The present application relates to implantable medical devices. In particular, methods, techniques devices are disclosed for anchoring implantable medical leads.
Electrical stimulation of body tissue and organs is often used as a method of treating various conditions. Such stimulation is generally delivered by means of electrical contact between a pulse generator device and a target site via one or more implantable medical electrical leads connected to the pulse generator device; implantable leads typically include one or more stimulation electrodes joined to a distal portion of the lead, which are positioned and anchored in proximity to the target site.
In patients at high risk of ventricular fibrillation, the use of an implantable cardioverter defibrillator (ICD) system has been shown to be beneficial. An ICD system includes an ICD, which is a small battery powered electrical shock device, may include an electrical housing, or can electrode, that is coupled to one or more implantable medical leads that are implanted within the heart. If an arrhythmia is sensed, the ICD may send a pulse via the implantable leads to shock the heart and restore its normal rhythm. Owing to the inherent surgical risks in attaching and replacing implantable leads directly within or on the heart, methods have been devised to achieve a similar effect to that of a transvenous ICD system that is connected directly to the heart without placing implantable leads within the heart or attaching the leads directly to the heart.
Subcutaneous implantable cardioverter-defibrillator (SubQ ICD) systems have been devised to deliver electrical impulses to the heart by the use of one or more implantable leads that are placed subcutaneously on the torso. In order to effectively electrically stimulate the heart, the distal end of the implantable lead may be oriented longitudinally spanning from approximately the xiphoid to the high sternal area.
Various implantable medical lead structures and methods for positioning and anchoring lead electrodes in proximity to target sites have been developed over the years. New structures and methods are necessary to anchor lead electrodes for emerging therapy delivery requirements.
Aspects in accordance with principles of the present invention relate to an implantable medical electrical lead for applying electrical stimulation to bodily tissue. The implantable lead is adapted to be introduced through an access point adjacent to the sternum and a distal portion is navigated into the substernal space. With this in mind, the implantable lead includes a lead body and an anchoring assembly. The lead body has a proximal section adapted to be electronically coupled to a power source and a distal section forming at least one exposed electrode surface.
In accordance with embodiments of the disclosure, the anchoring assembly may be located along a length of the lead body that is configured to be located within the substernal space, such as at or near the distal lead end. In other embodiments, the anchoring assembly may be located along a length of the lead body that is configured to be located at or near the access point into the substernal space.
Other aspects of the disclosure relate to a method of anchoring an implantable lead system. The method comprises subcutaneously advancing the lead to an access point into a substernal space of a patient, navigating a distal end of the lead to an implantation site within the substernal space, placing the distal end of the lead within the substernal space, orienting a fixation element in a pre-determined direction relative to the substernal space, and fixedly-securing a segment of the lead at the access point with a fixation element that secures the lead at an intersection between the subcutaneous space and the substernal space.
The following drawings are illustrative of particular embodiments of the invention and therefore do not limit the scope of the invention, but are presented to assist in providing a proper understanding. The drawings are not to scale (unless so stated) and are intended for use in conjunction with the explanations in the following detailed description. The present invention will hereinafter be described in conjunction with the appended drawings, wherein like numerals denote like elements, and:
The disclosure describes techniques, components, assemblies, and methods for anchoring a lead in a patient's substernal space or extra-pericardium, with the lead being attachable to a subcutaneously implanted medical device. A distal end of the lead is positioned at a target implant site and anchored therein.
In this disclosure, “substernal space” refers to the region defined by the undersurface between the sternum and the body cavity, but not including the pericardium. In other words, the region is posterior to the sternum and anterior to the ascending aorta. The substernal space may alternatively be referred to by the terms “retrosternal space” or “mediastinum” or “infrasternal” as is known to those skilled in the art and includes the region referred to as the anterior mediastinum. The substernal space may also include the anatomical region described in Baudoin, Y. P., et al., entitled “The superior epigastric artery does not pass through Larrey's space (trigonum sternocostale).” Surg. Radiol. Anat. 25.3-4 (2003): 259-62 as Larrey's space. For ease of description, the term substernal space will be used in this disclosure, it being understood that the term is interchangeable with any of the other aforementioned terms.
In this disclosure, the term “extra-pericardial” space refers to region around the outer heart surface, but not within the pericardial sac/space. The region defined as the extra-pericardial space includes the gap, tissue, bone, or other anatomical features around the perimeter of, and adjacent to the pericardium.
In this specification, “anchor” means to fix a position of an object relative to tissue to minimize movement of the object relative to the tissue. Thus, although there may be small movements of the object relative to the tissue, arising for example from body movements of the patient that give rise to small deflections of the object within the tissue, the object is nevertheless “anchored” in the tissue. It is to be understood that features of the various exemplary embodiments described herein may be combined with each other, unless specifically noted otherwise.
Implantable cardiac system 10 includes an implantable cardiac defibrillator (ICD) 14 connected to a first lead 16 and a second lead 18. The first lead 16 and the second lead 18 may be utilized to provide an electrical stimulation therapy such as pacing or defibrillation. For example, lead 16 may provide defibrillation therapy while lead 18 may provide pacing therapy, or vice versa, while in other embodiments, both lead 16 and lead 18 may provide pacing therapy or defibrillation therapy. In the example illustrated in
Lead 16 includes a proximal end that is connected to ICD 14 and a distal end that includes one or more electrodes. Lead 16 extends subcutaneously from ICD 14 toward xiphoid process 20. At a location near xiphoid process 20, lead 16 bends or turns and extends subcutaneously superior, substantially parallel to sternum 22. The distal end of lead 16 may be positioned near the second or third rib. However, the distal end of lead 16 may be positioned further superior or inferior depending on the location of ICD 14 and other factors. Although illustrated as being offset laterally from and extending substantially parallel to sternum 22 in the example of
Lead 16 includes a defibrillation electrode 24, which may include an elongated coil electrode or a ribbon electrode, toward the distal end of lead 16. Lead 16 is placed such that a therapy vector between defibrillation electrode 24 and a housing or can electrode of ICD 14 is substantially across the ventricle of heart 26.
