. 35, the female part 3401 of the snapping mechanism 3400 may include, a pivot pin (e.g., an attachment of the snapping mechanism to the delivery system with a safety wire) 3502, a cup (e.g., an interface of the female to the ring tube) 3503, a nitinol disk for locking the snap into position 3504, a window for suture routing 3505, a window for a suture pin 3506, and a gold marker 3507.



FIG. 36 shows an illustrative cross section of the female part 3401 of the snapping mechanism 3400 according to an embodiment. As shown in FIG. 36, the female part 3401 of the snapping mechanism 3400 may include a pivot pin (e.g., an attachment of the snapping mechanism to the delivery system with a safety wire) (not shown), a cover that holds a nickel titanium (Ni—Ti) disk 3602, a cup (e.g., an interface of the female to the ring tube) 3603, a nitinol disk for locking the snap into position (tongues can open only in one direction to prevent un-intentional unsnapping) 3604, a window for suture routing 3605, and a window for a suture pin 3606.


A detailed view of the male part 3405 of the snapping mechanism according to an embodiment is shown in FIG. 37. As shown in FIG. 37, the male part 3405 of the snapping mechanism 3400 may include a male cone 3701 to allow smooth entrance and locking of the male within the female, a least one window for suture routing 3702, at least one window for a suture pin 3703, and at least one protrusion 3704 upon the suture pin.


Turning now to FIG. 38, a detailed view of a distal end of a delivery system is shown. In one embodiment, the distal end of the delivery system may interface with the tricuspid ring assembly. For example, FIG. 39 illustrates a detailed view of the distal end 3901 of the delivery system 3900, wherein the delivery system interfaces with the tricuspid ring assembly and the tricuspid ring 3950.


As shown in FIG. 39, the delivery system 3900 may interface with a tricuspid ring 3950 that may have an anterior zone 3951 where anchors exit the ring at an angle to provide anchoring forces in both the radial and axial direction. The tricuspid ring 3950 may also have a posterior zone 3952 where anchors exit the tricuspid ring at an angle to provide anchoring forces in both the radial and axial direction, a snapping mechanism (e.g., closure mechanism) 3953, and a suture pin to provide a rotation pin for the sutures 3954. The delivery system 3900 may include a distal end of the guiding catheter 3901, a stabilizing mechanism to ensure ring stabilization during an implantation procedure 3902, a delivery system (DS) tongue (e.g., ring interface device) 3903, and a stabilizing tool 3904.



FIGS. 40-42 depict various views of the delivery system during the beginning of the deployment of the tricuspid ring from the delivery system. In one embodiment, and as shown in FIG. 40, the tricuspid ring 4001 may exit the delivery system 4002 in a linear shape. Once the tricuspid ring 4001 exits the delivery system, it may in some embodiments be formed into a ring-like shape using methods disclosed herein, and as shown in FIGS. 41 and 42. FIG. 41 shows an embodiment in which the tricuspid ring 4101 is formed using the delivery system 4102. In some embodiments, and as shown in FIG. 41, the tricuspid ring 4101 may be between about 30° and about 40° from a plane normal to the delivery system 4102. FIG. 42 shows an embodiment in which the tricuspid ring 4201 is formed and the snapping mechanism (e.g., closure mechanism) 4203 secures the ring in the proper geometry. In some embodiments, such as that shown in FIG. 42, the delivery system 4202 may be used to move or modify the shape or location of the tricuspid ring 4201.


In some embodiments, such as that shown in FIG. 43, the delivery system 4300 may interface with a tricuspid ring 4350. The tricuspid ring 4350 may also have a posterior zone where anchors exit the tricuspid ring (not shown) at an angle to provide anchoring forces in both the radial and axial direction, a snapping mechanism (e.g., closure mechanism) (not shown), and a suture pin to provide rotation pin for the sutures (not shown). The delivery system 4300 may include a distal end of the guiding catheter (not shown), a stabilizing mechanism 4301 to ensure ring stabilization during an implantation procedure, a delivery system (DS) tongue (e.g., ring interface device) (not shown), and a stabilizing tool 4302. As shown, the plane of the tricuspid ring 4350 may be between about 0° and about 40° removed from the plane of the tricuspid valve after rotation around the hinge.


