Devices for adjusting the curvature of cardiac valve structures

Information

  • Patent Grant
  • 11166818
  • Patent Number
    11,166,818
  • Date Filed
    Thursday, May 23, 2019
    6 years ago
  • Date Issued
    Tuesday, November 9, 2021
    4 years ago
Abstract
An interventional curvature device for temporarily adjusting the structure of a heart during a heart valve repair procedure in order to enhance the effectiveness of the heart valve repair procedure. The curvature device is adjustable between a collapsed configuration with a profile suitable for delivery of the device to a coronary sinus and great cardiac vein of a patient, and an expanded configuration for lodging of the device at the coronary sinus and great cardiac vein. The curvature device has a distal section that anchors within the great cardiac vein, and a proximal section that anchors within the coronary sinus. A tether is coupled to the distal end of the device and extends through the device and past the proximal end. An increase in tension in the tether increases the curvature of the device.
Description
BACKGROUND

The mitral valve controls blood flow from the left atrium to the left ventricle of the heart, preventing blood from flowing backwards from the left ventricle into the left atrium so that it is instead forced through the aortic valve for delivery of oxygenated blood throughout the body. A properly functioning mitral valve opens and closes to enable blood flow in one direction. However, in some circumstances the mitral valve is unable to close properly, allowing blood to regurgitate back into the atrium. Such regurgitation can result in shortness of breath, fatigue, heart arrhythmias, and even heart failure.


Mitral valve regurgitation has several causes. Functional mitral valve regurgitation (FMR) is characterized by structurally normal mitral valve leaflets that are nevertheless unable to properly coapt with one another and close properly due to other structural deformations of surrounding heart structures. Other causes of mitral valve regurgitation are related to defects of the mitral valve leaflets, mitral valve annulus, or other mitral valve tissues. In some circumstances, mitral valve regurgitation is a result of endocarditis, blunt chest trauma, rheumatic fever, Marfan syndrome, carcinoid syndrome, or congenital defects to the structure of the heart. Other cardiac valves, in particular the tricuspid valve, can similarly fail to properly close, resulting in undesirable regurgitation.


Heart valve regurgitation is often treated by replacing the faulty valve with a replacement valve implant or by repairing the valve through an interventional procedure. One method for repairing the regurgitant mitral valve is by delivering and deploying an interventional clip at the heart valve. Typically, the clip is deployed so as to grip the anterior and posterior leaflets of the valve. The clip thereby functions to bring the gripped leaflets closer to one another to reduce the space through which regurgitant flows can pass so that the valve can more effectively close. However, difficulties can arise related to positioning and deployment of the clip device. Often, it is difficult to properly grasp the targeted leaflets with the clip device. In particular, the leaflets of a regurgitant mitral valve are typically already malformed or overly spaced from one another, making it difficult to manipulate the clip device so as to properly grasp and maintain hold of both leaflets.


The subject matter claimed herein is not limited to embodiments that solve any disadvantages or that operate only in environments such as those described above. Rather, this background is only provided to illustrate one exemplary technology area where some embodiments described herein may be practiced.


BRIEF SUMMARY

Certain embodiments described herein are directed to devices and methods for temporarily manipulating the structure of the mitral valve during a mitral valve treatment procedure, such as a mitral valve repair or replacement procedure. In some embodiments, a retrievable curvature device is deployed so as move and/or maintain the leaflets of the mitral valve closer to one another. With the leaflets moved and/or maintained in a relatively closer position, a leaflet approximation procedure, such as the deployment and implantation of a leaflet-grasping clip, is able to proceed with more effective grasping and approximating of the leaflet tissue.


In some embodiments, the retrievable curvature device is delivered (e.g., through a transcatheter approach) to the coronary sinus (CS) and at least an adjacent portion of the great cardiac vein (GCV) of the patient. The curvature device is configured to temporarily lodge within the CS and GCV. Actuation of the curvature device causes the device to increase in curvature, which in turn increases the curvature of the CS and GCV in which the device is temporarily lodged. An increase in the curvature of the CS and GCV affects the structure of the mitral valve annulus, and functions to move the leaflets of the mitral valve annulus closer to one another and/or to maintain the leaflets close to one another.


In some embodiments, a curvature device is moveable between a collapsed configuration having a profile suitable for delivery of the device to a CS and GCV of a patient and an expanded configuration having a profile suitable for lodging of the device at the CS and GCV. The curvature device includes a distal end section having a distal anchor configured to anchor within the GCV when the device is deployed to the expanded position at the GCV, and a proximal end section having a proximal anchor configured to anchor within the CS when the device is deployed to the expanded configuration at the CS. The curvature device also includes a tether coupled to the distal end section and extending through and past the proximal end section. The tether is tensionable such that an increase in tension increases the curvature of the device and a decrease in tension lessens the curvature of the device.


In some embodiments, the curvature device is at least partially formed from a shape memory material that enables the device to self-expand to the expanded configuration when not constrained to the collapsed configuration. In some embodiments, the curvature device is at least partially formed as a balloon structure capable of being filled with a fluid to move toward the expanded configuration and withdrawn of fluid to move toward the collapsed configuration.


In some embodiments, a retrievable curvature device is included as part of an interventional system. The interventional system includes a delivery catheter having a proximal end and a distal end, and including a sheath at the distal end configured to house the curvature device to maintain the curvature device in the collapsed configuration while the curvature device is housed within the sheath. The interventional system also includes a handle coupled to the proximal end of the delivery catheter, the tether extending to the handle, the handle including a control operatively coupled to the tether to enable adjusting of tension in the tether through actuation of the control. In some embodiments, the interventional system also includes one or more control lines extending from the handle to the distal end of the delivery catheter such that tensioning of the one or more control lines acts to bend the distal end of the delivery catheter to provide steering functionality to the delivery catheter. In some embodiments, the handle also houses or otherwise includes a mechanism for proximally retracting the sheath or distally pushing the implant out.


Certain embodiments disclosed herein are directed to methods for temporarily adjusting the structure of a heart to enable more effective treatment of the heart. In some embodiments, a method includes delivering a curvature device to a coronary sinus and great cardiac vein of the heart, deploying the curvature device such that a distal end section of the curvature device lodges within the GCV and such that a proximal end section of the curvature device lodges within the CS, and tensioning a tether of the curvature device, the tether being coupled to the distal end section and passing through the proximal end section such that the tensioning causes the distal end section to bend toward the proximal end section to increase the curvature of the curvature device.


In some embodiments, the curvature device is delivered using a transjugular or transfemoral approach. In some embodiments, the method further includes releasing tension in the tether to lessen the curvature of the curvature device, and removing the curvature device from the GCV and the CS.


In some embodiments, the heart treatment procedure is a mitral valve repair procedure, such as a mitral valve leaflet approximation procedure involving the placement of a leaflet-grasping clip at the mitral valve. In certain embodiments, the mitral valve repair procedure is carried out while the curvature device is tensioned to enhance the curvature of the device and to bring the leaflets of the mitral valve closer to one another.


This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.





BRIEF DESCRIPTION OF THE DRAWINGS

In order to describe the manner in which the above-recited and other advantages and features of the invention can be obtained, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:



FIG. 1 illustrates a superior view of a human heart showing the mitral valve and other cardiac structures as viewed from the atrial side, and showing in particular the positions of the great cardiac vein (GCV) and coronary sinus (CS) relative to the mitral valve;



FIGS. 2A and 2B illustrate an exemplary curvature device that may be utilized to adjust the structure of a heart to enable more effective treatment of a mitral valve;



FIGS. 2A and 2B illustrate an exemplary curvature device that may be utilized to adjust the structure of a heart to enable more effective treatment of a mitral valve;



FIG. 3 illustrates an exemplary delivery system that may be utilized to delivery and deploy the curvature device of FIGS. 2A and 2B; and



FIGS. 4A and 4B illustrate the curvature device of FIGS. 2A and 2B in a deployed state within the GCV and CS of the heart.





