This application is related to co-owned U.S. patent application Ser. No. 15/919,099 filed on Mar. 12, 2018 and entitled “DEVICES AND METHODS FOR VERTEBRAL BONE REALIGNMENT”, issued as U.S. Pat. No. 10,548,740 on Feb. 4, 2020, which is incorporated herein by reference in its entirety.
A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever.
This disclosure relates generally to medical devices, and in one exemplary aspect to bone fixation systems, components thereof, and methods of implant placement, which can be used to, inter alia, adjust, align and maintain the spatial relationship(s) of adjacent bones or bony fragments during and/or after surgical reconstruction of skeletal segments.
Whether from congenital malformation, degenerative disease, traumatic disruption, infection or neoplastic invasion, alteration in the anatomical alignment between the spinal vertebrae can cause significant pain, deformity, neurological decline and disability. Spinal disease is a major health problem in the industrialized world and the surgical treatment of spinal pathology is an evolving discipline. The traditional surgical treatment of abnormal vertebral motion and/or formation is the complete immobilization and bony fusion of the involved spinal segment and an extensive array of surgical techniques and implantable devices have been formulated to accomplish the treatment objective.
Regardless of the specific objectives of surgery, many surgeons employ implantable devices that maintain the desired spatial relationship(s) between adjacent vertebral bodies. However, conventional implantable devices are limited in that they are, inter alia, primarily “one size fits all,” including standardized configurations and sizes which are non-adjustable and/or not particularly adapted for certain applications. Thus, such conventional implants may be insufficient for treatment of patients with unusual or complex spinal curvatures and maladies, which may occur in conditions such as e.g., coronal plane deformity (such as scoliosis), sagittal plane deformity (such as alternation in segmental kyphosis or lordosis), axial translation, spondylolisthesis, etc.
Hence there is a salient need for alternative methods and devices for the alteration and/or correction of spinal curvature, which, inter alia, enable variable and/or adjustable configurations for implantable devices, such as to realign adjacent vertebrae according to the spinal structure or curvature of a specific subject.
Improved devices, systems, and methods to alter vertebral alignment are described herein.
In one aspect, an implantable device is disclosed. In one embodiment, the device comprises a distraction mechanism, and a first member or a host member configured to at least partly retain the distraction mechanism.
In one variant, the host member comprises a set of substantially planar elements configured to articulate relative to one another around at least one axis, so as to permit insertion and/or removal of the distraction mechanism. The distraction mechanism can cause the implantable device to change a height of one side so as to allow for intervertebral correction of e.g., scoliosis.
In another variant, the host member is configured to enable adjustment of height of both sides of the implant.
In another aspect, a method of inserting an implantable device within an intervertebral space is disclosed. In one embodiment, the method includes inserting an assembled implant device in the disc space, and adjusting a height of at least a portion thereof so as to compensate for asymmetries in the disc space caused by, e.g., scoliosis.
In another aspect, a method of treating a spinal misalignment is disclosed. In one embodiment, the method includes utilizing an implant assembly to alter the spinal alignment of a target functional spinal unit in the coronal plane in order to treat coronal plane deformities such as, e.g., scoliosis.
In another embodiment, the method includes utilizing an implant assembly to alter the spinal alignment of a target functional spinal unit in the sagittal plane in order to treat sagittal plane deformities such as, e.g., abnormal lordosis and/or kyphosis.
In yet another embodiment, the method comprises utilizing an implant assembly to alter the spinal alignment of the target functional spinal unit in the axial plane in order to, for example, treat translational deformities such as e.g., anterior/posterior or lateral spondylolisthesis.
In another aspect, a distraction mechanism for use within an implantable device is disclosed. In one embodiment, the distraction mechanism includes a piston which utilizes a working fluid to drive the piston (and hence a top portion of the mechanism) into compressive contact with an inferior surface of a superior vertebral segment. In another embodiment, the mechanism uses a mechanical (non-fluidic) arrangement for the compression (e.g., worm drive, gear mechanism, etc.).
In a further aspect, a system for correction of spinal conditions is disclosed. In one embodiment, the system includes: (i) a host housing member, (ii) a distraction mechanism, and (iii) a tool for adjusting the distracting mechanism after implantation.
All Figures © Copyright 2013-2017. Samy Abdou. All rights reserved.
