The present invention relates to treatment of obesity, more particularly to implantable devices and methods of implanting the devices in the abdominal cavity to treat an obese patient.
Obesity has become a major health concern, both nationally and internationally. The National Center for Health Statistics (NCHS) estimates that over 120 million Americans are overweight, including about 56% of the adult population. Of these, about 52 million are considered obese, as measured by a body mass index (BMI) of 30 or greater. In Europe, an estimated 77 million people are obese, as measured by the same standard. This problem is not limited to western nations, as many developing countries are reported to have obesity rates over 75% of the adult population.
Co-morbidities that are associated with obesity include, but are not limited to type II Diabetes, high blood pressure, sleep apnea, stroke and arthritis, the symptoms of which often tend to be lessened or alleviated upon loss of weight by a person so affected.
In the U.S., options for treatment of obesity are currently quite limited. Current treatment methodologies typically rely upon surgically introducing a “malabsorptive” environment in the gastro-intestinal tract, a restrictive environment, or a combination of these. One available treatment method is gastric bypass surgery and another is referred to as gastric banding (one of these techniques is referred to as the LAPBAND™ procedure). These procedures are limited to only those patients with a BMI over 40 (or over 35, with co-morbidities present).
Gastric bypass procedures incur a great deal of morbidity and create a malabsorptive state in the patient by bypassing a large portion of the intestines. Serious side effects, such as liver failure have been associated with this procedure, as well as chronic diarrhea. Another surgical procedure that has a high degree of morbidity associated with it is known as the “Gastric Bypass Roux-en-Y” procedure. This procedure reduces the capacity of the stomach by creating a smaller stomach pouch. The small space holds only about one ounce of fluid. A tiny stomach outlet is also surgically created to slow the speed at which food leaves the stomach. Staples are used to create a small (15 to 20 cc) stomach pouch, with the rest of the stomach being stapled completely shut and divided from the stomach pouch. The small intestine is divided just beyond the duodenum, brought up, and connected to the newly formed stomach pouch. In addition to the considerable morbidity associated with this procedure, other disadvantages include “dumping syndrome”, where stomach contents are literally “dumped” rapidly into the small intestine which may lead to nausea, weakness, sweating, faintness, and diarrhea; hernias resulting from the surgery; gallstones; leakage of the connection between the pouch and the intestine; stretching of the pouch that was formed; nutritional deficiencies; and possible dehiscence of the staples.
The LAPBAND™ is a band that, when placed, encircles the fundus-cardia junction and is inflatable to constrict the same. It does not reduce the volume of the stomach, but rather restricts passage of food into the stomach, the theory being that the patient will feel satiety with a much smaller volume of food than previously. Although the LAPBAND™ procedure is less invasive than a gastric bypass procedure, it also typically achieves less weight loss. Further, it is not a simple procedure and requires a substantial amount of training by a surgeon to become proficient in performing the procedure. Also, a substantial amount of dissecting and suturing is required because the pathway by which the band is introduced is not an existing pathway, and must be established by dissection. Great care is required to avoid blood vessels and nerves that may be in the intended pathway to be created by the dissection. After placing the band around the fundus-cardia junction, the ends of the band must be connected together and then it must be cinched down into place. Additionally, complications such as erosion at the fundus-cardia junction, slippage of the band from its intended location, nausea/vomiting, gastroesophageal reflux, dysphagia and lack of effectiveness in causing weight loss have been reported.
Intragastric balloons have also been placed, in an attempt to fill a portion of the volume in the stomach, with the theory being that it will then require less food than previously, to give the patient a sensation of fullness or satiety. This procedure involves delivery of a balloon (typically, transorally) to the interior of the stomach and inflation of the balloon to take up a portion of the volume inside the stomach. However, intragastric balloons may also lead to complications such as obstruction, vomiting and/or mucosal erosion of the inner lining of the stomach. The balloon can break down over extended exposure to the stomach's acids, and in some cases, after breaking down, the balloon translated through the intestines and caused a bowel obstruction.
Gastrointestinal sleeves have been implanted to line the stomach and/or a portion of the small intestines to reduce the absorptive capabilities of the small intestine and/or to reduce the volume in the stomach, by reducing the available volume to the tubular structure of the graft running therethrough. Although weight loss may be effective while these types of devices are properly functioning, there are complications with anchoring the device within the stomach/GI tract, as the stomach and GI tract function to break down things that enter into them and to move/transport them through. Accordingly, the integrity of the anchoring of the device, as well as the device itself may be compromised over time by the acids and actions of the stomach and GI tract.
A sleeve gastrectomy is an operation in which the left side of the stomach is surgically removed. This results in a much reduced stomach which is substantially tubular and may take on the shape of a banana. This procedure is associated with a high degree of morbidity, as a large portion of the stomach is surgically removed. Additionally, there are risks of complications such as dehiscence of the staple line where the staples are installed to close the surgical incisions where the portion of the stomach was removed. Further, the procedure is not reversible.
In the laparoscopic duodenal switch, the size of the stomach is reduced in similar manner to that performed in a sleeve gastrectomy. Additionally, approximately half of the small intestine is bypassed and the stomach is reconnected to the shortened small intestine. This procedure suffers from the same complications as the sleeve gastrectomy, and even greater morbidity is associated with this procedure due to the additional intestinal bypass that needs to be performed. Still further, complications associated with malabsorption may also present themselves.
An inflatable gastric device is disclosed in U.S. Pat. No. 4,246,893, in which a balloon is inserted anteriorly of the stomach and posteriorly of the left lobe of the liver. The balloon is then inflated to compress the stomach so that it fills with less food that would ordinarily be possible. Not only does this device compress the stomach, but it also compresses the liver, as seen in
Brazzini et al. in WO2005/18417 discloses at least two or more expandable devices used to treat obesity, in which the devices are inserted through the abdominal wall and anchored against the external surface of the stomach wall by an anchoring mechanism that extends through the stomach wall and fixes to the internal surface of the stomach wall.
U.S. Patent Publication No. 2005/0261712 to Balbierz et al. describes capturing a device against the outer surface of the stomach wall to form a restriction that appears to function similarly to the restriction imposed by the LAPBAND™. The anchoring of the devices disclosed relies upon placement of features against the internal wall of the stomach to form an interlock with the device which is placed against the external wall of the stomach.
U.S. Patent Publication Nos. 2005/0267533 and 2006/0212053 to Gertner disclose devices for treatment of obesity that use one or more anchoring mechanisms that are passed through the wall of the stomach to establish an anchor.
U.S. Pat. No. 6,981,978 to Gannoe discloses devices for reducing the internal cavity of the stomach to a much smaller volume, which may be used to carry out a bypass procedure. Stapling is employed to isolate the smaller volume in the stomach, and thus the same potential disadvantages are present as with other stapling procedures described herein.
U.S. Pat. No. 6,186,149 to Pacella et al. describes an occluder device that can be used as a dietary control device (see
Gastric reduction techniques have been attempted, such as by inserting instruments trans-orally and reducing the volume of the stomach by stapling portions of it together. However, this technique is prone to failure due to the staples pulling through the tissues that they are meant to bind.
Techniques referred to as gastric pacing endeavor to use electrical stimulation to simulate the normal feedback mechanisms of a patient that signal the brain that the patient is full, or satiated. While these techniques are less invasive than some of the other existing treatments, statistics to date have shown that the amount of weight lost by using such techniques is less than satisfactory.
Currently marketed drugs for weight loss, such as XENICAL®, MERIDIA® and Phen fen have largely failed, due to unacceptable side effects and complications, and sometimes to an ineffective amount of weight loss. Other drugs that are on the horizon include ACCOMPLIA® and SYMLIN®, but these are, as yet, unproven.
The risk and invasiveness factors of currently available surgeries are often too great for a patient to accept to undergo surgical treatment for his/her obesity. Accordingly, there is a need for less invasive, yet effective surgical treatment procedures for morbidly obese patients (patients having a BMI of 35 or greater). Also, since the current surgical procedures are currently indicated only for those patients having a BMI of 40 or greater, or 35 or greater when co-morbidities are present, it would be desirable to provide a surgical procedure that would be available for slightly less obese patients, e.g., patients having a BMI of 30 to 35 who are not indicated for the currently available surgical procedures. It would further be desirable to provide a surgical procedure that would be indicated for obese patients having a BMI in the range of 30-35, as well as for more obese patients.
The present invention provides methods, devices and tools for treating a patient to assist with weight loss. One device embodiment includes a fillable member configured to be positioned exteriorly of the stomach in an abdominal cavity of the patient. The fillable member is configured to be filled after placement of the device in the abdominal cavity, wherein the device, with the fillable member in a filled configuration, has a buoyancy characteristic comprising a density of about 900 kg/m3 to about 1100 kg/m3.
In at least one embodiment, a buoyancy member exhibiting substantially uniform density throughout is provided, wherein the density of the buoyancy member is less than a density of the fillable member when the fillable member is filled with a liquid, such that, when the buoyancy member is combined with the fillable member in the filled configuration, the density of the device is less than the density of the fillable member when filled with a liquid and not combined with the buoyancy member.
In at least one embodiment, the buoyancy member is non-expandable.
In at least one embodiment, the buoyancy member comprises porous silicone.
In at least one embodiment, the device further includes at least one attachment member extending out from a surface of the fillable member.
In at least one embodiment, the attachment member includes tissue ingrowth-enhancing material thereon.
A method of treating a patient is provided including the steps of: taking at least one internal measurement in the abdominal space of the patient; and selecting an appropriately sized device for implantation into the abdominal cavity of the patient, based on the internal measurements taken.
In at least one embodiment, the selecting comprises: referencing a chart that correlates internal measurements with device sizes; and selecting a device size from the chart based on the internal measurements taken.
In at least one embodiment, the selecting comprises: ordering a custom-sized device sized specifically for the internal measurements taken.
In at least one embodiment, the appropriately sized device is selected from a plurality of devices having a plurality of different sizes, each of the devices comprising a fillable member, wherein each fillable member, when filled to an filled configuration has at least a different length or diameter dimension different from those of the other fillable members when filled a corresponding amount.
In at least one embodiment, the method further includes the steps of: passing the selected device into the abdominal cavity of the patient, wherein the device includes at least one attachment member extending from a main body portion thereof; and at least temporarily attaching the at least one attachment member to an internal abdominal structure, without attachment to the stomach.
In at least one embodiment, the method further includes at least partially filling the main body portion with a fluid, using an adjustment aid tool that does not require a pushing pressure against the hand of the user to deliver the fluid out of the syringe
In at least one embodiment, the method further includes: placing a volume occupying member of the device exteriorly of the stomach and into the abdominal cavity of the patient adjacent the stomach to prevent expansion of the stomach into a volume occupied by the placed device; and attaching an attachment member connected to the volume occupying member to at least one internal abdominal structure, without attachment to the stomach; wherein at least a portion of the attachment member is configured to encourage tissue ingrowth from the at least one internal abdominal structure that it is attached to.
In at least one embodiment, the attachment member is attached to the abdominal wall of the patient.
