Within the spine, the intervertebral disc functions to stabilize and distribute forces between vertebral bodies. The intervertebral disc comprises a nucleus pulposus which is surrounded and confined by the annulus fibrosis. Intervertebral discs are prone to injury and degeneration. For example, herniated discs typically occur when normal wear, or exceptional strain, causes a disc to rupture. Degenerative disc disease typically results from the normal aging process, in which the tissue gradually loses its natural water and elasticity, causing the degenerated disc to shrink and possibly rupture.
Intervertebral disc injuries and degeneration are frequently treated by replacing or augmenting the existing disc material. Current methods and instrumentation used for treating the disc require a relatively large hole to be cut in the disc annulus to allow introduction of the implant. After the implantation, the large hole in the annulus must be plugged, sewn closed, or other wise blocked to avoid allowing the implant to be expelled from the disc. Besides weakening the annular tissue, creation of the large opening and the subsequent repair adds surgical time and cost. A need exists for devices, instrumentation, and methods for implanting an intervertebral implant using minimally invasive surgical techniques.
In one embodiment, a method of augmenting a nucleus pulposus of an intervertebral disc comprises forming a first opening in an annulus of the intervertebral disc and forming a second opening in the annulus of the intervertebral disc. The method further comprises providing a space creation instrument including an expandable spacing device and introducing the spacing device through the first opening and into the nucleus pulposus. The method further comprises introducing a material delivery instrument through the second opening and into the nucleus pulposus and expanding the spacing device to create a space within the nucleus pulposus. The method also comprises injecting a biocompatible material from the material delivery instrument and into the space within the nucleus pulposus.
In another embodiment, a system for augmenting a nucleus of an intervertebral disc comprises a first cannula adapted for accessing a nucleus pulposus of the intervertebral disc and a second cannula adapted for accessing the nucleus pulposus of the intervertebral disc. The system further comprises a space creation instrument adapted to be received through the first cannula and including a spacing portion adapted to create a space in the nucleus pulposus of the intervertebral disc. The system further comprises a material delivery instrument adapted to be received through the second cannula and to carry a biocompatible material. The space created in the nucleus pulposus of the intervertebral disc with the space creation instrument is adapted to receive the biomaterial delivered to the space by the material delivery instrument through the second cannula.
In another embodiment, a method for treating a nucleus pulposus of an intervertebral disc comprising creating a first opening to access the intervertebral disc and creating a second opening to access the intervertebral disc. The method further comprises inserting a first space creation instrument having a first spacing device through the first opening and into the nucleus pulposus of the intervertebral disc and inserting a second space creation instrument having a second spacing device through the second opening to access the intervertebral disc. The method further comprises injecting a first biomaterial into the first spacing device to expand the first spacing device and injecting a second biomaterial into the second spacing device to expand the second spacing device. The expansion of the first and second spacing devices occur without removing a portion of the nucleus pulposus.
Additional embodiments are included in the attached drawings and the description provided below.
The present disclosure relates generally to devices, methods and apparatus for augmenting an intervertebral disc, and more particularly, to methods and instruments for minimally invasive access procedures. For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments, or examples, illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any alterations and further modifications in the described embodiments, and any further applications of the principles of the invention as described herein are contemplated as would normally occur to one skilled in the art to which the invention relates.
Referring first to
Referring now to
In this embodiment, the nucleus is accessed using a posterior bilateral approach. In alternative embodiments, the annulus may be accessed with a lateral approach, an anterior approach, a trans-pedicular/vertebral endplate approach or any other suitable nucleus accessing approach. Although a bilateral approach is described, a unilateral or multi-lateral approach may be suitable. In another alternative embodiment, the nucleus 24 may be accessed through one the of vertebral bodies 12, 14 and through its respective endplate 16, 18. Thus, a suitable bilateral approach to nucleus augmentation may involve a combination approach including an annulus access opening and an endplate access opening.
It is understood that any cannulated instrument including a guide needle or a trocar sleeve may be used to guide the accessing instrument.
In this embodiment, the natural nucleus, or what remains of it after natural disease or degeneration, may remain intact with no tissue removed. In alternative embodiments, partial or complete nucleotomy procedures may be performed.
As shown in
In an alternative embodiment, the spacing portion may be mechanical instrument such as a probe or a tamp. A mechanically actuated deformable or expandable instrument which may deform via hinges, springs, shape memory material, etc. may also be used as a spacing portion. In some embodiments, the passage of the spacing portion may be aided with a more rigid guide needle or cannula which will accompany the spacing portion through the cannula and the annulus opening. This guide may be removed after the spacing portion is located within the nucleus 24.