In order to promote an understanding of the principals of the disclosure, reference is made to the drawings and the embodiments illustrated therein, and wherein like numerals refer to like parts throughout. Nevertheless, it will be understood that the drawings are illustrative and no limitation of the scope of the claims is thereby intended. Any such alterations and further modifications in the illustrated embodiments, and any such further applications of the principles of the disclosed devices as illustrated herein are contemplated as would normally occur to one of ordinary skill in the art.
In one aspect, improved devices, systems, and methods to alter vertebral alignment are described herein. Specifically, a variable height implantable device and its systems (e.g., related components) and methods of use are disclosed herein.
It will be appreciated that in a variety of disorders, the vertebral bones of a human (or other vertebrate organism) may become mal-aligned and produce, among other conditions, translational, rotational and/or angulational deformities of the spinal column. The devices and methods disclosed herein can advantageously be used in the treatment of many spinal disorders, such as, inter alia, coronal plane deformity (such as scoliosis), sagittal plane deformity (such as alternation in segmental kyphosis or lordosis), axial translation, vertical translation, spondylolisthesis, and the like.
In one implementation, a spinal segment to be surgically treated using the methods and apparatus disclosed herein includes at least a superior vertebral bone, an immediately inferior vertebral bone, and the intervening intervertebral disc space. A spinal segment comprised of two immediately adjacent vertebral bones and the intervertebral disc space disposed therebetween defines a “functional spinal unit” (FSU)—as described further below. An FSU to be surgically treated will be referred to as a target FSU and its intervertebral disc space as a target intervertebral disc space.
In one embodiment, a method of treatment includes entering the target intervertebral disc space and removing at least a portion of the viscoelastic material that comprises the natural nucleus pulposus within (at least a portion of) the intervertebral disc space. The target intervertebral disc space may be accessed using various surgical approaches (such as e.g., a direct anterior approach, an anterolateral approach, and/or a direct lateral approach, posterolateral approach, posterior approach, etc.), thereby creating one or more operative corridors at desired vertebral level(s) of the spinal column.
After removal of the viscoelastic material, the method further includes implanting a variable-height orthopedic implant into the target intervertebral disc space. The implanted orthopedic device is then actuated to vary a height of the implant in at least one aspect, and at least a portion of the implant is left in place in a substantially fixed position after the surgical procedure is complete.
The implanted apparatus enables, inter alia, customized (and heterogeneous) adjustment in distraction as between different target intervertebral disc spaces (and even different portions of the same target intervertebral space(s)). This is accomplished in one embodiment via use of one or more variable-geometry distraction mechanism used in conjunction with an implantable member, the latter which at least partly receives the former so as to create an implantable assembly that can be adjusted by the surgeon to achieve the desired geometry and spatial relationships.
Exemplary embodiments of the apparatus and methods of the present disclosure are now described in detail.
It will be appreciated that while the exemplary embodiments are described with respect to human beings, various of the methods, apparatus and systems disclosed herein may be applied to other species having a spinal structure (i.e., vertebrates).
Additionally, the term “sagittal plane”, as used herein, refers without limitation to the plane that splits the body into left and right segments. The terms “mid-sagittal plane” or “median plane”, as used herein, refer to the plane that specifically splits the body into equal left and right halves. The term “coronal plane”, as used herein, refers without limitation to the plane that divides the body into anterior (front) and posterior (back) segments. It will be appreciated that the coronal and sagittal planes are substantially perpendicular to one another.
As can be seen in
As a brief aside, it is noted that the posterior aspect of the pedicle 810 can be accessed at an indentation 811 in the vertebral bone 802 between the lateral aspect of the SAP and the medial aspect of the TP. In surgery, it can be common practice to anchor a bone fastener into the pedicle portion 810 of a vertebral bone 802 by inserting the fastener through indentation 811 and into the underlying pedicle 810 in a posterior to anterior direction.
These illustrations and definitions of anatomical structures are known to those of ordinary skill in the art. They are described in more detail in Atlas of Human Anatomy, by Frank Netter, third edition, Icon Learning Systems, Teterboro, New Jersey, the entirety of which is incorporated herein by reference. It should be appreciated that the directional language and terms regarding orientation such as upper, lower, upward, downward etc., are used throughout merely for convenience of description and are not limiting.