In at least one embodiment, the attaching includes passing at least one suture through the abdominal wall, and fixing the at least one suture externally of an external surface of the abdominal wall.
In at least one embodiment, the attaching includes puncturing through a location of the abdominal wall above a location of at least one the suture and inserting an instrument into the abdominal cavity; capturing the suture; and wherein the passing at least one suture through the abdominal wall comprises pulling a portion of the at least one suture through the abdominal wall; applying tension to the at least one suture to draw the at least one attachment tab against an internal surface of the abdominal wall; and fixing the at least one suture externally of the abdominal wall.
In at least one embodiment, the method further includes placing a suture placement template over the skin of the patient in an orientation to align at least one location over the abdominal wall through which the puncturing through a location of the abdominal wall is conducted, prior to the puncturing through the location of the abdominal wall.
In at least one embodiment, the placing includes delivering the device through a small opening through the abdominal wall of the patient and a tract leading through the abdominal wall.
In at least one embodiment, the placing includes passing the device through a small opening in the patient's abdominal wall, wherein the fillable member is in a collapsed configuration during the passing, and wherein the fillable member is filled to a fill configuration in a space in the abdominal cavity external of the stomach to perform at least one of: prevention of expansion of the stomach of the patient into the space; and compression of a portion of the stomach.
In at least one embodiment, the fillable member is filled to a mini volume fill configuration upon the placing, where the fillable member in the mini volume fill configuration has no wrinkles upon the placing, the method further comprising subsequently filling the fillable member to a target volume fill configuration.
In at least one embodiment, the fillable member is left in the mini volume fill configuration upon completion of implantation of the device, and wherein the fillable member is filled to the target volume fill configuration after a period of time has elapsed to allow tissue ingrowth into the attachment member.
In at least one embodiment, the attaching includes puncturing through a location of the abdominal wall above a location of at least one suture, having been preinstalled through the attachment member, and inserting an instrument into the abdominal cavity; capturing the at least one suture; pulling a portion of the at least one suture through the abdominal wall; applying tension to the at least one suture to draw the attachment member against an internal surface of the abdominal wall; and fixing the at least one suture externally of the abdominal wall.
In at least one embodiment, the placing includes placing a volume occupying member of the device using a tool comprising: a delivery tube dimensioned to receive the volume occupying member in a compact configuration with the volume occupying member in a compressed configuration; a plunger configured to be received in an annulus of the tube; a plunger shaft extending proximally from the plunger, the plunger shaft having a length sufficient to extend a handle at a proximal end of the plunger shaft out of a proximal end of the tube when the plunger is flush or nearly flush with a distal end of the tube; and a mandrel fixed relative to the plunger shaft and extending distally of the plunger, the mandrel being receivable through the annulus along with the plunger.
In at least one embodiment, the tool further includes a tether fixed with respect to the plunger shaft, the tether having sufficient length to extend distally of a distal end of the mandrel; and a sheath dimensioned to wrap around the volume occupying member the volume occupying member is in the compact configuration.
These and other features of the invention will become apparent to those persons skilled in the art upon reading the details of the devices, kits, tools and methods as more fully described below.
Before the present devices, methods and instruments are described, it is to be understood that this invention is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included or excluded in the range, and each range where either, neither or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are now described.
It must be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a fillable member” includes a plurality of such fillable members and reference to “the joint” includes reference to one or more joints and equivalents thereof known to those skilled in the art, and so forth.
The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.
Definitions
The “wall” of the stomach refers to all of the layers that make up the stomach wall, including the mucosa, submucosa, muscular layers and serosa. A “layer”, “layer of the stomach wall” or “stomach wall layer” refers to a mucosal layer, submucosal layer, muscular layer or serosal layer.
A “proximal” end of an instrument is the end that is nearer the surgeon when the surgeon is using the instrument for its intended surgical application.
A “distal” end of an instrument is the end that is further from the surgeon when the surgeon is using the instrument for its intended surgical application.
An “internal body structure” when referred to as a structure to which a device is to be anchored, refers to a structure internal to the skin of a patient, and which can be within the abdominal cavity of the patient, or just outside of it, such as including the outer surface of a wall that partially defines the abdominal cavity. Structures to which a device can be anchored include, but are not limited to: one or more ribs, the intercostal muscles, the abdominal surface of the diaphragm, the stomach (but where the anchor does not pass through the wall of the stomach), the anterior abdominal wall, the posterior abdominal wall and the lateral abdominal wall, the esophagus, the angle of his in the stomach, the gastro-intestinal junction, the gastro-esophageal junction, the columnar ligaments of the diaphragm near the gastro-esophageal junction, the superior aspect of the omentum, peritoneum, liver, connective tissues, ligaments, and blood vessels.
An “internal abdominal structure” refers to an internal body structure that is within the abdominal cavity of the patient, including the abdominal wall. For example, attachment to an inner wall surface of the abdominal wall is an attachment to an internal abdominal structure.
The devices of the present invention are designed to prevent the possible issue of erosion caused by a volume-reducing member outside of the stomach in the abdominal cavity that reduces the ability of the stomach to expand, by not requiring anchoring of the member to the stomach, but by fixing the member to another intra-abdominal structure. By allowing the stomach to move freely in the remaining volume not occupied by the volume-reducing member, the stomach's possible expansion size will be decreased, but there will be less opportunity for the formation of pressure necrosis since no one region will be subjected to concentrated forces. With the device in place, there is substantially no distensibility of the stomach as normally exists with an unconstrained stomach. With distensibility restricted and gastric volume reduced, as the patient ingests food, the intra-gastric pressure will rise to a level sufficient to produce satiety without distension or volume expansion of one or more regions of the stomach. The device occupies so much volume outside of the stomach in the abdominal cavity that the stomach does not substantially depart from the shape set by the device even when filled with food. Another physiological benefit of the device is that the stomach's ability to relax in response to ingestion of food is reduced or eliminated, through producing earlier satiety.
One additional physiological benefit of the volume-reducing member may further be to substantially reduce the actual volume of the stomach itself, remodeling the organ as the muscle contracts into its new shape over the period of weeks or months (just as the heart remodels when constrained from over-expansion). Remodeling the stomach allows the volume-reducing member to be implanted temporarily. The preferred embodiments also are positioned in a location to substantially fill the space normally occupied by the fundus, thus moving the stomach medially and wedging the stomach between the volume-reducing member and the medial and anterior aspects of the liver, and the spine posteriorly. This position also ensures that the volume-reducing member is almost entirely maintained underneath the diaphragmatic umbrella beneath the ribs on the left side, thus concealing the volume-reducing member, and preventing it from producing an unsatisfactory cosmetic result. Further, the preferred embodiments can have elements for anchoring on one or more locations along the abdominal cavity wall to prevent migration. Further, the preferred embodiments are provided with an outer surface that is very atraumatic. Embodiments described may include at least one fillable member, preferably a fillable member, made of a material or material composite that is impermeable to fluid, which may be substantially impermeable to gas and is at least impermeable to liquid, a foam member which adds buoyancy to the device. For example, a buoyancy member may be included with a liquid-filled fillable member of a device, that by itself, has negative buoyancy, so that the buoyancy member provides positive buoyancy to bring the combined buoyancies of these components of the device nearer to a neutral buoyancy, when implanted outside of the stomach in the abdominal cavity of a patient. It can be beneficial to make the combined buoyancy slightly positive in the abdominal cavity to help prevent the device from migrating down in the patient.
The devices described herein can be provided as versatile devices. For example, the same device with a fillable member can be implanted and attached via a laparoscopic surgical procedure, an oral trans-gastric procedure, or a variation of percutaneous procedures in which non general anesthesia and little or no insufflation are used. The device can be implanted and anchored directly to at least one internal abdominal structure, or alternatively, can be implanted by fixing to an anchoring frame having been anchored to at least one internal abdominal structure.
Abdominal Cavity Anatomy
Devices
Volume-reducing devices are described herein that are configured to be implanted in the abdominal cavity, externally of the stomach to fill a volume in the abdominal cavity that the stomach would otherwise occupy or be expandable into to occupy. Such devices permit movement of the stomach with respect thereto, but are anchored to at least one internal abdominal structure to prevent migration of the device from its intended volume-reducing location and/or orientation. Devices having various configurations of fillable members are provided, where a device can contain one or more fillable members and one or more steps of implantation and anchoring may be performed laparoscopically with remaining steps being performed percutaneously. Further alternatively, implantation and anchoring of a device may be performed with most if not all steps being performed laparoscopically or orally through a trans-gastric procedure. Any of the devices described herein can, of course, be implanted using open surgical procedures. Devices that can be implanted percutaneously can alternatively be implanted using laparoscopic procedures.
Devices described herein can be implanted permanently, but are also configured for reversibility, to facilitate relatively simple removal procedures, should it be desired to remove a device. Alternatively, devices according to the present invention can be implanted temporarily, such as over a period of months, and then removed or disabled when further treatment is no longer required, or to allow an alternative treatment to be applied.
The environment outside the stomach in the abdominal cavity in which the device is implanted can be considered fluid in the sense that, if a balloon that is completely air-filled is placed therein, the balloon will tend to float to the highest location in fluid environment of the abdominal cavity, and such location will vary, depending upon the orientation of the patient. Thus, the balloon will tend to migrate about as the patient lies down, rolls over while lying down, stands, etc. For these reasons, buoyancy members are provided herein with a density less than a density of the fillable member when the fillable member is filled with liquid, so that, in combination with the fillable member, the combined density of the device substantially matches the density of the environment outside of the stomach in the abdominal cavity. In this way, the device will not tend to attempt to “float” or pull away from an anchored/implanted location, and, in situations wherein at least a portion of the device is not directly fixed, will prevent unwanted migrations of these portions. This same concept could be applied to an air or other gas-filled fillable member, but where the buoyancy member would have a density greater than the density of the fillable member when the fillable member is filled with gas.
The density of the environment outside of the stomach in the abdominal cavity is typically about 900 to about 1100 kg/m3 depending upon the amount of fat present in the abdominal cavity, sizes of the organs, fill state of the stomach, and other factors. This estimated range was calculated from some of the densities of structures within the abdominal cavity, where fat has a density of about 916 kg/m3, the stomach has a density of about 1048 to about 1050 kg/m3 and the liver has a density of about 1050 to about 1070 kg/m3, for example. The devices described herein can be designed to have a combined density in that range to be substantially neutrally buoyant. For example, if the fillable member 10em is filled with saline, having a density of about 1009 kg/m3, then the buoyancy member 10bm will need to have a density substantially lower than 1009 kg/m3, and corresponding volume to lower the density of the device 10 to a range of about 916 kg/m3 for a patient that has a substantially fat-filled abdomen. Neutral buoyancy describes the scenario where an object is submerged in a fluid and tends to neither sink downward nor rise upwards.