As also shown in
Referring now to
As the spacing portion 40 is gradually inflated, a space 46 is created in the nucleus tissue with the surrounding nucleus tissue becoming displaced or stretched. The inflation may also cause the intradiscal pressure to increase. Both the pressure increase and the direct expansion of the portion 40 may cause the endplates 16, 18 to distract. A pressure gauge and/or a pressure limiter may be used to avoid over inflation or excessive injection.
In an alternative embodiment, the space creating portion may be disposed within the annular opening 33 such that as the space creating portion is expanded, the opening becomes stretched or dilated by the space creating device.
After the space 46 is created, the space creating portion 40 is deflated leaving the space 46 to be filled by a biocompatible material 48 injected from the delivery instrument 42. The injection of the material 48 may be facilitated by using a pressurization device and monitoring gauge. The material 48 may be injected after the space creating portion 40 has been deflated and removed or may be injected while the space creating portion 40 is being deflated and removed. For example, the biomaterial 48 may become increasingly pressurized while the pressure in the space creating portion 40 is lowered. In some procedures, the material 48 may be injected before the space creating portion 40 is removed.
Examples of biocompatible materials 48 which may be used for disc augmentation include natural or synthetic and resorbable or non-resorbable materials. Natural materials include various forms of collagen that are derived from collagen-rich or connective tissues such as an intervertebral disc, fascia, ligament, tendon, skin, or demineralized bone matrix. Material sources include autograft, allograft, xenograft, or human-recombinant origin materials. Natural materials also include various forms of polysaccharides that are derived from animals or vegetation such as hyaluronic acid, chitosan, cellulose, or agar. Other natural materials include other proteins such as fibrin, albumin, silk, elastin and keratin. Synthetic materials include various implantable polymers or hydrogels such as silicone, polyurethane, silicone-polyurethane copolymers, polyolefin, polyester, polyacrylamide, polyacrylic acid, polyvinyl alcohol, polyethylene oxide, polyethylene glycol, polylactide, polyglycolide, poly(lactide-co-glycolide), poly(dioxanone), poly(.epsilon.-caprolactone), poly(hydroxylbutyrate), poly(hydroxylvalerate), tyrosine-based polycarbonate, polypropylene fumarate or combinations thereof. Suitable hydrogels may include poly(vinyl alcohol), poly(acrylic acids), poly(methacrylic acids), copolymers of acrylic acid and methacrylic acid, poly(acrylonitrile-acrylic acid), polyacrylamides, poly(N-vinyl-2-pyrrolidone), polyethylene glycol, polyethyleneoxide, polyacrylates, poly(2-hydroxy ethyl methacrylate), copolymers of acrylates with N-vinyl pyrrolidone, N-vinyl lactams, polyurethanes, polyphosphazenes, poly(oxyethylene)-poly(oxypropylene) block polymers, poly(oxyethylene)-poly(oxypropylene) block polymers of ethylene diamine, poly(vinyl acetate), and sulfonated polymers, polysaccharides, proteins, and combinations thereof.
The selected biocompatible material may be curable or polymerizable in situ. The biocompatible material may transition from a flowable to a non-flowable state shortly after injection. One way to achieve this transition is by adding a crosslinking agent to the biomaterial before, during, or after injection. The biocompatible material in its final state may be load-bearing, partially load-bearing, or simply tissue augmenting with minimal or no load-bearing properties.
Proteoglycans may also be included in the injectable biocompatible material 48 to attract and/or bind water to keep the nucleus 24 hydrated. Regenerating agents may also be incorporated into the biocompatible material. An exemplary regenerating agent includes a growth factor. The growth factor can be generally suited to promote the formation of tissues, especially of the type(s) naturally occurring as components of an intervertebral disc. For example, the growth factor can promote the growth or viability of tissue or cell types occurring in the nucleus pulposus, such as nucleus pulposus cells and chondrocytes, as well as space filling cells, such as fibroblasts and connective tissue cells, such as ligament and tendon cells. Alternatively or in addition, the growth factor can promote the growth or viability of tissue types occurring in the annulus fibrosis, as well as space filling cells, such as fibroblasts and connective tissue cells, such as ligament and tendon cells. An exemplary growth factor can include transforming growth factor-β (TGF-β) or a member of the TGF-β superfamily, fibroblast growth factor (FGF) or a member of the FGF family, platelet derived growth factor (PDGF) or a member of the PDGF family, a member of the hedgehog family of proteins, interleukin, insulin-like growth factor (IGF) or a member of the IGF family, colony stimulating factor (CSF) or a member of the CSF family, growth differentiation factor (GDF), cartilage derived growth factor (CDGF), cartilage derived morphogenic proteins (CDMP), bone morphogenetic protein (BMP), or any combination thereof. In particular, an exemplary growth factor includes transforming growth factor P protein, bone morphogenetic protein, fibroblast growth factor, platelet-derived growth factor, insulin-like growth factor, or any combination thereof.