Lead 16 may also include one or more sensing electrodes, such as sensing electrodes 28 and 30, located toward the distal end of lead 16. In the example illustrated in
Lead 18 includes a proximal end that is connected to ICD 14 and a distal end that includes one or more electrodes. Lead 18 extends subcutaneously from ICD 14 toward xiphoid process 20. At a location near xiphoid process 20 lead 18 bends or turns and extends superior upward in the substernal space. In one example, lead 18 may be placed in the mediastinum 36 and, more particularly, in the anterior mediastinum. The anterior mediastinum is bounded laterally by pleurae 40, posteriorly by pericardium 38, and anteriorly by sternum 22. Lead 18 may be implanted within the mediastinum such that one or more electrodes 32 and 34 are located over a cardiac silhouette of the ventricle as observed via fluoroscopy. In the example illustrated in
Lead 18 includes electrodes 32 and 34 located near a distal end of lead 18. Electrodes 32 and 34 may comprise ring electrodes, hemispherical electrodes, coil electrodes, helical electrodes, ribbon electrodes, or other types of electrodes, or combination thereof. Electrodes 32 and 34 may be the same type of electrodes or different types of electrodes. In the example illustrated in
ICD 14 may deliver pacing pulses to heart 26 via a pacing or therapy vector that includes any combination of one or both of electrodes 32 and 34 and a housing electrode or can electrode of ICD 14. For example, ICD 14 may deliver pacing pulses using a pacing or therapy vector between electrodes 32 and 34, deliver pacing pulses using a pacing or therapy vector between electrodes 32 and the conductive housing or can electrode of ICD 14, deliver pacing pulses using a pacing or therapy vector between electrodes 34 and the conductive housing or can electrode of ICD 14, or a combination thereof. In some instances, ICD 14 may deliver pacing therapy via a therapy vector between one of electrode 32 (or electrode 34) and defibrillation electrode 24. In still further instances, ICD 14 may deliver pacing therapy via a therapy vector between one of electrode 32 (or electrode 34) and one of sensing electrodes 28 or 30. ICD 14 may generate and deliver the pacing pulses to provide anti-tachycardia pacing (ATP), bradycardia pacing, post shock pacing, or other pacing therapies or combination of pacing therapies. In this manner, ATP therapy or post shock pacing (or other pacing therapy) may be provided in an ICD system without entering the vasculature or the pericardial space, nor making intimate contact with the heart.
ICD 14 may generate and deliver pacing pulses with any of a number of amplitudes and pulse widths to capture heart 26. The pacing thresholds of heart 26 when delivering pacing pulses substernally using lead 18 may depend upon a number of factors, including location of electrodes 32 and 34, location of ICD 14, physical abnormalities of heart 26 (e.g., pericardial adhesions), or other factors. The pacing thresholds needed to capture heart 26 tend to increase with shorter pulse widths. In the case of ATP, ICD 14 may deliver pacing pulses having longer pulse widths than conventional ATP pulses to reduce the amplitude of the pacing pulses. For example, ICD 14 may be configured to deliver pacing pulses having pulse widths or durations of greater than or equal to one (1) millisecond. In another example, ICD 14 may be configured to deliver pacing pulses having pulse widths or durations of greater than or equal to ten (10) milliseconds. In a further example, ICD 14 may be configured to deliver pacing pulses having pulse widths or durations of greater than or equal to fifteen (15) milliseconds. In yet another example, ICD 14 may be configured to deliver pacing pulses having pulse widths or durations of greater than or equal to twenty (20) milliseconds. Depending on the pulse widths, ICD 14 may be configured to deliver pacing pulses having pulse amplitudes less than or equal to twenty (20) volts, deliver pacing pulses having pulse amplitudes less than or equal to ten (10) volts, deliver pacing pulses having pulse amplitudes less than or equal to five (5) volts, deliver pacing pulses having pulse amplitudes less than or equal to two and one-half (2.5) volts, deliver pacing pulses having pulse amplitudes less than or equal to one (1) volt. Typically the lower amplitudes require longer pacing widths as illustrated in the experimental results. Reducing the amplitude of pacing pulses delivered by ICD 14 reduces the likelihood of extracardiac stimulation.
ICD 14 may sense electrical activity of heart 26 via a combination of sensing vectors that include combinations of electrodes 32 and 34 and the housing or can electrode of ICD 14. For example, ICD 14 may obtain electrical signals sensed using a sensing vector between electrodes 32 and 34, obtain electrical signals sensed using a sensing vector between electrode 32 and the conductive housing or can electrode of ICD 14, obtain electrical signals sensed using a sensing vector between electrode 34 and the conductive housing or can electrode of ICD 14, or a combination thereof. In some instances, ICD 14 may sense electrical activity of heart 26 via a sensing vector between one of electrode 32 (or electrode 34) and electrodes 24, 28 and 30 of lead 16. ICD 14 may deliver the pacing therapy as a function of the electrical signals sensed via the one or more of the sensing vectors of lead 18. Alternatively or additionally, ICD 14 may deliver the pacing therapy as a function of the electrical signals sensed via one or more of the sensing vectors of lead 16.