Alternatively, this embodiment, or any other embodiment described herein, may be configured to have slightly positive buoyancy. This slight (e.g., less than 0.2 pounds positive buoyancy when implanted, typically much less than 0.2 pounds but greater than zero pounds) buoyancy tends to right the device in a situation where the positive buoyancy is applied in a superior portion of the fillable member and the patient is in an upright sitting or standing position, for example. An alternative technique for adding buoyancy, such as to adjust a displaced device, or that can even be utilized at the original implantation of the device, is to input a small quantity of gas into the liquid filled fillable member 10em. This can be done at the time that the fillable member 10em is filled with liquid, or, for example, on a subsequent patient visit. When done subsequently, the physician may optionally withdraw a small amount of liquid to provide space to be occupied by the small gas volume.
Accordingly, depending on the relative volumes and densities of fillable member 10em and buoyancy member 10bm, device 10 can: 1) reduce the overall density to reduce the relative “weight” of the implant within the abdomen (i.e., a neutrally buoyant implant will neither sink nor float but maintain a relatively stable position relative to the surroundings in the abdominal cavity); 2) achieve neutral buoyancy within the abdomen; or 3) achieve a slightly positive buoyancy that helps orient the device 10 upwards into a desired position and orientation (e.g., located against the fundus and the diaphragm).
In one particular embodiment, the buoyancy member 10bm of
When, as shown in
In the example shown in
Buoyancy member 10bm in
Buoyancy member 10bm is typically fixed to fillable member 10em along the entire length of buoyancy member 10bm. In the example shown, buoyancy member 10bm is fixed to an internal surface of fillable member 10em. Buoyancy member 10bm has a maximum outside dimension (e.g., outside diameter, or other cross-sectional dimension) that permits it, together with device compressed down around it, to be inserted through a small incision in a patient. Examples of such maximum outside dimension are those described above.
Buoyancy member 10bm may be formed with a twist along its longitudinal axis, so that the external surface of buoyancy member 10bm that is fixed to the fillable member 10em follows a curvature resulting from the twist that is determined to better follow the contour of the inner surface of fillable member 10em. It is further noted that the wall of fillable member 10em can be reinforced in the location where buoyancy member 10bm is attached thereto, as described in greater detail below. Buoyancy member 10bm may additionally be curved in a second dimension relative to the dimension of the curvature described above. Such a complex curvature may best fit the complex curvature of the inner surface of fillable member 10em where buoyancy member 10bm is attached. Such a complex curvature allows the spine/buoyancy member 10bm to start and end at the most desirable locations to structurally support the fillable member 10em. For example, in this embodiment, the start point is among the attachment tabs 150 (e.g., see
By resisting bending forces that may be induced on this cantilever structure (e.g., see arrow in
Reinforcement layer 160 may be made, for example, of silicone sheeting reinforced with a strengthening material such as woven polyester, polytetrafluoroethylene, or the like. A margin 162 of unreinforced silicone can be maintained all around the edges of the sheet to facilitate bonding to fillable member 10em and to avoid stress concentration at the edges. Bonding can be performed, for example, using room temperature vulcanizing silicone adhesive, or vulcanizing a sheet or cut form of unvulcanized rubber, for example. Alternatively, reinforcement layer 160 may be made from a different polymer, such as polyurethane, for example, and reinforced with polyester mesh, for bonding onto a fillable member 10em having a polyurethane outer wall surface.
Alternative formulations from which fillable member 10em may be made include, but are not limited to: polyurethane compositions including silicone-containing chain extenders, such as taught in U.S. Pat. Nos. 6,420,452 and 6,437,073, for example, or segmented block polyurethane copolymers, such as taught in U.S. Pat. No. 5,428,123, or other combined polymer compositions of polyurethane and silicone resulting in less permeability (to gas and/or liquid) than that of polyurethane used alone, or silicone used alone. Additionally, these improved barrier (resistance to permeation) properties can be achieved with a thinner wall thickness than would be required if using polyurethane alone, or silicone alone. Optionally, buoyancy member 10bm may also be made from any of these same materials. U.S. Pat. Nos. 6,420,452; 6,437,073; and 5,428,123 are hereby incorporated herein, in their entireties, by reference thereto.
To facilitate anchoring of device 10, device 10 may be provided with one or more attachment tabs 150. Attachment tab(s) 150 fan out like wings from the surface of fillable member 10em to provide a much broader attachment surface area compared to what would be provided by simply attaching the portion of the fillable member 10em, from which they extend, to a structure. Tabs 150 are provided to extend radially outwardly in substantially all directions (relative to a two-dimensional plane) from the inferior end portion of the fillable member 10em to provide enhanced resistance to torquing and bending forces on the superior end portion of device 10. As shown, the resulting tissue ingrowth enhancing surface pattern formed by tabs 150 is substantially circular. This broader base of attachment is particularly useful in resisting bend movements in a plane perpendicular to that discussed above, for example, in the directions indicated by the bi-directional arrow in
By integrating the lateral and medial tabs 150 as a single lateral-medial attachment tab as shown in
Tab 150 will typically be formed from a reinforced sheeting, such as polyester-reinforced silicone sheeting, polypropylene-reinforced silicone sheeting or polyethylene-reinforced polyurethane sheeting for example, or any other biocompatible fabric that can be sandwiched between two layers of biocompatible polymers or rubbers. One or more patches 152 of tissue ingrowth enhancing material, such as an expanded polytetrafluoroethylene, polytetrafluoroethylene, polyester, etc, in felt or velour configuration, or polypropylene mesh, for example, can be bonded onto the reinforced sheeting so that, when placed in contact with tissue, tissue is encouraged to grow into the patches. A positioning loop 170 may also be provided to extend through lateral medial tab 150, as illustrated in
Alternatively, patches 152 of ingrowth material may be formed of the same material as the tab 150 that it is bonded to, although patch 152 has porosity of a size and density known to encourage tissue ingrowth thereinto. Patches 152 are bonded to tabs 150 only around the perimeters of the patches so as not to fill or partially block the porosity of the main body of each patch. Thus for example, if tabs 150 are made of silicone, patches 152 may be made of porous silicone. Likewise, if tabs 150 are made of polyurethane, patches 152 can be made of porous polyurethane. Patches 152 may be provided as mesh fabric made from multifilament yarns by any suitable method including, but not limited to knitting, weaving, molding, etc. Patches may be made porous by molding without manufacture from monofilament yarns.
Further alternatively, patches 152 may be formed in the material of the attachment tabs 150 themselves. That is, the area defined by patch 152 on tab 150 can be made porous, using molding techniques, or by bonding insert patches into openings of the tabs 150. However, it is generally preferred that the back surface of the patch 152 (the surface facing away from the surface that will interface with the abdominal wall) be covered with a layer that substantially resists tissue ingrowth, to prevent adhesions to other tissues in the abdominal cavity that are not intended to be attached to tabs 150.
Positioning loop 170 is connected to fillable member 10em and/or reinforcing layer 160 through tab 150 and tissue ingrowth enhancing material 152 which further reinforce the connection of loop 170 to the fillable member 10em. Positioning loop 170 is typically a short lightweight loop of polymer, such as a ribbon and may be formed from polypropylene mesh ribbon or the like, having a length sufficient to extend through and externally of the abdominal wall when tabs 152 abut the internal surface of the abdominal wall, but not long enough to be drawn all the way out through the skin of the patient. A suture 59 can be placed through and secured to loop 170, wherein the suture has sufficient length to be drawn out through the skin of the patient. By pulling only the suture 59 through the skin, without drawing the broader ribbon 70 through the skin, this has been found to be advantageous to better maintain insufflation pressure (when used) during surgery in the abdominal cavity.
After inserting device 10 through an opening in the patient and into the abdominal cavity (positioning loop 170 is also inserted into the abdominal cavity), a surgeon can form an additional puncture through the patient at another location in the abdomen in line with a location on the abdominal wall where it is desired to anchor the inferior end portion of device 10 to the abdominal wall. This puncture can be very minimal and performed using a needle, needle that includes a hook, or other sharp, minimally invasive tool. Using the same tool or a different minimally invasive hook tool or graspers, suture 59 is captured and drawn out through the additional puncture, thereby also drawing the loop 170 through the abdominal wall, but not through the subcutaneous fat or the skin. By applying tension to suture 59 and/or loop 170, the inferior end portion of device 10 and particularly ingrowth patches 152 can be drawn up against the internal surface of the abdominal wall for anchoring there. Anchoring of the tab(s) 150 can be done prior to or after filling of fillable member 10em. In one typical example, fillable member 10em can be filled with gas or liquid prior to anchoring to facilitate proper positioning of device 10 prior to anchoring tab(s) 150. One practical approach is to fill fillable member 10em with gas to check for positioning, since filling with gas is faster and easier than filling with liquid. Once proper positioning is confirmed, fillable member 10em can then be quickly deflated, and anchoring of attachment tab(s) can then be performed. By performing anchoring of attachment tab(s) with fillable member 10em at least partially deflated, this provides more working space and/or better visibility to accomplish the anchoring. Loop 170 can be sutured externally of the abdominal wall or to the external surface of the abdominal wall using suture 59. After anchoring, fillable member 10em can then be filled with liquid.
Device 10 may be further provided with one or more grasper tabs which are also referred to as grasping tabs or positioning tabs. One or more such grasping tab features may be provided on device 10, such as on fillable member 10em (typically over an area reinforced by reinforcing layer(s) 160) to assist in positioning/repositioning the device 10 in the abdominal cavity. In
In the position and orientation shown in
The reinforcing mesh that may be used in tabs 154, 150 and/or reinforcement layer(s) 160 may be formed of cables of the reinforcing polymer that forms the mesh. As such, when a die is used to cut through the tab/reinforcing layer and the reinforcing mesh, the cut ends of the cables may tend to unwind, or fray.
In one particular embodiment, device 10 is made almost entirely of silicone, with the exceptions of the tissue ingrowth enhancing patches 152, which are made of polyester velour, the polyester reinforcement of the reinforcement layer(s) 160, the polyester sutures 180 and 59, and the polypropylene mesh ribbon 170 (which also enhances tissue ingrowth of the fascia, externally of the abdominal wall). Accordingly, two different types of tissue ingrowth enhancing materials are used to increase the probability of tissue ingrowth. Conduit 12 is made of silicone and connector 12c that connects conduit 12 to fillable member 10em is also formed of silicone.
