The present invention relates generally to the field of porous medical implants. More specifically, the invention relates to a bioinert fibrous implant having osteostimulative properties in applications of in vivo environments.
Prosthetic devices are often required for repairing defects in bone tissue in surgical and orthopedic procedures. Prostheses are increasingly required for the replacement or repair of diseased or deteriorated bone tissue in an aging population and to enhance the body's own mechanism to produce rapid healing of musculoskeletal injuries resulting from severe trauma or degenerative disease.
Autografting and allografting procedures have been developed for the repair of bone defects. In autografting procedures, bone grafts are harvested from a donor site in the patient, for example from the iliac crest, to implant at the repair site, in order to promote regeneration of bone tissue. However, autografting procedures are particularly invasive, causing risk of infection and unnecessary pain and discomfort at the harvest site. In allografting procedures, bone grafts are used from a donor of the same species but the use of these materials can raise the risk of infection, disease transmission, and immune reactions, as well as religious objections. Accordingly, synthetic materials and methods for implanting synthetic materials have been sought as an alternative to autografting and allografting.
Synthetic prosthetic devices for the repair of defects in bone tissue have been developed in an attempt to provide a material with the mechanical properties of natural bone materials, while promoting bone tissue growth to provide a durable and permanent repair. Knowledge of the structure and bio-mechanical properties of bone, and an understanding of the bone healing process provides guidance on desired properties and characteristics of an ideal synthetic prosthetic device for bone repair. These characteristics include, but are not limited to: osteostimulation and/or osteoconductivity to promote bone tissue in-growth into the device as the wound heals; and load bearing or weight sharing to support the repair site yet exercise the tissue as the wound heals to promote a durable repair.
Materials developed to date have been successful in attaining at least some of the desired characteristics, but nearly all materials compromise at least some aspect of the bio-mechanical requirements of an ideal hard tissue scaffold.
The present invention meets the objectives of an effective synthetic bone prosthetic for the repair of bone defects by providing a scaffold that is osteostimulative, and load bearing with mechanical properties that match the living tissue at the implant site. The present invention provides a tissue scaffold of bioinert metal fiber with specific pore morphology and sintered to form a rigid three dimensional porous matrix having a bioinert composition. The porous matrix has interconnected pore space having a pore size distribution determined by volatile components present before the bioinert metal fibers are bonded together. In an embodiment the porous matrix has a pore size distribution in the range of about 50 μm to about 600 μm. The porous matrix can have a porosity between 40% and 85% to provide osteoconductivity once implanted in bone tissue. Embodiments of the present invention include pore space having a bi-modal pore size distribution, or a multi-modal pore size distribution.
In an aspect of the invention, the synthetic bone prosthetic scaffold is a porous scaffold of bioinert fibers in an intertangled relationship with bioinert material forming bonds between overlapping and adjacent fibers to form a rigid three-dimensional matrix. Interconnected pore space in the rigid three-dimensional matrix has a pore size distribution predetermined by volatile components. In an embodiment, the bioinert material forming bonds between overlapping and adjacent fibers is at least one of a glass bond, a glass-ceramic bond, a ceramic bond, and a metal bond. The pore size distribution has a mode between about 100 μm and about 500 μm to facilitate osteoconductivity once implanted in living tissue. In an embodiment, the bioinert fibers have a diameter ranging from about 2 μm to about 200 μm. In an alternate embodiment, the bioinert fibers have a diameter ranging from about 25 μm to about 200 μm.
Methods of fabricating a synthetic bone prosthesis according to the present invention are also provided that include mixing bioinert fiber with volatile components including a pore former, and a liquid to provide a plastically formable batch, and kneading the formable batch to distribute the metal fiber into a substantially homogeneous mass of intertangled and overlapping metal fiber. The formable batch is dried, heated to remove the volatile components that compose greater than 50% of the volume of the formed object in a first furnace heating process and then heated in a second furnace heating process to form bonds between the intertangled and overlapping bioinert fiber.
These and other features of the present invention will become apparent from a reading of the following descriptions and may be realized by means of the instrumentalities and combinations particularly pointed out in the appended claims.
The foregoing and other objects, features, and advantages of the invention will be apparent from the following detailed description of the several embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, with emphasis instead being placed upon illustrating the principles of the invention.
While the above-identified drawings set forth presently disclosed embodiments, other embodiments are also contemplated, as noted in the discussion. This disclosure presents illustrative embodiments by way of representation and not limitation. Numerous other modifications and embodiments can be devised by those skilled in the art which fall within the scope and spirit of the principles of the presently disclosed embodiments.
The present invention provides a synthetic prosthetic tissue scaffold for the repair of tissue defects. As used herein, the terms “synthetic prosthetic tissue scaffold” and “bone tissue scaffold” and “tissue scaffold” and “synthetic bone prosthetic” in various forms may be used interchangeably throughout. In an embodiment, the synthetic prosthetic tissue scaffold is bioinert once implanted in living tissue. In an embodiment, the synthetic prosthetic tissue scaffold is osteoconductive once implanted in living tissue. In an embodiment, the synthetic prosthetic tissue scaffold is osteostimulative once implanted in living tissue. In an embodiment, the synthetic prosthetic tissue scaffold is load bearing once implanted in living tissue.
Various types of synthetic implants have been developed for tissue engineering applications in an attempt to provide a synthetic prosthetic device that mimics the properties of natural bone tissue and promotes healing and repair of tissue. Bioinert materials of metallic and bio-persistent structures have been developed to provide high strength in a porous structure that promotes the growth of new tissue. These porous materials, however, cannot provide porosity having a pore morphology that is optimized for the in-growth of healthy tissue. A disadvantage of prior art bio-persistent metallic and biocompatible implants is that the high load bearing capability does not transfer to regenerated tissue surrounding the implant. When hard tissue is formed, stress loading results in a stronger tissue but the metallic implant shields the newly formed bone from receiving this stress. Stress shielding of bone tissue therefore results in weak bone tissue which can actually be resorbed by the body, which is an initiator of prosthesis loosening.
