This invention relates generally to a modular biluminal endograft system for treatment of circumscribed dilatation of a large blood vessel, such as the abdominal aorta. More particularly, the present invention relates to the method of reducing the vessel diameter, minimizing possibility of vessel rupture and generating multiple lumina for down-stream flow continuity.
The aorta delivers blood and oxygen to all arterial branches of the body, and as such is the largest artery of the human body. Based on the location of any particular segment in relation to the diaphragm, the aorta is referred to as thoracic or abdominal. The thoracic aorta if subdivided further into the ascending thoracic, that contains the aortic root and a tubular section containing the vessels leading to the brain, and the descending thoracic aorta. The abdominal aorta begins at the diaphragm and is terminal at the aortoiliac bifurcation where the arteries irrigating the lower limbs begin, and along its course giving off various visceral branches mesenteric arterial branches as well as the renal arteries. The diameter of the aorta varies along the different segments. The normal diameter of the thoracic aorta is in the order of about 3 cm at the tubular ascending portion, 2.5 cm at the descending thoracic aorta and 2 cm in the infrarenal abdominal aorta. The aortic dimensions vary relatively to body surface area, age and gender, males having larger aortic dimensions than females.
An enlargement of the aorta beyond its normal diameter is termed an aneurysm. The term aneurysm means dilation or dilatation. A segment of the aorta is termed aneurismal if its maximal diameter is greater than 1.5 times that of the adjacent proximal normal segment. Aortic aneurysms are more common in the abdominal aorta, one reason for this is that elastin, the principal load bearing protein present in the wall of the aorta, is reduced in the abdominal aorta as compared to the thoracic aorta (nearer the heart). Another is that the abdominal aorta does not possess vasa vasorum which hinders repair. Most are true aneurysms that involve all three layers (tunica intima, tunica media and tunica adventitia), and are generally asymptomatic before rupture.
The prevalence of abdominal aortic aneurysms (AAAs) increases with age, with an average age of 65-70 at the time of diagnosis. AAAs have been attributed to atherosclerosis, though other factors are involved in their formation. An AAA may remain asymptomatic indefinitely. There is a large risk of rupture once the size has reached 5 cm, though some AAAs may swell to over 15 cm in diameter before rupturing. Before rupture, an AAA may present as a large, pulsatile mass above the umbilicus. A bruit may be heard from the turbulent flow in a severe atherosclerotic aneurysm or if thrombosis occurs. Unfortunately, however, rupture is usually the first hint of AAA. Once an aneurysm has ruptured, it presents with a classic pain-hypotension-mass triad. The pain is classically reported in the abdomen, back or flank. It is usually acute, severe and constant, and may radiate through the abdomen to the back.
The diagnosis of an abdominal aortic aneurysm can be confirmed at the bedside by the use of ultrasound. Rupture could be indicated by the presence of free fluid in potential abdominal spaces, such as Morrison's pouch, the splenorenal space, subdiaphragmatic spaces and peri-vesical spaces. A contrast-enhanced abdominal CT scan is needed for confirmation. Only 10-25% of patients survive rupture due to large pre- and post-operative mortality. Annual mortality from ruptured abdominal aneurysms in the United States alone is about 15,000. Another important complication of AAA is formation of a thrombus in the aneurysm.
The definitive treatment for an aortic aneurysm is surgical repair of the aorta. This typically involves opening up of the dilated portion of the aorta and insertion of a synthetic (Dacron or Gore-tex) patch tube. Once the tube is sewn into the proximal and distal portions of the aorta, the aneurysmal sac is closed around the artificial tube. Instead of sewing, the tube ends, made rigid and expandable by Nitinol wireframe, can be much more simply and quickly inserted into the vascular stumps and there permanently fixed by external ligature.
In the recent years, the endoluminal treatment of abdominal aortic aneurysms has emerged as a minimally invasive alternative to open surgery repair. In endovascular surgery, a synthetic graft (stent-graft consisting of a polyester tube inside a metal cylinder) is attached to the end of a thin tube (catheter) that is inserted into the bloodstream, usually through an artery in the leg. Watching the progress of the catheter on an X-ray monitor, the surgeon threads the stent-graft to the weak part of the aorta where the aneurysm is located. Once in place, the graft is expanded. The stent-graft reinforces the weakened section of the aorta to prevent rupture of the aneurysm. The metal frame is expanded like a spring to hold tightly against the wall of the aorta, cutting off the blood supply to the aneurysm. The blood now flows through the stent-graft, avoiding the aneurysm. The aneurysm typically shrinks over time. This technique has been reported to have a lower mortality rate compared to open surgical repair, and is now being widely used in individuals with co-morbid conditions that make them high risk patients for open surgery. Some centers also report very promising results for the specific method in patients that do not constitute a high surgical risk group.
There have also been many reports concerning the endovascular treatment of ruptured abdominal aortic aneurysms, which are usually treated with an open surgery repair due to the patient's impaired overall condition. Mid-term results have been quite promising. The continuous development of the available stent technology in conjunction with the growing experience of the vascular experts that apply the technique will further enhance its safety and efficacy in the years to come. However, according to the latest studies, the current stent-grafts and procedures do not carry any overall survival benefit.