ICD 14 also analyzes the sensed electrical signals from one or more of the sensing vectors of lead 18 and/or one or more of the sensing vectors of lead 16 to detect tachycardia, such as ventricular tachycardia or ventricular fibrillation. In some instances, ICD 14 delivers one or more ATP therapies via the one or more pacing or therapy vectors of lead 18 in response to detecting the tachycardia in an attempt to terminate the tachycardia without delivering a defibrillation shock. If the one or more ATP therapies are not successful or it is determined that ATP therapy is not desired, ICD 14 may deliver one or more defibrillation shocks via defibrillation electrode 24 of lead 16.
The configuration described above in
ICD 14 may include a housing that forms a hermetic seal that protects components of ICD 14. The housing of ICD 14 may be formed of a conductive material, such as titanium. ICD 14 may also include a connector assembly (also referred to as a connector block or header) that includes electrical feedthroughs through which electrical connections are made between conductors within leads 16 and 18 and electronic components included within the housing. As will be described in further detail herein, housing may house one or more processors, memories, transmitters, receivers, sensors, sensing circuitry, therapy circuitry and other appropriate components. Housing 34 is configured to be implanted in a patient, such as patient 12.
Leads 16 and 18 include a lead body that includes one or more electrodes located near the distal lead end or elsewhere along the length of the lead body. The lead bodies of leads 16 and 18 also contain one or more elongated electrical conductors (not illustrated) that extend through the lead body from the connector assembly of ICD 14 provided at a proximal lead end to one or more electrodes of leads 16 and 18. The lead bodies of leads 16 and 18 may be formed from a non-conductive material, including silicone, polyurethane, fluoropolymers, mixtures thereof, and other appropriate materials, and shaped to form one or more lumens within which the one or more conductors extend. However, the techniques are not limited to such constructions.
The one or more elongated electrical conductors contained within the lead bodies of leads 16 and 18 may engage with respective ones of electrodes 24, 28, 30, 32, and 34. In one example, each of electrodes 24, 28, 30, 32, and 34 is electrically coupled to a respective conductor within its associated lead body. The respective conductors may electrically couple to circuitry, such as a therapy module or a sensing module, of ICD 14 via connections in connector assembly, including associated feedthroughs. The electrical conductors transmit therapy from a therapy module within ICD 14 to one or more of electrodes 24, 28, 30, 32, and 34 and transmit sensed electrical signals from one or more of electrodes 24, 28, 30, 32, and 34 to the sensing module within ICD 14.
The lead 18 further includes one or more anchoring mechanisms that are positioned along the length of the lead body. The anchoring mechanisms affix the lead 18 that is implanted in a substernal space in a fixed location to prevent dislodging of the lead 18 once it is implanted. For example, the lead 18 may be anchored at one or more locations situated between the distal lead end positioned within the substernal space of patient 12 and a point along the length of the portion of the lead body at or near the insertion point of the lead body into the substernal space. The one or more anchoring mechanism(s) may either engage cartilage, bone, fascia, muscle or other tissue of patient 12 or may simply be wedged therein to affix the lead under the sternum to prevent excessive motion or dislodgment. Furthermore, it should be understood that various anchoring mechanisms described in this disclosure may additionally be utilized for delivery of a stimulation therapy as is known in the art.
In accordance with various embodiments, this disclosure describes anchoring mechanisms that are integrated into the lead body. In such embodiments, a portion or segment of the lead body may be formed with materials that function to encase conductors and other elements internal to the lead while also anchoring the lead within the implant environment.
In alternative embodiments, anchoring mechanisms of the disclosure are described as discrete elements that may be formed in line with the lead body. In some embodiments, the discrete components may be provided in a fixedly-secured relationship to the lead body. In other embodiments, the anchoring mechanism may be detachedly coupled in a sliding relationship over the lead body.
The anchoring mechanisms may include a passive anchoring mechanism, an active anchoring mechanism or a combination of both. In one embodiment, the anchoring mechanism is coupled along a length of the lead body and it may also function as an electrically active element. Examples of passive anchoring mechanisms include flanges, disks, pliant tines, flaps, porous structures such as a mesh-like element that facilitates tissue growth for engagement, bio-adhesive surfaces (such as those described in U.S. Pat. No. 8,594,809, which is incorporated herein by reference in its entirety), and/or any other non-piercing elements. Examples of active anchoring mechanisms may include rigid tines, prongs, burbs, clips, screws, and/or other projecting elements that pierce and penetrate into tissue to anchor the lead. As another example of an active anchoring mechanism, the lead may be provided with a side helix for engaging tissue. It is contemplated that any of these anchoring mechanisms will be formed from materials including shape memory alloys such as Nitinol to facilitate the deployment of the lead.
The various examples of the anchoring mechanisms may be deployable. As such, the anchoring mechanism assumes a first state during maneuvering of the lead (during which time the lead is disposed within a lumen of a delivery system or over a guidewire or stylet) to the desired implant location. Subsequently, the anchoring mechanism assumes a second state following the release of the lead from the delivery system into the substernal space to thereby anchor the distal end portion of the lead body relative to the adjacent tissue.
In addition or alternatively, the lead may be anchored through a suture that fixedly-secures the lead to the cartilage, musculature, tissue or bone at the access point into the substernal space of patient 12. In some embodiments, the suture may be sewn to the patient 12 through pre-formed suture holes to the patient 12.