Therapeutic or biological agents may also be incorporated into the biomaterial. An exemplary therapeutic or biological agent can include a soluble tumor necrosis factor α-receptor, a pegylated soluble tumor necrosis factor α-receptor, a monoclonal antibody, a polyclonal antibody, an antibody fragment, a COX-2 inhibitor, a metalloprotease inhibitor, a glutamate antagonist, a glial cell derived neurotrophic factor, a B2 receptor antagonist, a substance P receptor (NK1) antagonist, a downstream regulatory element antagonistic modulator (DREAM), iNOS, a inhibitor of tetrodotoxin (TTX)-resistant Na+-channel receptor subtypes PN3 and SNS2, an inhibitor of interleukin, a TNF binding protein, a dominant-negative TNF variant, Nanobodies™, a kinase inhibitor, or any combination thereof.
These regenerating, therapeutic, or biological agents may promote healing, repair, regeneration and/or restoration of the disc, and/or facilitate proper disc function. Additives appropriate for use in the claimed invention are known to persons skilled in the art, and may be selected without undue experimentation.
After the biocompatible material 48 is injected, the delivery instrument 42 may be removed from the cannula 34. If the selected biocompatible material 48 is curable in situ, the instrument 42 may be removed during or after curing to minimize leakage. The openings 33, 35 may be small enough, for example less than 3 mm, that they will close or close sufficiently that the injected biocompatible material 48 will remain within the annulus. The use of an annulus closure device such as a suture, a plug, or a material sealant is optional. The cannulae 30, 34 may be removed and the minimally invasive surgical incision closed.
Any of the steps of the method including expansion of the space creating portion 40 and filling the space 46 may be monitored and guided with the aid of imaging methods such as fluoroscopy, x-ray, computed tomography, magnetic resonance imaging, and/or image guided surgical technology such as a Stealth Station™ surgical navigation system (Medtronic, Inc., Minneapolis, Minn.) or a BrainLab system (Heimstetten, Germany).
In an alternative embodiment, the space creating portion may be detachable from the catheter portion and may remain in the nucleus 24 as an implant. In this alternative, the biocompatible material may be injected directly into the space creating portion.
Referring now to
As shown in
Referring now to
As shown in
Referring now to
Referring now to
As shown in
Referring now to
As shown in
In an alternative embodiment, a delivery instrument may be inserted through the spacing portions 116, 118 to deposit a biocompatible material directly into the nucleus 24 without creating an additional space within the nucleus. In this embodiment, the spacing portions serve to block migration or expulsion of the biocompatible material through the annulus, however the material may be more dispersed within the nucleus rather than concentrated in a pre-formed space.
Referring now to
Although the instruments and implants described are suitable for intervertebral applications, it is understood that the same implants and instruments may be modified for use in other regions including an interspinous region or a bone cavity. Furthermore, the instruments and implants of this disclosure may be incorporated in certain aspects into an intervertebral prosthesis device such as a motion preserving artificial disc.
Although only a few exemplary embodiments have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this disclosure. Accordingly, all such modifications and alternative are intended to be included within the scope of the invention as defined in the following claims. Those skilled in the art should also realize that such modifications and equivalent constructions or methods do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure. It is understood that all spatial references, such as “horizontal,” “vertical,” “top,” “upper,” “lower,” “bottom,” “left,” “right,” “anterior,” “posterior,” “superior,” “inferior,” “upper,” and “lower” are for illustrative purposes only and can be varied within the scope of the disclosure. In the claims, means-plus-function clauses are intended to cover the elements described herein as performing the recited function and not only structural equivalents, but also equivalent elements.