U.S. Pat. No. 5,676,697 issued on Oct. 14, 1997, entire contents of which are incorporated herein by reference, discloses an intraluminal graft for installing an intraluminal graft in relation to a bifurcation of a trunk vessel into two branch vessels to bypass an aneurysm defect or injury, wherein the intraluminal graft is formed of two cooperating graft prostheses.
The market today is populated by devices approximately 20 F and greater requiring the need for a surgical cut-down approach utilizing catheters, guidewires and accessory devices which substantially eliminate the need for open surgical intervention. Although the cut-down approach significantly reduces the acute complications that often accompany open surgical intervention, the ultimate goal and the market trend is to reduce delivery system profiles and to be able to perform the procedure of delivering an endograft percutaneously, which eliminates the need for the cut-down procedure. There is a clinical need for addressing the endoleak and device anchoring/migration issues to benefit the AAA patient with new product design and features with a modular biluminal endograft system.
The present invention overcomes the disadvantages associated with larger endograft as briefly described above.
In accordance with preferred embodiments of the present invention, some aspects of the invention relate to a modular biluminal endograft system for treatment of circumscribed dilatation of a large blood vessel, such as the abdominal aorta. One aspect of the present invention relates to the method of reducing the vessel diameter, minimizing possibility of vessel rupture and generating multiple lumina for down-stream flow continuity.
Some aspects of the invention provide a flexible or shapeable stent graft for inserting into a blood vessel, comprising a distal section, a proximal section and a graft body connecting the distal and proximal sections, the graft having an inner layer of water-tight flexible tube, a middle layer of semi-rigid or rigid material, and an outer layer of water-tight flexible overlap, wherein the graft is characterized with at least two water-tight layers. In one embodiment, the stent graft only has the middle layer and outer layer. In another embodiment, the middle layer comprises semi-rigid or rigid material in mesh-like or spiral configuration.
Some aspects of the invention provide a radially expandable sheath as a guiding sheath, comprising a continuous integral sheath body that is radially expandable under outward forces, wherein the radially expandable sheath is characterized with substantially little or no axial stretchability from a first configuration of a compressed state to a second configuration of an expanded state and vice versa.
Some aspects of the invention provide an endograft system for treatment of AAA, comprising a cuff and at least two endograft units, each endograft unit having a proximal end and a distal end, wherein the endograft units are made of compressible water-tight foam tubes having the proximal ends placed and fixed/secured at the cuff and the distal ends placed and fixed/secured in each of iliac arteries. In one embodiment, the first proximal end of a first endograft is at a substantial distance proximal to the second proximal end of a second endograft.
Some aspects of the invention provide an endograft for treatment of AAA comprising an impermeable section for excluding blood communication between a lumen of the endograft and a surrounding aneurysmal sac, and a porous section configured for placement across a renal artery ostium.
Some aspects of the invention provide an endograft for treatment of AAA comprising a neck attachment section, a graft body, and two leg sections, the neck attachment section having a multiple-anchoring mechanism that comprises at least a first anchoring element for placement at proximal to a renal artery and a second anchoring element axially spaced apart from the first anchoring element for placement at distal to the renal artery.
Some aspects of the invention provide an endograft for treatment of AAA comprising a neck attachment section, a first foam tube having a length to extend from the neck attachment section to a first iliac artery for fixation inside the first iliac artery, and a second form tube having a length to extend from the neck attachment section to a second iliac artery for fixation inside the second iliac artery, wherein both foam tubes are secured to the neck attachment section.
Some aspects of the invention provide a balloon endograft comprising: a neck attachment member, a body and two bifurcated distal ends, wherein the endograft comprises double layers and a space between the layers, the space being configured to be filled with fluid or hardenable foam to inflate the balloon endograft.
Additional objects and features of the present invention will become more apparent and the invention itself will be best understood from the following Detailed Description of Exemplary Embodiments, when read with reference to the accompanying drawings.
The preferred embodiments of the present invention described below relate particularly to a device system or as a component/subassembly in a system for use in treating or repairing aneurysms. While the description sets forth various embodiment specific details, it will be appreciated that the description is illustrative only and should not be construed in any way as limiting the invention. Furthermore, various applications of the invention, and modifications thereto, which may occur to those who are skilled in the art, are also encompassed by the general concepts described below.
The aorta is the largest artery in a body, and it carries blood away from a heart. The aorta runs through the chest, where it is called the thoracic aorta. When it reaches an abdomen, it is called the abdominal aorta. The abdominal aorta supplies blood to the lower part of the body. Just below the abdomen, the aorta splits into two branches that carry blood into each leg. When a weak area of the abdominal aorta expands or bulges, it is called an abdominal aortic aneurysm (AAA). The pressure from blood flowing through your abdominal aorta can cause a weakened part of the aorta to bulge, much like a balloon. A normal aorta is about 1 inch (or about 2.5 centimeters) in diameter. However, an AAA can stretch the aorta beyond its safety margin. Aneurysms are a health risk because they can burst or rupture. AAA can cause another serious health problem. Clots or debris can form inside the aneurysm and travel to blood vessels leading to other organs in your body. If one of these blood vessels becomes blocked, it can cause severe pain or even more serious problems, such as limb loss. Abdominal aortic aneurysms are most often found when a physician is performing an imaging test, such as an abdominal ultrasound, computed tomography (CT) scan, or magnetic resonance imaging (MRI).