In another embodiment, as shown in FIG. 44, the plane of the ring may be parallel or slightly angled (e.g., from about 0° to about 40°) to the plane of the tricuspid valve after rotation around the hinge. Thus, an embodiment may utilize a trans-apical approach (i.e., pulling the ring to the tissue). In some embodiments, the delivery system 4400 may interface with a tricuspid ring 4450 that may have an anterior zone where anchors (not shown) exit the ring at an angle to provide anchoring forces in both the radial and axial direction. The tricuspid ring 4450 may also have a posterior zone 4403 where anchors exit the tricuspid ring at an angle to provide anchoring forces in both the radial and axial direction, a snapping mechanism (e.g., closure mechanism) (not shown), and a suture pin to provide a rotation pin for the sutures (not shown). The delivery system 4400 may include a distal end of the guiding catheter 4401, a stabilizing mechanism 4402 to ensure ring stabilization during an implantation procedure, a delivery system (DS) tongue (e.g., ring interface device) (not shown), and a stabilizing tool 4404. As stated, the ring orientation in relation to the delivery system 4400 may be in a range of about 0 degrees to about 40 degrees “above” the horizontal plane. As discussed herein, this approach is trans-apical, thus pulling the ring to the tissue. In a further embodiment, the ring orientation may be in a range of about 0 degrees to about 40 degrees “above” the horizontal plane of the delivery system. FIG. 44 depicts the embodiment of FIG. 43 with the anchors deployed.


In another embodiment, as shown in FIG. 45, the position of the tricuspid ring may be parallel to or below the plane of the tricuspid valve after rotation around the hinge. Again this approach is trans-apical, thus pulling the ring to the tissue. However, FIG. 45 differs from the embodiment of FIGS. 43-44, in that the ring orientation in relation to the delivery system may be in a range of about 0 degrees to about 40 degrees “below” the horizontal plane. In an additional embodiment, as shown in FIG. 45, the position of the tricuspid ring after rotation around the hinge may be parallel or slightly below to the plane of the tricuspid valve. The ring orientation, in this embodiment, in relation to the delivery system may be in a range of about 0 degrees to about 40 degrees “below” the horizontal plane. FIG. 46 depicts an embodiment with the anchors deployed.


As shown in FIGS. 45-46, in some embodiments, the delivery system 4500/4600 may interface with a tricuspid ring 4550 that may have an anterior zone where anchors (not shown) exit the ring at an angle to provide anchoring forces in both the radial and axial direction. The tricuspid ring 4550 may also have a posterior zone where anchors exit the tricuspid ring at an angle to provide anchoring forces in both the radial and axial direction, a snapping mechanism (e.g., closure mechanism) (not shown), and a suture pin to provide a rotation pin for the sutures (not shown). The delivery system 4500 may include a distal end of the guiding catheter 4501, a stabilizing mechanism to ensure ring stabilization during an implantation procedure 4502, a delivery system (DS) tongue (e.g., ring interface device) (not shown), and a stabilizing tool 4504.



FIG. 47 shows a zoomed in view of the tricuspid ring 4750 after rotation around the hinge whereby the plane of the ring may be parallel to the plane of the tricuspid valve. The approach may be trans-atrial, trans-septal, and/or trans-jugular, thus pulling the ring to the tissue. In an embodiment, as shown in FIG. 47, the ring orientation in relation to the delivery system may be in a range of about 0 degrees to about 40 degrees “below” the horizontal plane, and the anchors may or may not be deployed.


Additionally or alternatively, FIG. 48 shows a zoomed in view of the tricuspid ring 4850 after rotation around the hinge whereby the plane of the ring is parallel to the plane of the tricuspid valve. The approach of FIG. 48 may also be trans-atrial, trans-septal, and/or trans-jugular, thus pulling the ring to the tissue. In another embodiment, as shown in FIG. 48, the ring orientation in relation to the delivery system may be in a range of about 0 degrees to about 40 degrees “above” the horizontal plane, and the anchors 4751 may or may not be deployed.


Referring now to FIGS. 49-50, an embodiment shows the geometry of the stabilizing tool that may be needed for the placement of the tricuspid ring 4901 above the annulus. By way of non-limiting example, FIG. 49 shows the tricuspid ring 4901, which may comprise various zones, and its interaction with the stabilizing tool 4902. In one embodiment, the stabilizing tool 4902 may be incorporated or attached to the delivery system 4903, as shown in FIG. 49. A more detailed view of the stabilizing tool is shown in FIG. 50. In some embodiments, the stabilizing tool 5001 may be made of super elastic nickel titanium (Ni—Ti) from a laser cut hypotube.