DETAILED DESCRIPTION

Certain embodiments described herein are directed to devices and methods for enhancing the effectiveness of a mitral valve repair procedure by temporarily manipulating the structure of the mitral valve during deployment of a mitral valve repair device. In some embodiments, a curvature device is delivered to the coronary sinus (CS) and at least an adjacent portion of the great cardiac vein (GCV) of a patient. The curvature device is configured to temporarily lodge within the CS and GCV. Actuation of the curvature device causes the device to increase in curvature, which in turn increases the curvature of the CS and GCV in which the device is temporarily lodged. An increase in the curvature of the CS and GCV affects the structure of the mitral valve annulus, and functions to move the leaflets of the mitral valve annulus closer to one another and/or to maintain the leaflets close to one another. With the mitral valve annulus in a relatively more structurally constrained position as a result of deployment of the retrievable device, the leaflets of the mitral valve are brought closer to one another, enabling mitral valve repair procedures to proceed more effectively and efficiently.


Although many of the exemplary embodiments described herein are described in the context of constraining the mitral valve annulus during a clip placement procedure, it will be understood that similar principles may be applied to other implementations in which other interventional devices are deployed at the mitral valve and/or in which other repair procedures are performed. For example, one or more of the devices and methods described herein may be utilized in an annuloplasty procedure to aid in constraining and supporting the mitral valve annulus at a desired size and shape as the annuloplasty procedure is carried out. In another example, in some circumstances it may be desirable to utilize one or more of the embodiments described herein to adjust or support the mitral valve annulus during a replacement valve implant procedure, such as to enhance the fit of the replacement valve with the surrounding anatomical structures near the implant site. The features, components, and principles described herein may therefore be utilized in any procedure in which it is desirable to adjust or support the structure of the mitral valve annulus while the procedure is carried out.



FIG. 1 illustrates a schematic of a human heart showing a cross-sectional view of the mitral valve (“MV”) and other valves (tricuspid valve (“TV”), pulmonary valve (“PV”), aortic valve (“AV”)) and structures as viewed from the atrial side of the heart. As shown, the CS and a portion of the GCV run along the left atrioventricular groove behind the posterior leaflet of the mitral valve. The CS joins the GCV with several other cardiac veins and forms a large vein that delivers the deoxygenated blood gathered from the myocardium into the right atrium, where it joins other deoxygenated blood gathered from throughout the body. As illustrated in FIG. 1, the CS and the GCV are positioned in the same structural vicinity as the mitral valve. In addition, the CS and adjacent portions of the GCV lie substantially within the same plane as the mitral valve annulus.


As explained in more detail below, this structural relationship enables the size and shape of the mitral valve annulus to be manipulated by adjusting the curvature of the portions of the CS and GCV that are structurally associated with the mitral valve annulus. For example, an increase to the curvature of these anatomical structures, so that they curve even more toward the mitral valve, will function to bring the posterior leaflet closer to the anterior leaflet. In contrast, a decrease to the curvature of these anatomical structures, so that they curve less toward the mitral valve, will function to pull the posterior leaflet further from anterior leaflet.


The exemplary embodiments described herein may be utilized to bring the mitral valve leaflets closer together by increasing the curvatures of the CS and GCV. Typically, bringing the leaflets closer together is desirable in order to increase the effectiveness of a concurrent mitral valve repair procedure, such as by making it easier to properly grasp each leaflet of the mitral valve using a clip device. However, it will be understood that, should it be clinically desired, one or more of the embodiments described herein may also be utilized to decrease the curvature of the CS and GCV and thereby increase the distance between the posterior and anterior leaflets.



FIGS. 2A and 2B illustrate an embodiment of a curvature device 100 shown in a deployed/expanded position such as it would be when deployed within the CS and GCV, with FIG. 2B showing the device with an increased curvature relative to FIG. 2A. The illustrated curvature device 100 includes a distal anchor 102 at a distal end of the device and a proximal anchor 104 at a proximal end of the device. In this embodiment, a tether 106 is attached at or near the distal anchor 102 and extends from the distal anchor 102 through a body 103 and through and past the proximal anchor 104. In FIG. 2B, the tether 106 has greater tension than in FIG. 2A. As shown, by increasing the tension in the tether 106, the curvature of the device 100 is increased. In some embodiments, in addition to or as an alternative to changing the curvature, the circumference of the curvature device 100 can also reduce. Such reduction also contributes to reducing annular dimensions and bringing the leaflets closer to one another. For example, some embodiments may be configured with a length that can shorten to correspondingly reduce a circumference.


In some embodiments, the curvature device 100 has a precurved structure such that the device 100 is curved when deployed and when in a neutral configuration (e.g., in the absence of any tension applied by the tether 106). The precurvature can aid in properly seating the curvature device 100 within the GCV and CS of the patient before applying tension to increase the curvature of the device. For example, the precurvature can be generally matched to the average curvature of the GCV and CS of a typical patient.


In the illustrated embodiment, the tether 106 is attached at or near the distal anchor 102 and passes through the proximal anchor 104 without being anchored to the proximal anchor 104. This configuration allows the anchors to be pulled together upon the application of sufficient tension to the tether 106. The tether 106 may be coupled to the distal anchor 102 via one or more adhesives and/or mechanical fasteners, for example, or may be integrally attached to the distal anchor 102. In some embodiments, the proximal anchor 104 includes an aperture through which the tether 106 may pass to allow tensioning adjustments.


In some embodiments, the tether 106 may be passed through the proximal anchor 104 in either direction, to allow increasing and decreasing of the tension of the tether 106. Alternatively, the proximal anchor 104 includes a one-way passage that allows the tether 106 to pass through proximally to increase the device curvature, and then holds the device shape by preventing the tether 106 from passing distally through the proximal anchor 104 to loosen tension and reduce the device's curvature.


In some embodiments, the curvature device 100 is formed so as to be moveable between a collapsed/crimped configuration (having a low profile) to the expanded configuration shown in FIGS. 2A and 2B. For example, the curvature device 100 may be formed at least partly from a self-expanding shape memory material such as nitinol. In alternative embodiments, the curvature device 100 may be formed as a balloon-like structure expandable and collapsible by directing or withdrawing fluid from the structure, respectively.


In some embodiments, the curvature device 100 may be curved by pushing the proximal anchor 104 toward the distal anchor 102, in addition to or as an alternative to pulling the distal anchor 102 toward the proximal anchor 104. For example, this may be accomplished using the proximal end of a delivery catheter and/or using a pushing rod or other structure that may be routed through the delivery catheter to the deployment site.


In some embodiments, the curvature device 100 is formed at least partly from one or more bioresorbable materials. In such embodiments, the device may be left in place within the CS and GCV post procedure to be resorbed by the patient. In some embodiments, the curvature device may have a stent-like structure or other lumen containing structure that allows blood flow through the device after implantation. In some embodiments, at least a portion of the device is formed of a non-bioresorbable material (e.g., nitinol), which may be removed after carrying out the corresponding procedure or which may be left behind as a long-term or permanent implant.