Systems for treating or repairing aneurysms such as abdominal aortic aneurysms and thoracic aortic aneurysms come in many forms. A typical system includes an anchoring and/or sealing component which is positioned in healthy tissue above the aneurysm and one or more grafts which are in fluid communication with the anchoring and/or sealing component and extend through the aneurysm and anchor in healthy tissue below the aneurysm. Essentially, the grafts are the components of the system that are utilized to establish a fluid flow path from one section of an artery to another section of the same or different artery, thereby bypassing the diseased portion of the artery. Essentially, the endovascular graft of the present invention comprises a number of components that make up a modular system. Although the overall endovascular graft comprises a number of components, the challenges associated with these types of systems include profile, flexibility and accessibility. The primary failure modes for a percutaneous device for treating abdominal aortic aneurysms include failure to access, rupture, endoleak with AAA expansion, migration or displacement of the device, AAA expansion, endoleak, and the like. The device integrity issues clinically include, among others, suture break, endoleaks, migration, iliac limb separation, stent graft fractures, proximal kink, and separation of cranial position of the graft.
A stent graft for treating EVAR (endovascular aneurysm repair) problems of an abdominal aortic aneurysm may include features such as, low introductory profile, short neck, long leg/short leg catheterization, graft sizing, graft construction and the like. In one preferred embodiment, elements of a stent graft may comprise at least two layers, including a middle layer of a flat sheet, spiral, or mesh of laser cut elastic or semi-rigid material (for example, metal, Nitinol metal, shape memory metal, plastic, shape memory plastic or other flexible material), and an outer layer of expanded PTFE overwrap. Optionally, the stent graft further comprises a third inner layer of a stretchable expanded PTFE (polytetrafluoroethylene) tube. The layers are compacted to serve as the building material for the stent graft composite. The distal section (1ac) of the stent graft can be shaped to fit the graft into iliac artery. The stent graft can be shaped in different configurations, such as a D-shaped graft (D-graft) having a semi-circular like side and a flat side (
Two D-shaped stent grafts of the present invention can form a cylindrical-like tubular appearance when two flat sides of the grafts face each other or mate intimately against each other. In one embodiment, the sleeve at the end (1ab) of the stent graft (1aa) can be formed by inverting the inner PTFE tube (1ad). In a further embodiment, the inverted portion of the PTFE tube can be secured to the middle layer or the inner portion of the inner layer by any fastening means, such as suturing (1ae), stapling, gluing, bonding, and the like. In one embodiment, the inner layer and the outer layer may use polyester fabric material (for example, Dacron) or other suitable material, such as substantially water-tight microfibers in woven form. In a further embodiment, the D-graft comprises an opening (1ak) for blood flow into a renal artery, wherein the opening may be created prior to implantation or be created by a wire piercing after the D-graft is placed in-situ, followed optionally by balloon expansion. It is important that the opening receives and matches the outer circumference of the renal stent graft intimately and water-proof to prevent endoleak.
In operations, each D-shaped graft may be loaded in the sheath of a delivery apparatus so that the first D-shaped graft can be accurately deployed in a mated fashion against the second D-shaped graft. In one preferred embodiment, the grafts are inserted into aorta via bilateral femoral sheaths. The grafts may be rotated to match the flat sides against each other and mate. In one embodiment, the flat sides of the two D-grafts are manually maneuvered or rotated so they face each other. In another embodiment, the mate-able sides (as illustrated in
In another embodiment, barbs can be incorporated and spaced apart appropriately at about the proximal portion of the D-shaped graft so that the barbs (1ah) would be deployed radially outwardly to anchor the graft at the aorta (
D-grafts allow a non-custom method of supra vena EVAR by separating treatment of both renal arteries. Position of renal ostia in D-graft can be changed to accommodate varying anatomy. Complete EVAR can be performed with only two components selected for diameter (proximal and distal), length and renal ostia, when desired. For example, one can select a first D-graft having a length of 160 mm, a distal diameter of 26 mm, a proximal diameter of 16 mm, and a renal ostia about 20 mm proximal to the distal end and a second D-graft having a length of 140 mm, a distal diameter of 26 mm, a proximal diameter of 12 mm, and a renal ostia 10 mm proximal to the distal end. In the above examples, the proximal end of the second D-graft may lie at a plane distal to the proximal end of the first D-graft.
Sheet technology allows D-graft (1aa) to be better compressed for introduction into a smaller sheath (2aa) by rolling a graft as shown in
Some aspects of the invention relate to a flexible stent graft for inserting into a blood vessel, comprising a distal section, a proximal section and a graft body with a lumen that connects the distal and proximal sections, the graft having a first layer of flexible rigid or semi-rigid material, and a second layer of water-tight flexible overlap, wherein the graft is collapsible and is characterized with a low profile during the inserting operation. In one embodiment, the first layer comprises a spiral wire that is compressible within a sheath during the inserting operation. In another embodiment, the second layer invaginates onto the first layer after the first layer is positioned in place. In still another embodiment, the stent graft further comprises a third layer of water-tight flexible tube, wherein the graft is characterized with at least two water-tight layers, wherein the third layer is made of stretchable PTFE tube and the second layer is made of stretchable PTFE overlap.
One aspect of the invention relates to a flexible stent graft, wherein a sleeve at an end of the stent graft is formed by inverting an extra length of the third layer over the first and second layers. In one embodiment, the inverted sheath is secured to the first layer by fastening means for securing the inverted sheath with the first layer, the fastening means comprising suturing, stapling, gluing, or bonding. In another embodiment, the third layer is made of flexible fabrics or polymer tube and the second layer is made of flexible fabrics or polymer overlap. In still another embodiment, the second layer or the third layer is made of substantially water-tight microfibers woven material.