As shown in
An example of the anchoring mechanism 50a includes a suture or clip or other fastener that anchors the lead body to the patient 12. The anchoring mechanism 50a embodied as a fastener may be coupled directly to the lead body or to a suture sleeve such as that described in U.S. Pat. No. 5,273,053, issued to Pohndorf and incorporated herein by reference in its entirety. The anchoring mechanism 50a is fixedly-coupled to cartilage, musculature, tissue or bone at the entry point into the substernal space at or near the access point at which site the body of the lead 18 transitions from the subcutaneous tissue into the substernal space of patient 12.
As described in U.S. Pat. No. 5,273,053 and illustrated in
In an embodiment, the anchoring mechanism 50a that is positioned at the access point may further be formed to accommodate the curvature of the patient 12 anatomy. In other words, the body of the anchoring mechanism 50a embodied, for example as a suture sleeve, may be malleable or pre-shaped to conform to the bend angle of the site at which the lead 18 transitions from the subcutaneous tissue into the substernal space of patient 12. As such, the suture sleeve may include a segment having a preformed bend angle of approximately 90 degrees. Thus, the anchoring sleeve may be positioned partially in the subcutaneous tissue and partially within the substernal space. The anchoring sleeve may be coupled to the patient 12 at one or more points along the length of the anchoring sleeve.
The anchoring mechanism 50a may further be constructed to facilitate tissue in-growth for long-term fixation of the lead 18. To promote such tissue in-growth, the anchoring mechanism 50a may be formed having a multi-layer construction or having pores. In some embodiments, the anchoring mechanism 50a may be constructed having a cross-linked structure. In accordance with other embodiments, the materials for construction of the anchoring mechanism 50a having a multi-layer structure may include bio-absorbable materials which will degrade a short time after implant. The anchoring mechanism 50a may also include a collagen layer which has been pre-treated to promote the tissue growth.
An example of the anchoring mechanism 50b may include a fixation element that is disposed continuously or partially around the body of lead 18 to couple the lead 18 to the access point. The anchoring mechanism may be fixedly coupled to the lead or slidingly-disposed over the lead, such as the anchoring member described in U.S. Pat. No. 5,476,493 to Muff, which is configured to be movable axially along the length of the lead body, to facilitate positioning of the anchoring mechanism 50b at a point suitable for affixation to tissue adjacent to the xiphoid process. In other words, anchoring mechanism 50b may be disposed around the lead body in a sliding relationship to facilitate navigation and placement of the distal end of the lead into the substernal space and the subsequent movement of the anchoring mechanism 50b to the site for fixation.
In some embodiments, lead 18 further includes a reinforced distal end 36 that is formed to facilitate anchoring of the lead 18 within the substernal space. The reinforced distal end 36 of the lead 18 prevents flexing of the lead 18 responsive to body motions. The distal end 36 may be formed from a material having a greater stiffness coefficient relative to that of the material of the lead body, or with a coating, or a resilient member—such as a coil—coupled over the lead body, any of which is fabricated to impart stiffness to the distal end 36. The reinforced distal end 36 exhibits characteristics that eliminate or minimize the motion of the distal end of the lead. As such, the distal end 36 functions to anchor the lead 18 within the tissue of patient 12.
In addition, the reinforced distal end 36 may be constructed to facilitate tissue in-growth for long-term fixation of the lead 18. To promote such tissue in-growth, the distal end 36 may be formed having a multi-layer construction or having pores. In some embodiments, the distal end 36 may be constructed having a cross-linked structure. In accordance with other embodiments, the materials for construction of the distal end 36 having a multi-layer structure may include bio-absorbable materials which will degrade a short time after implant. The distal end 36 may also include a collagen layer which has been pre-treated to promote the tissue growth.
A backfilling process may be utilized to increase the stiffness coefficient of the reinforced distal end 36 relative other segments of the body of lead 18. For example, the lead 18 body may be formed with multiple insulative layers with the backfill material—such as a medical adhesive or additional material—being added to reinforce the distal end 36. In other embodiments, the reinforced distal end 36 may be formed with materials having an increased rigidity, relative to the rest of the lead body. For example, the reinforced distal end 36 may be fabricated from such materials as an ultra-high molecular density polyethylene, polyester or other high tensile strength fiber or plastic. In other examples, a lead body of lead 18 that is manufactured of relatively soft plastics of low tensile strength may be reinforced to provide a reinforced distal end 36 by increasing the layers of material used in the region of distal end 36.
The examples illustrated in
In the example illustrated in
In addition, it should be noted that system 10 may not be limited to treatment of a human patient. In alternative examples, system 10 may be implemented in non-human patients, e.g., primates, canines, equines, pigs, bovines, ovines, and felines. These other animals may undergo clinical or research therapies that may benefit from the subject matter of this disclosure.
In one embodiment, the struts 62 may be displaced distally—relative to a mid-axis of the lead 18—by employing a deployment member (not shown) that causes both distal-ward movement and expansive displacement of the struts 62 into the expanded state. Other deployment mechanisms may include pneumatic activation (fluid or gas activated), or direct connection via rods, or any other type of proximally applied torque that causes force transfer to deploy the struts 62.
According to one exemplary embodiment, the lead anchoring mechanism 60 is made from a super-elastic material. The struts 62 may be formed from a tubular collar with material being removed to form two or more expandable struts 62.
The lead 18 in
Although the canted distal portion 64 is shown in conjunction with the anchoring mechanism 60, it should be noted that alternative embodiments of the lead 18 may simply include the canted distal portion 64 without the anchoring mechanism 60.