FIGS. 51-54 depict an illustrative ring as it is placed in the annulus, and the deployment of the anchors into the tricuspid annulus. In particular, FIG. 51 depicts the deployment of the septal anchors into the septal section of the tricuspid annulus adjacent to the septal leaflet. Additionally, FIG. 52 shows the deployment of the posterior anchors into the posterior section of the annulus adjacent to the posterior leaflet. FIG. 53 shows the additional deployment of the first zone of the anterior anchors that are adjacent to the anterior leaflet. FIG. 54 shows dragging of the anterior leaflet (e.g., by the stabilizing tool) as a means to reduce the dilation of the annulus and as a consequence, improve the coaptation of the anterior leaflet and the septal leaflet.



FIGS. 55-56 shows further illustrative embodiments of a tricuspid valve 5500/5600. With reference to FIG. 55, it should be understood that a tricuspid valve 5500 may include: an anteroseptal commissure 5501, a septal leaflet 5502, an anteroposterior commissure 5503, an anterior leaflet 5504, a posteroseptal commissure 5505, an annulus 5506, a coronary sinus 5507, and an AV node 5508. As shown in FIG. 56, the annulus of tricuspid valve 5600 may be dilated. A dilated annulus shape 5601 is shown alongside a normal sized annulus (i.e., the desired shape if a tricuspid ring) 5602 (dashed lines) as a non-limiting example for clarity purposes. The tricuspid valve 5600 may also include an AV node 5608.


Accordingly, systems and methods are provided for introducing a tricuspid ring (e.g. while it is housed in a linear shape within the delivery system) in a trans-apical or trans-femoral approach. In an embodiment, the distal tip of the delivery system may be introduced above the tricuspid annulus. Once the tricuspid ring is introduced, the plane of the tricuspid ring may be rotated (e.g., automatically) to be parallel to the plane of the tricuspid annulus.


The tricuspid ring may then be snapped into a proper shape (e.g., a “D” shape) and introduced to the stabilization tool. The shape is possible because, as discussed herein, the tricuspid ring comprises an outer hollow member with a plurality of segments, wherein the segments may be adjustable and may cooperate with one another in order to change the outer hollow member from an annular operable shaped geometry to an elongated insertion shaped geometry and vice versa.


Once the tricuspid ring is properly controlled by the stabilization tool (e.g., as depicted in FIGS. 38-54), the properly shaped (e.g., “D” shaped) tricuspid ring may be inserted and guided to the desired location within the patient (e.g., the tricuspid valve). Once in the proper location, an embodiment may deploy a plurality of anchors. For example, an embodiment may deploy anchors associated with the septal zone, the posterior zone, or the first or second anterior zones.


In a further embodiment, the anchored tricuspid ring is anchored towards the septal leaflet, thereby reducing the height of the anterior-septal leaflets by approximately 15% to 20%. One or more second anterior zone anchors may also be deployed. In another embodiment, the design of the tricuspid ring may not include anchors in certain zones (e.g., the AV node zone). As discussed herein, this may be due to a particular zone being sensitive to external forces which could lead to adverse effects for the patient such as Arrhythmia, an irregular heart rhythm or heart failure.


Additionally or alternatively, the tricuspid ring (e.g., the septal zone and the posterior zone) may be dragged by the stabilizing tool to reduce the height of the anterior-septal leaflet height prior to the anchors in the first and second anterior zones one and two being applied.


In the above detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be used, and other changes may be made, without departing from the spirit or scope of the subject matter presented herein. It will be readily understood that the aspects of the present disclosure, as generally described herein, and illustrated in the Figures, can be arranged, substituted, combined, separated, and designed in a wide variety of different configurations, all of which are explicitly contemplated herein.


The present disclosure is not to be limited in terms of the particular embodiments described in this application, which are intended as illustrations of various aspects. Many modifications and variations can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. Functionally equivalent methods and apparatuses within the scope of the disclosure, in addition to those enumerated herein, will be apparent to those skilled in the art from the foregoing descriptions. Such modifications and variations are intended to fall within the scope of the appended claims. The present disclosure is to be limited only by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled. It is to be understood that this disclosure is not limited to particular methods, reagents, compounds, compositions or biological systems, which can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting.


With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations may be expressly set forth herein for sake of clarity.