As noted, buoyancy member 10bm, is made of foam or sponge that encapsulates small gas pockets and therefore does not have to be filled after placement of device 10 in the abdominal cavity. Although shown as a curved cylindrical structure, buoyancy member 10bm can be any other shape that lends itself to being inserted through a small opening in a patient when fillable member 10em is compressed around it, although the curved cylindrical or curved stomach shape shown in
The foam used to make buoyancy member may be a silicone foam, or made from polyethylene or other biocompatible polymer for example. In each case, the foam is preferably a closed-cell foam having a skin, so that the cells of the foam are closed and encapsulate air or other biocompatible gas therein, to ensure that the buoyancy properties of the foam are maintained and the buoyancy member 10bm can therefore hold open a volume of gas and displace the liquid in fillable member 10em. However, in at least one embodiment of silicone foam buoyancy member 10bm described below, a very large portion of foaming agent is used in making the foam, and some of the closed cells burst and open to others of the cells, so the foam produced may not be entirely closed cell. This can also be the case when making a foam from another polymer when using a large portion of foaming agent. It should be noted that some manufacturers denote a “sponge” as a closed-cell material, and other denote a closed-cell material as a “foam”. It should further be noted that, alternatively, an open-cell material may be used, when a layer of encapsulation is established around this open-cell sponge or foam. The encapsulation layer may be dip-molded onto the open-cell structure, or can be manufactured separately and then assembled around the open-cell structure. Such a configuration utilizes the open-cell foam or sponge to provide structural support to hold open the encapsulation layer. The encapsulation layer provides a barrier between the gas contained within the open-cell foam/sponge and the saline or other liquid contained in the fillable member 10em outside of the buoyancy member 10bm. An encapsulation layer may be provided over a closed-cell foam/sponge using any of the same techniques described above.
In one particular embodiment, the foam is a silicone foam made from silicone typically made to make a silicone sheet, but with a foaming agent (sodium bicarbonate) mixed with the silicone to make a slurry. For example, a silicone system known as MED-4840 by NuSil Technology, Carpinteria, Calif. may be used. The foaming agent used may be MED 4-4800, from the same company. The mixed slurry can be described as having a consistency like peanut butter and the slurry is packed into a mold and then heated at about 150° C. for about an eighty minute cycle, typically. For relatively larger molds, the heating cycle may be greater than eighty minutes to allow heat to penetrate and saturate the mold. The foaming agent, during the heat cycle, converts to water vapor, carbon dioxide and ammonia, thereby ensuring the biocompatibility of the resulting foam product. The mold is then removed from the heat and allowed to cool. After cooling, the foam product is removed from the mold and finished by removing any flash that may have formed. The finished product is a closed-cell foam that includes a skin layer both inside and outside. In another embodiment, the foam is polyethylene, which is expanded via high pressure carbon dioxide. The infusion of the carbon dioxide creates air pockets that form the foam, leaving a material that remains polyethylene which is therefore biocompatible.
The silicone foam buoyancy member is produced by mixing together two liquid silicone elastomer, MED 4840 precursors (foam parts “A” and “B”) with a foaming agent (part “F”) in a manner as noted above. Typically parts “A” and “B” are mixed in equal proportions, and the amount of part “F” is added so that it makes up from about 1% to about 50% of the slurry's weight or volume, with the remainder of the weight or volume being taken up by equal portions of parts A and B. When part F was added in an amount of about 1% to about 5% by weight of the total weight of the slurry, this produced a silicone foam or sponge product having a density of about 0.7 g/cc. By improving the molds and mold process used, the foaming agent portion F was able to be increased to an amount of about 30% to about 50% by weight, typically about 30% to about 40% by weight, of the total weight of the slurry, and this produced a silicone foam or sponge product having a density of about 0.39 g/cc to about 0.50 g/cc, typically about 0.44 g/cc. In one particular embodiment, the slurry is made up of about 35% by weight of foaming agent F (with parts A and B each making up about 32.5% by weight of the slurry) to produce a buoyancy member 10bm for use in a device to perform the functions described above and the foam produced thereby has a density of less than about 0.5 g/cc or less than about 0.045 g/cc.
Initially, it was attempted to make the entire mold 250 from polytetrafluoroethylene. However, the mold made entirely of polytetrafluoroethylene did not maintain sufficient rigidity at the elevated molding temperatures. Additionally, when the entire mold was made of polytetrafluoroethylene, its thermal insulation properties were too great, making it difficult to raise the temperature of the materials to be made into the foam in an acceptable time. As a result, inserts 252 are now thin-walled components and support frame portions 254 having cavities 254c that closely interfit with the external surfaces of inserts 252 to receive them therein are provided.
Support frame portions 254 are substantially thicker than inserts 252 and are metallic to provide excellent rigidity and thermal transfer during the molding process. In one embodiment, support frame portions 254 are aluminum, although other metals may be used including, but not limited to steel, stainless steel, brass, etc. After completely filling the cavities 252c of inserts 252 with the slurry material having the peanut-butter-like consistency, the inserts 252 are joined together like shown in
After the foam/sponge has been formed by the molding process, the mold is quenched and then air cooled before being opened. Alternatively, the mold can be allowed to cool down in the oven as the oven cools. After cooling, the mold is disassembled by removing the bolts, or other mechanical compression members and pulling apart the support frame portions 254. Inserts 252 are then separated and the molded product (foam/sponge) can be trimmed to remove any flashing or excess product that might extend from the intended boundaries of the foam/sponge. The foam/sponge is then dipped in silicone (in the case of a silicone foam/sponge product, other materials may be used to coat foams/sponges made from other polymers, or silicone could be used as well) to ensure a continuous, sealing coat of silicone over the entire external surface of the foam/sponge. More than one dipping step can be carried out to increase the thickness of the external polymer coating. Because the foam is silicone, the liquid silicone bonds very well to the foam to form the external coating, thereby making the coated product (encapsulated foam/sponge) liquid-proof, so that liquid in the fillable member 10em cannot enter the buoyancy member 10bm. This also improves the bond strength between buoyancy member 10bm and fillable member 10em as both components being bonded are smooth and continuous silicone.
Sizing
Device 10 sizes may vary depending on the size of the skeletal system of the patient into which device 10 is to be implanted, particularly the size of the rib cage. In this regard, one aspect of the present invention provides a kit of devices 10 of various sizes, wherein the fillable members 10em of the various sized devices can vary in length and/or volume (in a filled configuration) relative to the other devices in the kit. In one particular embodiment, four device 10 sizes are provided. In another embodiment, a fifth size is provided for patients with unusually large rib cages. However, it is noted that the present invention is not limited to only four different sizes of devices or five different sizes of devices, as more or fewer variations in sizes may be provided.
In order to select a particular device size that is optimal for a particular patient, the dimensions of the patient's rib cage can be measured. Referring now to
Depending upon the dimensions of the rib cage of a patient, the device 10 may need to be relatively longer or shorter and/or relatively larger or smaller in diameter (particularly at the more bulbous, superior portion) compared to the size of device 10 indicated for another patient with a different rib cage size, in order to accomplish the desired amount of volume occupation and maintenance of the stomach in a reduced configuration to the amount desired.
The AP and lateral measurements can be used to approximate the size of the fundus and body of the stomach 120 of the particular patient from which the measurements were taken. Using the AP and Lateral measurements as baseline measurements, scaled devices 10 can be produced to take up a desired amount of space that the stomach would otherwise be allowed to occupy and/or expand into. There is approximately a cosine relationship between the AP dimension and the length of device 10/fillable member 10bm, as what was observed is that the angle of the fillable member 10em as placed to approximate the stomach position is between about forty to about sixty degrees relative to the horizontal AP measurement. The relationship between the Lateral measurement and the largest diameter of the fillable member 10em is more linear, calculated to be a fixed percentage (e.g., about 40% to about 95%, or about 45% to about 90%, typically about 50% to about 90%. In at least one example, Target volumes were calculated to be about 70%, Mini volumes about 56% and Max volumes about 90%) of the Lateral measurement when fillable member is at the Target volume. The relationship between the Lateral measurement and the large diameter (i.e., diameter of the bulbous, superior portion) of fillable member 10em is more linear, where the large diameter is set to a predetermined percentage of the Lateral dimension measurement. These derived length and diameter dimensions provide the target fill volume of the fillable member 10em. The Mini fill volume of the devices is then calculated to be about fifty percent of the target fill volumes of the devices, respectively. Due to the expansive nature of the fillable member 10bm, it can be filled to the Mini volume where it has no wrinkles, further filled to the target volume, and still further filled to the Max volume.
A chart has been devised to correlate the various sizes of the devices with the AP and Lateral measurements 183, 181 of the patient, so that a surgeon can readily select the appropriate size of device 10 to be used, see
The fillable member 10em of device 10 is designed to have a target volume 10T that it fills to in order to occupy a predetermined volume in the abdominal cavity to maintain the stomach 120 is a reduced configuration, as described above. Because these devices are designed to cover a range of sizes of rib cages, and in order to address other issues (e.g., the patient may be uncomfortable with a device 10 having been implanted and filled to the target volume 10T) Each fillable member 10em is designed to be fillable to a “Mini” volume 10MI where the fillable member 10em is filled to an extent where no wrinkles exist in the material of the wall of the fillable member 10em. Typically, the material of the wall of fillable member will not be elastically deformed, or only minimally elastically deformed in the mini volume configuration. When filled to the mini volume 10MI, the fillable member typically has about half the volume (e.g., about fifty to sixty percent of the target volume) that is has in the target volume 10T configuration, but the walls of the fillable member are under sufficient pressure so that there are no wrinkles in the walls. By configuring fillable member 10em to be reduced to the mini configuration 10MI, this gives the surgeon considerable leeway to adjust the volume of the fillable member 10em downwardly, while still maintaining the fillable member 10em in a configuration which substantially prevents bending, creasing and/or erosion of the materials forming the wall of the fillable member 10em. Additionally, in order to provide the surgeon with the ability to adjust the volume displacement of device 10 upwardly from the target volume 10T configuration, fillable member is configured to be safely fillable to a maximum (Max) volume configuration 10MA which is at least about fifty percent larger than the target volume 10T.
Thus, devices 10 are provided with fillable members 10em that have a sufficient range of fillability to ensure that device 10 functions as intended and prevents the stomach from expanding in a manner as desired. The ability to reduce the volume (particularly to volumes less than target 10T), this provides additional advantages in that the device can be substantially reduced in sized without jeopardizing the longevity of the fillable member 10em by allowing it to wrinkle. For example, if a patient becomes pregnant or has the flu or some other need for rendering the device 10 less effective, or for at least reducing the constraints provided by device 10, the surgeon can reduce the volume of the fillable member 10em to as low as the mini volume 10MI without allowing the fillable member 10em to wrinkle. If the problem with the patient is temporary (such as flu, pregnancy, etc.), the volume of fillable member can be increased back to its previous volume after the temporary problem has ended, thereby returning device 10 to its former effectiveness.