Implants into living tissue evoke a biological response dependent upon a number of factors, such as the composition of the implant. Bioinert materials are commonly encapsulated with fibrous tissue to isolate the implant from the host. Metals and most polymers produce this interfacial response, as do nearly inert ceramics, such as alumina or zirconia. If the implant has a porous surface of sufficient pore size and pore size distribution, the living tissue will grow into and bond to the implant as a function of the body's natural healing process. This interfacial bonding can lead to an interface that stabilizes the scaffold or implant in the bony bed and provide stress transfer from the scaffold across the bonded interface into the bone tissue. When loads are applied to the repair, the bone tissue including the regenerated bone tissue is stressed, thus limiting bone tissue resorption due to stress shielding.
The challenge in developing a tissue scaffold using biologically inert materials is to attain load bearing strength with porosity sufficient to promote the growth of bone tissue with an elastic modulus that is similar to the surrounding bone so that stress is transmitted to the new tissue to ensure the formation of healthy bone at the implant site. Conventional bioinert materials prepared into a tissue scaffold with sufficient strength to be load bearing strength do not provide the open and interconnected pores having a desired pore size and pore size distribution to promote the in-growth of healthy tissue, or exhibit an elastic modulus that greatly exceeds that of natural bone resulting in stress shielding.
Fiber-based structures are generally known to provide inherently higher strength to weight ratios, given that the strength of an individual fiber can be significantly greater than powder-based or particle-based materials of the same composition. A fiber can be produced with relatively few discontinuities that contribute to the formation of stress concentrations for failure propagation. By contrast, a powder-based or particle-based material requires the formation of bonds between each of the adjoining particles, with each bond interface potentially creating a stress concentration. Furthermore, a fiber-based structure provides for stress relief and thus, greater strength, when the fiber-based structure is subjected to strain in that the failure of any one individual fiber does not propagate through adjacent fibers. Accordingly, a fiber-based structure exhibits superior mechanical strength properties over an equivalent size and porosity than a powder-based material of the same composition.
The present invention provides a material for tissue engineering applications that is bioinert, with load bearing capability at a low elastic modulus, and osteostimulative with a pore structure that can be controlled and optimized to promote the in-growth of bone.
In an embodiment, the three dimensional matrix 110 is formed from fibers that are bonded and fused into a rigid structure, with a bioinert composition. The use of fibers as a raw material for creating the three dimensional matrix 110 provides a distinct advantage over the use of conventional powder-based raw materials including materials formed from chemical vapor deposition techniques. In an embodiment, the fiber-based raw material provides a structure that has more strength at a given porosity than a powder-based structure. In an embodiment, the fiber-based raw material provides a structure that has a lower elastic modulus than a conventional structures.
The tissue scaffold 100 of the present invention provides desired mechanical and chemical characteristics, combined with pore morphology to promote osteoconductivity. The network of pores 120 is the natural interconnected porosity resulting from the space between intertangled, nonwoven fiber material in a structure that mimics the structure of natural bone. Furthermore, using methods described herein, the pore size can be controlled, and optimized, to enhance the flow of blood and body fluid within of the scaffold 100 and regenerated bone. For example, pore size and pore size distribution can be controlled through the selection of pore formers and organic binders that are volatilized during the formation of the scaffold 100. Pore size and pore size distribution can be determined by the particle size and particle size distribution of the pore former including a single mode of pore sizes, a bi-modal pore size distribution, and/or a multi-modal pore size distribution. The porosity of the scaffold 100 can be in the range of about 40% to about 85%. In an embodiment, this range promotes the process of osteoinduction of the regenerating tissue once implanted in living tissue while exhibiting load bearing strength.
The scaffold 100 is fabricated using fibers as a raw material. The fibers can be composed of a bioinert material. The term “fiber” as used herein is meant to describe a wire, filament, rod or whisker in a continuous or discontinuous form having an aspect ratio greater than one, and formed from a wire-drawing or fiber-forming process such as drawn, spun, blown, or other similar process typically used in the formation of fibrous materials. Bioinert wires or fibers can be fabricated from a bioinert composition that is capable of being formed into a wire or fiber form, such as bioinert materials such as tantalum, titanium, stainless steel or alloys of such materials, or alumina or other bioinert oxides. Bioinert materials including titanium and titanium alloys, can be formed by conventional metal wire drawing methods, including multiple and/or successive draws to reduce the wire diameter to the desired fiber diameter, and cut or chopped to length. The fibers can be fabricated from precursors of bioinert compositions, that form a bioinert composition upon formation of the three-dimensional matrix 110 while forming the scaffold 100. Bioinert fiber compositions can be used to fabricate a scaffold 100 that is both load bearing and osteoconductive and/or osteostimulative.
Referring still to
Referring now to
An objective of the scaffold of the present invention is to facilitate in situ tissue generation as an implant within living tissue. While there are many criteria for an ideal scaffold for bone tissue repair, an important characteristic is a highly interconnected porous network with both pore sizes, and pore interconnections, large enough for cell migration, fluid exchange and eventually tissue in-growth and vascularization (e.g., penetration of blood vessels). The tissue scaffold 100 of the present invention is a porous structure with pore size and pore interconnectivity that is particularly adapted for the in-growth of bone tissue. The network of pores 120 has a pore size that can be controlled through the selection of volatile components used to fabricate the tissue scaffold 100, to provide an average pore size of at least 100 μm.