It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (for example, bodies of the appended claims) are generally intended as “open” terms (for example, the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” et cetera). While various compositions, methods, and devices are described in terms of “comprising” various components or steps (interpreted as meaning “including, but not limited to”), the compositions, methods, and devices can also “consist essentially of” or “consist of” the various components and steps, and such terminology should be interpreted as defining essentially closed-member groups. It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present.


For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to embodiments containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (for example, “a” and/or “an” should be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations.


In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should be interpreted to mean at least the recited number (for example, the bare recitation of “two recitations,” without other modifiers, means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, et cetera” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (for example, “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, et cetera). In those instances where a convention analogous to “at least one of A, B, or C, et cetera” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (for example, “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, et cetera). It will be further understood by those within the art that virtually any disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms. For example, the phrase “A or B” will be understood to include the possibilities of “A” or “B” or “A and B.”


In addition, where features or aspects of the disclosure are described in terms of Markush groups, those skilled in the art will recognize that the disclosure is also thereby described in terms of any individual member or subgroup of members of the Markush group.


As will be understood by one skilled in the art, for any and all purposes, such as in terms of providing a written description, all ranges disclosed herein also encompass any and all possible subranges and combinations of subranges thereof. Any listed range can be easily recognized as sufficiently describing and enabling the same range being broken down into at least equal halves, thirds, quarters, fifths, tenths, et cetera. As a non-limiting example, each range discussed herein can be readily broken down into a lower third, middle third and upper third, et cetera. As will also be understood by one skilled in the art all language such as “up to,” “at least,” and the like include the number recited and refer to ranges that can be subsequently broken down into subranges as discussed above. Finally, as will be understood by one skilled in the art, a range includes each individual member. Thus, for example, a group having 1-3 cells refers to groups having 1, 2, or 3 cells. Similarly, a group having 1-5 cells refers to groups having 1, 2, 3, 4, or 5 cells, and so forth.


Various of the above-disclosed and other features and functions, or alternatives thereof, may be combined into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art, each of which is also intended to be encompassed by the disclosed embodiments.

Claims
  • 1. A device for minimally invasive medical treatment comprising: a hollow tube comprising: a first end;a second end;an exterior having a plurality of cutouts;at least one snap mechanism configured to connect the first end and the second end together;a plurality of anchor deployment zones;a plurality of anchors configured to deploy through the plurality of cut outs, each anchor of the plurality of anchors being associated with at least one of the plurality of anchor deployment zones, wherein each of the plurality of anchor deployment zones are configured to operate independently;at least one anchor stop mechanism that comprises a projection configured to hold the plurality of anchors in place and prevent premature deployment of the plurality of anchors, wherein the projection projects a predetermined height from an anchor rail, wherein the anchor rail comprises some of the plurality of anchors coupled thereto; andat least one stabilizing mechanism configured to be disengaged from the hollow tube after insertion.
  • 2. The device of claim 1, wherein the plurality of cutouts are laser cutouts.
  • 3. The device of claim 1, wherein the plurality of cutouts comprise windows; and wherein the plurality of anchors exit the exterior of the hollow tube using the windows.
  • 4. The device of claim 1, wherein the hollow tube is configured to take a geometric D shape when the first end and second end are connected.
  • 5. The device of claim 4, wherein the hollow tube is configured to allow the at least one stabilizing mechanism to modify the geometric D shape.
  • 6. The device of claim 5, wherein the hollow tube is configured to allow the modification after deployment of at least one of the plurality of anchor deployment zones.
  • 7. The device of claim 1, wherein the plurality of anchor deployment zones are selected from at least one of: a first anterior anchoring zone, a second anterior anchoring zone, a posterior anchoring zone, a septal anchoring zone, and an AV node anchoring zone.
  • 8. The device of claim 1, wherein the at least one snap mechanism is configured to be removably attached to a delivery system.
  • 9. The device of claim 1, wherein the at least one anchor stop mechanism is configured to hold the plurality of anchors in place until deployment.
  • 10. The device of claim 9, wherein the at least one anchor stop mechanism is associated with at least one of the plurality of anchor deployment zones.
CROSS-REFERENCED TO RELATED APPLICATIONS

The present application claims benefit of priority under 35 U.S.C. 119(e) to the filing date of U.S. Provisional Patent Application 62/375,079 filed Aug. 15, 2016, entitled, “DEVICES AND METHODS FOR THE TREATMENT OF HEART VALVE INSUFFICIENCIES,” the contents of which is incorporated herein by reference in their entirety.