The shapes, lengths, diameters and volumes of sizes 1, 3 and 4 change similarly to that shown in
According to at least one method embodiment of implanting a volume-occupying device 10 according to the present invention, an imaging apparatus is first used to measure the rib cage dimensions of the patient in the lateral direction and in the anterior-posterior direction. As noted above, these measurements are taken at about the level of the gastroesophageal junction and are measured from and to the opposite interior surfaces of the rib cage. Based on these measurements, a selection of an appropriate size of device 10 can be made for implantation into the patient. For example, the surgeon or other person doing the selection can refer to a chart, such as the chart shown in
Fillable members 10em may be formed to fill differentially along different portions of the wall of the fillable member 10em. For example, the surface of the bulbous superior portion that faces the stomach 120 when implanted may be formed to have a relatively thinner wall than the portion of the wall that is facing away from the stomach. Likewise, the portion shown in
One exemplary technique for making a fillable member 10em that has varying wall thicknesses is illustrated in
In another method embodiment of implanting a volume-occupying device 10 according to the present invention, an imaging apparatus is first used to measure the rib cage dimensions of the patient in the lateral direction and in the anterior-posterior direction. As noted above, these measurements are taken at about the level of the gastroesophageal junction and are measured from and to the opposite interior surfaces of the rib cage. Based on these measurements, a device 10 having a size that is custom fitted to the particular measurements for the particular patient can be manufactured. Images of the abdominal cavity of the patient can be taken under both fasting and post-meal (where the patient has ingested as much as possible) conditions. The images can then be three-dimensionally reconstructed and used to tailor fit a device 10 to the imaged stomach sizes and/or Lateral and AP measurements. As noted, a custom device can be sized based only on the measurements taken of the stomach sizes, or can be sized based on the Lateral and AP measurements, or can be sized based on a combination of these. This custom fitting can account for variation in anatomy, such as different organ sizes and positions occupied during a post-meal condition, amounts of intra-abdominal fat present, etc.
For example, after the above-noted measurements and reconstructions are performed, measurements and/or specifications derived from the measurements and reconstructions can be sent to a manufacturing facility that manufactures a custom-designed device 10 for that particular patient. The dimensions and even the shape of device may be calculated from the AP and Lateral measurements and/or measured sizes and/or locations of the stomach under the fasting and post-meal conditions, either manually or by inputting the measurements into a computer programmed with an algorithm for calculating the dimensions and or shape of the fillable member 10em and buoyancy member 10bm, or dimensions and/or shape may be determined from one or more look-up charts that correlates one or more of the dimensions and shapes with AP and Lateral measurement values. Accordingly, rather than selecting a size 1, 2, 3, or 4 device 10, a device 10 is manufactured that may have one or more dimensions between and/or overlapping with the dimensions of the standard sizes 1-4. Although this takes some additional time until the patient can be operated on to implant device 10, this is not usually a critical consideration with the type of surgery being performed.
A delivery tract is then opened from opening 223 through the subcutaneous tissues and abdominal wall to provide an access opening into the abdominal cavity. For example, the delivery tract may be formed by starting with a small incision 223 and then inserting a small port under visual guidance (for example, with VISIPORT™, or the like) to provide safe access into the abdominal cavity. Alternatively, the delivery tract can be made with a cannula and a veress-style needle within it which is subsequently exchanged, after access into the abdominal cavity, with a wire, such as guidewire 502 or a viewing wire to allow exchange of the cannula and insertion of a larger bore access sheath over a dilator over the wire.
Once the delivery tract has been established, device 10 in a compact configuration is inserted through opening 223 and advanced along the tract, through the opening in the abdominal wall and placed in the abdominal cavity. To protect device 10 from contamination with skin flora, an endobag 300 (see
Once device 10 has been completely delivered through the opening 223 (except for possibly a portion of conduit 12) so there is no risk of the fillable member 10em or attachment tabs 150 contacting the skin 125, endobag 300 can then be removed off of device 10 and removed back out of opening 223. Prior to insertion of device 10 into endobag 300, the device 10 is compacted to give it a smaller cross-sectional size and thus make it easier to pass through opening 223. As noted previously, buoyancy member 10bm is not fillable. Buoyancy member 10bm is also not very compressible, so it is made in a size and shape that facilitates its passage through opening 223. Fillable member 10em is very compressible and, when substantially devoid of fluid, can be wrapped around buoyancy member 10bm so that the device is only slightly larger in cross-sectional area than the cross-sectional of the buoyancy member 10bm alone. This compact form of device 10 is inserted into endobag 300 and endobag 300 may be likewise wrapped around the device. In any event, the surgeon or assistant can maintain the device in this compact configuration by holding it (though the endobag) with a slight, hand compression force. Alternatively, device 10 may be compacted into an alternative delivery tool used to inserted and deploy the device 10, as described in more detail below.
After delivery of device 10 through the abdominal wall and into the abdominal cavity, wherein conduit 12 may be pushed in with the remainder of the device 10, or left extending from the incision wherein, in this case, the incision is closed around the conduit, incision 223 is closed and made airtight to permit insufflation of the abdominal cavity. Trocars/ports 280 are next placed through which a laparoscope can be inserted and tools can be inserted for performing steps of the procedure. The insufflation can also be performed through one or more of these trocars. For example, standard carbon dioxide insufflation can be performed using a standard trocar e.g., 5 mm trocar, 7 mm trocar, 12 mm trocar, etc. A trocar 280 (e.g., 12 mm trocar) may be placed inferiorly of the closed incision 223, as shown in
Alternative to being left extending from the incision, conduit 12 can be extended out of any one of the trocars. Filling of fillable member 10em can be performed just after the initial placement of device 10 into the abdominal cavity. A sterile stopcock can be connected to conduit 12 and a sterile syringe can be used to at least partially fill fillable member 10em with air. The stopcock can then be removed and the tubing can be placed back through the trocar, if extending therefrom, and into the patient 1.
Next, a liver retractor 504 (such as a Nathanson retractor or the like) is inserted through the skin 125, fat 131 abdominal wall 127 and into the abdominal cavity and maneuvered to retract the left lateral segment (part of the left lobe) of the liver 121 superiorly.
Using graspers 784 the device 10 is next maneuvered into a target location where it is to be implanted. Graspers 784 can be used to grasp positioning tab(s) 154 and/or attachment tabs 150 to performing pushing, pulling and/or twisting maneuvers to move and orient device 10 to its desired location. Additionally, graspers 784 or other tools can be used to push on locations of the fillable member 10em that are reinforced by one or more reinforcing layers 160 and/or tabs 150,154. However, portions of fillable member 10em that are not reinforced should neither be grasped nor pushed on, as damage to the wall of the fillable member 10em could result. Placement of the patient 1 in a reverse Trendelenberg position may facilitate maneuvering of the device 10 to its intended location and orientation. The superior portion of the fillable member 10em is placed under the left lateral segment of the liver 121 and the inferior portion of fillable member is placed so that the attachments tabs 150 approach the epigastrium. If device 10 is provided with an attachment tab 154 that includes an Angle of His pointer 154p, then the tab 154 is grasped and pushed so that the pointer 154p aligns with the Angle of His.
At this time, fillable member 10em can be at least partially filled (e.g., partial filling, to the mini volume 10MI, less than the mini volume, or slightly more than the mini volume) with saline or gas so that the surgeon can get a better visualization of the placement and orientation of device 10 by viewing through scope 503. The conduit 12, at this stage can be extended out of any opening in the patient leading into the abdominal cavity. If the surgeon is satisfied with the placement and orientation of device 10, then fillable member 10em can be at least partially deflated to provide more working space and the procedure continues. If the surgeon is not satisfied with the placement or orientation of device 10, then fillable member can be deflated and device 10 is further moved/manipulated in any of the manners described above. Then the partial filling and visual checking procedure can be repeated. These steps can be iterated as many times as necessary until the surgeon is satisfied that device 10 has been properly placed and oriented.
Prior to attaching attachment tabs 150 to the abdominal wall (epigastrium) 127, the falciform ligament is removed and any fat on the interior surface of the abdominal wall is removed from locations that the attachment tabs 150 will overlie when attached. Next a location on the skin 125 is determined that is aligned with a location on the abdominal wall through which loop 170 will be pulled and fixed externally of the abdominal wall. Graspers 784 or other instrument may be used to push up against the abdominal wall at the location overlying loop 170 to help locate this spot externally on the skin 125 of the patient 1. Once the spot on the skin is located, a needle, hooked needle, or other piercing instrument is pushed through the skin at the identified location, through the fat and the abdominal wall. The hooked needle or suture passers 786 or other instrument can then be used to hook, grasp or otherwise attach to the suture 59 that is attached to loop 170. By drawing suture 59 out through the skin 125 of the patient, this draws loop 170 through the abdominal wall. Because only the suture 59 actually extends through the skin 125, this helps to maintain insufflation pressure in the abdominal cavity. Alternatively, a longer loop 170 could be used in place of the short loop 170 and suture 59 shown in
At this stage, the positioning and orientation of device 10 can again be checked using scope 503 to ensure that the superior end portion of fillable member 10em is located under the left lateral segment of the liver 121 and that no major wrinkles or fold are present in the attachment tabs 150 as they are drawn against the abdominal wall. Thus, the inferior end portion of device 10 is positioned against the anterior abdominal wall (e.g., epigastrium) and the superior end portion extends posteriorly and superiorly into the abdominal cavity as it is positioned behind the left lateral lobe of the liver 121. The free end of conduit 12 can be passed through one of the ports 280 and gas or saline can be inputted therethrough to fill fillable member to at least mini volume 10MI to ensure that no folds or creases exist in the fillable member 10em when filled. After results of checking are satisfactory, fillable member 10em can again be at least partially deflated to provide better working space for continuing procedures.
Next, suturing of the attachment tabs 150 to the abdominal wall is begun. Sutures 180 may be permanent, non-biodegradable sutures, or they may be bioresorbable such that they provide mechanical attachment of the attachment tabs to the abdominal wall, holding the ingrowth patches 152 in approximation (contact) with the abdominal wall to allow tissue ingrowth into them, such that attachment tabs 150 become ingrown with tissue and thus securely fixed to the abdominal wall. When bioresorbable, sutures 180 are designed to resorb over time, but not before adequate tissue ingrowth into ingrowth patches 152 has occurred.
In either case, sutures 180 are folded back and forth upon themselves in pairs (in a manner similar to folding an electrical cord) and the folded sutures are retained in loops 182 fixed in tabs 150 (see
To create a working space, loop 170 is grasped in the abdominal cavity and pulled back through the abdominal wall somewhat to establish a space between attachment tabs 150 and the abdominal wall. Tension is maintained on suture 59 outside of the skin to also maintain tension on loop 170 so as to maintain tabs 150 at a desired distance from the abdominal wall. Suturing of the attachment tabs 150 is typically begun with the cephalad-most positioned sutures 180 with the surgeon working down around both sides to the inferiorly placed sutures 180.
A suture placement template 320 (see
Sutures 180 are passed through the appropriate locations in the skin by grasping a suture pair with graspers 784 and pulling them out of loop 182, and then passing one suture 180 at a time to suture passers 786 having been passed through the skin at the appropriate location, through the abdominal wall, and into the abdominal cavity. Care is taken to ensure that the sutures do not become entangled or twisted with other sutures as they are passed through the abdominal wall 127, fat 131 and skin 125.