Embodiments of the tissue scaffold 100 have an average pore size in the range of about 50 μm to about 600 μm, and alternatively, an average pore size in the range of about 100 μm to about 500 μm. The volatile components, including organic binder and pore formers, that form the pores, and the intertangled fibers that extend from one pore to at least an adjacent pore, as determined by the predetermined position of the fibers from the volatile components, ensure a high degree of interconnectivity with large pore throat sizes within the three-dimensional matrix. It may be desirable to have a pore size distribution that is bimodal or multi-modal as determined by in vivo analysis. Multi-modal pore size distributions can be provided by the selection of pore former materials exhibiting similar multi-modal particle size distributions. Similarly, mixed fiber materials of varying characteristics, such as thickness or diameter, length, or cross-sectional shape can influence the size and size distribution of the pores.
Referring to
The bulk fibers 210 can be provided in bulk form, or as chopped fibers. The diameter of the fiber 210 can range from about 3 to about 500 μm and typically between about 25 to about 200 μm. Fibers 210 of this type are typically produced with a relatively narrow and controlled distribution of fiber diameters, and fibers of a given diameter may be used, or a mixture of fibers having a range of fiber diameters can be used. The diameter of the fibers 210 will influence the resulting pore size and pore size distribution of the porous structure, as well as the size and thickness of the three-dimensional matrix 110, which will influence not only the osteoconductivity of the scaffold 100, but also the resulting strength characteristics, including compressive strength and elastic modulus. The fibers 210 are typically cut or chopped to length. The fiber length can be in the range of about 3 to about 1000 times the diameter of the fiber, and typically between about 20 to 50 times the diameter of the fiber.
The binder 230 and the liquid 250, when mixed with the fiber 210, create a plastically formable batch mixture that enables the fibers 210 to be evenly distributed throughout the batch, while providing green strength to permit the batch material to be formed into the desired shape in the subsequent forming step 270. An organic binder material can be used as the binder 230, such as methylcellulose, hydroxypropyl methylcellulose (HPMC), ethylcellulose and combinations thereof. The binder 230 can include materials such as polyethylene, polypropylene, polybutene, polystyrene, polyvinyl acetate, polyester, isotactic polypropylene, atactic polypropylene, polysulphone, polyacetal polymers, polymethyl methacrylate, fumaron-indane copolymer, ethylene vinyl acetate copolymer, styrene-butadiene copolymer, acryl rubber, polyvinyl butyral, inomer resin, epoxy resin, nylon, phenol formaldehyde, phenol furfural, paraffin wax, wax emulsions, microcrystalline wax, celluloses, dextrines, chlorinated hydrocarbons, refined alginates, starches, gelatins, lignins, rubbers, acrylics, bitumens, casein, gums, albumins, proteins, glycols, hydroxyethyl cellulose, sodium carboxymethyl cellulose, polyvinyl alcohol, polyvinyl pyrrolidone, polyethylene oxide, polyacrylamides, polyethyterimine, agar, agarose, molasses, dextrines, starch, lignosulfonates, lignin liquor, sodium alginate, gum arabic, xanthan gum, gum tragacanth, gum karaya, locust bean gum, irish moss, scleroglucan, acrylics, and cationic galactomanan, or combinations thereof. Although several binders 230 are listed above, it will be appreciated that other binders may be used. The binder 230 provides the desired rheology of the plastic batch material in order to form a desired object and maintaining the relative position of the fibers 210 in the mixture while the object is formed, while remaining inert with respect to the bioinert materials. The physical properties of the binder 230 will influence the pore size and pore size distribution of the pore space 120 of the scaffold 100. Preferably, the binder 230 is capable of thermal disintegration, or selective dissolution, without impacting the chemical composition of the bioinert components, including the fiber 210.
The fluid 250 is added as needed to attain a desired rheology in the plastic batch material suitable for forming the plastic batch material into the desired object in the subsequent forming step 270. Water is typically used, though solvents of various types can be utilized. Rheological measurements can be made during the mixing step 260 to evaluate the plasticity and cohesive strength of the mixture prior to the forming step 270.
Pore formers 240 can be included in the mixture to enhance the pore space 120 of the scaffold 100. Pore formers are non-reactive materials that occupy volume in the plastic batch material during the mixing step 260 and the forming step 270. When used, the particle size and size distribution of the pore former 240 will influence the resulting pore size and pore size distribution of the pore space 120 of the scaffold 100. Particle sizes can typically range between about 25 μm or less to about 450 μm or more, or alternatively, the particle size for the pore former can be a function of the fibers 210 diameter ranging from about 0.1 to about 100 times the diameter of the fibers 210. The pore former 240 must be readily removable during the curing step 280 without significantly disrupting the relative position of the surrounding fibers 210. In an embodiment of the invention, the pore former 240 can be removed via pyrolysis or thermal degradation, or volatization at elevated temperatures during the curing step 280. For example, microwax emulsions, phenolic resin particles, flour, starch, or carbon particles can be included in the mixture as the pore former 240. Other pore formers 240 can include carbon black, activated carbon, graphite flakes, synthetic graphite, wood flour, modified starch, celluloses, coconut shell husks, latex spheres, bird seeds, saw dust, pyrolyzable polymers, poly (alkyl methacrylate), polymethyl methacrylate, polyethyl methacrylate, poly n-butyl methacrylate, polyethers, poly tetrahydrofuran, poly (1,3-dioxolane), poly (alkalene oxides), polyethylene oxide, polypropylene oxide, methacrylate copolymers, polyisobutylene, polytrimethylene carbonate, poly ethylene oxalate, poly beta-propiolactone, poly delta-valerolactone, polyethylene carbonate, polypropylene carbonate, vinyl toluene/alpha-methylstyrene copolymer, styrene/alpha-methyl styrene copolymers, and olefin-sulfur dioxide copolymers. Pore formers 240 may be generally defined as organic or inorganic, with the organic typically burning off at a lower temperature than the inorganic. Although several pore formers 240 are listed above, it will be appreciated that other pore formers 240 may be used. Pore formers 240 can be, though need not be, fully biocompatible since they are removed from the scaffold 100 during processing.