This application is a division of copending U.S. application Ser. No. 11/412,272 filed on Apr. 27, 2006, such copending application being hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3875595 | Froning | Apr 1975 | A |
4772287 | Ray et al. | Sep 1988 | A |
4863477 | Monson | Sep 1989 | A |
4904260 | Ray et al. | Feb 1990 | A |
5047055 | Bao et al. | Sep 1991 | A |
5146933 | Boyd | Sep 1992 | A |
5171280 | Baumgartner | Dec 1992 | A |
5192326 | Bao et al. | Mar 1993 | A |
5331975 | Bonutti | Jul 1994 | A |
5342298 | Michaels et al. | Aug 1994 | A |
5344459 | Swartz | Sep 1994 | A |
5549679 | Kuslich | Aug 1996 | A |
5562614 | O'Donnell | Oct 1996 | A |
5562736 | Ray et al. | Oct 1996 | A |
5571189 | Kuslich | Nov 1996 | A |
5645597 | Krapiva | Jul 1997 | A |
5705780 | Bao | Jan 1998 | A |
5755797 | Baumgartner | May 1998 | A |
5824093 | Ray et al. | Oct 1998 | A |
5888220 | Felt et al. | Mar 1999 | A |
5919235 | Husson et al. | Jul 1999 | A |
5928284 | Mehdizadeh | Jul 1999 | A |
6022376 | Assell | Feb 2000 | A |
6132465 | Ray et al. | Oct 2000 | A |
6140452 | Felt et al. | Oct 2000 | A |
6165218 | Husson et al. | Dec 2000 | A |
6187048 | Milner et al. | Feb 2001 | B1 |
6231609 | Mehdizadeh | May 2001 | B1 |
6248131 | Felt et al. | Jun 2001 | B1 |
6264695 | Stoy | Jul 2001 | B1 |
6375682 | Fleischmann et al. | Apr 2002 | B1 |
6402750 | Atkinson et al. | Jun 2002 | B1 |
6419704 | Ferree | Jul 2002 | B1 |
6482234 | Weber et al. | Nov 2002 | B1 |
6533817 | Norton et al. | Mar 2003 | B1 |
6607544 | Boucher et al. | Aug 2003 | B1 |
6645248 | Casutt | Nov 2003 | B2 |
6692495 | Zacouto | Feb 2004 | B1 |
6692528 | Ward et al. | Feb 2004 | B2 |
6712853 | Kuslich | Mar 2004 | B2 |
6726721 | Stoy et al. | Apr 2004 | B2 |
6733533 | Lozier | May 2004 | B1 |
6764514 | Li et al. | Jul 2004 | B1 |
6783546 | Zucherman et al. | Aug 2004 | B2 |
6835205 | Atkinson et al. | Dec 2004 | B2 |
6849092 | Van Dyke et al. | Feb 2005 | B2 |
6893465 | Huang | May 2005 | B2 |
6958077 | Suddaby | Oct 2005 | B2 |
7001431 | Bao et al. | Feb 2006 | B2 |
20010004710 | Felt et al. | Jun 2001 | A1 |
20010049527 | Cragg | Dec 2001 | A1 |
20020016583 | Cragg | Feb 2002 | A1 |
20020026195 | Layne et al. | Feb 2002 | A1 |
20020049498 | Yuksel et al. | Apr 2002 | A1 |
20020059001 | Yuksel et al. | May 2002 | A1 |
20020082608 | Reiley et al. | Jun 2002 | A1 |
20020107573 | Steinberg | Aug 2002 | A1 |
20020177866 | Weikel et al. | Nov 2002 | A1 |
20030040800 | Li et al. | Feb 2003 | A1 |
20030074075 | Thomas, Jr. et al. | Apr 2003 | A1 |
20030074076 | Ferree et al. | Apr 2003 | A1 |
20030083642 | Boyd et al. | May 2003 | A1 |
20040024463 | Thomas, Jr. et al. | Feb 2004 | A1 |
20040073308 | Kuslich et al. | Apr 2004 | A1 |
20040093087 | Ferree et al. | May 2004 | A1 |
20040102774 | Trieu | May 2004 | A1 |
20040106999 | Mathews | Jun 2004 | A1 |
20040133280 | Trieu | Jul 2004 | A1 |
20040186471 | Trieu | Sep 2004 | A1 |
20040186576 | Biscup et al. | Sep 2004 | A1 |
20040210297 | Lin et al. | Oct 2004 | A1 |
20040210315 | Li et al. | Oct 2004 | A1 |
20040215342 | Suddaby | Oct 2004 | A1 |
20050055094 | Kuslich | Mar 2005 | A1 |
20050060036 | Schultz et al. | Mar 2005 | A1 |
20050090901 | Studer | Apr 2005 | A1 |
20050119662 | Reiley et al. | Jun 2005 | A1 |
20050171611 | Stoy et al. | Aug 2005 | A1 |
20050197702 | Coppes et al. | Sep 2005 | A1 |
20050203206 | Trieu | Sep 2005 | A1 |
20050209601 | Bowman et al. | Sep 2005 | A1 |
20050209602 | Bowman et al. | Sep 2005 | A1 |
20070021835 | Edidin | Jan 2007 | A1 |
Number | Date | Country |
---|---|---|
WO 2004073563 | Sep 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20090275913 A1 | Nov 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11412272 | Apr 2006 | US |
Child | 12504108 | US |