US Referenced Citations (186)
Number Name Date Kind
4602911 Ahmadi et al. Jul 1986 A
5236440 Hlavacek Aug 1993 A
5306296 Wright et al. Apr 1994 A
5695518 Laerum Dec 1997 A
5716370 Williamson, IV et al. Feb 1998 A
5855614 Stevens et al. Jan 1999 A
6113611 Allen et al. Sep 2000 A
6231602 Carpentier et al. May 2001 B1
6619291 Hlavka et al. Sep 2003 B2
6629534 St. Goar et al. Oct 2003 B1
6669687 Saadat Dec 2003 B1
6689048 Vanden Hoek et al. Feb 2004 B2
6726704 Loshakove et al. Apr 2004 B1
6776784 Ginn Aug 2004 B2
6790229 Berreklouw Sep 2004 B1
6797002 Spence et al. Sep 2004 B2
6805711 Dugan et al. Oct 2004 B2
6893459 Macoviak May 2005 B1
7101395 Tremulis et al. Sep 2006 B2
7114953 Wagner Oct 2006 B1
7175660 Cartledge et al. Feb 2007 B2
7238191 Bachmann Jul 2007 B2
7285087 Moaddeb et al. Oct 2007 B2
7297150 Cartledge et al. Nov 2007 B2
7569072 Berg et al. Aug 2009 B2
7594887 Moaddeb et al. Sep 2009 B2
7635329 Goldfarb et al. Dec 2009 B2
7655040 Douk et al. Feb 2010 B2
7717954 Solem et al. May 2010 B2
7722668 Moaddeb et al. May 2010 B2
7758637 Starksen et al. Jul 2010 B2
7837729 Gordon et al. Nov 2010 B2
7988725 Gross et al. Aug 2011 B2
8163014 Lane et al. Apr 2012 B2
8182529 Gordon et al. May 2012 B2
8236049 Rowe et al. Aug 2012 B2
8287591 Keidar et al. Oct 2012 B2
8518107 Tsukashima et al. Aug 2013 B2
8579968 Shannon et al. Nov 2013 B1
9180008 Yellin et al. Nov 2015 B2
9402721 Buchbinder et al. Aug 2016 B2
9433503 Tsukashima et al. Sep 2016 B2
20020151961 Lashinski et al. Oct 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020188170 Santamore et al. Dec 2002 A1
20030050693 Quijano et al. Mar 2003 A1
20030078465 Pai et al. Apr 2003 A1
20030078671 Lesniak et al. Apr 2003 A1
20030191528 Quijano et al. Oct 2003 A1
20030198605 Montgomery Oct 2003 A1
20030199974 Lee et al. Oct 2003 A1
20040044364 DeVries et al. Mar 2004 A1
20040068276 Golden et al. Apr 2004 A1
20040122514 Fogarty et al. Jun 2004 A1
20040138744 Lashinski et al. Jul 2004 A1
20040148021 Cartledge et al. Jul 2004 A1
20040193191 Starksen et al. Sep 2004 A1
20040243230 Navia et al. Dec 2004 A1
20040249391 Cummins Dec 2004 A1
20040260393 Randert et al. Dec 2004 A1
20040260394 Douk et al. Dec 2004 A1
20050020696 Montgomery et al. Jan 2005 A1
20050033325 May et al. Feb 2005 A1
20050065550 Starksen et al. Mar 2005 A1
20050090846 Pedersen et al. Apr 2005 A1
20050096740 Langberg et al. May 2005 A1
20050113910 Paniagua et al. May 2005 A1
20050137692 Haug et al. Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050203549 Realyvasquez Sep 2005 A1
20050222678 Lashinski et al. Oct 2005 A1
20050240200 Bergheim Oct 2005 A1
20050267572 Schoon et al. Dec 2005 A1
20050283190 Huitema et al. Dec 2005 A1
20050288778 Shaoulian et al. Dec 2005 A1
20050288781 Moaddeb et al. Dec 2005 A1
20060009737 Whiting et al. Jan 2006 A1
20060020327 Lashinski et al. Jan 2006 A1
20060122633 To et al. Jun 2006 A1
20060129025 Levine et al. Jun 2006 A1
20060155165 Vanden Hoek et al. Jul 2006 A1
20060161169 Nieminen et al. Jul 2006 A1
20060184240 Jimenez et al. Aug 2006 A1
20060184242 Lichtenstein Aug 2006 A1
20060195134 Crittenden Aug 2006 A1
20060195183 Navia et al. Aug 2006 A1
20060241748 Lee et al. Oct 2006 A1