A method of device implantation is now illustrated and described. One or more FSUs is/are targeted for surgical manipulation and treatment. In preparation for surgery, the patient can be, but is not necessarily, placed in a lateral decubitus position, such as that shown in
The level(s) of the spine that is to be implanted can be localized on an imaging modality (such as X-ray, CT, MRI and the like) in at least one plane. After the customary sterile preparation of the operative site, the surgeon can localize an incision point on the skin that is anterior to coronal plane T. Preferably, but not necessarily, the incision may be made immediately anterior to a coronal plane that is parallel to coronal plane T and passes through the anterior-most (tip) aspect of the target disc space. A lateral corridor “V” (
In one implementation of the method, the target intervertebral disc space is entered using the anterolateral approach 507, shown in
In one variant of the method, the superior and inferior vertebral bones of the target FSU are distracted away from one another in order to increase the vertical height of the target intervertebral disc space during implantation. Such optional distraction step may be performed with, for example, one or more distraction instrument(s) or devices that are used during surgery, and which are removed prior to the end of the procedure or after placement of the orthopedic implant(s); however, it is also recognized that dissolvable, inflatable, or other means of distracting may be utilized, other than the one or more removable distraction devices previously referenced.
In another embodiment, the method includes inserting a variable-height implantable device into a target intervertebral disc space in order to change the coronal plane alignment of the target FSU. The implant may be placed into the target intervertebral disc space using any of the known surgical approaches, such as, for example, the direct anterior approach, the anterolateral approach, and/or the direct lateral approach, discussed supra.
In one variant of the method, the implant is inserted with the first lateral side of the implant (i.e., a side of the implant that will be positioned closest to a first lateral side surface of the target intervertebral disc space) having a height that is less than or equal to the height of the second lateral side (i.e., a side of the implant side that will be positioned closest to the second lateral side surface, opposing the first lateral side surface, of the target intervertebral disc space) (see
In another variant, the implant comprises an anterior side (i.e., a side of the implant that will be positioned closest to the anterior midline (mid-sagittal) of the implanted intervertebral disc space) and an opposing posterior side (i.e., a side of the implant that will be positioned closest to the posterior midline (mid-sagittal) of the implanted intervertebral disc space) (see
As can be seen in
In one embodiment, upon actuation, the distraction mechanism 205 increases a height of at least one side of the first member 105. For example, upon actuation of the distraction mechanism 205, a distance between the upper and lower elements 1051a, 1051b is increased on at an expandable side 1058 (i.e., an end opposing the hinge 1052) of the first member 105. In alternate examples, the distraction mechanism may increase the height of more than one side of the first member 105. However, as illustrated herein (see
An exemplary contracted position 1040 of the implant 104 is shown in
In one implementation, the distraction mechanism 205 is adapted to be delivered to the surgeon as a separate device, and then installed within the first member 105 at the time of the procedure. As discussed elsewhere herein, alternatively, the distraction mechanism can be integral to the first member. Notably, the distraction mechanism 205 may be configured to be utilized with other configurations or types of implants (not shown) other than the first member 105 of the depicted implant device 104. Additionally or alternatively, the portions of the first member 105 which receive the distraction mechanism 205 can be made of a standardized configuration, such that any given distraction mechanism can be fitted with any member 105 (such as, e.g., dependent on a specific treatment or specific spinal condition). Alternatively, heterogeneous sizes and/or overall expanded/fully contracted lengths of distraction may be provided. For instance, in one such approach, three (3) sizes are provided (e.g., small, medium, and large) for different sized implant devices 104, such as for target intervertebral disc spaces (or patients) of different sizes. It is also appreciated that a single distraction mechanism 205 can be substituted (with proper adaptation of the receiving host member 105) with two or more smaller mechanisms and/or the first member 105 may be configured to receive two or more distraction mechanisms at various locations within the member, such as to permit finer adjustment of various particular portions (e.g., anterior and/or posterior portions) of the implant relative to the inferior/superior surfaces of the vertebrae which it engages when installed.
As can be seen in
For example, in one embodiment, the distraction mechanism may comprise a worm screw drive or gear mechanism and an associated ridged track, which is configured to be turned (wound) via an attachable and/or insertable adjustment tool. The tool may be operated in a first rotational direction to increase a height of the distraction mechanism 205, thereby increasing a distance between upper and lower elements 1051a, 1051b. Further, in some examples, the tool may be operated in a second rotational direction to decrease a height of the distraction mechanism 205, thereby decreasing a distance between upper and lower elements 1051a, 1051b. Various exemplary mechanical (non-fluidic) mechanisms that can be adapted into the distraction mechanism 205 for use in combination with the first member 105 are shown and described in U.S. Pat. No. 7,909,870 and U.S. Patent Publication No. 2003/0163199, each of which is incorporated herein by reference in its entirety.
