The disclosure relates to devices and systems for marking tissue and, more particularly, to devices and systems for marking tumors.
In lung resection of nodules, it is becoming common practice to use localization tools to aid the surgical team in effective resection of nodules that may not be palpable with current techniques. Several preoperative and intraoperative techniques are presently being used for nodule localization. One of these techniques utilizes small fiducials that are guided to a position adjacent a lung nodule using medical imaging, such as computed tomography.
In accordance with an aspect of the disclosure, a tissue marking beacon includes a storage capacitor including an onboard power coil. The onboard power coil wirelessly receives energy from a radio frequency (RF) field generator and stores an electrical charge in the storage capacitor. A light-emitting diode (LED) emits pulsatile near-infrared (NIR) light upon receiving a current from the storage capacitor. A circuit is arranged between the storage capacitor and the LED. The circuit controls a flow of the current from the storage capacitor to the LED. A RF antenna receives external RF pulses and signals emission of the pulsatile NIR light from the LED in response to the external RF pulses.
In some aspects, the tissue marking beacon is configured to be implanted in a tumor. The tissue marking beacon is configured to be implanted using a syringe. The tissue marking beacon may be disposed in a titanium sleeve.
In some aspects, the circuit further includes a step-up circuit configured to increase a voltage supplied to the LED.
In some aspects, a logic circuit may control an emission pattern of the pulsatile NIR light.
In some aspects, a NIR camera detects emission of the pulsatile NIR light to determine a location of the tissue marking beacon. An emission pattern of the pulsatile NIR light is configured to be synchronized with a data capture rate and/or detector exposure (shutter) of the NIR camera.
In some aspects, a second LED emits pulsatile NIR light upon receiving a current from a second storage capacitor.
In some aspects, the emission pattern of the pulsatile NIR light from the LED is different from a second emission pattern of the pulsatile NIR light emitted from the second LED. A comparison of the emission pattern and the second emission pattern identifies a location and a depth of the tissue marking beacon.
In some aspects, a RF field generator is configured to emit RF energy.
In some aspects, the RF field generator is connected with the NIR camera. The RF field generator is configured to emit pulsatile RF energy to synchronize the emission pattern of the pulsatile NIR light with the data capture rate and/or detector exposure (shutter) of the NIR camera.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate aspects and features of the disclosure and, together with the detailed description below, serve to further explain the disclosure, in which:
As used herein, the terms parallel and perpendicular are understood to include relative configurations that are substantially parallel and substantially perpendicular up to about + or - 10 degrees from true parallel and true perpendicular.
"About" or ‘approximately” or "substantially" as used herein may be inclusive of the stated value and means within an acceptable range of variation for the particular value as determined by one of ordinary skill in the art, considering tolerances (e.g., material, manufacturing, use, environmental, etc.) as well as the measurement in question and the error associated with measurement of the particular quantity (e.g., the limitations of the measurement system). For example, “about:” may mean within one or more standard variations, or within ± 30%, 20%, 10%, 5% of the stated value.
Descriptions of technical features or aspects of an exemplary embodiment of the disclosure should typically be considered as available and applicable to other similar features or aspects in another exemplary embodiment of the disclosure. Accordingly, technical features described herein according to one exemplary embodiment of the disclosure may be applicable to other exemplary embodiments of the disclosure, and thus duplicative descriptions may be omitted herein.
Exemplary embodiments of the disclosure will be described more fully below (e.g., with reference to the accompanying drawings). Like reference numerals may refer to like elements throughout the specification and drawings.
Tumor localization refers to methods of identifying the specific location of tumors in organs pre and perioperatively. In recent years, surgeons have been exploring a variety of approaches for localization, including the use of radioactive seeds, magnetic markers, and RFID. No technologies have emerged to enable the surgeon to localize a marker while actively preforming surgery as current approaches for localization involve the use of a hand-held wand to target and range the seed or implant.