One or both anchors 102, 104 may be formed as sections having diameters sufficient to, when expanded, fill the space of the targeted vasculature anatomy and firmly abut against the inner wall of the CS and/or GCV (e.g., about 2.5 to 5 mm, or about 3 to 4.5 mm for a typical adult). In some embodiments, the anchors 102, 104 may include barbs, tines, or other similar structures for enhancing grip of the anchors into the inner wall of the vasculature, though in preferred embodiments, the anchors omit such barbs, tines, or hooks, and are configured for temporary placement so that the device can be retrieved after the associated procedure (e.g., after an associated valve leaflet grasping and/or clip placement procedure). Although the illustrated embodiment is shown as including two separate anchors, alternative embodiments may include one or more centrally disposed anchors for further securing the device within the targeted vasculature. The total length of the curvature device 100 can vary according to patient anatomy and/or procedural requirements. In a typical implementation, a curvature device may have a length of about 30 mm to about 100 mm.


The illustrated embodiment has a shape with a body 103 that is, at least in some portions, narrower than the anchors 102 and 104, enabling the anchors 102 and 104 to provide the anchoring functionality while the body 103 functions to provide structural integrity between the anchors 102 and 104. Additionally, or alternatively, the curvature device 100 may be configured such that substantially all of the length of the device expands to abut against the inner walls of the targeted vasculature. Accordingly, the proximal and distal anchors 102, 104 are not to be considered as the only sections of the device capable of or intended to function as anchoring mechanisms.


In some embodiments, the anchors 102 and 104 are formed as expandable ring structures, and the body 103 is formed as one or more wires and/or mesh structures extending between the anchors to provide sufficient structural integrity to the curvature device 100. For example, the anchors 102, 104 and/or the body 103 may be formed at least partially from a shape-memory material, such as nitinol. In some embodiments, the curvature device 100 may be formed at least partially as a balloon-like structure capable of being selectively inflated and deflated to move the device between the expanded/deployed and retracted/collapsed configuration. The balloon-structure of the curvature device may, for example, be at least partially formed from any biocompatible polymer known in the art that is capable of sufficient expansion to move between an expanded/deployed and retracted/collapsed position.


In some embodiments, the curvature device 100 is configured to deploy in a state of enhanced curvature (such as shown in FIG. 2B) without requiring an additional curving action or tether tightening action. For example, rather than being deployed in a configuration of relatively lower curvature, (such as is shown in FIG. 2A), the curvature device 100 may be configured to deploy with the relatively greater curvature intended to reduce the annulus and/or bring the leaflets closer to one another. In some embodiments, the curvature device 100 includes sufficient structural integrity to, once deployed, provide and maintain sufficient curvature without the need to tension the device using the tether 106, and the tether 106 may therefore be omitted. As explained in more detail below, the curvature device 100 may be deployed and retracted by selectively sheathing and unsheathing the device, respectively.


Some curvature device embodiments are configured to be retrievable. For example, in a typical implementation, the curvature device 100 is deployed in the targeted GCV and CS and is used to enhance the curvature of the associated anatomy to reduce the mitral valve annulus and/or bring the mitral valve leaflets closer to one another. An associated mitral valve procedure may then be concurrently performed while the deployed curvature device is used to better position the valve anatomy. When the associated mitral valve procedure is completed, the curvature device 100 is retrieved and removed from the patient's vasculature. As shown, the anchors 102 and 104 include tapered sections 120 to aid in retraction of the curvature device 100 to enable removal of the device. In preferred embodiments, at least the proximal anchor 104 includes a tapered section 120 that tapers to a smaller diameter in the proximal direction. With this structure, the curvature device 100 may more easily be retrieved. For example, a sheath may more easily be repositioned over the proximal anchor 104 and then the remainder of the curvature device 100.


In alternative embodiments, the curvature device 100 may remain in the patient as a permanent implant. For example, the curvature device 100 may omit the tether 106, or the tether 106 may be removed after tightening the device, leaving the remainder of the curvature device 100 implanted within the patient.



FIG. 3 illustrates an exemplary delivery system 200 which may be utilized to deliver the curvature device 100 to the targeted CS and GCV. In the illustrated embodiment, the delivery system 200 includes a catheter 208 extending from a proximal end 210, where it is coupled to a handle 212, to a distal end 214. At the distal end 214, a sheath 216 is positioned around the curvature device 100 to hold the curvature device 100 in a collapsed configuration. As shown, the tether 106 passes from the curvature device 100 through an inner lumen of the catheter 208 and to the handle 212.


The handle 212 may include one or more controls, such as illustrated control 218, for providing a user the ability to control one or more mechanisms of the delivery system 200. In the illustrated embodiment, the control 218 is operatively connected to the tether 106, such that actuation of the control 218 adjusts tensioning of the tether 106. The control 218 may be configured as a dial, switch, slider, lever, button, or other control. Other controls (not shown) operatively connected to other components of the system may be similarly configured. For example, the delivery system 200 may include one or more controls operatively coupled to a corresponding control line extending to the distal end 214 of the catheter 208, the control enabling adjustment to the tension of the corresponding control line to provide bending and steering of the distal end 214 of the catheter 208.


In some embodiments, the handle 212 also includes a tension meter operatively connected to the tether 106 to provide an indication of the current tension of the tether 106.


During deployment, the sheath 216 may be proximally retracted relative to the curvature device 100 so that the curvature device 100 may deploy from the sheath 216. Additionally, or alternatively, the curvature device 100 may be distally pushed relative to the sheath 216 (e.g., using a push rod or other deployment structure extending through the inner lumen of the catheter 208 to the curvature device 100).


In one exemplary deployment procedure, the delivery system 200 delivers the curvature device 100 to the CS and GCV using a minimally invasive transfemoral or transjugular approach, by which the distal end 214 of the catheter 208 is routed to the right atrium of the heart, then into the CS, and then further so that it extends partially into the GCV. In some circumstances, a transjugular approach is preferred so that the concurrent heart valve repair procedure (e.g., interventional clip placement) is free to use the transfemoral approach. In some circumstances, both the right and left femoral veins may be utilized (e.g., one for delivery of the curvature device and the other for the concurrent clip delivery or other heart valve procedure). In alternative embodiments, other approaches, such as a transapical approach, may be used.



FIGS. 4A and 4B illustrate the curvature device 100 deployed within the GCV and CS. FIG. 4B illustrates an increase in curvature of the device 100 relative to the curvature of FIG. 4A as a result of an increase in tension applied to the tether. In a preferred deployment operation, the sheath 216 is retracted (and/or the curvature device 100 is pushed) so that the distal anchor 102 of the curvature device 100 may expand/deploy and lodge in the GCV. Further retraction of the sheath 216 (and/or further pushing of the curvature device 100) allows the proximal anchor 104 to expand/deploy and lodge in the CS. The application of tension to the tether 106 pulls the curvature device 100 into a position of relatively greater curvature. As shown, the increased curvature of the curvature device 100 causes the adjacent sections of the CS and the GCV to further curve as well. This structural change to the heart anatomy causes the posterior leaflet to move closer to the anterior leaflet and/or tends to constrain the mitral valve annulus in a relatively more reduced position.


The curvature device 100 may remain in the deployed and curved configuration during the course of a concurrent valve repair procedure, such as the implantation of an interventional clip device to treat regurgitation of the mitral valve. Advantageously, deployment of the curvature device 100 places the valve leaflets in a more favorable position that enables more effective grasping of the valve leaflets. More effective grasping of the leaflets leads to more effective positioning of the interventional clip device(s) and therefore better treatment of the underlying regurgitation pathology.