A bonding agent 220 can be optionally included in the mixture to promote bond formation and the performance of the resulting scaffold 100. The bonding agent 220 can include powder-based material of the same composition as the bulk fiber 210, or it can include powder-based material of a different composition. As will be explained in further detail below, the bonding agent 220 based additives enhance the bonding strength of the intertangled fibers 210 forming the three-dimensional matrix 110 through the formation of bonds between adjacent and intersecting fibers 210. The bonding agent 220 can be bioinert metal, glass, glass-ceramic, ceramic, or precursors thereto. In an embodiment of the present invention, the bonding agent 220 is calcium phosphate. In alternative embodiments, the bonding agent 220 is beta-tricalcium phosphate. In yet another alternative embodiment, the bonding agent 220 is hydroxyapatite.
The relative quantities of the respective materials, including the bulk fiber 210, the binder 230, and the liquid 250 depend on the overall porosity desired in the tissue scaffold 100. For example, to provide a scaffold 100 having approximately 60% porosity, the nonvolatile components 275, such as the fiber 210, would amount to approximately 40% of the mixture by volume. The relative quantity of volatile components 285, such as the binder 230 and the liquid 250 would amount to approximately 60% of the mixture by volume, with the relative quantity of binder to liquid determined by the desired rheology of the mixture. Furthermore, to produce a scaffold 100 having porosity enhance by the pore former 240, the amount of the volatile components 285 is adjusted to include the volatile pore former 240. Similarly, to produce a scaffold 100 having strength enhanced by the bonding agent 220, the amount of the nonvolatile components 275 would be adjusted to include the nonvolatile bonding agent 220. It can be appreciated that the relative quantities of the nonvolatile components 275 and volatile components 285 and the resulting porosity of the scaffold 100 will vary as the material density may vary due to the reaction of the components during the curing step 280. Specific examples are provided herein below.
In the mixing step 260, the fiber 210, the binder 230, the liquid 250, the pore former 240 and/or the bonding agent 220, if included, are mixed into a homogeneous mass of a plastically deformable and uniform mixture. The mixing step 260 may include dry mixing, wet mixing, shear mixing, and kneading, which can be necessary to evenly distribute the material into a homogeneous mass while imparting the requisite shear forces to break up and distribute or deagglomerate the fibers 210 with the non-fiber materials. The amount of mixing, shearing, and kneading, and duration of such mixing processes depends on the selection of fibers 210 and non-fiber materials, along with the selection of the type of mixing equipment used during the mixing step 260, in order to obtain a uniform and consistent distribution of the materials within the mixture, with the desired rheological properties for forming the object in the subsequent forming step 270. Mixing can be performed using industrial mixing equipment, such as batch mixers, shear mixers, and/or kneaders.
The forming step 270 forms the mixture from the mixing step 260 into the object that will become the tissue scaffold 100. The forming step 270 can include extrusion, rolling, pressure casting, or shaping into nearly any desired form in order to provide a roughly shaped object that can be cured in the curing step 280 to provide the scaffold 100. It can be appreciated that the final dimensions of the scaffold 100 may be different than the formed object at the forming step 270, due to expected shrinkage of the object during the curing step 280, and further machining and final shaping may be necessary to meet specified dimensional requirements. In an exemplary embodiment to provide samples for mechanical and in vitro and in vivo testing, the forming step 270 extrudes the mixture into a cylindrical rod using a piston extruder forcing the mixture through a round die.
The object is then cured into the tissue scaffold 100 in the curing step 280, as further described in reference to
Once the object is dried, or substantially free of the liquid component 250 by the drying step 310, the next phase of the curing step 280 proceeds to the volatile component removal step 320. This phase removes the volatile components (e.g., the binder 230 and the pore former 240) from the object leaving only the non-volatile components that form the three-dimensional matrix 110 of the tissue scaffold 100. The volatile components can be removed, for example, through pyrolysis or by thermal degradation, or solvent extraction. The volatile component removal step 320 can be further parsed into a sequence of component removal steps, such as a binder burnout step 340 followed by a pore former removal step 350, when the volatile components 285 are selected such that the volatile component removal step 320 can sequentially remove the components. For example, HPMC used as a binder 230 will thermally decompose at approximately 300° C. A graphite pore former 220 will oxidize into carbon dioxide when heated to approximately 600° C. in the presence of oxygen. Similarly, flour or starch, when used as a pore former 220, will thermally decompose at temperatures between about 300° C. and about 600° C. Accordingly, the formed object composed of a binder 230 of HPMC and a pore former 220 of graphite particles, can be processed in the volatile component removal step 320 by subjecting the object to a two-step firing schedule to remove the binder 230 and then the pore former 220. In this example, the binder burnout step 340 can be performed at a temperature of at least about 300° C. but less than about 600° C. for a period of time. The pore former removal step 350 can then be performed by increasing the temperature to at least about 600° C. with the inclusion of oxygen into the heating chamber. This thermally-sequenced volatile component removal step 320 provides for a controlled removal of the volatile components 285 while maintaining the relative position of the non-volatile components 275 in the formed object.