Whether or not template 320 is used, a finder needle 788 (see
This process is repeated until all sutures 180 have been drawn out of the skin at the appropriate locations overlying the locations where the sutures 180 attach to the attachment tabs 150. Once all of the sutures 180 have been passed, sutures 180 and loop 170 (via suture 59) are drawn up through the abdominal wall to draw the attachment tabs 150 against the abdominal wall. Inspection is then performed via scope 503 to determine whether the tabs 150 are being properly positioned. Proper positioning includes a lack of folds in the attachment tabs that would prevent substantial portions of the ingrowth patches from contacting the abdominal wall. Existence of such folds could impair the amount of ingrowth attachment provided, and this is unsatisfactory. If one or more sutures 180 need to be passed through different locations to remove folds or other inappropriate placement of the tabs 150, this is done, using the same techniques described above. In any case, once it has been confirmed that the attachment tabs 150 are properly placed, insufflation pressure can be dropped from the working pressure of about 15 mm Hg to about 5 mm Hg, and sutures 180 of the suture pairs are tied together and pushed against the fascia/external surface of the abdominal wall, to securely anchor tabs 150 against the internal surface of the abdominal wall. Likewise, loop 170 is sutured to the fascia/external surface of the abdominal wall using suture 59.
An access member 80 is next connected to the free end of conduit 12 (after cutting the conduit 12 to an appropriate length that extends only about to the location where the access member 80 is to be implanted.
Access member 80 can be installed subcutaneously with sutures, hooks or stables as know for subcutaneous access ports/members.
Once access member 80 has been anchored, and any tools remaining in the abdominal cavity (if any) have been removed, if fillable member 10em is not already filled to mini volume 10MI with saline, a filling tool, such as a syringe (e.g., 60 cc syringe) or other specifically defined filling tool is engaged with access member 80 and fillable member 10em is filled with saline to the mini volume 10MI. Any remaining openings through the skin of the patient are closed to complete the procedure. Optionally, fillable member 10em may be filled to the target volume 10T or more or less to begin effective treatment immediately. Alternatively, fillable member 10em may be left at the mini volume 10MI for a time to allow tissue ingrowth into attachment tabs 150 and general healing of the patient. On a follow-up visit, the physician can then fill the fillable member up to a working volume around the target volume 10T or more or less.
Filling the fillable member to the mini volume 10MI or more may take multiple injections, particularly when a 60 cc syringe is used. Further, because of the additional constriction introduced by the valve mechanism of the access member and smaller diameter passageways, compared to inputting saline directly into conduit 12, driving the plunger of the syringe can be quite onerous on the hand of the user, with substantial pressure of the syringe handle occurring against the user's hand as the saline is driven through the access member 80, conduit 12 and into fillable member 10em.
Accordingly an adjustment aid tool 360 is provided that does not require a pushing pressure against the hand of the user to deliver saline out of a syringe, see
Optionally, a ring 380 may be provided that is configured to slide over handle 369 and provide even greater mechanical advantage to the user, so that the ringed handle is easier to turn to expel saline from syringe 370. For example, ring 380 may have a diameter that is greater than the diameter of handle 369 by about one to about three inches In one embodiment, handle 369 has an outside diameter or about two inches and ring 380 has an outside diameter of about three inches. In another embodiment, handle 369 has an outside diameter or about two inches and ring 380 has an outside diameter of about four inches. Alternative to ring 380, a lever can be made that is mountable to handle 369 and which extends in a radial direction therefrom to provide added mechanical advantage to turn the handle 369. Ring 380 has recesses 382 that match protrusions 369p on handle 369 so that ring 380 slides over handle 369 and receives protrusions 369p in recesses 382, thereby preventing rotation of handle 380 with respect to handle 369. The length of the ring 380 (see side view of
A plunger 404 is configured to be received in the annulus of tube 402 with sufficient tolerance to allow mandrel 406 and tether 408 to also be received in the annulus. Alternatively, plunger 404 may have a tighter tolerance with the annulus, but be provided with slots 404s into which mandrel 406 and tether 408 are received. A rigid plunger shaft 410 having a length sufficient to extend handle 412 (attached to the proximal end of shaft 410) out of the proximal end of tube 402 when plunger 404 is flush or nearly flush with the distal end of tube 402. Tube 402 may be provided with one or more shoulders or stops 402s at a distal end of the annulus 402a to prevent plunger 404 from being pushed out of the distal end of tube 402. The inner wall of tube 402 defining the annulus 402a may be coated with a lubricious coating, such as polytetrafluoroethylene, or the like.
A sheath 414 is provided to wrap around device 10 when in a compact configuration (see
Device 10 sheet 414 and plunger 404 are next inserted into delivery tube 402 and the device 10/sheet 414 can be advanced up into the distal end portion of tube 402. Device 10 and sheet 414 can then be advanced through incision 223 and the tract leading into the abdominal cavity until the distal end portion of tube 402 has entered the abdominal cavity. Next device 10/sheet 414 are expelled from tube 402 by pushing forward on handle 412 while holding tube 402 stationary, thereby advancing plunger 404 until device 10/sheet 414 have been completely expelled from the tube 402. Next, handle 412 is pulled back on while holding tube 402 stationary thereby withdrawing mandrel 406 (which is fixed relative to plunger shaft 410 out of loops 416. This releases sheet 414 from its compressive hold on device 10 thereby deploying device 10. Next, the tool 400 can be removed from the delivery tract and incision 223 (i.e., from the patient) as a unit. Sheet 414 is tethered to plunger shaft 410/plunger 404 by a tether 408 that is longer than the length of the portion of mandrel 406 that extends distally of plunger 404. Accordingly, tether 408 does not draw against sheet 414 when the plunger is initially partially withdrawn to remove mandrel 406 form loops 416. However, as tool 400 is withdrawn as a unit, tether 408 draws sheet 414 along with it, out of the patient 1.
While the present invention has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process step or steps, to the objective, spirit and scope of the present invention. All such modifications are intended to be within the scope of the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
233475 | Cook et al. | Oct 1880 | A |
659422 | Shidler | Oct 1900 | A |
789467 | Wanamaker et al. | Jan 1905 | A |
769467 | West | May 1905 | A |
1461524 | Goddard | Jul 1923 | A |
2579192 | Kohl et al. | Dec 1951 | A |
2646298 | Leary | Jul 1953 | A |
2697624 | Thomas et al. | Dec 1954 | A |
2734299 | Masson | Feb 1956 | A |
2825592 | Semple | Mar 1958 | A |
3326586 | Frost et al. | Jun 1967 | A |
3373140 | Bloch | Mar 1968 | A |
3470834 | Bone | Oct 1969 | A |
3521918 | Hammond | Jul 1970 | A |
3571864 | Emile et al. | Mar 1971 | A |
3664435 | Klessig | May 1972 | A |
3675639 | Cimber | Jul 1972 | A |
3713680 | Pagano | Jan 1973 | A |
3756638 | Stockberger | Sep 1973 | A |
3931667 | Merser et al. | Jan 1976 | A |
3976079 | Samuels et al. | Aug 1976 | A |
4006747 | Kronenthal et al. | Feb 1977 | A |
4060089 | Noiles | Nov 1977 | A |
4133315 | Berman et al. | Jan 1979 | A |
4210148 | Stivala | Jul 1980 | A |
4246893 | Berson | Jan 1981 | A |
4291698 | Fuchs et al. | Sep 1981 | A |
4328805 | Akopov et al. | May 1982 | A |
4416267 | Garren et al. | Nov 1983 | A |
4458681 | Hophins | Jul 1984 | A |
4472226 | Redinger et al. | Sep 1984 | A |
4485805 | Foster, Jr. et al. | Dec 1984 | A |
4493323 | Albright et al. | Jan 1985 | A |
4558699 | Bashour | Dec 1985 | A |
4592339 | Kuzmak et al. | Jun 1986 | A |
4592342 | Salmasian | Jun 1986 | A |
4621640 | Mulhollan et al. | Nov 1986 | A |
4669473 | Richards et al. | Jun 1987 | A |
4694827 | Weiner et al. | Sep 1987 | A |
4696288 | Kuzmak et al. | Sep 1987 | A |
4705040 | Mueller et al. | Nov 1987 | A |
4714281 | Peck | Dec 1987 | A |
4723547 | Kullas et al. | Feb 1988 | A |
4738255 | Goble et al. | Apr 1988 | A |
4739758 | Lai et al. | Apr 1988 | A |