After the concurrent valve repair procedure is completed, the curvature device 100 may be removed from the patient's vasculature. In one exemplary removal process, the tether 106 is manipulated to release tension in the device 100 and reduce the curvature of the device 100. The device 100 may then be repositioned within the catheter 208 by moving the sheath 216 distally forward over the curvature device 100 and/or by proximally retracting the curvature device 100 into the sheath 216. Positioning the curvature device 100 back into the catheter 208 can cause the curvature device 100 to move from the expanded configuration back into a collapsed configuration. The delivery system 200 is then withdrawn from the patient's vasculature.


In one embodiment, a method for using a curvature device to enhance the effectiveness of a mitral valve repair procedure includes one or more of the following steps: (1) routing a guidewire into the CS and GCV (e.g., via a transfemoral or transjugular approach); (2) advancing a delivery catheter over the guidewire until the distal end of the catheter passes into the CS and reaches partially into the GCV; (3) proximally retracting a sheath of the delivery catheter relative to the housed curvature device to release and anchor a distal section of the curvature device in the GCV; (4) further proximally retracting the sheath relative to the curvature device to release and anchor a proximal section of the curvature device in the CS; (5) applying tension to a tether extending at least partially through the curvature device to increase the curvature of the device, the increased curvature of the deployed curvature device thereby increasing the curvature of the portions of the GCV and CS in which the device is positioned; (6) performing the mitral valve repair procedure (e.g., an interventional leaflet clip placement procedure); (7) releasing tension in the curvature device; (8) distally advancing the sheath relative to the curvature device to rehouse the curvature device; and (9) withdrawing the delivery catheter and the guidewire.


In some embodiments, the curvature device increases in curvature to adjust the curvature of the GCV and CS, relative to the curvature of the anatomy prior to deployment and tensioning of the curvature device, by about 5%, 10%, 20%, 30%, 40%, or 50%, or increases the curvature by a percentage within a range defined by any two of the foregoing values.


The terms “approximately,” “about,” and “substantially” as used herein represent an amount or condition close to the stated amount or condition that still performs a desired function or achieves a desired result. For example, the terms “approximately,” “about,” and “substantially” may refer to an amount or condition that deviates by less than 10%, or by less than 5%, or by less than 1%, or by less than 0.1%, or by less than 0.01% from a stated amount or condition.


Elements described in relation to any embodiment depicted and/or described herein may be combinable with elements described in relation to any other embodiment depicted and/or described herein. For example, any element described in relation to the illustrated curvature device 100 or delivery system 200 may be combined with any element described in relation to any of the alternative embodiments described herein.

Claims
  • 1. An interventional system for temporarily adjusting the structure of a heart, the system comprising: a curvature device moveable between a collapsed configuration and an expanded configuration, the curvature device including: a distal end section with a distal end configured to abut an inner wall of a body lumen when deployed to the expanded position;a proximal end section with a proximal end configured to abut the inner wall of the body lumen remote from the distal end in a longitudinal direction when deployed to the expanded position;an intermediate section extending between the distal end section and the proximal end section with a cross-sectional dimension in a direction transverse to the longitudinal direction less than a cross-section dimension of at least one of the distal end section and the proximal end section, the proximal end section comprising a first portion and an enlarged second portion, the first portion tapering away from the enlarged second portion that is disposed closer to the intermediate section than the first portion, the first portion has a cross-sectional dimension less than the cross- sectional dimension of the intermediate section; anda tether disposed at the distal end section and extending through the intermediate section and past the proximal end section, the tether being tensionable such that an increase in tension increases the curvature of the device, and a release of tension lessens the curvature of the device.
  • 2. The interventional system of claim 1, wherein the curvature device is at least partially formed from a shape memory material that enables the device to self-expand to the expanded configuration when not constrained to the collapsed configuration.
  • 3. The interventional system of claim 1, wherein the curvature device is at least partially formed as a balloon structure capable of being filled with a fluid to move toward the expanded configuration and withdrawn of fluid to move toward the collapsed configuration.
  • 4. The interventional system of claim 1, wherein the proximal end section includes an anchoring structure having an aperture through which the tether passes.
  • 5. The interventional system of claim 1, wherein the curvature device is formed at least partially from one or more bioresorbable materials.
  • 6. The interventional system of claim 1, wherein the curvature device is formed so as to have one or more lumens when in the expanded configuration so as to allow the passage of blood through the one or more lumens.
  • 7. The interventional system of claim 1, wherein at least a portion of the distal end section and proximal end section include tines for enhancing grip of targeted vasculature when the curvature device is deployed at the targeted vasculature.
  • 8. The interventional system of claim 1, further comprising a delivery system, the delivery system including: a delivery catheter having a sheath configured to house the curvature device to maintain the curvature device in the collapsed configuration while housed within the sheath; anda handle coupled to the delivery catheter, the tether extending to the handle, the handle including a tether control operatively coupled to the tether to enable adjusting of tension in the tether through actuation of the control.
  • 9. The interventional system of claim 8, the delivery system further comprising one or more control lines extending from the handle to the delivery catheter such that tensioning of the one or more control lines acts to bend the delivery catheter to provide steering functionality to the delivery catheter.
  • 10. The interventional system of claim 8, wherein the sheath is proximally retractable relative to the housed curvature device.
  • 11. A method for temporarily adjusting the structure of a body lumen, the method comprising: delivering a curvature device to a first location within a body lumen;deploying the curvature device such that a distal end section of the curvature device abuts an inner wall of the body lumen and such that a proximal end section of the curvature device abuts the inner wall of the body lumen remote from the distal end section, an intermediate section of the curvature device extending between the distal end section and the proximal end section with a cross-sectional dimension in a direction transverse to a longitudinal axis of the curvature device being less than a cross-section dimension of at least one of the distal end section and the proximal end section, the proximal end section comprising a first portion and an enlarged second portion, the first portion tapering away from the enlarged second portion that is disposed closer to the intermediate section than the first portion, the first portion has a cross-sectional dimension less than the cross-sectional dimension of the intermediate section; andtensioning a tether of the curvature device, the tether being coupled to the distal end section and passing through the intermediate section and the proximal end section such that the tensioning causes the distal end section to bend toward the proximal end section to increase the curvature of the curvature device.
  • 12. The method of claim 11, wherein the curvature device is delivered to the body lumen by first routing a guidewire to the body lumen, and subsequently routing a delivery system housing the curvature device along the guidewire.
  • 13. The method of claim 11, wherein the curvature device is delivered to the body lumen, the delivery system including: a delivery catheter having a sheath configured to house the curvature device to maintain the curvature device in the collapsed configuration while housed within the sheath; anda handle coupled to the delivery catheter, the tether extending to the handle, the handle including a tether control operatively coupled to the tether to enable adjusting of tension in the tether through actuation of the control.
  • 14. The method of claim 11, wherein the curvature device is delivered using a transjugular approach or a transfemoral approach.
  • 15. The method of claim 11, wherein the curvature device is at least partially formed from a shape memory material that enables the device to self-expand to the expanded configuration when not constrained to the collapsed configuration.
  • 16. The method of claim 11, further comprising releasing tension in the tether to lessen the curvature of the curvature device, and removing the curvature device from the body lumen.
  • 17. An interventional system for temporarily adjusting the structure of a body lumen, the system comprising: a curvature device moveable between a collapsed configuration having a profile suitable for delivery of the device to a body lumen of a patient and an expanded configuration having a profile suitable for abutting an inner wall of the body lumen, the curvature device including: a distal end section with a distal end configured to abut an inner wall of a body lumen when deployed to the expanded position;a proximal end section with a proximal end configured to abut the inner wall of the body lumen when deployed to the expanded position; andan intermediate portion disposed between the distal end section and the proximal end section,wherein the curvature device has a curvature such that when deployed to the expanded configuration the curvature device is configured to abut against the body lumen to increase anatomical curvature of the body lumen,wherein, each of the proximal end section and the distal end section comprise a first tapered portion and a second enlarged portion, the first tapered portion of the proximal end section tapering away from the second enlarged portion that is disposed closer to the intermediate portion than the second enlarged portion, the second enlarged portion having a cross-sectional dimension transverse to a longitudinal axis of the curvature device that is greater than a cross-sectional dimension of the intermediate portion, the first tapered portion encircling the longitudinal axis of the curvature device and the first tapered portion having a symmetrical cross-section about the longitudinal axis.
CROSS-REFERENCE TO RELATED APPLICATIONS

This is a continuation application of U.S. patent application Ser. No. 15/347,543, filed Nov. 9, 2016, the disclosure of which is incorporated herein by this reference.