In the method of the present invention portions of the curing step 280 are performed in a separate furnace or kiln As shown in
As described herein above the fibers 210 maintain their relative position as determined from the mixture of fibers 210 with the volatile components 285 and the mechanical strength and integrity of the object at the completion of the first furnace heating process 331 can be insufficient to support the structure during the second furnace heating process 332. In the method of the present invention, the green strength of the formed object is enhanced to provide internal support until the completion of the bond formation step 330. In this embodiment the characteristics of the fiber 210 is optimized to provide sufficient green strength of the formed object. Characteristics of the fiber 210 that are optimized include fiber length, fiber diameter, fiber length distribution, and fiber diameter distribution. By optimizing theses characteristics for a desired pore size, pore size distribution, and porosity, the fiber portion of the formed object with the volatile components removed has a maximum interconnection and contact with adjacent fibers to distribute the force of weight of the object and/or forces applied from handling and processing. In an illustrative embodiment the fiber length of the fiber 210 as a raw material is optimized to provide a maximum packing density of the fiber 210 in the formed object.
In an embodiment of the method of the present invention, the volatile component removal step 320 can be modified so as to retain approximately 5% or less of the volatile components 285 in the first furnace heating process 331. In this embodiment the balance of the volatile components 285 are removed in the second furnace heating process 332 during the bond formation step 330. In this embodiment the volatile components remaining in the formed object provide support for the fibers comprising the structure of the formed object for handling and/or processing between the first furnace heating process 331 and the second furnace heating process 332. The loading of volatile components 285 of approximately 5% or less, including amounts of about 1% to about 5% of the volatile components 285 can be low enough to minimize contamination of the furnace or kiln performing the second furnace heating process 332. In this embodiment the volatile components 285 remaining in the structure of the formed object are removed by thermal degradation during the initial phase of the high temperature bond formation step 330.
In an embodiment of the method of the present invention, the mixing step 260 is performed to impart shear force into the mixture to optimize the distribution of fiber 210 in the mixture and to induce intertangling of the fibers 210. The fibers 210 in the mixture generally retain their relative position during the forming step 270 so that upon completion of the volatile component removal step 320 in the first furnace heating process 331 that the formed object exhibits green strength sufficient to support the object during subsequent handling and/or processing. In an illustrative embodiment the mixing step 260 plastically deforms at least a portion of the fiber imparting a curvature to the fibers 210 so that the fibers when intertangled with adjacent and interconnecting fibers are more resistant to decoupling and thus, provide better inherent support of the structure.
In an embodiment of the method of the present invention, the relative amount bonding agent 220 is about 1% to about 10% of the non-volatile components by volume to support the fiber 210 comprising the balance of the structure of the formed object after the first furnace heating process 331. In this embodiment the green strength of the formed object is increased due to the collection of the bonding agent 220 surrounding the fibers at the intersections of interconnecting fibers and at adjacent and overlapping fibers. The bonding agent 220 in relative amounts of about 1% to about 10% of the non-volatile components by volume provide a structure that is more resistant to decoupling of the fibers and thus, providing better inherent support of the structure.
In an embodiment of the method of the present invention, the volatile component removal step 320 is performed by removing the volatile components at a rate that is sufficiently slow so as to not thermally stress the formed object in excess of the green strength of the formed object. In an example of this embodiment, a formed object comprising HPMC binder and/or polymer-based pore formers that can thermally decompose at or around 350° C. can be heated to a temperature of 350° C. at a rate of less than 2° C. per minute, preferably between 0.5° C. per minute and 0.7° C. per minute.
In an embodiment of the method of the present invention, combinations of the above embodiments can be provided to increase the inherent green strength of the formed object between the first furnace heating process 331 and the second furnace heating process 332 so that the formed object maintains its shape during the bond formation step 330. For example, any combination of a modification of the fiber characteristics to optimize the packing density of the fiber 210, retention of approximately 5% or less of the volatile components 285 upon the conclusion of the first furnace heating process 331, enhanced mixing to impart shear energy into the mixture, including at about 1% to about 10% of the non-volatile components as a bonding agent by volume in the mixture, and removing the volatile components by heating to a desired thermal degradation temperature at a rate of less than 2° C. per minute.
Referring back to
In the bond formation step 330, the formed object is heated to the bond formation temperature resulting in the formation of bonds at overlapping nodes 610 and adjacent nodes 620 of the fiber structure. If a bonding agent 220 is used, the bonds are formed at overlapping nodes 610 and adjacent nodes 620 of the fiber structure through a reaction of the bonding agent 220 in close proximity to the fibers 210, reacting with the fibers 210 to form bonds. In the bond formation step 330, the material of the fibers 210 may participate in a chemical reaction with the bonding agent 220, or the fibers 210 may remain inert with respect to a reaction of the bonding agent 220. Further still, the bulk fibers 210 may be a mixture of fiber compositions, with a portion, or all of the fibers 210 participating in a reaction forming bonds to create the three-dimensional matrix 110.
The duration of the bond formation step 330 depends on the temperature profile during the bond formation step 330, in that the time at the bond formation temperature of the fibers 210 is limited to a relatively short duration so that the relative position of the non-volatile components 275, including the bulk fibers 210, does not significantly change. The pore size, pore size distribution, and interconnectivity between the pores in the formed object are determined by the relative position of the bulk fibers 210 by the volatile components 285. While the volatile components 285 are likely burned out of the formed object by the time the bond formation temperature is attained, the relative positioning of the fibers 210 and non-volatile components 275 are not significantly altered. The formed object will likely undergo slight or minor densification during the bond formation step 330, but the control of pore size and distribution of pore sizes can be maintained, and therefore predetermined by selecting a particle size for the pore former 240 that is slightly oversize or adjusting the relative quantity of the volatile components 285 to account for the expected densification.