In another embodiment, the distraction mechanism may comprise a balloon made of either non-compliant or compliant material which may be porous or non-porous, or may include a mesh material which may be coated or lined with a porous or non-porous material. The balloon may further include a port for coupling to a source of an inflation and/or expansion medium (e.g., a gas, a liquid, a semi-solid, a gel, a liquid that hardens into a solid material, etc.) for inflating and/or expanding the distraction mechanism. The devices may further include one or more anchoring or attachment features for fixing the balloon within the first member 105. Actuation of such an embodiment of the distraction mechanism may involve inflation of the balloon with the expansion medium, wherein the act of balloon inflation provides at least part of the force needed to produce (i) the change in configuration of the structure of the housing/structure distraction mechanism (such as an increase in the height of the housing or a change in its dimension, such as length and/or width, of a segment of the housing, and/or (ii) the force needed to produce the change in configuration of the first member 105 (such as increase in a distance between the upper and lower elements 1051a, 1051b on at least one end (e.g., the expandable side 1058) of the first member 105). An exemplary balloon driven distraction mechanism that can be adapted into the distraction mechanism 205 for use in combination with the first member 105 is shown and described in U.S. Pat. No. 8,123,807, which is incorporated herein by reference in its entirety.
While the distraction mechanism 205 is illustrated as a piston-based distraction mechanism, it is understood that any distraction mechanism (such as one or more of those described supra) may be alternatively employed.
Notably, the distraction mechanism 205 may also be configured for reversible mating with the first member 105 intra-operatively, when handled by the surgeon. That is, the distraction mechanism may have one or more degrees of chirality or “handedness,” such that (i) it can be inserted in one orientation, and also in the opposite orientation (e.g., rotated 180-degrees from the first orientation around an axis generally parallel to the patient's spine), and/or (ii) can be inverted such that its otherwise superior surface can function as its inferior surface, or vice versa). The foregoing approaches advantageously mitigate the implanting surgeon “fumbling” with the mechanism 205 during surgery to achieve the proper orientation, and more importantly can avoid any instances where the mechanism 205 is installed in an improper orientation within the host member 105. To that end, the mechanism 205 and its host member 105 may also include mechanical alignment features such as keys, indexing, pins, etc. such that it can only be inserted one way. Additionally or alternatively, the distraction mechanism may be intra-operatively removable from the first member 105, when handled by the surgeon. That is, in an example where the pins 1056 provide clamping or locking of the first member 105 after distraction caused by the distraction member 205, the distraction member may be reversibly distracted (i.e., its height decreased) and removed from the first member prior to completion of the surgical procedure, while the first member retains its wedge-like configuration.
Advantageously, the exemplary embodiment of the distraction mechanism 205 is configured such that it can be actuated from at least two separate sides. That is, the aperture(s) 20583 is/are formed within a first surface and the aperture(s) 20581 is formed within a second surface of mechanism 205. Hence, different directions of approach can be used to actuate the distraction mechanism 205. In one implementation, the distraction mechanism 205 is configured to actuate whether the actuation tools approach (e.g., are attached to it) from either or both of Direction F or Direction G of
In one embodiment, a variable-height implant may be configured to form a lateral wedge configuration and be used to alter the spinal alignment of a target functional spinal unit in the coronal plane in order to treat coronal plane deformities such as, e.g., scoliosis.
Returning to
It will be appreciated, however, that in the alternate exemplary application, the variable-height implant 104 may passed into the target disc space along direction Y, while the implant is in the expanded configuration 1042 (
It will be further appreciated that the assembly of the implant device 104 may be conducted after the first member 105 is inserted into the target disc space in some cases. Specifically, in one variant, the first member 105 alone is inserted in the direction X into the target space, and then subsequently, the surgeon accesses the disc space (and implant host member 105) via a different approach. In another variant, the first member 105 alone is inserted via an anterior approach (having a larger surgical corridor) into the target disc space, and then subsequently, the surgeon accesses the disc space (and the first member 105) via a posterior approach (having a smaller surgical corridor). In each of the foregoing variants, the distraction mechanism 250 is initially in its completely compressed state (i.e., smallest possible vertical profile, such that the surgeon can slide the mechanism 250 into e.g., a lateral groove formed on the first member 105 (not shown), or even separate the upper and lower elements 1051a, 1051b far enough while in the disc space such that the distraction mechanism can be inserted therebetween (and subsequently expanded as described supra).