US Referenced Citations (368)
Number Name Date Kind
1996261 Storz Apr 1935 A
3671979 Moulopoulos Jun 1972 A
4406656 Hattler et al. Sep 1983 A
4484579 Meno et al. Nov 1984 A
4510934 Batra Apr 1985 A
4578061 Lemelson Mar 1986 A
4686965 Bonnet et al. Aug 1987 A
4777951 Cribier et al. Oct 1988 A
4878495 Grayzel Nov 1989 A
4917089 Sideris Apr 1990 A
4969890 Sugita et al. Nov 1990 A
4994077 Dobben Feb 1991 A
5061277 Carpentier et al. Oct 1991 A
5078722 Stevens Jan 1992 A
5108368 Hammerslag et al. Apr 1992 A
5195968 Lundquist et al. Mar 1993 A
5201757 Heyn et al. Apr 1993 A
5251611 Zehel et al. Oct 1993 A
5271381 Ailinger et al. Dec 1993 A
5304131 Paskar Apr 1994 A
5306286 Stack et al. Apr 1994 A
5318525 West et al. Jun 1994 A
5325845 Adair Jul 1994 A
5332402 Teitelbaum Jul 1994 A
5359994 Kreuter et al. Nov 1994 A
5364351 Heinzelman et al. Nov 1994 A
5368564 Savage Nov 1994 A
5411552 Andersen et al. May 1995 A
5445646 Euteneuer et al. Aug 1995 A
5472423 Gronauer Dec 1995 A
5507725 Savage et al. Apr 1996 A
5507757 Sauer et al. Apr 1996 A
5527321 Hinchliffe Jun 1996 A
5554185 Block et al. Sep 1996 A
5571085 Accisano, III Nov 1996 A
5571135 Fraser et al. Nov 1996 A
5609598 Laufer et al. Mar 1997 A
5662606 Cimino et al. Sep 1997 A
5669917 Sauer et al. Sep 1997 A
5669919 Sanders et al. Sep 1997 A
5690671 McGurk et al. Nov 1997 A
5695504 Gifford, III et al. Dec 1997 A
5718725 Sterman et al. Feb 1998 A
5722421 Francese et al. Mar 1998 A
5749828 Solomon et al. May 1998 A
5769812 Stevens et al. Jun 1998 A
5772578 Heimberger et al. Jun 1998 A
5797960 Stevens et al. Aug 1998 A
5810847 Laufer et al. Sep 1998 A
5810849 Kontos Sep 1998 A
5810876 Kelleher Sep 1998 A
5814029 Hassett Sep 1998 A
5820591 Thompson et al. Oct 1998 A
5820592 Hammerslag Oct 1998 A
5823955 Kuck et al. Oct 1998 A
5823956 Roth et al. Oct 1998 A
5829447 Stevens et al. Nov 1998 A
5840081 Andersen et al. Nov 1998 A
5843103 Wulfman Dec 1998 A
5855614 Stevens et al. Jan 1999 A
5860990 Nobles et al. Jan 1999 A
5873882 Straub et al. Feb 1999 A
5876399 Chia et al. Mar 1999 A
5916147 Boury Jun 1999 A
5957973 Quiachon et al. Sep 1999 A
5989280 Euteneuer et al. Nov 1999 A
6056769 Epstein et al. May 2000 A
6168617 Blaeser et al. Jan 2001 B1
6174322 Schneidt Jan 2001 B1
6180059 Divino, Jr. et al. Jan 2001 B1
6197043 Davidson Mar 2001 B1
6306133 Tu et al. Oct 2001 B1
6312447 Grimes Nov 2001 B1
6332893 Mortier et al. Dec 2001 B1
6402781 Langberg et al. Jun 2002 B1
6406420 McCarthy et al. Jun 2002 B1
6419669 Frazier et al. Jul 2002 B1
6517550 Konya et al. Feb 2003 B1
6537314 Langberg et al. Mar 2003 B2
6575971 Hauck et al. Jun 2003 B2
6579279 Rabiner et al. Jun 2003 B1
6616684 Vidlund et al. Sep 2003 B1
6629534 Goar et al. Oct 2003 B1
6656221 Taylor et al. Dec 2003 B2
6685648 Flaherty et al. Feb 2004 B2
6689164 Seguin Feb 2004 B1
6701929 Hussein Mar 2004 B2
6702826 Liddicoat et al. Mar 2004 B2
6718985 Hlavka et al. Apr 2004 B2
6726716 Marquez Apr 2004 B2
6740107 Loeb et al. May 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6755777 Schweich et al. Jun 2004 B2
6797002 Spence et al. Sep 2004 B2
6875224 Grimes Apr 2005 B2
6926725 Cooke et al. Aug 2005 B2
6945978 Hyde Sep 2005 B1
7226467 Lucatero et al. Jun 2007 B2
7291168 Macoviak et al. Nov 2007 B2
7464712 Oz et al. Dec 2008 B2
7563267 Goldfarb et al. Jul 2009 B2
7563273 Goldfarb et al. Jul 2009 B2
7637933 Dwyer et al. Dec 2009 B2
7666204 Thornton et al. Feb 2010 B2
8070799 Righini et al. Dec 2011 B2
8435279 Beyerlein et al. May 2013 B2
8518106 Duffy et al. Aug 2013 B2
8523881 Cabiri et al. Sep 2013 B2
9011513 Bialas et al. Apr 2015 B2
9326875 Shumer et al. May 2016 B2
10363138 Prabhu Jul 2019 B2
10426616 Prabhu Oct 2019 B2
20010002445 Vesely May 2001 A1
20010005787 Oz et al. Jun 2001 A1
20010010005 Kammerer et al. Jul 2001 A1
20010018611 Solem et al. Aug 2001 A1
20010037084 Nardeo Nov 2001 A1
20010039411 Johansson et al. Nov 2001 A1
20010044568 Langberg et al. Nov 2001 A1
20020013547 Paskar Jan 2002 A1
20020013571 Goldfarb et al. Jan 2002 A1
20020035361 Houser et al. Mar 2002 A1
20020042651 Liddicoat et al. Apr 2002 A1
20020055767 Forde et al. May 2002 A1
20020055775 Carpentier et al. May 2002 A1
20020058910 Hermann et al. May 2002 A1
20020058951 Fiedler May 2002 A1
20020077687 Ahn Jun 2002 A1
20020087148 Brock et al. Jul 2002 A1
20020087169 Brock et al. Jul 2002 A1
20020087173 Alferness et al. Jul 2002 A1
20020103532 Langberg et al. Aug 2002 A1
20020107534 Schaefer et al. Aug 2002 A1
20020147456 Diduch et al. Oct 2002 A1
20020156526 Hilavka et al. Oct 2002 A1
20020161378 Downing Oct 2002 A1
20020169360 Taylor et al. Nov 2002 A1
20020173811 Tu et al. Nov 2002 A1
20020173841 Ortiz et al. Nov 2002 A1
20020183766 Seguin Dec 2002 A1
20020183787 Wahr et al. Dec 2002 A1
20020183835 Taylor et al. Dec 2002 A1
20030045778 Ohline et al. Mar 2003 A1
20030050693 Quijano et al. Mar 2003 A1
20030069570 Witzel et al. Apr 2003 A1
20030069593 Tremulis et al. Apr 2003 A1
20030069636 Solem et al. Apr 2003 A1
20030074012 Nguyen et al. Apr 2003 A1
20030078654 Taylor et al. Apr 2003 A1
20030083742 Spence et al. May 2003 A1
20030105519 Fasol et al. Jun 2003 A1
20030105520 Alferness et al. Jun 2003 A1