One aspect of the invention relates to a flexible stent graft, wherein barbs are incorporated and spaced apart appropriately at about the proximal section of the stent graft configured for anchoring the graft at wall of a blood vessel, wherein the barbs may be made of shape memory material or temperature-sensitive material. In one embodiment, anchors are provided at about the proximal section of the graft configured for anchoring the graft at wall of a blood vessel as a secondary operation.
Some aspects of the invention relate to a stent graft system comprising a first and a second stent grafts, the graft having an inner layer of stretchable expanded PTFE tube, a middle layer of semi-rigid or rigid material, and an outer layer of stretchable expanded PTFE overlap, wherein the proximal section of either stent graft is shaped to have a semi-circular like side and a mating side, wherein the first mating side of the first stent graft mates and matches intimately the second mating side of the second stent graft when the proximal sections of the two grafts are mated against each other to form a cylindrical-like tubular configuration. In one embodiment, the first distal section of the first stent graft is flexible for inserting into a right iliac artery and the second distal section of the second stent graft is flexible for inserting into a left iliac artery. In another embodiment, the first mating side of the first stent graft is configured to have positive charged magnet and the opposite second mating side of the second stent graft is configured to have negative charged magnet so to ensure control seal and intimate contact upon been mated. In still another embodiment, the proximal sections of the two stent grafts in the cylindrical-like tubular configuration are radially expandable to intimately fit and secure to the blood vessel.
In one embodiment, the first mating side is configured to have positive charged magnet and the opposite second mating side is configured to have negative charged so to ensure control seal and/or intimate contact.
In one embodiment, a sleeve at an end of the stent graft is formed by inverting the inner PTFE tube, wherein, the inverted PTFE tube is secured to the middle layer by fastening means for securing purposes, such as suturing, stapling, gluing, and bonding.
In one embodiment, the PTFE layers of the present invention are replaced by layers made of other flexible fabrics or polymers, for example, polyester fabrics or substantially water-tight microfibers.
In one embodiment, barbs are incorporated and spaced apart appropriately at about the proximal portion of the stent graft so that the barbs would be deployed radially outwardly to anchor the graft at the aorta wall. In a further embodiment, the barbs are made of shape memory material or temperature-sensitive material so that the barbs are activated or deployed at a threshold elevated temperature.
One aspect of the invention relates to an expandable flexible sheath. In one embodiment, the flexible sheath is configured radially expandable when needed.
Some aspects of the invention provide a radially expandable sheath as a guiding sheath, comprising a continuous integral sheath body with a thin wall that is radially expandable under outward forces, wherein the radially expandable sheath is characterized with substantially little or no axial stretchability or contraction from a first configuration of a compressed state to a second configuration of an expanded state and vice versa.
A method of temporarily placing a hemostatic cuff at an incision of a blood vessel when inserting an endograft into a patient, the method comprising: (a) loading the hemostatic cuff on the expandable sheath of claim 1 at the first configuration; (b) inserting the compressed sheath through the incision into the blood vessel; (c) advancing the endograft into the blood vessel via a sheath lumen to expand the sheath to the second configuration; (d) holding the hemostatic cuff at proximity of the incision; and (e) removing the expanded sheath after the endograft and the cuff are properly positioned in place.
In one embodiment for a short neck endograft application, renal stent grafts could be implanted in the renal arteries, wherein the metal mesh portion of the renal stent graft is removably connected to an RF electrode (6ad) that is electrically connected to an outside RF source. As shown in
Some aspects of the invention provide a method for placing an endograft for treatment of AAA while preserving blood communication from aorta to renal arteries, comprising: (a) placing a renal stent inside a renal artery, wherein a first end of the renal stent is inside the renal artery whereas the second end protrudes beyond the renal artery ostium; (b) placing the endograft in the AAA area, wherein the endograft intimately contacts the renal artery; (c) applying RF energy to the second end of the renal stent so to create a hole by RF energy and to protrude the renal stent into a lumen of the endograft. In one embodiment, the endograft comprises a pair of D-grafts. In another embodiment, the endograft comprises a pair of grafts with mate-able proximal sections.
One aspect of the invention provides an endograft system for treatment of AAA, comprising a cuff and four endograft units, each endograft unit having a proximal end and a distal end, all four proximal ends are placed and fixed at the cuff whereas a first distal end extends and is fixed in right renal artery, a second distal end extends and is fixed in left renal artery, a third distal end extends and is fixed in right iliac artery and a fourth distal end extends and is fixed in left iliac artery. In one embodiment, the endograft system isolates blood from flowing into or in fluid communication with the aneurysmal zone as means for preventing endoleak.
Some aspects of the invention provide a method for placing an endograft for treatment of AAA while preserving blood communication from aorta to renal arteries, comprising: (a) placing a renal stent inside a renal artery, wherein a first end of the renal stent is inside the renal artery whereas the second end is positioned at about the renal artery ostium; (b) placing the endograft in the AAA area, wherein the endograft intimately and compressively contacts the renal artery ostium; (c) providing a wire at about the ostium site and piercing through the endograft so to create a hole into the renal artery configured for blood communication from aorta to the renal artery. In one embodiment, the method is followed by another step of balloon expansion at about the hole to enlarge the hole size.