As previously discussed, a variable-height implant may be configured to form an anterior to posterior wedge configuration and be used to treat sagittal plane deformity such as, e.g., abnormal lordosis and/or kyphosis—as shown in the implant 104a of
In yet another embodiment, a variable-height implant may be configured to form a wedge configuration used to treat translational deformities such as e.g., anterior/posterior or lateral spondylolisthesis.
It will be appreciated that the flexibility in use and configuration, as well as the modularity, of the first members 105, 105a and the distraction mechanisms 205, 205a are advantageous over prior implantation devices and methods. In other words, the configuration of the implant assembly and the method of implantation can be adapted by a surgeon to be spinal condition and/or patient specific. Such specificity may enable a surgeon to map out and prepare the implant components and surgical strategy prior to the implantation procedure. Alternatively, the surgeon can respond “on the fly” as a surgery progresses, if necessary, to provide a “best fit” implant configuration and implantation process (particularly in response to unforeseen issues that may unexpectedly arise and/or in treatment of especially complex spinal conditions). For example, any of the first members 105, 105a or the distraction mechanisms 205, 205a can be utilized as a free standing implant (e.g., where the distraction mechanism is implanted in the target disc space and actuated without prior insertion into the first (host) member, where the first member is inserted without a distraction mechanism and does not require distraction after implantation, where the first member is implanted with and distracted by the distraction mechanism, which is subsequently removed from the first member, etc.), and/or they can be used in combination (e.g., where the distraction mechanism is fitted within and is actuatable within the first member, as described supra). In other examples, various implant assemblies can be used in combination within the same target FSU or other target FSUs (e.g., adjacent FSUs) to treat complex spinal curvature conditions. The various implant assemblies can be inserted from any desired approach and/or entry point of the target FSU (such as those discussed supra).
One embodiment of a method of use for the implant assemblies disclosed herein includes inserting an implant assembly into the target intervertebral disc space using any desired surgical approach to the spine (such as those described supra). The assembly comprises a first (host) member and a second member comprising a distraction mechanism. The first member comprises at least a first and a second segment that are configured to move relative to one another, wherein, for example, movement of the first segment relative to the second segment apart increases a height, a length, and/or a width of the first member. Preferably, but not necessarily, the first member does not comprise its own distraction mechanism; however in some examples, the first member may comprise an integral distraction mechanism. In one variant, the method further includes anchoring one of upper and lower elements of the first member to one of the superior and inferior vertebral bones of the target FSU (such as, for example, by via a first bone screw). Further, the method may include anchoring the other of the upper and lower elements of the first member to the other of the superior and inferior vertebral bones of the target FSU (such as, for example, by via a second bone screw).
The method further includes actuating the distraction mechanism after positioning of the implant assembly at the desired location within the target disc space. The first member and the second member are coupled such the act of actuating of the distraction mechanism (the second member) causes a distance between the upper and lower elements to increase on at least one end or side of the first member. Additionally, a distance between one or more portions of the upper and lower elements may decrease, and/or both ends a distance between the upper and lower elements at both ends of the first member may increase. For example, the upper and lower elements the first member to move away from (or towards) one another. In another example, one of the upper and lower elements may move away from (or towards) the other of the upper and lower elements. In this way, the act of actuating of the distraction mechanism of the second member increases at least one of the height, length, and/or width dimensions of the implant assembly and alters the distance between the superior and inferior bones within at least one plane (coronal, axial, and/or sagittal planes) of the spine.
It is appreciated that while the foregoing description describes an implant device 104 that may have one side (but not the other) increased in height, the present disclosure contemplates alternate implant configurations which have more degrees of freedom. For instance, in one such configuration, both sides of the implant can be adjusted as to height, whether increased or decreased, so as to obtain an optimal relative height/size profile for the target space. In one such implementation (not shown), rather than being hinged as shown in
In yet another implementation, both sides of the implant can increase or decrease in tandem with one another, such as via use of a hinge or pivot that is centrally located on the implant, yet which can also translate in a direction normal to the plane of the implant device (i.e., such that the upper and lower elements 1051a, 1051b can move closer or further apart from one another, while also having different heights if desired.
In such configurations, more than one distraction member 205 may also be utilized, such as where one distraction member is disposed at or near each end (side) of the implant device.
Once the desired configuration is achieved, the translation mechanism (e.g., a set screw or other mechanism) can be fastened and locked so as to make the configuration effectively permanent (at least during the lifetime of the implantation). Adhesives or yet other means for maintaining the desired position can be utilized as well. In one variant, the distraction mechanism can be removed after fastening or locking of the first member of the desired position.