20030120340 Lisk et al. Jun 2003 A1
20030120341 Shennib et al. Jun 2003 A1
20030130669 Damarati Jul 2003 A1
20030130730 Cohn et al. Jul 2003 A1
20030144697 Mathis et al. Jul 2003 A1
20030167071 Martin et al. Sep 2003 A1
20030171776 Adams et al. Sep 2003 A1
20030187467 Schreck Oct 2003 A1
20030199975 Shlomo Oct 2003 A1
20030233038 Hassett. Dec 2003 A1
20040002719 Oz et al. Jan 2004 A1
20040003819 St. Goar et al. Jan 2004 A1
20040015232 Shu et al. Jan 2004 A1
20040019377 Taylor et al. Jan 2004 A1
20040019378 Hlavka et al. Jan 2004 A1
20040024414 Downing Feb 2004 A1
20040030382 St. Goar et al. Feb 2004 A1
20040039442 St. Goar et al. Feb 2004 A1
20040039443 Solem et al. Feb 2004 A1
20040044350 Martin et al. Mar 2004 A1
20040044365 Bachman Mar 2004 A1
20040049207 Goldfarb et al. Mar 2004 A1
20040049211 Tremulis et al. Mar 2004 A1
20040073302 Rourke et al. Apr 2004 A1
20040078053 Berg et al. Apr 2004 A1
20040087975 Lucatero et al. May 2004 A1
20040088047 Spence et al. May 2004 A1
20040092858 Wilson et al. May 2004 A1
20040092962 Thornton et al. May 2004 A1
20040097878 Anderson et al. May 2004 A1
20040097979 Svanidze et al. May 2004 A1
20040106989 Wilson et al. Jun 2004 A1
20040111099 Nguyen et al. Jun 2004 A1
20040116848 Gardeski et al. Jun 2004 A1
20040122448 Levine Jun 2004 A1
20040127849 Kantor Jul 2004 A1
20040127981 Randert et al. Jul 2004 A1
20040127982 Machold et al. Jul 2004 A1
20040127983 Mortier et al. Jul 2004 A1
20040133062 Pai et al. Jul 2004 A1
20040133063 McCarthy et al. Jul 2004 A1
20040133192 Houser et al. Jul 2004 A1
20040133220 Lashinski et al. Jul 2004 A1
20040133232 Rosenbluth et al. Jul 2004 A1
20040133240 Adams et al. Jul 2004 A1
20040133273 Cox Jul 2004 A1
20040138744 Lashinski et al. Jul 2004 A1
20040138745 Macoviak et al. Jul 2004 A1
20040147826 Peterson Jul 2004 A1
20040148021 Cartledge et al. Jul 2004 A1
20040152947 Schroeder et al. Aug 2004 A1
20040153144 Seguin Aug 2004 A1
20040158123 Jayaraman Aug 2004 A1
20040162610 Laiska et al. Aug 2004 A1
20040167539 Kuehn et al. Aug 2004 A1
20040186486 Roue et al. Sep 2004 A1
20040186566 Hindrichs et al. Sep 2004 A1
20040193191 Starksen et al. Sep 2004 A1
20040215339 Drasler et al. Oct 2004 A1
20040220593 Greenhalgh Nov 2004 A1
20040220657 Nieminen et al. Nov 2004 A1
20040225300 Goldfarb et al. Nov 2004 A1
20040236354 Seguin Nov 2004 A1
20040243229 Vidlund et al. Dec 2004 A1
20040249452 Adams et al. Dec 2004 A1
20040249453 Cartledge et al. Dec 2004 A1
20040260393 Randert et al. Dec 2004 A1
20050004583 Oz et al. Jan 2005 A1
20050004665 Aklog Jan 2005 A1
20050004667 Swinford Jan 2005 A1
20050004668 Aklog et al. Jan 2005 A1
20050010240 Mathis Jan 2005 A1
20050021056 St. Goer et al. Jan 2005 A1
20050021057 St. Goer et al. Jan 2005 A1
20050021058 Negro Jan 2005 A1
20050033446 Deem et al. Feb 2005 A1
20050038383 Kelley et al. Feb 2005 A1
20050038508 Gabbay Feb 2005 A1
20050038509 Ashe Feb 2005 A1
20050049698 Bolling et al. Mar 2005 A1
20050055089 Macoviak et al. Mar 2005 A1
20050060030 Lashinski et al. Mar 2005 A1
20050070844 Chow et al. Mar 2005 A1
20050085903 Lau Apr 2005 A1
20050137451 Gordon Jun 2005 A1
20050143809 Salahieh et al. Jun 2005 A1
20050149014 Hauck et al. Jul 2005 A1
20050182475 Jen et al. Aug 2005 A1
20050197694 Pai et al. Sep 2005 A1
20050197695 Stacchino et al. Sep 2005 A1
20050228422 Machold et al. Oct 2005 A1
20050228495 Macoviak Oct 2005 A1
20050251001 Hassett Nov 2005 A1
20050256452 DeMarchi et al. Nov 2005 A1
20050267493 Schreck et al. Dec 2005 A1
20050272975 McWeeney et al. Dec 2005 A1
20050273160 Lashinski et al. Dec 2005 A1
20050277874 Selkee Dec 2005 A1
20050277876 Hayden Dec 2005 A1
20060004247 Kute et al. Jan 2006 A1
20060015003 Moaddes et al. Jan 2006 A1
20060015179 Bulman-Fleming et al. Jan 2006 A1
20060020327 Lashinski et al. Jan 2006 A1
20060030885 Hyde Feb 2006 A1
20060058871 Zakay et al. Mar 2006 A1
20060064115 Allen et al. Mar 2006 A1
20060064116 Allen et al. Mar 2006 A1
20060064118 Kimblad Mar 2006 A1
20060074484 Huber Apr 2006 A1
20060089671 Goldfarb et al. Apr 2006 A1
20060089711 Dolan Apr 2006 A1
20060135961 Rosenman et al. Jun 2006 A1
20060195012 Mortier et al. Aug 2006 A1
20060200221 Malewicz Sep 2006 A1
20060229708 Powell et al. Oct 2006 A1
20060252984 Randert et al. Nov 2006 A1
20060252993 Freed et al. Nov 2006 A1
20060271064 Agnew Nov 2006 A1
20060276891 Nieminen Dec 2006 A1
20070038293 St. Goar et al. Feb 2007 A1
20070055289 Scouten et al. Mar 2007 A1
20070060997 Boer Mar 2007 A1
20070100356 Lucatero et al. May 2007 A1
20070118155 Goldfarb et al. May 2007 A1
20070129737 Goldfarb et al. Jun 2007 A1
20070156225 George et al. Jul 2007 A1
20070197858 Goldfarb et al. Aug 2007 A1
20070198082 Kapadia et al. Aug 2007 A1
20070213812 Webler et al. Sep 2007 A1
20070260225 Sakakine et al. Nov 2007 A1
20070299424 Cumming et al. Dec 2007 A1
20080039935 Buch et al. Feb 2008 A1
20080051703 Thorton et al. Feb 2008 A1
20080051807 St. Goar et al. Feb 2008 A1
20080097489 Goldfarb et al. Apr 2008 A1
20080167714 St. Goer et al. Jul 2008 A1
20080171976 Rios et al. Jul 2008 A1
20080183194 Goldfarb et al. Jul 2008 A1
20080188850 Mody et al. Aug 2008 A1