4744364 | Kensey | May 1988 | A |
4750492 | Jacobs | Jun 1988 | A |
4803985 | Hill | Feb 1989 | A |
4823794 | Pierce | Apr 1989 | A |
4899747 | Garren et al. | Feb 1990 | A |
4955913 | Robinson | Sep 1990 | A |
5002550 | Li | Mar 1991 | A |
5033481 | Heyler, III | Jul 1991 | A |
5041129 | Hayhurst et al. | Aug 1991 | A |
5084061 | Gau et al. | Jan 1992 | A |
5100421 | Christoudias | Mar 1992 | A |
5112310 | Grobe | May 1992 | A |
5123914 | Cope | Jun 1992 | A |
5129912 | Noda et al. | Jul 1992 | A |
RE34021 | Mueller et al. | Aug 1992 | E |
5151086 | Duh et al. | Sep 1992 | A |
5188104 | Wernicke et al. | Feb 1993 | A |
5217470 | Weston | Jun 1993 | A |
5234454 | Bangs | Aug 1993 | A |
5246456 | Wilkinson | Sep 1993 | A |
5258015 | Li et al. | Nov 1993 | A |
5259399 | Brown | Nov 1993 | A |
5269809 | Hayhurst et al. | Dec 1993 | A |
5292344 | Douglas | Mar 1994 | A |
5320639 | Rudnick | Jun 1994 | A |
5334200 | Johnson | Aug 1994 | A |
5354271 | Voda | Oct 1994 | A |
5364408 | Gordon | Nov 1994 | A |
5391182 | Chin | Feb 1995 | A |
5405352 | Weston | Apr 1995 | A |
5423872 | Cigaina | Jun 1995 | A |
5428123 | Ward et al. | Jun 1995 | A |
5433723 | Lindenberg | Jul 1995 | A |
5445608 | Chen et al. | Aug 1995 | A |
5470337 | Moss | Nov 1995 | A |
5472446 | Torre | Dec 1995 | A |
5480406 | Nolan et al. | Jan 1996 | A |
5496311 | Abele et al. | Mar 1996 | A |
5507754 | Green et al. | Apr 1996 | A |
5545171 | Sharkey et al. | Aug 1996 | A |
5545178 | Kensey et al. | Aug 1996 | A |
5549621 | Bessler et al. | Aug 1996 | A |
5554162 | DeLange | Sep 1996 | A |
5573540 | Yoon | Nov 1996 | A |
5591177 | Lehrer | Jan 1997 | A |
5601604 | Vincent | Feb 1997 | A |
5626614 | Hart | May 1997 | A |
5634936 | Linden et al. | Jun 1997 | A |
5647836 | Blake, III et al. | Jul 1997 | A |
5690691 | Chen et al. | Nov 1997 | A |
5716368 | Torre et al. | Feb 1998 | A |
5725557 | Gatturna et al. | Mar 1998 | A |
5846254 | Schulze et al. | Dec 1998 | A |
5888196 | Bonutti | Mar 1999 | A |
5931788 | Keen et al. | Aug 1999 | A |
5938669 | Klaiber et al. | Aug 1999 | A |
5951590 | Goldfarb | Sep 1999 | A |
5961440 | Schweich, Jr. et al. | Oct 1999 | A |
5971447 | Steck, III | Oct 1999 | A |
5993473 | Chan et al. | Nov 1999 | A |
6013053 | Bower et al. | Jan 2000 | A |
6067991 | Forsell | May 2000 | A |
6080160 | Chen et al. | Jun 2000 | A |
6097984 | Douglas | Aug 2000 | A |
6102922 | Jakobsson et al. | Aug 2000 | A |
6113609 | Adams | Sep 2000 | A |
6143006 | Chan | Nov 2000 | A |
6159234 | Bonutti et al. | Dec 2000 | A |
6162234 | Freedland et al. | Dec 2000 | A |
6186149 | Pacella et al. | Feb 2001 | B1 |
6270530 | Eldridge et al. | Aug 2001 | B1 |
6420452 | Gunatillake et al. | Jul 2002 | B1 |
6437073 | Gunatillake et al. | Aug 2002 | B1 |
6447533 | Adams | Sep 2002 | B1 |
6454785 | De Hoyos Garza | Sep 2002 | B2 |
6475136 | Forsell | Nov 2002 | B1 |
6488691 | Carroll et al. | Dec 2002 | B1 |
6491707 | Makower et al. | Dec 2002 | B2 |
6494888 | Laufer et al. | Dec 2002 | B1 |
6500148 | Pinchuk et al. | Dec 2002 | B1 |
6506196 | Laufer | Jan 2003 | B1 |
6511490 | Robert et al. | Jan 2003 | B2 |
6535764 | Imran et al. | Mar 2003 | B2 |
6558400 | Deem et al. | May 2003 | B2 |
6656182 | Hayhurst | Dec 2003 | B1 |
6663639 | Laufer et al. | Dec 2003 | B1 |
6663647 | Reiley et al. | Dec 2003 | B2 |
6669713 | Adams | Dec 2003 | B2 |
6675809 | Stack et al. | Jan 2004 | B2 |
6736793 | Meyer et al. | May 2004 | B2 |
6746460 | Gannoe et al. | Jun 2004 | B2 |
6755869 | Geitz | Jun 2004 | B2 |
6773441 | Laufer et al. | Aug 2004 | B1 |
6790213 | Cherok et al. | Sep 2004 | B2 |
6821285 | Laufer et al. | Nov 2004 | B2 |
6835200 | Laufer et al. | Dec 2004 | B2 |
6869395 | Page et al. | Mar 2005 | B2 |
6900055 | Fuller | May 2005 | B1 |
6908487 | Cigaina | Jun 2005 | B2 |
6981978 | Gannoe | Jan 2006 | B2 |
6994715 | Gannoe et al. | Feb 2006 | B2 |
7033373 | de la Torre et al. | Apr 2006 | B2 |
7037344 | Kagan et al. | May 2006 | B2 |
7153314 | Laufer et al. | Dec 2006 | B2 |
7167750 | Knudson et al. | Jan 2007 | B2 |
7223277 | DeLegge | May 2007 | B2 |
7255675 | Gertner et al. | Aug 2007 | B2 |
7310557 | Maschino et al. | Dec 2007 | B2 |
7334822 | Hines, Jr. | Feb 2008 | B1 |
7338433 | Coe | Mar 2008 | B2 |
7354454 | Stack et al. | Apr 2008 | B2 |
7374565 | Hassler, Jr. et al. | May 2008 | B2 |
7402166 | Feigl | Jul 2008 | B2 |
7416554 | Lam et al. | Aug 2008 | B2 |
7534248 | Mikkaichi et al. | May 2009 | B2 |
7618426 | Ewers et al. | Nov 2009 | B2 |
7666195 | Kelleher et al. | Feb 2010 | B2 |
7670279 | Gertner | Mar 2010 | B2 |
7695493 | Saadat et al. | Apr 2010 | B2 |
7740647 | Mueller | Jun 2010 | B2 |
7775967 | Gertner | Aug 2010 | B2 |
7841978 | Gertner | Nov 2010 | B2 |
7850660 | Uth et al. | Dec 2010 | B2 |
7862546 | Conlon et al. | Jan 2011 | B2 |
7875067 | Von Oepen et al. | Jan 2011 | B2 |
7988617 | Gertner | Aug 2011 | B2 |
20010010005 | Kammerer et al. | Jul 2001 | A1 |
20010011543 | Forsell | Aug 2001 | A1 |
20010044639 | Levinson | Nov 2001 | A1 |
20020055757 | Torre et al. | May 2002 | A1 |
20020128684 | Foerster | Sep 2002 | A1 |
20020161382 | Neisz et al. | Oct 2002 | A1 |
20020161414 | Flesler et al. | Oct 2002 | A1 |
20020188354 | Peghini et al. | Dec 2002 | A1 |
20030021822 | Lloyd | Jan 2003 | A1 |
20030055463 | Gordon et al. | Mar 2003 | A1 |
20030055465 | Ben-Haim et al. | Mar 2003 | A1 |
20030093117 | Saadat | May 2003 | A1 |
20030208212 | Cigaina | Nov 2003 | A1 |
20040006351 | Gannoe et al. | Jan 2004 | A1 |
20040024386 | Deem et al. | Feb 2004 | A1 |
20040030347 | Gannoe et al. | Feb 2004 | A1 |
20040044353 | Gannoe | Mar 2004 | A1 |
20040044357 | Gannoe | Mar 2004 | A1 |
20040054352 | Adams et al. | Mar 2004 | A1 |
20040059289 | Garza Alvarez | Mar 2004 | A1 |
20040068224 | Couvillon et al. | Apr 2004 | A1 |
20040092892 | Kagan et al. | May 2004 | A1 |
20040097986 | Adams | May 2004 | A1 |
20040098060 | Ternes | May 2004 | A1 |
20040116949 | Ewers et al. | Jun 2004 | A1 |
20040122456 | Saadat et al. | Jun 2004 | A1 |
20040122473 | Ewers et al. | Jun 2004 | A1 |
20040148034 | Kagan et al. | Jul 2004 | A1 |
20040186503 | Delegge | Sep 2004 | A1 |
20040193194 | Laufer et al. | Sep 2004 | A1 |
20040194790 | Laufer et al. | Oct 2004 | A1 |
20040243178 | Haut et al. | Dec 2004 | A1 |
20040243179 | Foerster | Dec 2004 | A1 |
20040243180 | Donnelly et al. | Dec 2004 | A1 |
20040260345 | Foerster | Dec 2004 | A1 |
20040267378 | Gazi et al. | Dec 2004 | A1 |
20050022827 | Woo et al. | Feb 2005 | A1 |
20050049718 | Dann | Mar 2005 | A1 |
20050096638 | Starkebaum et al. | May 2005 | A1 |
20050159769 | Alverdy | Jul 2005 | A1 |
20050197687 | Molaei et al. | Sep 2005 | A1 |
20050203344 | Orban, III et al. | Sep 2005 | A1 |
20050216040 | Gertner et al. | Sep 2005 | A1 |
20050216042 | Gertner et al. | Sep 2005 | A1 |
20050222638 | Foley et al. | Oct 2005 | A1 |
20050228415 | Gertner | Oct 2005 | A1 |
20050261712 | Balbierz | Nov 2005 | A1 |
20050267405 | Shah | Dec 2005 | A1 |
20050267406 | Hassler, Jr. | Dec 2005 | A1 |
20050267533 | Gertner | Dec 2005 | A1 |
20050267595 | Chen et al. | Dec 2005 | A1 |
20050267596 | Chen et al. | Dec 2005 | A1 |
20050277960 | Hassler, Jr. et al. | Dec 2005 | A1 |
20050277974 | Hassler, Jr. et al. | Dec 2005 | A1 |
20060009789 | Gambale et al. | Jan 2006 | A1 |
20060025789 | Laufer et al. | Feb 2006 | A1 |
20060025819 | Nobis et al. | Feb 2006 | A1 |
20060030884 | Yeung et al. | Feb 2006 | A1 |
20060058829 | Sampson | Mar 2006 | A1 |
20060089571 | Gertner | Apr 2006 | A1 |
20060089646 | Bonutti | Apr 2006 | A1 |
20060106288 | Roth et al. | May 2006 | A1 |
20060161186 | Hassler, Jr. et al. | Jul 2006 | A1 |
20060161256 | Ziegler et al. | Jul 2006 | A1 |
20060195139 | Gertner | Aug 2006 | A1 |
20060212053 | Gertner | Sep 2006 | A1 |
20060253131 | Wolniewicz | Nov 2006 | A1 |
20060264699 | Gertner | Nov 2006 | A1 |
20060265042 | Catanese, III et al. | Nov 2006 | A1 |
20060276871 | Lamson et al. | Dec 2006 | A1 |
20060282081 | Fanton et al. | Dec 2006 | A1 |
20070027358 | Gertner et al. | Feb 2007 | A1 |
20070049970 | Belef et al. | Mar 2007 | A1 |
20070060940 | Brazzini et al. | Mar 2007 | A1 |
20070073318 | Carter et al. | Mar 2007 | A1 |
20070073323 | Carter et al. | Mar 2007 | A1 |
20070088373 | Baker | Apr 2007 | A1 |
20070112363 | Adams | May 2007 | A1 |
20070112385 | Conlon | May 2007 | A1 |
20070129738 | Kraemer et al. | Jun 2007 | A1 |
20070167982 | Gertner et al. | Jul 2007 | A1 |
20070173869 | Gannoe et al. | Jul 2007 | A1 |
20070173888 | Gertner et al. | Jul 2007 | A1 |
20070179335 | Gertner et al. | Aug 2007 | A1 |
20070203517 | Williams et al. | Aug 2007 | A1 |
20070233170 | Gertner et al. | Oct 2007 | A1 |
20070235083 | Dlugos | Oct 2007 | A1 |
20070239284 | Skerven et al. | Oct 2007 | A1 |
20070250103 | Makower | Oct 2007 | A1 |
20070255308 | Williams et al. | Nov 2007 | A1 |
20070260259 | Fanton et al. | Nov 2007 | A1 |