Some aspects of the invention relate to an endograft for treatment of an abdominal aortic aneurysm (AAA) comprising an impermeable section for excluding blood communication between a lumen of the endograft and a surrounding aneurysmal sac, and a porous section configured for placement across a renal artery ostium. In one embodiment, the endograft comprises a macro-porous sleeve that is longer than the impermeable section, the porous section being created by securing the macro-porous sleeve over at least a portion of the impermeable section.
For the neck attachment section with a single neck attachment element (32) as shown in
U.S. Pat. No. 6,383,193 issued on May 7, 2002, entire contents of which are incorporated herein by reference, discloses a delivery system for the percutaneous insertion of a self-expanding vena cava filter device system, the system comprising constraining the filter in a compact condition within an elongated, radially flexible and axially stiff tubular member. The neck attachment section could be a shape memory wireframe that is axially rigid and radially expandable so that it can be much more simply and quickly inserted, deployed and there permanently fixed by associated external ligature, such as barbs or anchors on the wireframe. The wireframe may comprise a substantially zigzag pattern, mesh-like or other appropriate pattern suitable for radial expansion and anchoring.
A wireframe made from shape memory alloy may be deformed from an original, heat-stable configuration to a second, heat-unstable configuration. The application of a desired temperature causes the alloy to revert to an original heat-stable configuration. A particularly preferred shape memory alloy for this application is binary nickel titanium alloy (NiTi alloy) comprising about 55.8 percent Ni by weight, commercially available under the trade designation Nitinol. This NiTi alloy may be configured to undergo a phase transformation at physiological temperatures. A stent or wireframe made of this material is deformable when chilled. Thus, at low temperatures, for example, below twenty degrees centigrade, the stent is compressed so that it can be delivered to the desired location. The stent may be kept at low temperatures by circulating chilled saline solutions. The stent expands when the chilled saline is removed and when it is exposed to higher temperatures within the patient's body, generally around thirty-seven degrees centigrade.
The graft trunk (23), configured to anchor and seal the stent graft within a vessel and comprising a substantially tubular stent structure, can be an expandable tubular metal stent with graft material inside. The graft material or component may be made from any number of suitable biocompatible materials, including woven, knitted, sutured, extruded, or cast materials comprising polyester, polytetrafluoroethylene, silicones, urethanes, and ultra lightweight polyethylene, such as that commercially available under the trade designation Spectra™. The materials may be porous or nonporous. Exemplary materials include a woven polyester fabric made from Dacron™ or other suitable PET-type polymers which is folded to reduce its size and which is attached to one or both ends of a radially expandable stent by means of sutures or gluing. When the stent self-expands or is balloon expanded, the graft unfolds around the stent. In one embodiment, there is provided a porous endoluminal graft which is made of a spun matrix of polyurethane combined with a self-expanding stent. The elastomeric polyurethane fibers allow the graft to compress with the stent and thereby permit delivery of the stent-graft through a relatively small catheter.
Graft material is affixed to at least a portion of the trunk section (23) and all of the legs (24a, 24b). The graft material may be attached to various portions of the underlying structure by sutures. In one embodiment, the graft material is affixed with a continuous stitch pattern on the end of the trunk section (23) and by single stitches elsewhere. It is important to note that any pattern may be utilized and other devices, such as staples, may be utilized to connect the graft material to the underlying structure. The sutures may comprise any suitable biocompatible material that is preferably highly durable and wear resistant. In one embodiment, the graft trunk intimately contact the aorta at an upper contact region (14) and the lower contact region (15) to prevent blood from seeping into the aneurysmal region (11) of the abdominal aorta.
In the exemplary embodiment, the first (24a) of the leg section of the stent graft (21) is placed within the right common iliac artery (13a), wherein the distal end member (25a) of the first leg section (24a) is with a self-expandable or balloon expandable Nitinol wireframe. Similarly, the second leg section (24b) is inserted into the left common iliac artery (13b) with a self-expandable or balloon expandable distal end member (25b). After the stent graft is positioned and deployed in place, the aneurysmal region (28) of the aorta (outside of the core channel) may be further treated with foam embolization. The ends of the leg section (24a) and (24b) may be flared for better anchoring and sealing in the downstream arteries. The flared section may be formed by flaring the last portion of the stent element. The leg sections are the bypass conduits through which the blood flows in the aneurysmal section of the artery. By eliminating the blood flow to the diseased section, the pressure is reduced and thus there is less of a chance of the aneurysm rupturing.
Referring now to
Some aspects of the invention relate to an endograft for treatment of an abdominal aortic aneurysm (AAA) comprising a neck attachment section, a graft body, and a leg section, the neck attachment section having a multiple-anchoring mechanism that comprises at least a first anchoring element for placement at proximal to a renal artery and a second anchoring element axially spaced apart from the first anchoring element, wherein the second anchoring element is configured for placement at distal to the renal artery. In one embodiment, the multiple-anchoring mechanism comprises a third anchoring element configured for placement at about a region between two renal arteries.
