The foregoing and other objects, features, and advantages of the invention will be apparent from the following Detailed Description of the Invention in conjunction with the Drawings of which:
Referring to
The heat-removal device 20 is structured and arranged, concentrically and coaxially, in a plenum 22 that is provided in the core section 10. The heat-removal device 20 includes a ribbon-type conductor portion 12, for transferring heat by convection, and an insulating portion 14, e.g., an insulating ribbon, that mechanically offsets and electrically insulates adjacent segments of the conductor portion 12. Moreover, the insulating portion 14 provides fluid passages 15 to remove heat from the conductor portion 12 by convection.
The ribbon-type conductor portion 12 can be made of any material or combination of materials that provides relatively-high electrical conductivity and resistance to degradation at high operating temperatures. Advantageously, the outer surface of the material for the ribbon-type conductor portion 12 can be insulated and/or passivated, e.g., anodized, plated, and the like, to provide a diffusion barrier and corrosion resistance, to provide added dielectric strength, and to provide further electrical insulation with minimal thermal insulation. Alternatively, the outer surface of the conductor portion 12 material can be coated, e.g., with a protective ceramic coating, to prevent high-temperature degradation of the base material. Accordingly, anodized aluminum and chrome-plated copper are suitable materials for the conductor portion 12. A range of outer surface thicknesses is about 0.0002 to about 0.0005 inches (about 0.2 to 0.5 mils).
The insulating portion 14 can be made from a high-temperature insulating material of natural, e.g., mica or Muscovite, or man-made origin, e.g., polyimides such as Kaptone manufactured by DuPont Industries of Wilmington, Del. Many factors affect the thickness of the insulated portion 14, e.g., available space in the plenum 22, arcing potential of the conductor portion 12, heat produced in the conductor portion 12, and the like. An insulated portion thickness of about 0.002 inches (2 mils) has been used successfully, recognizing that the thickness is application dependent.
The insulated portion 14 and the ribbon-type conductor portion 12 can each be manufactured and packaged in a spiral or a coil form, e.g., on separate spools (not shown). The free running end of the ribbon-type conductor portion 12 and the free running end of the insulated portion 14 from each spool can be placed one on top of the other and the two portions 12 and 14 can be wound together onto a common fixture, e.g., another spool (not shown). As the two portions 12 and 14 are wound, with every complete revolution of the common fixture, the conductor portion 12 and the insulated portion 14 are inter-layered. Thus, the heat-removal device 20 comprises a coil of spirally-, coaxially-alternating insulated portions 14 and ribbon-type conductor portions 12.
Referring to
Strip sections 18 disposed between adjacent window sections 16 on the insulated portion 14 provide the spacing, or mechanical offset, between adjacent conductor sections 12a and 12b. The perforated, window sections 16 are sandwiched between adjacent conductor portion segments 12a and 12b to form a passage 15 for natural or forced convective fluid flow. Thus, each window section 16 provides a fluid passage 15 that is defined by the exposed surfaces of adjacent segments of the conductor portion 12a and 12b. When a cooling fluid is passed through the passage 15, the cooling fluid removes heat from the exposed surfaces of the adjacent segments of the conductor portion 12a and 12b by convection.
The insulating portion 14 is wider in dimension than the conductor portion 12. More particularly, the positional relationship between the insulated portion 14 and the conductor portion 12 is such that each side 11 and 13 of the insulated portion 14 extends beyond the respective sides 17 and 19 of the conductor portion 12. Furthermore, each window section 16 is wider in dimension than the conductor portion 12 and the positional relationship between each window section 16 and the conductor portion 12 is such that portions of the window section 27 and 28 extend beyond the respective sides 17 and 19 of the ribbon conductor 12 to provide access openings 21 and egress openings 24.
Those skilled in the art will appreciate that the area of the window sections 16, the area of the strip sections 18, and the thickness of the insulator portion 14 can be adjusted to remove a desired amount of heat.
As shown in
It will be apparent to those of ordinary skill in the art that modifications to and variations of the above-described system and method may be made without departing from the inventive concepts described herein. Accordingly, the invention should not be limited except by the scope and spirit of the appended claims.
The United States Government has a paid-up license in this invention and the right in limited circumstances to require the patent owner to license others on reasonable terms as provided for by the terms of Contract Number FA8650-04-C-2493 awarded by the U.S. Air Force Research Laboratory.