In another embodiment for the variable height implant, the implantable device comprises at least two members, the first being a body (which may comprise more than one segment) configured to abut each of the superior and inferior vertebral bones of the target FSU containing the target intervertebral disc space. In one implementation, the first member is comprised of a solid material, which may further be malleable so as to facilitate conformance with at least portions of the target space, and is adapted for implantation into the subject. In another implementation, the first member may be at least partially comprised of a balloon or variable-geometry inflatable bladder. The second member comprises a distraction mechanism that provides the force needed to increase the height of one or both lateral sides of the implant, as well as the structure to maintain the increased height of the implant. In one variant, the distraction mechanism comprises a separate member that can be reversibly inserted/coupled onto the first member by the operator at the time of the surgical procedure.
In another variant, the second member is permanently attached to or integrally formed with the first member. In one implementation, the mechanism comprises an actuatable mechanical device, such as a hydraulic piston. In another implementation, the mechanism is at least partially comprised of a balloon.
In still another embodiment, the implant device is a kit comprised of at least the first and second members. In one implementation, the first and second members can be used alone or in combination depending on the specific condition or configuration of a spine of a patient.
The disclosed device embodiments or any of their components can be made of any biologically adaptable or compatible materials. Materials considered acceptable for biological implantation are well known and include, but are not limited to, stainless steel, titanium, tantalum, combination metallic alloys, various plastics (such as PEEK and the like), resins, ceramics, biologically absorbable materials and the like.
Any components may be also coated/made with osteo-conductive (such as deminerized bone matrix, hydroxyapatite, and the like) and/or osteo-inductive (such as Transforming Growth Factor “TGF-B,” Platelet-Derived Growth Factor “PDGF,” Bone-Morphogenic Protein “BMP,” and the like) bio-active materials that promote bone formation.
Further, any surface may be made with a porous ingrowth surface (such as, for example, porous titanium, titanium wire mesh, plasma-sprayed titanium, tantalum, porous CoCr, and the like), provided with a bioactive coating, made using tantalum, and/or helical rosette carbon nanotubes (or other carbon nanotube-based coating) in order to promote bone in-growth or establish a mineralized connection between the bone and the implant, and reduce the likelihood of implant loosening. The system or any of its components may be made by “additive manufacturing”, such as, for example, “3D” printing.
Lastly, the system or any of its components can also be entirely or partially made of a shape memory material or other deformable material.
While this specification contains certain specific features and attributes, these should not be construed as limitations on the scope of what is claimed or of what may be claimed, but rather as descriptions of features specific to particular embodiments. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or a variation of a sub-combination. Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. Only a few examples and implementations are disclosed. Variations, modifications and enhancements to the described examples and implementations and other implementations may be made based on what is disclosed.
It will also be recognized that while certain aspects of the disclosure are described in terms of a specific sequence of steps of a method, these descriptions are only illustrative of the broader methods of the disclosure, and may be modified as required by the particular application. Certain steps may be rendered unnecessary or optional under certain circumstances. Additionally, certain steps or functionality may be added to the disclosed embodiments, or the order of performance of two or more steps permuted. All such variations are considered to be encompassed within the disclosure disclosed and claimed herein.
This application is a continuation of and claims the benefit of priority to co-owned U.S. patent application Ser. No. 17/373,590 filed on Jul. 12, 2021 and entitled “DEVICES AND METHODS FOR VERTEBRAL BONE REALIGNMENT”, which is a continuation of and claims the benefit of priority to co-owned U.S. patent application Ser. No. 16/995,633 filed on Aug. 17, 2020 of the same title, and issued as U.S. Pat. No. 11,058,548 on Jul. 13, 2021, which is a continuation of and claims the benefit of priority to co-owned U.S. patent application Ser. No. 15/793,895 filed on Oct. 25, 2017 entitled “DEVICES AND METHODS FOR VERTEBRAL BONE REALIGNMENT,” issued as U.S. Pat. No. 10,744,000 on Aug. 18, 2020, which claims the benefit of priority to U.S. Provisional Patent Application Ser. No. 62/496,721 entitled “DEVICES AND METHODS FOR VERTEBRAL BONE REALIGNMENT”, filed Oct. 25, 2016, each of the foregoing which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62496721 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17373590 | Jul 2021 | US |
Child | 18380543 | US | |
Parent | 16995633 | Aug 2020 | US |
Child | 17373590 | US | |
Parent | 15793895 | Oct 2017 | US |
Child | 16995633 | US |