One aspect of the invention relates to an endograft for treatment of AAA comprising a neck attachment section, a first foam tube having a proximal end and a length to extend from the neck attachment section to a first iliac artery for fixation inside the first iliac artery, and a second form tube having a proximal end and a length to extend from the neck attachment section to a second iliac artery for fixation inside the second iliac artery, wherein both foam tubes are secured to the neck attachment section. In one embodiment, the first proximal end of a first foam tube is located at a substantial distance proximal to the second proximal end of a second foam tube. In another embodiment, the neck attachment element comprises a hanger, and wherein the proximal end of the first foam tube is configured with a hook to securely couple the hook to the hanger. In still another embodiment, the proximal end of the first foam tube is magnetically coupled to the neck attachment element. In a preferred embodiment, a distal end of the first foam tube is flared to anchor and seal the distal end to surrounding tissue of the first iliac artery or wherein a distal end of the first foam tube is balloon expanded to anchor and seal the distal end to surrounding tissue of the first iliac artery, or wherein a distal end of the first foam tube is made of shape memory material to anchor and seal the distal end to surrounding tissue of the first iliac artery.
One aspect of the invention relates to an endograft, wherein a proximal section of the foam tubes is made of inflatable elements, and wherein the proximal section is distendable to anchor and secure the proximal section against wall of a blood vessel. In one embodiment, at least one of the foam tubes further comprises an inflatable tube body. In another embodiment, at least one of the foam tubes comprises a double-walled, baffled tube body filled with form-filling material that functions as a flexible graft with sufficient hoop strength to obviate use of a radial positioning structure. In still another embodiment, a portion of the baffled layer of at least one end of the foam tube is everted to create a cuff. In a preferred embodiment, an aneurysm sac of the AAA is filled with foam material that is subsequently hardened in situ, wherein the foam material is introduced via a one-way valve mounted on the first form tube into the aneurysm sac, and wherein the foam material is selected from the group consisting of polyvinyl alcohol foam, poly(ethylene-co-vinyl alcohol), cellulose acetate, poly(2-hydroxyethyl methacrylate), acrylates, and combinations thereof. The foam material is treated with UV light or heat in situ.
Referring now to
As shown in
In one embodiment, balloon expansion of the neck attachment element occurs at a pressure sufficient to cause the stent-like element to radially expand and to anchor the element to the surrounding tissue.
The second step is to percutaneously deliver a first tube (43) with adequate strength, flexibility and length as shown in
Referring now to
Before foam embolization is initiated, the aneurysmal aorta region (11) may be sealed from the rest of the blood flowing vessel. In one embodiment as shown in FIG. 14E, a first proximal sealing member (47) is provided to the first tube (43) and a second proximal sealing element (57) is provided to the second tube (53). The sealing elements (47, 57) are sized, configured and placed overlap to each other so to cover the open area beyond the tubes at about the upper healthy aorta region. The sealing members (47, 57) can be provided as an integral part of the tubes. In one preferred embodiment as shown in
In an alternate embodiment, the distal section is sealed against the vessel wall with a stopper (48, 58) for the first and second tubes (43, 53), respectively. Foam material can be introduced into the aneurysm (11) and hardened in situ (
Some aspects of the invention relate to an endograft system with a neck anchoring mechanism and two foam tubes, wherein the blood bypasses the aneurysm via flowing through the foam tubes from upper aorta to iliac arteries. In one embodiment, the aneurysm is filled with foam material that is subsequently hardened in situ. In another embodiment, the foam material is introduced via a one-way valve mounted on the form tube into the aneurysm and is hardened thereafter in situ. The foam material may be polyvinyl alcohol foam, EVAL poly(ethylene-co-vinyl alcohol)), cellulose acetate, p-HEMA (poly(2-hydroxyethyl methacrylate)), acrylates, combinations thereof, and the like.
Polyvinyl alcohol foam (PAF) offers a number of advantages over other embolic material, including biocompatibility, promotion of progressive thrombosis and fibrosis, permanence, compressibility, and manageability. The clinical cases illustrate the kinds of lesions that are amenable to embolization, including arteriovenous malformations, arteriovenous fistulas, meningiomas, nasopharyngeal tumors, and particularly for AAA treatment.
A vascular implant formed of a compressible foam material has a compressed configuration from which it is expansible into a configuration substantially conforming to the shape and size of a vascular site to be embodied. Preferably, the implant is formed of a hydrophobic, macro porous foam material, having an initial configuration of a scaled-down model of the vascular site, from which it is compressible into the compressed configuration. The implant could be made by scanning the vascular site to create a digitized scan data set; using the scan data set to create a three-dimensional digitized virtual model of the vascular site; using the virtual model to create a scaled-down physical mold of the vascular site; and using the mold to create a vascular implant in the form of a scaled-down model of the vascular site. To embolism a vascular site, the implant is compressed and passed through a delivery catheter, the distal end of which has been passed into a vascular site. Upon entering the vascular site, the implant expands in situ substantially to fill the vascular site. A retention element is contained within the catheter and has a distal end detachably connected to the implant. A flexible, tubular deployment element is used to pass the implant and the retention element through the catheter, and then to separate the implant from the retention element when the implant has been passed out of the catheter and into the vascular site. In one preferred embodiment, the compressible foam material is injected as a transportable moving material that is solidified in-situ and substantially conforms to the shape and size of a vascular site to be embodied.