The bonds formed between overlapping and adjacent nodes of the intertangled fibers forming the three-dimensional matrix 110 can be sintered bonds having a composition substantially the same as the composition of the bulk fibers 210. The bonds can also be the result of a reaction between the bulk fibers 210 and the bonding agent 220 to form a bonding phase having a composition that is substantially the same, or different than the composition of the bulk fiber 210. Due to the regulatory requirements relating to the approval of materials for use as a medical device or implant, it may be desirable to use approved material compositions as raw materials that are not significantly altered by the device fabrication methods and processes. Alternatively, it may be desirable to use raw materials that are precursors to an approved material composition, that form the desired composition during the device fabrication methods and processes. The present invention provides a tissue scaffold device that can be either fabricated using a variety of medically approved materials, or fabricated into a medically-approved material composition.
The tissue scaffold 100 of the present invention exhibits controlled pore interconnectivity because of the ability to control the pore morphology by specifying characteristics of the non-volatile components 275 and volatile components 285. For example, the fiber length distribution can exhibit a mode that is greater than the pore former diameter to enhance pore interconnectivity in that the fibers exhibiting this mode will extend from one pore to another, with the space between adjacent fibers creating pore interconnectivity. Further, the fiber diameter being less than the pore former particle size can ensure closer packing of pore former particles to provide improved pore interconnectivity.
The mechanical properties of the tissue scaffold 100 can be controlled and adjusted or optimized for a specific application through the manipulation of various parameters in the fabrication method 200 and/or through the manipulation of various parameters and characteristics of the raw materials including the non-volatile components 275 and the volatile components 285. For example, in a load bearing application, the elastic modulus of the tissue scaffold 100 can be optimized and controlled in various ways as described herein.
A tissue scaffold in a load bearing application preferably distributes load evenly over a large area so that stress is continuously transmitted to the surrounding tissue in order to encourage healthy bone formation throughout the interface. The mechanical property of the tissue scaffold that primarily influences the effectiveness of the scaffold in transmitting continuous stress is elastic modulus. When the elastic modulus of the tissue scaffold is closely matched to the elastic modulus of the surrounding tissue, the stress transmitted through the scaffold to the surrounding tissue stimulates the growth of healthy new tissue. If the elastic modulus of the scaffold is relatively greater than the elastic modulus of the surrounding tissue, regenerated tissue that grows into the scaffold is effectively shielded from stress resulting in a disturbing phenomenon known as bone resorption according to Wolff's Law (bone adapting itself to stress reduction by reducing its mass, either by becoming more porous or by getting thinner). If the elastic modulus of the scaffold is excessively less than the elastic modulus of the surrounding tissue stress cannot be effectively transmitted to the surrounding tissue without deformation of the scaffold and exerting excessive stress and strain on newly formed tissue.
The method and apparatus of the present invention permits the fabrication of an ideally matched elastic modulus through the control of various factors for a given material composition. Generally, variation of fiber 210 characteristics, variation of the characteristics of the volatile components 285, variation of the bonding agent 220 characteristics, and control of the environment of the curing step 280 can result in optimization of the resulting strength, porosity and elastic modulus of the scaffold 100.
Fiber characteristics include composition, diameter, length directly impact the strength and flexibility of the scaffold. Compositional influences arise from the inherent physical characteristics of the fiber materials, such as tensile strength and elastic modulus, including factors such as grain boundaries and brittleness of the material. The diameter of the fiber can impact the resulting strength and flexibility of the scaffold in that thicker fibers tend to be stronger and more stiff. Longer fibers can provide increased flexibility. Additionally, the diameter and length of the fiber, individually or collectively, directly influence the natural packing density of the fiber materials. The greater the natural packing density of the fiber, the more fiber-to-fiber connections are possible in the resulting scaffold. When fiber-to-fiber connections are increased, the strength and modulus of the scaffold is generally increased.
The bonding agent 220, when used, can influence the resulting strength and flexibility of the scaffold. The bonding agent 220 can increase the number of fiber-to-fiber connections in the matrix which will increase the resulting strength and change the elastic modulus accordingly. Additionally, the relative quantity of the bonding agent 220 will increase the amount of non-volatile components relative to the volatile components, which will impact the porosity. Generally, high porosity, with all else being the same, will result in reduced strength. The composition of the bonding agent 220 will impact the strength and flexibility of the resulting scaffold in that the inherent physical characteristics, such as tensile and compressive strength and elastic modulus, are imputed to the resulting scaffold. The particle size of the bonding agent 220 can influence the strength and modulus in that larger particles have a tendency to reside at the intersections of fibers, resulting in more material available to bridge adjacent fibers and joint them into the bonded matrix. Smaller particles have a tendency to remain in the same relative position when the binder is burned out so that it adheres to the surface of the fiber to alter the chemical and physical properties of the fiber. Additionally, the smaller particles and/or smaller relative quantities of the bonding agent 220 may result in fewer fiber-to-fiber bonds, which will reduce the strength and reduce the elastic modulus of the resulting scaffold.