20080195126 Solem Aug 2008 A1
20080294175 Bardsley et al. Nov 2008 A1
20090036768 Seehusen et al. Feb 2009 A1
20090099554 Forster et al. Apr 2009 A1
20090156995 Martin et al. Jun 2009 A1
20090157162 Chow et al. Jun 2009 A1
20090163934 Raschdorf, Jr. et al. Jun 2009 A1
20090163986 Tieu et al. Jun 2009 A1
20090177266 Powell et al. Jul 2009 A1
20090182200 Golden et al. Jul 2009 A1
20090198322 Deem et al. Aug 2009 A1
20090204005 Keast et al. Aug 2009 A1
20090270858 Hauck et al. Oct 2009 A1
20090276039 Meretei Nov 2009 A1
20090281619 Le et al. Nov 2009 A1
20090326567 Goldfarb et al. Dec 2009 A1
20100016958 St. Goer et al. Jan 2010 A1
20100022823 Goldfarb et al. Jan 2010 A1
20100121437 Subramanian et al. May 2010 A1
20100217261 Watson Aug 2010 A1
20100262231 Tuval et al. Oct 2010 A1
20100268204 Tieu et al. Oct 2010 A1
20100298929 Thornton et al. Nov 2010 A1
20100331776 Salahieh et al. Dec 2010 A1
20120022640 Gross et al. Jan 2012 A1
20120065464 Ellis et al. Mar 2012 A1
20120150194 Odermatt et al. Jun 2012 A1
20120172915 Fifer et al. Jul 2012 A1
20120179184 Orlov Jul 2012 A1
20120265222 Gordin et al. Oct 2012 A1
20120316639 Kleinschrodt Dec 2012 A1
20120330348 Strauss et al. Dec 2012 A1
20130041314 Dillon Feb 2013 A1
20130066341 Ketai et al. Mar 2013 A1
20130066342 Dell et al. Mar 2013 A1
20130190772 Doerr Jul 2013 A1
20130231735 Deem et al. Sep 2013 A1
20130304181 Green et al. Nov 2013 A1
20130304200 McLean et al. Nov 2013 A1
20140039511 Morris et al. Feb 2014 A1
20140148889 Deshmukh et al. May 2014 A1
20140180124 Whiseant et al. Jun 2014 A1
20140200649 Essinger et al. Jul 2014 A1
20140276913 Tah et al. Sep 2014 A1
20140277356 Shumer et al. Sep 2014 A1
20140309661 Sheps et al. Oct 2014 A1
20140309670 Bakos et al. Oct 2014 A1
20140324164 Gross et al. Oct 2014 A1
20140350662 Vaturi Nov 2014 A1
20140358224 Tegels et al. Dec 2014 A1
20150005801 Marquis et al. Jan 2015 A1
20150051698 Ruyra Baliarda et al. Feb 2015 A1
20150094800 Chawla Apr 2015 A1
20150112430 Creaven et al. Apr 2015 A1
20150119981 Khairkhahan et al. Apr 2015 A1
20150142100 Morriss et al. May 2015 A1
20150230947 Krieger et al. Aug 2015 A1
20150257877 Hernandez Sep 2015 A1
20150272759 Argentine Oct 2015 A1
20150306806 Dando et al. Oct 2015 A1
20150366665 Lombardi et al. Dec 2015 A1
20160015410 Asirvatham et al. Jan 2016 A1
20160038280 Morriss et al. Feb 2016 A1
20160045314 Keren et al. Feb 2016 A1
20160051386 Haarmann-Thiemann Feb 2016 A1
20160116056 Geissler Apr 2016 A1
20160128767 Azamian et al. May 2016 A1
20160174979 Wei Jun 2016 A1
20170042678 Ganesan et al. Feb 2017 A1
20170143330 Basude et al. May 2017 A1
20180008268 Khairkhahan Jan 2018 A1
20180028215 Cohen Feb 2018 A1
20180036119 Wei et al. Feb 2018 A1
20180092661 Prabhu Apr 2018 A1
20180161159 Lee et al. Jun 2018 A1
20180360457 Ellis et al. Dec 2018 A1
20190365536 Prabhu Dec 2019 A1
Foreign Referenced Citations (124)
Number Date Country
1469724 Jan 2004 CN
102770080 Nov 2012 CN
103841899 Jun 2014 CN
3504292 Jul 1986 DE
0179562 Jul 1989 EP
0782836 Jul 1997 EP
1674040 Jun 2006 EP
1935377 Jun 2008 EP
1980288 Oct 2008 EP
2005912 Dec 2008 EP
2537487 Dec 2012 EP
2641570 Sep 2013 EP
2702965 Mar 2014 EP
3009103 Apr 2016 EP
2768324 Mar 1999 FR
1598111 Sep 1981 GB
2151142 Jul 1985 GB
H09253030 Sep 1997 JP
2006528911 Dec 2006 JP
2013516244 May 2013 JP
2014523274 Sep 2014 JP
WO1991001689 Feb 1991 WO
WO1992012690 Aug 1992 WO
WO1994018881 Sep 1994 WO
WO1994018893 Sep 1994 WO
WO1995015715 Jun 1995 WO
WO1996014032 May 1996 WO
WO1996020655 Jul 1996 WO
WO1997018746 May 1997 WO
WO1997038748 Oct 1997 WO
WO1997039688 Oct 1997 WO
WO1997048436 Dec 1997 WO
WO1998032382 Jul 1998 WO
WO1998035638 Aug 1998 WO
9901377 Jan 1999 WO
WO1999000059 Jan 1999 WO
WO1999013777 Mar 1999 WO
WO1999044524 Sep 1999 WO
WO2000003651 Jan 2000 WO
WO2000003759 Jan 2000 WO
WO2000012168 Mar 2000 WO
WO2000044313 Aug 2000 WO
WO2000060995 Oct 2000 WO
WO2001000111 Jan 2001 WO
WO2001000114 Jan 2001 WO
WO2001026557 Apr 2001 WO
WO2001026586 Apr 2001 WO
WO2001026588 Apr 2001 WO
WO2001028455 Apr 2001 WO
WO2001047438 Jul 2001 WO
WO2001049213 Jul 2001 WO
WO2001050985 Jul 2001 WO
WO2001054618 Aug 2001 WO
WO2001056512 Aug 2001 WO
WO2001070320 Sep 2001 WO
WO2001089440 Nov 2001 WO
WO2001095831 Dec 2001 WO
WO2001095832 Dec 2001 WO
WO2001097741 Dec 2001 WO
WO2002000099 Jan 2002 WO
WO2002001999 Jan 2002 WO
WO2002003892 Jan 2002 WO
WO2002034167 May 2002 WO
WO2002060352 Aug 2002 WO
WO2002062263 Aug 2002 WO
WO2002062270 Aug 2002 WO
WO2002062408 Aug 2002 WO
WO2003001893 Jan 2003 WO
WO2003003930 Jan 2003 WO
WO2003020179 Mar 2003 WO
WO2003028558 Apr 2003 WO
WO2003037171 May 2003 WO
WO2003047467 Jun 2003 WO
WO2003049619 Jun 2003 WO
WO2003073913 Sep 2003 WO
WO2003094801 Nov 2003 WO
WO2003105667 Dec 2003 WO
WO2004004607 Jan 2004 WO
WO2004006810 Jan 2004 WO
WO2004012583 Feb 2004 WO
WO2004014282 Feb 2004 WO
WO2004019811 Mar 2004 WO
WO2004030570 Apr 2004 WO
WO2004037317 May 2004 WO
WO2004045370 Jun 2004 WO
WO2004045378 Jun 2004 WO
WO2004045463 Jun 2004 WO
WO2004047679 Jun 2004 WO
WO2004082523 Sep 2004 WO
WO2004082538 Sep 2004 WO
WO2004093730 Nov 2004 WO
WO2004103162 Dec 2004 WO
WO2004112585 Dec 2004 WO
WO2004112651 Dec 2004 WO