PVA sponge with different porosities (for example, 700, 300, 30 microns etc.) could be made as tubes in different sizes, for example, a 25 mm “double D” configuration with 7 mm lumen or a 10 mm long tube with 7 mm lumen. A PVA sponge in a dried state is easily compressed and could fully re-hydrate and expand to its original state in minutes. One aspect of the invention is to introduce PVA sponge tube with optimal porosity in a compressed dry form as an endo-plug and allow it to expand in-situ across aneurysm. Through lumen of the tube would then be stented or stent-grafted at a diameter less than that of the expanded sponge. The porous sponge plug could be compressed by applying vacuum, by wrapping or injected in a funnel. The dried sponge plug could be crimped on a stent or balloon, pushed through sheath over a wire, or premounted on its own delivery apparatus.
The delivery sheath method comprises a first step of inserting a long sheath with a tip marker up to the insertion site in a patient. Load the compressed plug on a pusher/cannula and then insert the plug/cannula through sheath up to a desired deployment site. After deployment, withdraw sheath until cannula marker and sheath tip marker line up. This will anchor the distal about one cm of sponge in sheath while majority of the sponge is hydrated. Thereafter, complete deployment by withdrawing sheath over the distal one cm to release the sponge in place.
One aspect of the invention provides a conformable pair of spongy endo-plugs for treatment of aneurysmal vessels, wherein the plugs are compressed in a first configuration for delivery to the vessels and expanded via re-hydration to a second configuration to plug the vessels. In one embodiment, the plug has a through lumen. In another embodiment, each plug has matching flat surface facing each other. In still another embodiment, each plug has a matching ribbed surface to provide interlocked seal in vessels. In an alternate embodiment, the expansion of the endo-plug is enhanced with a shape memory Nitinol wire.
The sponge plug (17aa) can be reinforced or supported with anchor structures as shown in
One aspect of the invention provides a spongy endo-plug for treatment of aneurysmal vessels, comprising an anchoring means for securing the plug in place without undue migration. In another embodiment, the endo-plug is configured radiopaque or incorporated with at least one radiopaque market.
Exclusion of the aneurysm sac is the main goal of the stent-graft treatment, and clinical success is defined by the “total exclusion” of the aneurysm. However, at times, failure of the stent-graft to totally exclude blood flow to the aneurysm sac may occur. As a matter of fact, endoleak is the major cause of complications, and thus failure in endoluminal treatment of AAA. Endoleak is a term that describes the presence of persistent flow of blood into the aneurysm sac after device placement. The management of some types of endoleak remains controversial, although most can be successfully occluded with surgery, further stent implantation, or embolization. Four types of endoleaks have been defined, based upon their proposed etiology.
A type I endoleak, which occurs in 0 to 10 percent of endovascular aortic aneurysm repairs, is due to an incompetent seal at either the proximal or distal attachment site. Etiologies include undersizing of the diameter of the endograft at the attachment site and ineffective attachment to a vessel wall that is heavily calcified or surrounded by thick thrombus. Although such a leak can occur immediately after placement, a delayed type I endoleak may be seen on follow-up studies if the device is deployed into a diseased segment of aorta that dilates over time, leading to a breach in the seal at the attachment site.
Type I endoleaks must be repaired as soon as they are discovered because the aneurysm sac remains exposed to systemic pressure, predisposing to aneurysmal rupture, and spontaneous closure of the leak is rare. If discovered at the time of initial placement, repair may consist of reversal of anticoagulation and reinflation of the deployment balloon for an extended period of time. These leaks may also be repaired with small extension grafts that are placed over the affected end. These methods are usually sufficient to exclude the aneurysm. Conversion to an open surgical repair may be needed in the rare situation in which the leak is refractory to percutaneous treatment.
Type II endoleaks are the most prevalent type, occurring in 10 to 25 percent of endovascular aortic aneurysm repairs, and describe flow into and out of the aneurysm sac from patent branch vessels. They are most often identified on the postprocedural CT, appearing as collections of contrast outside of the endograft, but within the aneurysm sac. The most frequent sources of type II endoleaks are collateral back flow through patent lumbar arteries and a patent inferior mesenteric artery. Because the sac fills through a collateral network, the endoleak may not be visualized on the arterial phase of CT scanning; thus, delayed imaging is required.
The significance and management of type II endoleaks is controversial. Some investigators argue that, since spontaneous resolution occurs in 30 to 100 percent of cases, a “wait and see” approach is preferable, while carefully following aneurysm volume and morphology on CT imaging. However, systemic pressures have been noted within the aneurysm sac in the presence of type II endoleaks, indicating a more tenuous situation.
Type III and type IV endoleaks are much less common. Type III endoleaks represent flow into the aneurysm sac from separation between components of a modular system, or tears in the endograft fabric. Type IV endoleaks are due to egress of blood through the pores in the fabric. Type IV leaks heal spontaneously, while type III leaks are repaired with an additional endograft to eliminate systemic flow and pressure in the aneurysm.
Flow identified within the aneurysm sac (endoleaks) can represent a failure of the attachment sites (type I) or device (type III). There is general agreement that these failure modes necessitate urgent repair because blood flow and systemic pressure will continue to be transmitted into the aneurysm sac, putting the patient at continued risk for aneurysm enlargement and rupture.