Described herein is a seed (e.g., a fiducial or a beacon) with a light emitting diode (LED) powered by an inductively coupled RF antenna. As an example, an 850 nm LED (e.g., having a range of from about 840 nm to about 860 nm) deeply penetrates tissue and can be imaged with Medtronic’s Visionsense NIR imaging system®. The devices and systems described herein may be employed for tumor localization as deep as 6 cm (e.g., for lung cancer treatment). The LED may be configured to produce a pulsatile signal that is within the visible spectrum, and thus the LED may be identifiable intra-operatively using known white-light methods.
The camera 104 is a near-infrared (NIR) camera that detects emission of pulsatile NIR light from the tissue marking beacon 100 to determine a location of the tissue marking beacon 100. An emission pattern of the pulsatile NIR light is synchronized with a data capture rate of the NIR camera 104. For example, a shutter speed/frequency of the NIR camera 104 may be synchronized with the emission pattern of the pulsatile NIR light such that the NIR light is emitted precisely when the camera shutter is in an open position, thus allowing a minimal amount of electrical current to be used by the tissue marking beacon 100.
The RF field generator 103 may be coupled with the NIR camera 104 to facilitate the synchronization between the data capture rate and/or detector exposure (shutter) of the NIR camera 104 and the emission pattern of NIR light. The RF field generator 103 is configured to emit pulsatile RF energy to control when NIR light is emitted from the tissue marking beacon 100. While tissue marking beacon 100 is illustrated in
Each of the tissue marking beacons described herein may be dimensioned to be implanted in a tumor by a syringe (e.g., a syringe having about a 16 gauge needle). For example, the tissue marking beacon 200 is configured to be implanted in a tumor to mark a location of the tumor. The tissue marking beacons described herein can be implanted by Electromagnetic Navigation Bronchoscopy (ENB) or by an endoluminal robot.
In some aspects, a logic circuit may control an emission pattern of the pulsatile NIR light emitted by LEDs 204, 404 or 414. The logic circuit may be onboard any of the tissue marking beacons described herein.
The external signaling device 803 may transmit optical power at a first wavelength to the receiver 801. The receiver 801 may store electrical power (e.g., in photovoltaic power cells 807 and 808) and emit light of a second wavelength (e.g., different from the first wavelength) back to the external signaling device 803. Thus, a shutter of external signaling device 803 may be synchronized with the emitted light having the second wavelength. As an example, a signal may be transmitted in the optical power at the first wavelength to control the synchronization between the shutter of external signaling device 803 and the emitted light having the second wavelength. As an example, the external signaling device may emit light of the first wavelength in a range of from about 750 nm to about 780 nm and at least one of LEDs 804 or 805 may emit light of the second wavelength in a range of from about 830 nm to about 850 nm.
To enhance position location or detection variations a second LED/LD (Laser Diode) could be added to the tissue marking beacon. For example, an LED/LD could be attached to both ends of the tissue marking beacon. The resulting two points of light can be triangulated to provide a location over distance. Two or more sources of light can also provide a relative orientation of the tissue marking beacon in free space. Each of the two LEDs may be pulsed with different identifiable emission patterns (e.g., different frequencies and/or with different emission timing). Alternatively, variations in color/wavelengths of light may be employed to differentiate opposite ends of the tissue marking beacon.
Pulsing variations of each LED can provide discrimination based upon a (known) pulse repetition rate. Increased light intensity from the LED/LD can be achieved by pulsing the current through the diode(s).
Pulsing of RF Energy to charge the RF beacon can be made synchronous to the detection camera such that the shutter and or exposure to charge the detector is synchronized with the RF pulse to the tissue marking beacon. This allows for increased discrimination of ambient light and increased signal detection accuracy.