In
Electrode 32 may be attached to the lead 18 overlying a portion of lead anchoring mechanism 70. In this mounting configuration, the electrode 32 may be oriented to direct the field of the stimulation energy in a pre-determined direction at the implant location.
In one embodiment, anchoring mechanism 70 may include a mesh-like structure having pores that permit ingrowth of tissue that affixes to the anchoring mechanism. In other embodiments, the anchoring mechanism 70 may include a bioreactive adhesion layer (not shown) such as that described in the US Patent Application No. 2009/0270962, with the bioreactive adhesion layer being coupled to the surface of the anchoring mechanism 70. In such an embodiment, a cover (not shown) may be utilized to seal off the bioreactive adhesion layer from the external environment until the anchoring mechanism is situated at an appropriate implant site.
The lead 18 is implanted in a region that is underneath the sternum and within the mediastinum space. The mediastinum space may include the region that is posterior to the sternum and anterior to the pericardial sac from the xiphoid to the manubrium and bounded laterally on the left and right by the internal thoracic arteries. A lead implanted in the substernal space may provide a stimulation therapy, such as a pacing therapy (including anti-tachy pacing, post-shock pacing, chronic pacing) or a defibrillation therapy or both.
A delivery system such as that disclosed in U.S. Patent Application No. 61/820,014, “Systems And Methods For Implanting A Medical Electrical Lead Within A Substernal Space” which is hereby incorporated by reference in its entirety, may be utilized to implant the lead. When used, the delivery system is navigated into the substernal space through an access point on the patient (202). The navigation of the delivery system to the appropriate location may be aided by various navigation aids discussed in the 61/820,014 application, including: a radiopaque marker that is visualized through fluoroscopy, signals obtained from the distal end of the delivery system body, and a directional indicator on the delivery system. Again, the access point may be any location on the tissue of the patient 12 where an incision is made to provide access into the substernal space.
At task 204, a distal end of the lead is navigated to the implantation site within the substernal space. The lead body may extend from a stimulation therapy generating device, such as device 14, that is positioned subcutaneously, such as at the left mid-axillary of the patient, and tunneled toward the xiphoid process. The navigation of the lead from the xiphoid process into the substernal space may be performed such that the distal end of the lead is directed toward the jugular notch from the xiphoid process in a generally axial direction.
The distal end of the lead is positioned within the substernal space at a location over a cardiac silhouette of the ventricle as observed via fluoroscopy. In particular, the electrodes may be oriented towards a target stimulation site (206). In one example, the desired orientation of the electrode may be achieved by orienting an anchoring mechanism that is coupled to the lead in a direction that causes the electrode to be positioned in a direction towards the target stimulation site. For example, the electrode may be formed integrally with an anchoring mechanism such as that described in
At task 208, the lead is anchored to tissue surrounding the implant environment. The lead may be anchored at the distal end, proximate to the distal end or any other location along the length of the lead between the access point into the xiphoid process and the distal end of the lead. In doing so, the portion of the lead within the substernal space is anchored to prevent dislodgment of the lead.
In some embodiments, the anchoring mechanism may be configured in a first retracted configuration during the navigation of the lead and re-configured into a second expanded configuration when the lead is released within the substernal space. In other embodiments, the anchoring mechanism is retracted from an interior portion of the lead. Additionally, the lead body may be sutured at or near the xiphoid process to fixedly couple the lead.
At task 210, the delivery system is retracted from the patient after the lead has been guided to the implant site.
As described herein, anchoring devices, systems and methods in accordance with various embodiments are provided that facilitate implantation and stabilization of a lead in the substernal space. In alternative implementations, the devices, systems and methods may be utilized for lead implantation and fixation in locations other than the substernal space including but not limited to the aforementioned extra-pericardial space.