One aspect of the invention relates to devices and methods for endoleak solutions by extruding or inserting soft, thrombogenic ‘pipe-cleaner’ like soft filler material (19aa) into AAA sac, preferably through a delivery catheter (shown in
In another embodiment, the soft filler material as shown in
In an alternate embodiment, a catheter set with a concentric inner catheter (22ab) and an outer catheter (22aa) is used to deliver the soft filler material (19aa) into the sac, wherein a balloon (22ac) is movably located inside the gap between the lumen of the outer catheter and the sheath of the inner catheter. In one embodiment, the balloon is sized and configured to show a circumferential concave surface. The soft filler material occupies the lumen of the inner catheter tightly and/or intimately before the insertion step. The catheter set is then delivered to the sac region. In operations, the inner catheter is first pushed outwardly to deliver part of the soft filler material inside the sac as shown in
In still another embodiment, a nozzle catheter with a narrowed distal section can be used to hydraulically deliver the soft filler material into the sac.
Some aspects of the invention relate to a method of inserting soft, thrombogenic ‘pipe-cleaner’ like soft filler material (19aa) into AAA sac, preferably through a delivery catheter. The material could be made of PVA (polyvinyl alcohol), Dacron (polyester) thread and the like with enhanced thrombogenic properties.
Some aspects of the invention relate to an improved modular AAA device that meets clinical needs of a percutaneous delivery (preferably with a 12 French or smaller delivery catheter) in a cath-lab with local anesthesia. The modular device may have multiple sizes, but not custom-made. The device is configured fully adaptable anatomically with respect to neck attachment, tortuosity and iliac anatomy, among others. The current device is particularly suitable for implantation in a patient with a short neck and/or two renal arteries not at the same axial elevation along the aorta.
As foam cures, it becomes harder which relieves pulsatile wall stress on aneurysm (25ac) in-situ. In initial soft configuration, foam (25ab) fills lumen to seal (as shown in
In one embodiment, the tubular graft (26aa) comprises cuffs (26ab) at each end, wherein the cuff has prongs (26ac) that hold the graft in place while the cuffs heal (as shown in
In another embodiment, a device for creation of a low-profile, percutaneous delivery, endoleak resistant vascular graft is shown in
The cuffs (27ab) could be sized and configured to be minimally larger than a graft for use in smaller vessels (as shown in
The cuffs could be introduced separately or they could be an integral part pf endograft.
In another embodiment, a double-walled, baffled tube filled with a hardening or form-filling material would function as a flexible graft with sufficient hoop strength to obviate the use of another support structure such as a metallic stent. The baffles (28ab) of the tube graft (28aa) are filled with liquid, self-hardening polymer (as shown in
In a separate embodiment, the cuffs can be constructed with multiple through lumens so that bifurcated channels can be formed (see
After a first cuff is introduced into and occupy the aortic region below the renal arteries (as shown in
In one exemplary embodiment, the balloon endograft is collapsed for delivery via a delivery sheath or catheter to the AAA site with a minimum profile. Once the neck attachment member is placed at about the renal artery ostia and the two bifurcated distal ends are placed in the right and left iliac arteries respectively, fluid or hardenable polymer foam is introduced through the first introduction port (31af) via an infusing catheter (31ag). The hardenable polymer foam is infused until the space is totally filled with the foam, followed by curing or hardening in situ. In one preferred embodiment, the upper and lower neck attachment ring units are securely anchored to the aorta walls once the neck attachment member is inflated.
In an alternate embodiment, the balloon endograft is configured to have corrugated configuration (31ah). The corrugation with internal space is in fluid communication with the second introduction port (31ai). The hardenable polymer foam may be introduced through the second introduction port (31ai) via an infusing catheter (31aj) to fill the corrugation space (31ah). The corrugation of the balloon endograft is sized and configured to support and reinforce the endograft against endoleak. Some aspects of the invention relate to a balloon endograft (without any metallic or rigid supporting members before deployment) comprising: a neck attachment member, a body and two bifurcated distal ends, wherein the endograft is with double layers and a space between the layers, the space is configured to be filled with fluid or hardenable foam to inflate the balloon endograft. In one embodiment, the body is configured in a corrugated configuration. In another embodiment, the body serves to direct blood flow bypassing the aneurysm.
Some aspects of the invention relate to a balloon endograft comprising: a neck attachment member, a body and at least one distal end, wherein the endograft comprises double layers and a space between the layers, the space being configured to be filled with inflatable fluid or hardenable foam to inflate the balloon endograft. In one embodiment, the endograft is characterized with no stiff or rigid supporting component prior to inflating the balloon endograft. In another embodiment, the body comprises two inflatable tubes, each inflatable tube having a proximal end secured to the neck attachment member, a distal end, and double layers with a space between the layers. In still another embodiment, the graft body is configured in a corrugated configuration to enhance hoop strength and prevent the graft body from collapsing. In a preferred embodiment, the neck attachment member comprises two inflatable neck attachment rings and at least two connecting units that connect the two rings, wherein the neck attachment rings are inflatable to anchor securely at wall of a blood vessel.
From the foregoing, it should now be appreciated that a device system for treating abdominal aortic aneurysms has been disclosed. While the invention has been described with reference to a specific embodiment, the description is illustrative of the invention and is not to be construed as limiting the invention. Various modifications and applications may occur to those skilled in the art without departing from the true spirit and scope of the invention as described by the appended claims.
This application is related to, and claims the benefit of U.S. Provisional 61/053,378 filed May 15, 2008, the entirety of which is hereby incorporated by reference herein and made a part of the present specification.
Number | Date | Country | |
---|---|---|---|
61053378 | May 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12466044 | May 2009 | US |
Child | 14572652 | US |