Volatile component characteristics can influence the resulting strength and flexibility of the scaffold. Pore formers can control the size and distribution of the interconnecting pores throughout the scaffold, as described in more detail above. With respect to the influence on mechanical properties of the scaffold 100, an increase in the amount of volatile components, including increased relative quantities of pore former, can impact the strength and lower the elastic modulus of the scaffold, with all else remaining the same. Furthermore, there are secondary interactions with the variables associated with fiber diameter and fiber length with regard to the natural packing density of the fiber material. The volatile components, when mixed with the non-volatile components, can increase bundling of the fibers in that two or more fiber lengths will align substantially adjacent to additional fibers, and bond together along the fiber length, effectively increasing the cross-sectional area of the “struts” that form the matrix of the scaffold. Regions of bundled fiber in this manner will effectively impact the strength and elastic modulus of the scaffold 100.
Processing parameters selected during the method 200 of forming the scaffold 100 can influence the mechanical properties of the scaffold. For example, the curing step 280 environment parameters include heating rate, heating temperature, curing time, and heating environment, such as vacuum, inert gas (nitrogen, argon, etc.), forming gas (reducing environment) or air. Each or combinations of each can influence the number and relative strength of fiber-to-fiber bonds throughout the scaffold.
Additional factors for controlling and optimizing the porosity/strength relationship and the elastic modulus of the scaffold 100 include specific characteristics of the raw materials combined with the certain fabrication process 200 steps that can influence a general alignment of the fibers. The mixing step 260 and the forming step 270 can be adapted to provide a formed object that aligns the fibers substantially in one direction. For example, the use of an extrusion process in the forming step 270 can impart a general alignment of the fibers of the mixture in the direction of extrusion. The physical characteristics of the resulting scaffold 100 can exhibit an elastic modulus that is a function of the orientation of the device, in that the compressive strength and elastic modulus can be relatively high in the extrusion direction, while lower in the direction perpendicular to the extrusion direction. A spinal implant that is used to fuse vertebrae can be designed with these variable characteristics to optimize the load bearing and weight sharing features of the scaffold to ensure the growth of healthy tissue. Fiber orientation may be desirable in certain applications where vascularization into the scaffold is necessary. The oriented fibers will induce pore morphology that exhibits a preferential direction parallel to the fibers. In an application where the scaffold 100 is to fuse bone tissue, the vascularization link between the adjoining bones can be effectively bridged by the scaffold of the present invention.
Furthermore, variations of any one or variations in any combination of the above parameters can be made to attain an optimized or desired strength and elastic modulus, porosity, and pore size distribution for an intended application. Furthermore, the strength, elastic modulus, porosity and pore size distribution, and other mechanical and physical properties can be adjusted for other applications, non-limiting examples of which are herein described.
The tissue scaffolds of the present invention can be used in procedures such as an osteotomy (for example in the hip, knee, hand and jaw), a repair of a structural failure of a spine (for example, an intervertebral prosthesis, lamina prosthesis, sacrum prosthesis, vertebral body prosthesis and facet prosthesis), a bone defect filler, fracture revision surgery, tumor resection surgery, hip and knee prostheses, bone augmentation, dental extractions, long bone arthrodesis, ankle and foot arthrodesis, including subtalar implants, and fixation screws pins. The tissue scaffolds of the present invention can be used in the long bones, including, but not limited to, the ribs, the clavicle, the femur, tibia, and fibula of the leg, the humerus, radius, and ulna of the arm, metacarpals and metatarsals of the hands and feet, and the phalanges of the fingers and toes. The tissue scaffolds of the present invention can be used in the short bones, including, but not limited to, the carpals and tarsals, the patella, together with the other sesamoid bones. The tissue scaffolds of the present invention can be used in the other bones, including, but not limited to, the cranium, mandible, sternum, the vertebrae and the sacrum. In an embodiment, the tissue scaffolds of the present invention have high load bearing capabilities compared to conventional devices. In an embodiment, the tissue scaffolds of the present invention require less implanted material compared to conventional devices. Furthermore, the use of the tissue scaffold of the present invention requires less ancillary fixation due to the strength of the material. In this way, the surgical procedures for implanting the device are less invasive, more easily performed, and do not require subsequent surgical procedures to remove instruments and ancillary fixations.
In one specific application, a tissue scaffold of the present invention, fabricated as described above, can be used as a spinal implant 800 as depicted in
In another specific application, a tissue scaffold of the present invention, fabricated as described above, can be used as an osteotomy wedge implant 1000 as depicted in
Generally, the use of a bone tissue scaffold of the present invention as a bone graft involves surgical procedures that are similar to the use of autograft or allograft bone grafts. The bone graft can often be performed as a single procedure if enough material is used to fill and stabilize the implant site. In an embodiment, fixation pins can be inserted into the surrounding natural bone, and/or into and through the bone tissue scaffold. The bone tissue scaffold is inserted into the site and fixed into position. The area is then closed up and after a certain healing and maturing period, the bone will regenerate and become solidly fused to and within the implant.
The use of a bone tissue scaffold of the present invention as a bone defect filler involves surgical procedures that can be performed as a single procedure, or multiple procedures in stages or phases of repair. In an embodiment, a tissue scaffold of the present invention is placed at the bone defect site, and attached to the bone using fixation pins or screws. Alternatively, the tissue scaffold can be externally secured into place using braces. The area is then closed up and after a certain healing and maturing period, the bone will regenerate to repair the defect.
A method of filling a defect in a bone includes filling a space in the bone with a tissue scaffold comprising bioinert fibers bonded into a porous matrix, the porous matrix having a pore size distribution to facilitate in-growth of bone tissue; and attaching the tissue scaffold to the bone.
A method of treating an osteotomy includes filling a space in the bone with a tissue scaffold comprising bioinert fibers bonded into a porous matrix, the porous matrix having a pore size distribution to facilitate in-growth of bone tissue; and attaching the tissue scaffold to the bone.