Various examples have been described. It is contemplated that the features described in the different embodiments may be combined to create additional embodiments. All such disclosed and other examples are within the scope of the following claims.
This application is a continuation of U.S. patent application Ser. No. 16/214,882, entitled “DEVICES AND TECHNIQUES FOR ANCHORING AN IMPLANTABLE MEDICAL DEVICE” and filed on Dec. 10, 2018, which is a divisional of U.S. patent application Ser. No. 14/257,462, entitled “DEVICES AND TECHNIQUES FOR ANCHORING AN IMPLANTABLE MEDICAL DEVICE” and filed on Apr. 21, 2014, which claims the benefit of priority from U.S. Provisional Application Ser. No. 61/820,024, entitled “DEVICES AND TECHNIQUES FOR ANCHORING AN IMPLANTABLE MEDICAL DEVICE,” and filed on May 6, 2013, the entire content of each of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4030509 | Heilman et al. | Jun 1977 | A |
4146037 | Flynn et al. | Mar 1979 | A |
4270549 | Heilman | Jun 1981 | A |
4280510 | O'Neill | Jul 1981 | A |
4291707 | Heilman et al. | Sep 1981 | A |
4437475 | White | Mar 1984 | A |
4512351 | Pohndorf | Apr 1985 | A |
4538624 | Tarjan | Sep 1985 | A |
4765341 | Mower et al. | Aug 1988 | A |
4832687 | Smith, III | May 1989 | A |
5036854 | Schollmeyer et al. | Aug 1991 | A |
5125904 | Lee | Jun 1992 | A |
5176135 | Fain et al. | Jan 1993 | A |
5203348 | Dahl et al. | Apr 1993 | A |
5255691 | Otten | Oct 1993 | A |
5255692 | Neubauer et al. | Oct 1993 | A |
5273053 | Pohndorf | Dec 1993 | A |
5300106 | Dahl et al. | Apr 1994 | A |
5312355 | Lee | May 1994 | A |
5441504 | Pohndorf et al. | Aug 1995 | A |
5456699 | Armstrong | Oct 1995 | A |
5476493 | Muff | Dec 1995 | A |
5509924 | Paspa et al. | Apr 1996 | A |
5613953 | Pohndorf | Mar 1997 | A |
5944732 | Raulerson et al. | Aug 1999 | A |
5951518 | Licata et al. | Sep 1999 | A |
6032079 | KenKnight et al. | Feb 2000 | A |
6104957 | Alo et al. | Aug 2000 | A |
6122552 | Tockman et al. | Sep 2000 | A |
6159198 | Gardeski et al. | Dec 2000 | A |
6228052 | Pohndorf | May 2001 | B1 |
6324414 | Gibbons et al. | Nov 2001 | B1 |
6415187 | Kuzma et al. | Jul 2002 | B1 |
6445954 | Olive et al. | Sep 2002 | B1 |
6544247 | Gardeski et al. | Apr 2003 | B1 |
6730083 | Freigang et al. | May 2004 | B2 |
6733500 | Kelley et al. | May 2004 | B2 |
6749574 | O'Keefe | Jun 2004 | B2 |
6770070 | Balbierz | Aug 2004 | B1 |
6772014 | Coe et al. | Aug 2004 | B2 |
6836687 | Kelley et al. | Dec 2004 | B2 |
6868291 | Bonner et al. | Mar 2005 | B1 |
6887229 | Kurth | May 2005 | B1 |
6999819 | Swoyer et al. | Feb 2006 | B2 |
7033326 | Pianca et al. | Apr 2006 | B1 |
7069083 | Finch et al. | Jun 2006 | B2 |
7117039 | Manning et al. | Oct 2006 | B2 |
7195637 | Mika | Mar 2007 | B2 |
7218970 | Ley et al. | May 2007 | B2 |
7229450 | Chitre et al. | Jun 2007 | B1 |
7288096 | Chin | Oct 2007 | B2 |
7316667 | Lindstrom et al. | Jan 2008 | B2 |
7322960 | Yamamoto et al. | Jan 2008 | B2 |
7369899 | Malinowski et al. | May 2008 | B2 |
7389134 | Karicherla et al. | Jun 2008 | B1 |
7450997 | Pianca et al. | Nov 2008 | B1 |
7499758 | Cates et al. | Mar 2009 | B2 |
7539542 | Malinowski | May 2009 | B1 |
7627375 | Bardy et al. | Dec 2009 | B2 |
7655014 | Ko et al. | Feb 2010 | B2 |
7736330 | Bardy | Jun 2010 | B2 |
7765014 | Eversull et al. | Jul 2010 | B2 |
7837671 | Eversull et al. | Nov 2010 | B2 |
7846088 | Ness | Dec 2010 | B2 |
7890191 | Rutten et al. | Feb 2011 | B2 |
7908015 | Lazeroms et al. | Mar 2011 | B2 |
7930040 | Kelsch et al. | Apr 2011 | B1 |
7983765 | Doan | Jul 2011 | B1 |
8060207 | Wallace et al. | Nov 2011 | B2 |
8065020 | Ley et al. | Nov 2011 | B2 |
8066702 | Rittman, III et al. | Nov 2011 | B2 |
8090451 | Tyson, Jr. | Jan 2012 | B2 |
8155755 | Flynn et al. | Apr 2012 | B2 |
8157813 | Ko et al. | Apr 2012 | B2 |
8260436 | Gerber et al. | Sep 2012 | B2 |
8280527 | Eckerdal et al. | Oct 2012 | B2 |
8340779 | Harris et al. | Dec 2012 | B2 |
8355786 | Malinowski | Jan 2013 | B2 |
8386052 | Harris et al. | Feb 2013 | B2 |
8435208 | Bardy | May 2013 | B2 |
8442620 | Silipo et al. | May 2013 | B2 |
8452421 | Thenuwara et al. | May 2013 | B2 |
8478424 | Tronnes | Jul 2013 | B2 |
8478426 | Barker | Jul 2013 | B2 |
8594809 | Yang et al. | Nov 2013 | B2 |
8886311 | Anderson et al. | Nov 2014 | B2 |
11433232 | Thompson-Nauman et al. | Sep 2022 | B2 |
20020049485 | Smits | Apr 2002 | A1 |
20020120294 | Kroll | Aug 2002 | A1 |
20030114908 | Flach | Jun 2003 | A1 |
20030220677 | Doan et al. | Nov 2003 | A1 |
20040059348 | Geske et al. | Mar 2004 | A1 |
20040102829 | Bonner et al. | May 2004 | A1 |