20060282161 Huynh et al. Dec 2006 A1
20070016287 Cartledge et al. Jan 2007 A1
20070027533 Douk Feb 2007 A1
20070038296 Navia Feb 2007 A1
20070051377 Douk et al. Mar 2007 A1
20070067027 Moaddeb et al. Mar 2007 A1
20070073098 Lenker et al. Mar 2007 A1
20070080188 Spence et al. Apr 2007 A1
20070093854 Kayan Apr 2007 A1
20070118215 Moaddeb May 2007 A1
20070128132 Piergallini et al. Jun 2007 A1
20070135913 Moaddeb et al. Jun 2007 A1
20070142907 Moaddeb et al. Jun 2007 A1
20070213812 Webler et al. Sep 2007 A1
20070233239 Navia et al. Oct 2007 A1
20070239272 Navia et al. Oct 2007 A1
20070244553 Rafiee et al. Oct 2007 A1
20070244554 Rafiee et al. Oct 2007 A1
20070244555 Rafiee et al. Oct 2007 A1
20070244556 Rafiee et al. Oct 2007 A1
20070250161 Dolan Oct 2007 A1
20070293942 Mirzaee Dec 2007 A1
20080177380 Starksen et al. Jul 2008 A1
20080177381 Navia et al. Jul 2008 A1
20080200980 Robin et al. Aug 2008 A1
20080243220 Barker Oct 2008 A1
20080262513 Stahler et al. Oct 2008 A1
20080262609 Gross et al. Oct 2008 A1
20080306586 Cartledge et al. Dec 2008 A1
20090088838 Shaolian et al. Apr 2009 A1
20090118747 Bettuchi et al. May 2009 A1
20090125098 Chuter May 2009 A1
20090149872 Gross et al. Jun 2009 A1
20090216322 Le et al. Aug 2009 A1
20090222083 Nguyen et al. Sep 2009 A1
20090238778 Mordas et al. Sep 2009 A1
20090299470 Rao et al. Dec 2009 A1
20100010616 Drews et al. Jan 2010 A1
20100030014 Ferrazzi Feb 2010 A1
20100063586 Hasenkarn et al. Mar 2010 A1
20100121433 Bolling et al. May 2010 A1
20100161047 Cabiri Jun 2010 A1
20100185274 Moaddeb et al. Jul 2010 A1
20100211166 Miller et al. Aug 2010 A1
20100249920 Bolling et al. Sep 2010 A1
20100266989 Piergallilni et al. Oct 2010 A1
20100280605 Hammer et al. Nov 2010 A1
20100286767 Zipory et al. Nov 2010 A1
20110022168 Cartledge Jan 2011 A1
20110027753 Maurat et al. Feb 2011 A1
20110034953 Milo Feb 2011 A1
20110066231 Cartledge et al. Mar 2011 A1
20110093062 Cartledge et al. Apr 2011 A1
20110106245 Miller et al. May 2011 A1
20110106247 Miller et al. May 2011 A1
20110137397 Chau et al. Jun 2011 A1
20110166649 Gross et al. Jul 2011 A1
20110190879 Bobo et al. Aug 2011 A1
20110208298 Tuval et al. Aug 2011 A1
20110224785 Hacohen Sep 2011 A1
20110257728 Kuehn Oct 2011 A1
20110282361 Miller et al. Nov 2011 A1
20110301698 Miller et al. Dec 2011 A1
20110301699 Saadat Dec 2011 A1
20120022557 Cabiri et al. Jan 2012 A1
20120022644 Reich et al. Jan 2012 A1
20120059458 Buchbinder et al. Apr 2012 A1
20120095455 Rodmond et al. Apr 2012 A1
20120123531 Tsukashima May 2012 A1
20120136436 Cabiri et al. May 2012 A1
20120165930 Gifford, III et al. Jun 2012 A1
20120245604 Tegzes Sep 2012 A1
20120310330 Buchbinder et al. Dec 2012 A1
20130087598 Surti Apr 2013 A1
20130116780 Miller et al. May 2013 A1
20130166022 Conklin Jun 2013 A1
20130204361 Adams et al. Aug 2013 A1
20130226289 Shaolian Aug 2013 A1
20130226290 Yellin Aug 2013 A1
20130282114 Schweich, Jr. et al. Oct 2013 A1
20130289718 Tsukashima et al. Oct 2013 A1
20130289720 Dobrilovic Oct 2013 A1
20130304197 Buchbinder et al. Nov 2013 A1
20140005778 Buchbinder et al. Jan 2014 A1
20140046433 Kovalsky Feb 2014 A1
20140058505 Bielefeld Feb 2014 A1
20140114407 Rajamannan Apr 2014 A1