A method of treating a structural failure of a vertebrae includes filling a space in the bone with a tissue scaffold comprising bioinert fibers bonded into a porous matrix, the porous matrix having a pore size distribution to facilitate in-growth of bone tissue; and attaching the tissue scaffold to the bone.
A method of fabricating a synthetic bone prosthesis includes mixing bioinert wire or fiber with a binder, a pore former and a liquid to provide a plastically formable batch; kneading the formable batch to distribute the bioinert wire or fiber with the pore former and the binder, the formable batch a homogeneous mass of intertangled and overlapping fiber; forming the formable batch into a desired shape to provide a shaped form; drying the shaped form to remove the liquid; heating the shaped form to remove the binder and the pore former; and heating the shaped form to a bond formation temperature to form bonds between the intertangled and overlapping bioinert fiber.
In an embodiment, the present invention discloses use of bioinert fibers bonded into a porous matrix, the porous matrix having a pore size distribution to facilitate in-growth of bone tissue for the treatment of a bone defect.
In an embodiment, the present invention discloses use of bioinert fibers bonded into a porous matrix, the porous matrix having a pore size distribution to facilitate in-growth of bone tissue for the treatment of an osteotomy.
In an embodiment, the present invention discloses use of bioinert fibers bonded into a porous matrix, the porous matrix having a pore size distribution to facilitate in-growth of bone tissue for the treatment of a structural failure of various parts of a spinal column.
The following examples are provided to further illustrate and to facilitate the understanding of the disclosure. These specific examples are intended to be illustrative of the disclosure and are not intended to be limiting in an way.
In a first exemplary embodiment a scaffold is formed from titanium fiber with a titanium bonding agent by mixing 24 grams of Ti6A14V alloy fiber having an average diameter of approximately 63 μm chopped into lengths of approximately 0.5 mm, in bulk form, with 3 grams titanium powder having a particle size of less than 44 μm (−325 mesh) as the non-volatile components with 1.5 grams of HPMC as an organic binder and 9.0 grams of PMMA with a particle size of 600 μm as a pore former and approximately 14 grams of deionized water, adjusted as necessary to provide a plastically formable mixture. The mixture was compression molded into a 12.5 mm diameter rod and the formed object was dried in a convection oven. The volatile components, composing approximately 64.77% of the formed object by volume, were burned out in a first furnace heating process in a nitrogen purged oven, heating at a rate of 1.625° C./min to 220° C. holding for one hour and then heating at a rate of 1° C./min for one hour to 280° C. and holding for one hour and then heating at a rate of 0.58° C./minute to 350° C. for ten hours to remove the HPMC and the pore former. The formed object was then transferred to a vacuum furnace and then heat treated at 1,400° C. at 10−6 ton vacuum for six hours. The porosity for this example was measured to be 68%.
In a second exemplary embodiment a scaffold is formed from titanium fiber without a bonding agent by mixing 16 grams of Ti6A14V alloy fiber having an average diameter of approximately 225 μm chopped into lengths of approximately 2 mm, in bulk form as the non-volatile components with 0.5 grams of HPMC as an organic binder and 4.0 grams of PMMA with a particle size of 25-30 μm as a pore former and approximately 6 grams of deionized water, adjusted as necessary to provide a plastically formable mixture. The mixture was compression molded into a 12.5 mm diameter rod and the formed object was dried in a convection oven. The volatile components that compose approximately 57.32% of the volume of the formed object were burned out in a first furnace heating process in a nitrogen purged oven, heating at a rate of 1.625° C./min to 220° C. holding for one hour and then heating at a rate of 1° C./min for one hour to 280° C. and holding for one hour and then heating at a rate of 0.58° C./minute to 350° C. for ten hours to remove the HPMC and the pore former. The formed object was then transferred to a vacuum furnace and then heat treated at 1,400° C. at 10−6 ton vacuum for six hours.
In a third illustrative embodiment a scaffold is formed from titanium fiber with a titanium bonding agent by mixing 24 grams of Ti6A14V alloy fiber having an average diameter of approximately 63 μm chopped into lengths of approximately 0.5 mm, in bulk form, with 1.5 grams titanium powder having a particle size of less than 44 μm (−325 mesh) as the non-volatile components with 1.5 grams of HPMC as an organic binder and 6.0 grams of PMMA with a particle size of 200 μm as a pore former and approximately 14 grams of deionized water, adjusted as necessary to provide a plastically formable mixture. The mixture was compression molded into a 12.5 mm diameter rod and the formed object was dried in a convection oven. The volatile components that compose approximately 57.74% of the volume of the formed object were burned out in a first furnace heating process in a nitrogen purged oven, heating at a rate of 1.625° C./min to 220° C. holding for one hour and then heating at a rate of 1° C./min for one hour to 280° C. and holding for one hour and then heating at a rate of 0.58° C./minute to 350° C. for ten hours to remove the HPMC and the pore former. The formed object was then transferred to a vacuum furnace and then heat treated at 1,400° C. at 10−6 ton vacuum for six hours. The porosity for this example was measured to be 57.74%.
The present invention has been herein described in detail with respect to certain illustrative and specific embodiments thereof, and it should not be considered limited to such, as numerous modifications are possible without departing from the spirit and scope of the appended claims.
This application is a continuation-in-part to application Ser. No. 12/898,797 filed Oct. 6, 2010 which claims the benefit of Provisional Application No. 61/249,449 filed Oct. 7, 2009, and Provisional Application No. 61/306,136 filed Feb. 19, 2010, and Provisional Application No. 61/381,666 filed Sep. 10, 2010, each of which are herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61249449 | Oct 2009 | US | |
61306136 | Feb 2010 | US | |
61381666 | Sep 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12898797 | Oct 2010 | US |
Child | 13188944 | US |