20040210293 | Bardy et al. | Oct 2004 | A1 |
20040230279 | Cates et al. | Nov 2004 | A1 |
20040230281 | Heil et al. | Nov 2004 | A1 |
20040230282 | Cates et al. | Nov 2004 | A1 |
20040236396 | Coe et al. | Nov 2004 | A1 |
20050049663 | Harris et al. | Mar 2005 | A1 |
20050131505 | Yokoyama | Jun 2005 | A1 |
20050288758 | Jones et al. | Dec 2005 | A1 |
20060041295 | Okypka | Feb 2006 | A1 |
20060116746 | Chin | Jun 2006 | A1 |
20060122676 | Ko et al. | Jun 2006 | A1 |
20060247753 | Wenger et al. | Nov 2006 | A1 |
20060253181 | Schulman et al. | Nov 2006 | A1 |
20070100409 | Worley et al. | May 2007 | A1 |
20070208402 | Helland et al. | Sep 2007 | A1 |
20070249992 | Bardy | Oct 2007 | A1 |
20080046056 | O'Connor | Feb 2008 | A1 |
20080243219 | Malinowski et al. | Oct 2008 | A1 |
20080269716 | Bonde et al. | Oct 2008 | A1 |
20090157091 | Buysman | Jun 2009 | A1 |
20090171376 | Burton et al. | Jul 2009 | A1 |
20090222021 | Chang | Sep 2009 | A1 |
20090259282 | Williams et al. | Oct 2009 | A1 |
20090259283 | Brandt et al. | Oct 2009 | A1 |
20090264780 | Schilling | Oct 2009 | A1 |
20090270962 | Yang et al. | Oct 2009 | A1 |
20100016935 | Strandberg et al. | Jan 2010 | A1 |
20100030227 | Kast et al. | Feb 2010 | A1 |
20100030228 | Havel | Feb 2010 | A1 |
20100056858 | Mokelke et al. | Mar 2010 | A1 |
20100094252 | Wengreen et al. | Apr 2010 | A1 |
20100012519 | Bonner et al. | May 2010 | A1 |
20100113963 | Smits et al. | May 2010 | A1 |
20100137879 | Ko et al. | Jun 2010 | A1 |
20100152747 | Padiy et al. | Jun 2010 | A1 |
20100152798 | Sanghera et al. | Jun 2010 | A1 |
20100211064 | Mahapatra et al. | Aug 2010 | A1 |
20100217298 | Bardy | Aug 2010 | A1 |
20100217301 | Bardy | Aug 2010 | A1 |
20100241185 | Mahapatra et al. | Sep 2010 | A1 |
20100249696 | Bardy | Sep 2010 | A1 |
20100305428 | Bonner et al. | Dec 2010 | A1 |
20100318098 | Lund et al. | Dec 2010 | A1 |
20110009933 | Barker | Jan 2011 | A1 |
20110224680 | Barker | Sep 2011 | A1 |
20110224681 | McDonald | Sep 2011 | A1 |
20110257660 | Jones et al. | Oct 2011 | A1 |
20110125163 | Rutten et al. | Nov 2011 | A1 |
20120016377 | Geroy | Jan 2012 | A1 |
20120029335 | Sudam | Feb 2012 | A1 |
20120078266 | Tyson, Jr. | Mar 2012 | A1 |
20120089153 | Chistopherson et al. | Apr 2012 | A1 |
20120097174 | Spotnitz et al. | Apr 2012 | A1 |
20120191106 | Ko et al. | Jul 2012 | A1 |
20120209283 | Zhu | Aug 2012 | A1 |
20120209285 | Barker et al. | Aug 2012 | A1 |
20130041345 | Kilcoin et al. | Feb 2013 | A1 |
20130103049 | Bonde | Apr 2013 | A1 |
20130158564 | Harris et al. | Jun 2013 | A1 |
20130238067 | Baudino | Sep 2013 | A1 |
20140330248 | Thompson-Nauman et al. | Nov 2014 | A1 |
20140330287 | Thompson-Nauman et al. | Nov 2014 | A1 |
Number | Date | Country |
---|---|---|
2001023035 | Apr 2001 | WO |
2004073506 | Sep 2004 | WO |
Entry |
---|
US 5,690,647 A, 11/1997, Fogarty et al. (withdrawn) |
Avogadros Lab Supply Inc., Catalog; Scoopula with Beech Wood Handle, can be found on-line at http://www. avogadro-lab-supply.com/search.php, accessed Oct. 6, 2013, 1 page. |
Baudoin et al., The Superior Epigastric Artery Does Not Pass Through Larrey's Space (Trigonum Sternocostale) Surgical Radial Anal(2003), 25: 259-262. |
Bielefeld et al., “Thoracoscopic Placement of Implantable Cardioverter-Defibrillator Patch Leads in Sheep”, Circulation; Nov. 1993, vol. 88, No. 5, Part 2; 5 pages. |
Bolling et al., “Automatic Internal Cardioverter Defibrillator: A Bridge to Heart Transplantation”, Heart Lung Transplantation, Abstract Only, Jul.-Aug. 1991, 1 page. |
Cigna et al., A New Technique for Substernal Colon Transposition with A Breast Dissector: Report of 39 Cases, Journal of Plastic, Reconstructive and Aesthetic Surgery, 2006:59, 4 pages. |
Damiano, “Implantation of Cardioverter Defibrillators in the Post-Sternotomy Patient”, The Annals of Thoracic Surgery, 1992; 53: pp. 978-983. |
Ely et al., “Thoracoscopic Implantation of the Implantable Cardioverter Defibrillator”, Minimally Invasive Techniques; (Can be found on the World-Wide Web at http://chestioumal.chestpubs.org on May 6, 2013); dated Jan. 1993; 2 pages. |
Frame et al., “Long-Term Stability of Defibrillation Thresholds with lntrapericardial Defibrillator Patches”, Pacing and Clinical Electrophysiology, Jan. 1993, Part II, vol. 16, 6 pages. |
Ganapathy et al., “Implantable Device to Monitor Cardiac Activity with Sternal Wires,” Pace, vol. 37, Dec. 2014, 11 pages. |
Guenther et al., “Substernal Lead Implantation: A Novel Option to Manage DFT Failsure in S-ICD patients,” Clinical Research Cardiology, Published On-line Oct. 2, 2014, 3 pages. |