NIR light emitted from each LED may have a distinct spherical dispersion pattern. The relative intensity of the center intensity of light to the edge intensity of light allows a calculation of the depth of the tissue marking beacon 900 to be performed. This calculation may be performed because eccentricity of surface illuminations enables prediction of incident angles (see, e.g.,
The memory 1102 can be random access memory, read-only memory, magnetic disk memory, solid state memory, optical disc memory, and/or another type of memory. The memory 1102 can communicate with the processor 1101 through communication buses 1110 of a circuit board and/or through communication cables such as serial ATA cables or other types of cables. The memory 1102 includes computer-readable instructions that are executable by the processor 1101 to operate the control module. The control module 101 may include a network interface 1104 to communicate with other computers or a server. A storage device 1105 may be used for storing data. The control module 101 may include an AI or machine learning module 1106 (see,
The storage device 1105 of the control module 101 store one or more machine learning algorithms and/or models, configured to determine a location, depth, and/or directional orientation of at least one tissue locating beacon, and to render an image on the display 102 of the tissue locating beacon with respect to a patient’s anatomy. The machine learning algorithm may apply mathematical models to determine a location, depth, and/or directional orientation of at least one tissue locating beacon, and to render an image on the display 102 of the tissue locating beacon with respect to a patient’s anatomy. The machine learning algorithm(s) may be trained on and learn from experimental data and/or data from previous procedures initially input into the one or more machine learning applications in order to enable the machine learning application(s) to determine a location, depth, and/or directional orientation of at least one tissue locating beacon, and to render an image on the display 102 of the tissue locating beacon with respect to a patient’s anatomy.
Machine learning algorithms are advantageous for use in determining a location, depth, and/or directional orientation of at least one tissue locating beacon, and to render an image on the display 102 of the tissue locating beacon with respect to a patient’s anatomy, at least in that complex sensor components and pre-defined categorization rules and/or algorithms are not required. Rather, machine learning algorithms utilize initially input data to determine statistical features and/or correlations by analyzing data therefrom. Thus, with the one or more machine learning algorithms having been trained as detailed above, such can be used to determine a location, depth, and/or directional orientation of at least one tissue locating beacon, and to render an image on the display 102 of the tissue locating beacon with respect to a patient’s anatomy.
The various embodiments disclosed herein may also be configured to work with robotic surgical systems and what is commonly referred to as “Telesurgery.” Such systems employ various robotic elements to assist the surgeon and allow remote operation (or partial remote operation) of surgical instrumentation. Various robotic arms, gears, cams, pulleys, electric and mechanical motors, etc. may be employed for this purpose and may be designed with a robotic surgical system to assist the surgeon during the course of an operation or treatment. Such robotic systems may include remotely steerable systems, automatically flexible surgical systems, remotely flexible surgical systems, remotely articulating surgical systems, wireless surgical systems, modular or selectively configurable remotely operated surgical systems, etc.
The robotic surgical systems may be employed with one or more consoles that are next to the operating theater or located in a remote location. In this instance, one team of surgeons or nurses may prep the patient for surgery and configure the robotic surgical system with one or more of the instruments disclosed herein while another surgeon (or group of surgeons) remotely control the instruments via the robotic surgical system. As can be appreciated, a highly skilled surgeon may perform multiple operations in multiple locations without leaving his/her remote console which can be both economically advantageous and a benefit to the patient or a series of patients.
The robotic arms of the surgical system are typically coupled to a pair of master handles by a controller. The handles can be moved by the surgeon to produce a corresponding movement of the working ends of any type of surgical instrument (e.g., end effectors, graspers, knifes, scissors, etc.) which may complement the use of one or more of the embodiments described herein. The movement of the master handles may be scaled so that the working ends have a corresponding movement that is different, smaller or larger, than the movement performed by the operating hands of the surgeon. The scale factor or gearing ratio may be adjustable so that the operator can control the resolution of the working ends of the surgical instrument(s).
The master handles may include various sensors to provide feedback to the surgeon relating to various tissue parameters or conditions, e.g., tissue resistance due to manipulation, cutting or otherwise treating, pressure by the instrument onto the tissue, tissue temperature, tissue impedance, etc. As can be appreciated, such sensors provide the surgeon with enhanced tactile feedback simulating actual operating conditions. The master handles may also include a variety of different actuators for delicate tissue manipulation or treatment further enhancing the surgeon’s ability to mimic actual operating conditions.
From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the disclosure without departing from the scope of the same. While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
This application claims the benefit of the filing date of provisional U.S. Patent Application No. 62/975,310, filed on Feb. 12, 2020.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2021/014307 | 1/21/2021 | WO |
Number | Date | Country | |
---|---|---|---|
62975310 | Feb 2020 | US |