20070270892 | Makower et al. | Nov 2007 | A1 |
20070276293 | Gertner | Nov 2007 | A1 |
20070276432 | Stack et al. | Nov 2007 | A1 |
20080009888 | Ewers et al. | Jan 2008 | A1 |
20080015501 | Gertner | Jan 2008 | A1 |
20080033488 | Catanese, III et al. | Feb 2008 | A1 |
20080039894 | Catanese, III et al. | Feb 2008 | A1 |
20080051823 | Makower | Feb 2008 | A1 |
20080051824 | Gertner | Feb 2008 | A1 |
20080051850 | Sparks et al. | Feb 2008 | A1 |
20080058710 | Wilk | Mar 2008 | A1 |
20080071306 | Gertner | Mar 2008 | A1 |
20080082113 | Bishop et al. | Apr 2008 | A1 |
20080086082 | Brooks | Apr 2008 | A1 |
20080086172 | Martin et al. | Apr 2008 | A1 |
20080091220 | Chu | Apr 2008 | A1 |
20080091237 | Schwartz et al. | Apr 2008 | A1 |
20080109027 | Chen et al. | May 2008 | A1 |
20080147002 | Gertner | Jun 2008 | A1 |
20080161717 | Gertner | Jul 2008 | A1 |
20080167519 | St-Germain | Jul 2008 | A1 |
20080167647 | Gertner | Jul 2008 | A1 |
20080167648 | Gertner | Jul 2008 | A1 |
20080172074 | Baker et al. | Jul 2008 | A1 |
20080172079 | Birk | Jul 2008 | A1 |
20080208240 | Paz | Aug 2008 | A1 |
Number | Date | Country |
---|---|---|
1 016 377 | Jul 2000 | EP |
1520563 | Apr 2005 | EP |
1 602 392 | Jul 2005 | EP |
1 591 140 | Nov 2005 | EP |
1 547 642 | Aug 2007 | EP |
1 607 071 | Aug 2007 | EP |
1 884 198 | Feb 2008 | EP |
1 884 199 | Feb 2008 | EP |
1 670 361 | Apr 2008 | EP |
1670361 | Apr 2008 | EP |
2907665 | Nov 2008 | FR |
WO 8700034 | Jan 1987 | WO |
WO 9925418 | May 1999 | WO |
WO 9925418 | May 1999 | WO |
WO 0009049 | Feb 2000 | WO |
WO 0018330 | Apr 2000 | WO |
WO 0074573 | Dec 2000 | WO |
WO 0147435 | Jul 2001 | WO |
WO 0235980 | May 2002 | WO |
WO 02071951 | Sep 2002 | WO |
WO 030055420 | Jul 2003 | WO |
WO 03095015 | Nov 2003 | WO |
WO 2004004542 | Jan 2004 | WO |
WO 2004014237 | Feb 2004 | WO |
WO 2004019765 | Mar 2004 | WO |
WO 2004021894 | Mar 2004 | WO |
WO 2004037064 | May 2004 | WO |
WO 2005007232 | Jan 2005 | WO |
WO 2005009288 | Feb 2005 | WO |
WO 2005018417 | Mar 2005 | WO |
WO 2005018417 | Mar 2005 | WO |
WO 2005018417 | Mar 2005 | WO |
WO 2005020802 | Mar 2005 | WO |
WO 2005094447 | Oct 2005 | WO |
WO 2006020370 | Feb 2006 | WO |
WO 2006049725 | May 2006 | WO |
WO 2006063593 | Jun 2006 | WO |
WO 2006108203 | Oct 2006 | WO |
WO 2006127431 | Nov 2006 | WO |
WO 2006134106 | Dec 2006 | WO |
WO 2007017880 | Feb 2007 | WO |
WO 2007067206 | Jun 2007 | WO |
WO 2007064906 | Jun 2007 | WO |
WO 2007110866 | Oct 2007 | WO |
WO 2007074573 | Dec 2007 | WO |
WO 2008006084 | Jan 2008 | WO |
WO 2008006084 | Jan 2008 | WO |
WO 2008006084 | Jan 2008 | WO |
WO 2008013814 | Jan 2008 | WO |
WO 2008043044 | Apr 2008 | WO |
Entry |
---|
McMillan, et al., Arthroscopic Knot-tying techniques, pp. 81-95, 2003. |
Buchwald—Overview of Bariatric Surgery. Journal of the American College of Surgeons, pp. 367-375, Mar. 2002. |
Sharp, et al., The 4-S Modification of the Roeder Knot: How to Tie It. pp. 1004-1006, vol. 90, No. 6, Dec. 1997. |
Schauer, et al., New application for Endoscopy: the emerging field of endoluminal and transgastric bariatric surgery. 10 pgs., Apr. 24, 2006. |
Buchwald et al., “Bariatruc Surgery: A Systematic Review and Meta-analysis”, JAMA 2004, vol. 292, No. 14, pp. 1724-1737. |
Buchwald et al., “Evolution of Operative Procedures for the Management of Morbid Obesity 1950-2000”, Obesity Surgery 2002, 12:705-717. |
Camerini et al., “Thirteen Years to Follow-up in Patients with Adjustable Silicone Gastric Banding for Obesity: Weight Loss and Constant Rate of Late Specific Complications” Obesity Surgery 2004, 14:1343-1348. |
Cope et al., “Percutaneous Transgastric Technique for Creating Gastroenteric Anastomoses in Swine”, Journal of Vascular and Interventional Radiology, 2004, 15:177-181. |
Cummings et al., “Genetics and Pathophysiology of Human Obesity”, An Annual Review of Medicine, 2003, 54:453-471/. |
Johnston et al., “The Magenstrasse and Mill Operation for Morbid Obesity”, Obesity Surgery 2003, 13:10-16. |
Morino et al., “Laparoscopic Adjustable Silicone Banding Versus Vertical Banded Gastroplasty in Morbidly Obese Patients” Analysis Obesity Surgery vol. 238, No. 6, 2003, pp. 835-842. |
Roman et al., “Intragastric Balloon of Non-Morbid Obesity: A Retrospective Evaluaton of Tolerance and Efficacy”, Obesity Surgery, 2004, 14:539-544. |
Sallet et al., Brazillian Mulitcenter Study of the Intragastric Ballon; Obesity Surgery, 2004, 14, pp. 991-998. |
Sjostrom et al., Lifestyle, Diateters, and Cardiovascular Risk Factors 10 years after Bariatric Surgery, New England Journal of Medicine, 2004, 351, (6) 2683-2693. |
Smith et al., “Modification of the Gastric Partitioning Operation for Morbid Obesity”, Am. J. Surgery 142, Dec. 1981.pp. 725-730. |
Smith et al., “Results and Complication of Gastric Partitioning: Four Years Follow-Up of 300 Morbidly OBese Patients”, The American Journal of Surgery, 1983, (146) pp. 815-819. |
Trumble et al., “Method for measuring long-term function of muscle-powered implants via radiotelemetry” J. Appl. Physiol. 2001,90: pp. 1977-1985. |
About the Vertical Sleeve Gastrectomy. Mar. 24, 2006, pp. 1-1. http://obesityhelp.com/forums/VSG/about.html. |
Akira., JP63277063, Japanese and English Abstract, Nov. 15, 1988, pp. 1-4. |
Abhyankar et al, Use of a tissue expander and a polyglactic acid (Vicryl) mesh to reduce radiation enteritis: case report and literature view, 21: pp. 755-757, Aug. 2005. |
Buchwald, Overview of Bariatric Surgery, vol. 194, No. 3, Mar. 2002, pp. 367-375. |
Burnett, et al., The Use of a Pelvic Displacement Prosthesis to Exclude the Small Intestine from the Radiation Field Following Radical Hysterectomy, 79, pp. 438-443, 2000. http://www.idealibrary.com. |
Brolin, Robert E., Gastric Bypass. vol. 81, No. 5, Oct. 2001, pp. 1077-1095. |
Cheng, Splenic Epidermoid Cyst, pp. 1-3, 1997. |
Med-4840, Product Profile , Mar. 30, 2007, pp. 1-2. |
DeMaria, Eric J., Laparoscopic Adjustable Silicone Gastric Banding. vol. 81, No. 5, Oct. 2001, pp. 1129-1143. |
Deitel,Mervyn., Overview of Operations for Morbid Obesity. vol. 22, No. 9, Sep. 1998, pp. 913-918. |
Doherty, Cornelius., Technique of Vertical Banded Gastroplasty. vol. 81, No. 5, Oct. 2001, pp. 1097-1111. |
Foglia et al., Management of giant omphalocele with rapid creation of abdominal domain, 41, pp. 704-709, 2006. |
Fried et al., Physical Principles of Available Adjustable Gastric Bands: How they Work. Obesity Surgery, 14, 2004, pp. 1118-1122. |
Gertner MD, Stomach Restriction with an Extragastric Balloon, pp. 1, Abstract for 2007. |
Geliebter et al; Extra-abdominal pressure alters food intake, intragastric pressure, and gastric emptying rate. 1986, pp. R549-R552. |
Hoffman et al., Morbidity after Intraperitoneal Insertion of Saline-Filled Tissue Expanders for Small Bowel Exclusion from Radiotherapy Treatment Fields: A Prospective Four Year Experience with 34 Patients, pp. 473-483, No. 7, vol. 60, Jul. 1994. |
Hainaux et al., Laparoscopic adjustable silicone gastric banding: radiological appearances of a new surgical treatment for morbid obesity. 1999, Abdom Imaging 24: 533-537. |
Konturek et al., Neuro-Hormonal Control of Food Intake; Basic Mechanisms and Clinical Implications, 2005, 56, Supp 6, 5-25. www.jpp.krakow.pl. |
Lam et al., Huge Splenic Epidemoid Cyst: A Case Report, 1997; 60:113-6. |
Laparoscopic Duodenal Switch, Mar. 24, 2006, http://wo-pub2.med.cornell.edu/chi.bin/WebObjects/PublicA.woa/5/w . . . p. 1-1. |
Lee et al., Laparoscopic Vertical Sleeve Gastrectomy: A Novel Bariatric Procedure-superior to Estabilished Operations? pp. 1-27. 90th Annual Clinical Congress, New Orleans, LA, Oct. 10, 2004. |
Malassagne, et al., Intra-abdonimal Sengstaken-Blakemore tube Placement for acute venous outflow obstruction in reduced-size Liver, Nov. 1996, 83, pp. 1086. |
Marceau, et al., Malabsorptive Obesity Surgery. vol. 81, Oct. 2001, No. 5, pp. 1113-1127. |
Mera, et al., Use of the Breast Implant for Liver Graft Malposition. vol. 5, No. 6, Nov. 1999, pp. 534-535. |
Obesity Surgery Including Laparoscopy and Allied Care. vol. 16, No. 1, Jan. 2006, pp. 1-2. www.obesitysurgey.com. |
Pomerri et al., Adjustable Silicone Gastric Banding of Obesity. , 1992, Gastrointest Radiol 17:207-210. |
Schauer, et al., New applications for endoscopy: the emerging field of endoluminal and transgastric bariatric surgery, DOI:10.1007/s00464-006-9008-8, 2006. |
The Sleeve Gastrectomy (or 2-Stage Procedure). 2006, pp. 1-2. http://surgicallyslim.com/sleeve.htm. |
Walker, et al. Bladder Augmentation in Dogs Using the Tissue Capsule Formed Around a Perivesical tissue Expander, vol. 168, pp. 1534-1536, 2002. |
Zwart et al., Gastric Motility: Comparison of Assessement with Real-Time MR Imaging or Barostat Experience1., 224: pp. 592-597, Aug. 2002. |
Tucker, Diana, Medical Device Daily. vol. 10, No. 102, pp. 1-10, May 26, 2006. |
Number | Date | Country | |
---|---|---|---|
20090099588 A1 | Apr 2009 | US |