The present inventive concepts generally relate to the field of weight measurement, more specifically, to image processing in conjunction with weight measurement.
Weigh scales have been used historically by users for obtaining weight measurements. However, due to increased health consciousness, a need has arisen to track and analyze weight measurements. Weigh scales may be used by multiple users in homes, offices, and medical facilities. Weight measurements of multiple users of a weigh scale need to be properly stored for each individual user and analyzed in order to make health assessments and recommendations.
Various embodiments described herein relate to devices and methods for obtaining a weight measurement of a user and more specifically, to utilize bare feet images for weight measurement.
Some embodiments of the present inventive concepts are directed to a device for determining the weight of a user. The device may include a weigh scale. The device may include a weight sensor configured to determine the weight of the user, a bare feet image sensor configured to generate an image of the bare feet of the user, and a database configured to store information associated with an image of the bare feet of one or more provisioned users of the device. The device may include a processor that is responsive to the weight sensor and to the bare feet image sensor and is configured to execute computer program instructions to perform operations including identifying a provisioned user out of one or more provisioned users in the database based on the image of the bare feet of the user, and/or storing the weight of the user in association with the provisioned user in the database.
According to various embodiments, identifying the provisioned user may be further based on the weight of the user. The device may include a body fat measurement sensor configured to determine body fat of the user. Identifying the provisioned user may include identifying the provisioned user out of one or more provisioned users based on the image of the bare feet of the user, the weight of the user, and the body fat of the user. The bare feet image sensor may include a capacitive touch-sensitive sensor on the weight sensor. The device may include a display. The capacitive touch-sensitive sensor may partially overlap the weight sensor and may not overlap the display. The bare feet image sensor may provide a notification to the user in response to determining that the feet of the user are not properly positioned on the bare feet image sensor.
According to various embodiments, the device may determine a distribution of the weight including a first portion of the weight on a first foot and a second portion of the weight on a second foot of the bare feet of the user. An indication may be provided to the user in response to a difference in the first portion and the second portion of the weight exceeding a threshold. The distribution of the weight may be based on information from the weight sensor and information from the bare feet image sensor.
According to various embodiments, a database may store information associated with the provisioned users. The information associated with the provisioned users of the device may include stored information associated with a respective one of the one or more provisioned users corresponding to a shape of the bare feet, an orientation of a first foot and a second foot of the bare feet, a weight of the user, and/or a body fat of the respective provisioned users. In various embodiments, identifying a provisioned user out of the one or more provisioned users based on the image of the bare feet of the user may include determining shape information corresponding to a shape of the bare feet of the user based on the image of the bare feet and/or selecting a provisioned user based on a comparison of the shape information and the stored information corresponding to the provisioned users. In various embodiments, identifying a provisioned user out of the one or more provisioned users based on the image of the bare feet of the user may include determining orientation information of a first foot and a second foot of the bare feet based on the image of the bare feet of the user and/or selecting a provisioned user based on a comparison of the orientation information and the stored information. According to various embodiments, the device may include an internet communication circuit configured to provide communication network connectivity between the device and an Internet of Things (IoT) network.
According to various embodiments, a multifactor authentication device for authenticating a user of an electronic device may include a weight sensor configured to determine a weight of the user, a bare feet image sensor configured to generate an image of the bare feet of the user on the multifactor authentication device, and/or a database configured to store information associated with an image of the bare feet of a plurality of provisioned users. The multifactor authentication device may include a processor that is responsive to the weight sensor and to the bare feet image sensor and is configured to execute computer program instructions to perform operations including authenticating the user to access the electronic device based on the weight of the user and the image of the bare feet of the user on the multifactor authentication device.
According to various embodiments, the multifactor authentication device may include a body fat measurement sensor configured to determine body fat of the user on the multifactor authentication device. Authenticating the user may include authenticating the user based on the image of the bare feet of the user, the weight of the user, and the body fat of the user. According to various embodiments, the multifactor authentication device may include a housing that includes a first face and a second face opposing the first face. The first face of the housing may be configured for placement on a horizontal surface. The weight sensor may be in the housing between the first face and the second face. The bare feet image sensor may be on the second face of the housing.
Some embodiments of the present inventive concepts are directed to a method for weighing a user on a weigh scale. The method may include determining a weight of the user, generating an image of the bare feet of the user on the weigh scale, and/or identifying a provisioned user out of one or more provisioned users, based on the image of the bare feet of the user on the weigh scale and information stored in a database that is associated with an image of the bare feet of the one or more provisioned users of the weigh scale, and/or storing the weight of the user associated with the provisioned user. The method may include determining a distribution of the weight including a first portion of the weight on a first foot and a second portion of the weight on a second foot of the bare feet of the user and/or providing an indication to the user in response to a difference in the first portion and the second portion of the weight exceeding a threshold. Information stored in the database may include stored information associated with a respective one of the one or more provisioned users corresponding to a shape of the bare feet, a weight of the user, and/or a body fat of the respective one of the one or more provisioned users. In various embodiments, identifying a provisioned user out of the one or more provisioned users based on the image of the bare feet of the user on the weigh scale may include determining shape information corresponding to a shape of the bare feet of the user based on the image of the bare feet, and/or selecting a provisioned user based on a comparison of the shape information and the stored information.
It is noted that aspects of the disclosure described with respect to one embodiment, may be incorporated in a different embodiment although not specifically described relative thereto. That is, all embodiments and/or features of any embodiment can be combined in any way and/or combination. These and other objects and/or aspects of the present invention are explained in detail in the specification set forth below.,
Aspects of the present inventive concepts are illustrated by way of example and are not limited by the accompanying figures with like references indicating like elements.