20150173897 Raanani et al. Jun 2015 A1
20150173987 Albinmousa et al. Jun 2015 A1
20150351903 Morriss et al. Dec 2015 A1
20160022419 Yellin et al. Jan 2016 A1
20160038286 Yellin et al. Feb 2016 A1
20160089235 Yellin Mar 2016 A1
20160106420 Foerster et al. Apr 2016 A1
20160120642 Shaolian et al. May 2016 A1
20160120645 Alon May 2016 A1
20170042670 Shaolian et al. Feb 2017 A1
20170231763 Yellin Aug 2017 A1
20180042723 Yellin et al. Feb 2018 A1
Foreign Referenced Citations (33)
Number Date Country
102014102653 Sep 2015 DE
2600799 Jun 2013 EP
2928538 Oct 2015 EP
2967700 Jan 2016 EP
3213715 Sep 2017 EP
10-2004-0095482 Nov 2004 KR
125062 Feb 2013 RU
1990009153 Feb 1993 WO
2003017874 Mar 2003 WO
2003047467 Jun 2003 WO
2005046488 May 2005 WO
2009052427 Apr 2009 WO
2009120764 Oct 2009 WO
2010004546 Jan 2010 WO
2010085659 Jul 2010 WO
2011011443 Jan 2011 WO
2011097355 Aug 2011 WO
2012004679 Jan 2012 WO
2012019052 Feb 2012 WO
2012063228 May 2012 WO
2012095159 Jul 2012 WO
2012106354 Aug 2012 WO
2012167095 Dec 2012 WO
2013095816 Jun 2013 WO
2013128436 Sep 2013 WO
2013130641 Sep 2013 WO
2013175468 Nov 2013 WO
2014145399 Sep 2014 WO
2014189509 Nov 2014 WO
2014190329 Nov 2014 WO
2014210600 Dec 2014 WO
2015132668 Sep 2015 WO
2018035118 Feb 2018 WO
Non-Patent Literature Citations (20)
Entry
International Search Report and Written Opinion for PCT/US2018/022910 dated May 23, 2018.
European Search Report in EP 17155803.4 dated Aug. 9, 2017.
International Search Report and Written Opinion for PCT/US2014/044920 dated Dec. 24, 2014.
International Search Report and Written Opinion for PCT/US2011/046659 dated Jun. 4, 2012.
International Search Report and Written Opinion for PCT/US2012/040481 dated Dec. 6, 2012.
International Search Report and Written Opinion for PCT/US2013/042275 dated Feb. 20, 2014.
International Search Report and Written Opinion for PCT/US2013/073552 dated Mar. 6, 2014.
International Search Report and Written Opinion for PCT/US2014/039545 dated Oct. 22, 2014.
International Search Report and Written Opinion for PCT/US2014/030163 dated Aug. 27, 2014.
International Search Report and Written Opinion for PCT/US2013/058102 dated Apr. 21, 2014.
International Search Report and Written Opinion for PCT/US2013/028065 dated Jun. 27, 2013.
Lendlein et al., Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications, May 31, 2002, Science 296:1673-1676.
Supplemental European Search Report and Written Opinion for EP 12793292.9 dated Dec. 1, 2014.
Supplemental European Search Report and Written Opinion for EP 14762806.9 dated Jul. 29, 2016.
International Search Report and Written Opinion for PCT/US2017/046933 dated Dec. 21, 2017.
Communication pursuant to Article 94(3) EPC for EP 14801009.3 dated Sep. 27, 2018.
Supplementary Partial European Search Report for EP 13755441 dated Nov. 3, 2015.
International Search Report and Written Opinion for PCT2019/064289 dated Feb. 5, 2020.
17841988.3, Extended European Search Report, dated Dec. 16, 2019 ,8 pages.
PCT/US2017/046933, International Search Report and Written Opinion, dated Dec. 21, 2017 ,10 pages.
Related Publications (1)
Number Date Country
20180042723 A1 Feb 2018 US
Provisional Applications (1)
Number Date Country
62375079 Aug 2016 US