Harman et al., “Differences in the Pathological Changes in Dogs' Hearts After Defibrillation with Extrapericardial Paddles and Implanted Defibrillator Electrodes”, Journal of Pacing and Clinical Electrophysiology, Feb. 1991; vol. 14; Part 2; 5 pages. |
Haydin et al., “Subxiphoid Approach to Epicardial Implantation of Implantable Cardioverter Defibrillators in Children”, PACE, vol. 36, Aug. 2013, 5 pages. |
Preliminary Report on Patentability from International Application No. PCT/US2014/035774, dated Nov. 10, 2015, 7 pp. |
Search Report and Written from Application No. PCT/US2014/035774, dated Aug. 21, 2014, 10 pp. |
Karwande et al., Bilateral Anterior Thoracotomy for Automatic Implantable Cardioverter Defibrillator Placement in Patients with Previous Sternotomy, The Annals of Thoracic Surgery; Oct. 1992; 54(4); 3 pages. |
Lawrie et al., “Right Mini-Thoracotomy: An Adjunct to Left Subcostal Automatic Implantable Cardioverter Defibrillator Implantation”, The Annals of Thoracic Surgery; 1989; 47; 4 pages. |
Lemmer, “Defibrillator Patch Constriction, Letter to the Editor”, The Annals of Thoracic Surgery, 1996, 1 page. |
Medtronic, Inc., 6996SQ Subcutaneous, Unipolar Lead with Defibrillation Coil Electrode, Technical Manual, May 10, 2002, 22 pp. |
Medtronic, Inc., 6996T Tunneling Tool, Technical Manual, 12 pp. (2011). Applicant points out in accordance with MPEP 609.04(a) that the 2011 year of publication is sufficiently earlier than the effective U.S. filing date of the present application, and any foreign pIiority date that the paIticular month of publication is not in issue. |
Mitchell et al., “Experience with an Implantable Tiered Therapy Device Incorporating Antitachycardia Pacing and Cardioverter/Defibrillator Therapy”, Thoracic and Cardiovascular Surgery, Abstract Only, Mar. 1993, 1 page. |
Molina et al, “An Epicardial Subxiphoid Implantable Defibrillator Lead: Superior Effectiveness After Failure of Slndard Implants”, From the Department of Surgery, Division of Cardiovascular and Thoracic Surgery and the Department of Medicine, Cardiac Arrhymthmia Center, University of Minnesota Medical School, Minneapolis, Minnesota, Pace, vol. 27, Nov. 2004, 7 pages. |
Obadia et al., “Thoracoscopic Approach to Implantable Cardioverter Defibrillator Patch Electrode Implantation”, Pacing and Clinical Electrophysiology; Jun. 1996; vol. 19; 6 pages. |
Obadia, et al., “New Approach for Implantation of Automatic Defibrillators Using Videothoracoscopy”, Journal Ann Cardiel Angeiol (Paris); Sep. 1994; 43 (7) Abstract Only, 1 page. |
Pebax Product Brochure, accessed from http://www.pebax.com/export/sites/pebax/.content/medias/downloads/literature/pebax-product-range-brochure.pdf on or before Aug. 17, 2014, archived at https://web.archive.org/web/20151223131256/http://www.pebax.com/export/sites/pebax/.content/medias/downloads/literature/pebax-product-range-brochure.pdf on Dec. 23, 2015, 14 pp. |
Piccione, et al., “Erosion of Extrapericardiallmplantable Cardioverter Defibrillator Patch Through the Gastic Fundus with Fistulous Tract Information”, Cardiology in Review; 2006; 14, e21-e23 pages. |
Prosecution History from U.S. Appl. No. 14/257,462, dated Mar. 1, 2017 through Nov. 19, 2018, 88 pp. |
Prosecution History from U.S. Appl. No. 16/214,882, now issued U.S. Pat. No. 11,433,232, dated Mar. 10, 2021 through May 4, 2022, 93 pp. |
Quigley et al., “Migration of an Automatic Implantable Cardioverter-Defibrillator Patch Causing Massive Hemothorax”, Journal Texas Heart Institute, Nov. 1, 1996; vol. 23, 4 pages. |
Shapira, et al., A Simplied Method for Implantation of Automatic Cardioverter Defibrillator in Patients with Previous Cardiac Surgery, Pacing and Clinical Electrophysiology, Part I, Jan. 1993, vol. 16; 6 pages. |
Steinke et al., Subepicardial Infarction, Myocardial Impression, and Ventricular Penetration by Sutureless Electrode and Leads, Chest; 70: Jul. 1, 1976, 2 pages. |
Tung et al., “Minimal Invasive Extra Cardiac Placement of High Voltage Defibrillator Leads,” Poster 3: S200 Abstract, PO-3-4; St. Paul Hospital, Vancouver, British Columbia, Canada, Oct. 2007, 1 pp. |
Tung et al., “Minimal Invasive Extra Cardiac Placement of High Voltage Defibrillator Leads,” Poster S200 Abstract, PO-3-4; St. Paul Hospital, Vancouver, British Columbia, Canada, Oct. 2007, 1 pp. |
Vyhmeister et al., “Simple Approach for Extrapericardial Placement of Defibrillator Patches via Median Sternotomy”, The Annals of Thoracic Surgery; 1994; 57:4 pages. |
Number | Date | Country | |
---|---|---|---|
20220409882 A1 | Dec 2022 | US |
Number | Date | Country | |
---|---|---|---|
61820024 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14257462 | Apr 2014 | US |
Child | 16214882 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16214882 | Dec 2018 | US |
Child | 17815518 | US |