Various embodiments will be described more fully hereinafter with reference to the accompanying drawings. Other embodiments may take many different forms and should not be construed as limited to the embodiments set forth herein. Like numbers refer to like elements throughout. Numerous specific details are set forth in order to provide a thorough understanding of embodiments of the present inventive concepts. However, it will be understood by those skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components and circuits have not been described in detail so as not to obscure the present invention. It is intended that all embodiments disclosed herein can be implemented separately or combined in any way and/or combination.
As noted above, weigh scales are proliferating in homes, offices, and medical facilities in order to track health parameters such as weight and/or body fat. The prevalence of electronic health records and increasing network connected devices allow health records including weight and/or body fat to be stored in databases. Stored health parameters may be accessed by users and health professionals across a variety of platforms, used for historical data analysis for individual users, and/or for statistical trend analysis across a population. A device such as a weigh scale may be connected to a network for easier storage of health data, greater access to health data, and analysis of health data. As such, a weigh scale, as described by the present inventive concepts, may be embodied as an Internet of Things (IoT) device that is connected to a network.
The Internet of Things (IoT) is a network of physical objects or “things” that are uniquely identifiable and are embedded with communication network connectivity to enable them to achieve greater value and service by exchanging data with a user, operator, manufacturer, and/or other connected devices. IoT devices are proliferating across the world with the increase in use of technology, such as the Internet, virtualization, and cloud computing. IoT devices may include a variety of household appliances such as thermostats, power meters, water meters, refrigerators, washers/dryers, stoves, microwaves, dishwashers, toothbrushes, shavers, and/or televisions that include embedded network connectivity. IoT devices may also include a variety of other devices whose primary purpose is not network connectivity, but include embedded network connectivity such as medical devices including pacemakers, artificial limbs, casts and/or industrial devices such as motors, actuators, etc. A weigh scale may one such type of IoT device that is used by multiple users in a home, office, or medical facility.
Various embodiments described herein may arise from a recognition for a need to easily identify and distinguish multiple users of a weigh scale in a home, office, or medical facility. The multiple users need to be distinguished from one another in order to properly track each individual users' health parameters such as weight and/or body fat. According to various embodiments, individual users of the weigh scale may be identified based on an image of the bare feet of the user. Health data related to the identified users may be stored. According to various embodiments, the weigh scale may be used as a multifactor authentication device for authenticating a user based on health data such as weight, image of the bare feet, and/or body fat.
Referring now to
Referring now to
Still referring to
Still referring to
Referring to
Still referring to
Still referring to
Still referring to
Still referring to
In some embodiments, an initialization procedure may be conducted to configure the user of the weigh scale 100. Identification information including name, gender, age, and/or other identifying attributes may be input into the weigh scale 100 to configure the user. In some embodiments, the initial configuration may not include the weight of the user.
Referring to
Referring now to
Still referring to
Embodiments discussed herein may use the image of the bare feet to identify the user to store the weight. Embodiments related to
In the above-description of various embodiments of the present inventive concepts, aspects of the present inventive concepts may be illustrated and described herein in any of a number of patentable classes or contexts including any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof Accordingly, aspects of the present inventive concepts may be implemented in entirely hardware, entirely software (including firmware, resident software, micro-code, etc.) or combining software and hardware implementation that may all generally be referred to herein as a “circuit,” “module,” “component,” or “system.” Furthermore, aspects of the present inventive concepts may take the form of a computer program product comprising one or more computer readable media having computer readable program code embodied thereon.
Any combination of one or more computer readable media may be used. The computer readable media may be a computer readable signal medium or a computer readable storage medium. A computer readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the computer readable storage medium would include the following: a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an appropriate optical fiber with a repeater, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that can contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
A computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof. A computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device. Program code embodied on a computer readable signal medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
Computer program code for carrying out operations for aspects of the present inventive concepts may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C++, C#, VB.NET, Python, etc., conventional procedural programming languages, such as the “C” programming language, Visual Basic, Fortran 2003, Perl, COBOL 2002, PHP, ABAP, dynamic programming languages such as Python, Ruby and Groovy, or other programming languages. The program code may execute entirely on the device, partly on the device, as a stand-alone software package, partly on the device and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the device through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider) or in a cloud computing environment or offered as a service such as a Software as a Service (SaaS).
Aspects of the present inventive concepts are described herein with reference to flowchart illustrations and/or block diagrams of methods, apparatus (device), and computer program products according to embodiments of the disclosure. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable instruction execution apparatus, create a mechanism for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
These computer program instructions may also be stored in a computer readable medium that when executed can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions when stored in the computer readable medium produce an article of manufacture including instructions which when executed, cause a computer to implement the function/act specified in the flowchart and/or block diagram block or blocks. The computer program instructions may also be loaded onto a computer, other programmable instruction execution apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
The functions noted in the blocks may occur out of the order noted in the Figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
It is to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting to other embodiments. Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense expressly so defined herein.
The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods, and computer program products according to various aspects of the present inventive concepts. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the Figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
Spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper”, “top”, “bottom” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the exemplary term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
The terminology used herein is for the purpose of describing particular aspects only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. Like reference numbers signify like elements throughout the description of the Figures.
The corresponding structures, materials, acts, and equivalents of any means or step plus function elements in the claims below are intended to include any disclosed structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present inventive concepts has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the disclosure in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the disclosure. The aspects of the disclosure herein were chosen and described in order to best explain the principles of the disclosure and the practical application, and to enable others of ordinary skill in the art to understand the disclosure with various modifications as are suited to the particular use contemplated.
In the drawings and specification, there have been disclosed typical embodiments and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the disclosure being set forth in the following claims.