WO2005002424 Jan 2005 WO
WO2005018507 Mar 2005 WO
WO2005027797 Mar 2005 WO
WO2005032421 Apr 2005 WO
WO2005062931 Jul 2005 WO
WO2005112792 Dec 2005 WO
WO2006037073 Apr 2006 WO
WO2006105008 Oct 2006 WO
WO2006105009 Oct 2006 WO
WO2006113906 Oct 2006 WO
WO2006115875 Nov 2006 WO
WO2006115876 Nov 2006 WO
WO 2007136829 Nov 2007 WO
WO 2008103722 Aug 2008 WO
WO 2010024801 Mar 2010 WO
WO 2010121076 Oct 2010 WO
WO 2011102968 Aug 2011 WO
WO 2012020521 Feb 2012 WO
WO 2012151396 Nov 2012 WO
WO2013049734 Apr 2013 WO
WO2013103934 Jul 2013 WO
WO 2014064694 May 2014 WO
WO 2014121280 Aug 2014 WO
2015020971 Feb 2015 WO
WO 2016022797 Feb 2016 WO
WO 2016144708 Sep 2016 WO
WO 2016150806 Sep 2016 WO
WO2018026445 Feb 2018 WO
WO2018089617 May 2018 WO
WO2018094042 May 2018 WO
Non-Patent Literature Citations (52)
Entry
Abe et al, De Vega's Annuloplasty for Acquired Tricuspid Disease: Early and Late Results in 110 Patients, Ann. Thorac. Surg., Jan. 1989, pp. 670-676, vol. 48.
Agricola et al., “Mitral Valve Reserve in Double Orifice Technique: an Exercise Echocardiographic Study,” Journal of Heart Valve Disease, 11 (5):637-643 (2002).
Alfieri et al., “An Effective Technique to Correct Anterior Mitral Leaflet Prolapse,” J. Card Surg., 14:468-470 (1999).
Alfieri et al., “Novel Suture Device for Beating Heart Mitral Leaflet Approximation,” Annals of Thoracic Surgery, 74:1488-1493 (2002).
Alfieri et al., “The edge to edge technique,” The European Association for Cardio-Thoracic Surgery 14th Annual Meeting, Oct. 7-11, 2000, Book of Proceedings.
Ali Khan et al, Blade Atrial Septostomy: Experience with the First 50 Procedures, Cathet. Cardiovasc. Diagn., Aug. 1991, pp. 257-262, vol. 23.
Alvarez et al, Repairing the Degenerative Mitral Valve: Ten to Fifteen-year Follow-up, Journal of Thoracic Cardiovascular Surgery, Aug. 1996, pp. 238-247, vol. 112, No. 2.
Bach et al, Early Improvement in Congestive Heart Failure After Correction of Secondary Mitral Regurgitation in End-stage Cardiomyopathy, American Heart Journal, Jun. 1995, pp. 1165-1170, vol. 129, No. 6.
Bach et al, Improvement Following Correction of Secondary Mitral Regurgitation in End-stage Cardiomyopathy With Mitral Annuloplasty, Am. J. Cardiol., Oct. 15, 1996, pp. 966-969, vol. 78.
Bailey, “Mitral Regurgitation” in Surgery of the Heart, Chapter 20, pp. 686-737 (1955).
Bernal et al., “The Valve Racket': a new and different concept of atrioventricular valve repair,” Eur. J. Cardio-thoracic Surgery 29:1026-1029 (2006).
Bhudia et al., “Edge-to-Edge (Alfieri) Mitral Repair: Results in Diverse Clinical Settings,” Ann Thorac Surg, 77:1598-1606 (2004).
Chinese Office Action issued in Chinese Application No. 200980158707.2 dated Sep. 9, 2013.
Communication dated Apr. 28, 2017 issued by the European Patent Office in counterpart application No. 16196023.2.
Communication dated Jan. 26, 2017, from the European Patent Office in counterpart European application No. 16196023.2.
Extended European Search Report, dated Oct. 17, 2014, issued in European Patent Application No. 06751584.1.
Izzat et al., “Early Experience with Partial Left Ventriculectomy in the Asia-Pacific Region,” Annuals of Thoracic Surgery, 67:1703-1707 (1999).
Kameda et al., Annuloplasty for Severe Mitral Regurgitation Due to Dilated Cardiomyopathy, Ann. Thorac. Surg., 1996, pp. 1829-1832, vol. 61.
Kron et al., “Surgical Relocation of the Posterior Papillary Muscle in Chronic Ischemic Mitral Regurgitation,” Annals. of Thoracic Surgery, 74:600-601 (2002).
Kruger et al., “P73—Edge to Edge Technique in Complex Mitral Valve Repair,” Thorac Cardiovasc Surg., 48(Suppl. 1):106 (2000).
Maisano et al., “The double orifice repair for Barlow Disease: a simple solution for a complex repair,” Supplement I Circulation, (Nov. 1999); 100(18): 1-94.
Maisano et al., “The double orifice technique as a standardized approach to treat mitral regurgitation due to severe myxomatous disease: surgical technique,” European Journal of Cardio-thoracic Surgery, 17:201-205 (2000).
Maisano et al., “Valve repair for traumatic tricuspid regurgitation,” Eur. J. Cardio-thorac Surg, 10:867-873 (1996).
Mantovani et al., “Edge-to-edge Repair of Congenital Familiar Tricuspid Regurgitation: Case Report,” J. Heart Valve Dis., 9:641-643 (2000).
McCarthy et al., Tricuspid Valve Repair with the Cosgrove-Edwards Annuloplasty System, Ann. Thorac. Surg., Jan. 16, 1997, pp. 267-268, vol. 64.
Moainie et al., “Correction of Traumatic Tricuspid Regurgitation Using the Double Orifice Technique,” Annals of Thoracic Surgery, 73:963-965 (2002).
Nielsen et al., “Edge-to-Edge Mitral Repair: Tension of the Approximating Suture and Leaflet Deformation During Acute Ischemic Mitral Regurgitation in the Ovine Heart,” Circulation, 104(Suppl. I):I-29-I-35 (2001).
Noera et al., “Tricuspid Valve Incompetence Caused by Nonpenetrating Thoracic Trauma”, Annals of Thoracic Surgery, 51:320-322 (1991).
Patel et al., #57 Epicardial Atrial Defibrillation: Novel Treatment of Postoperative Atrial Fibrillation, 2003 STS Presentation, [Abstract Only].
Reul et al., “Mitral Valve Reconstruction for Mitral Insufficiency,” Progress in Cardiovascular Diseases, XXXIX(6):567-599 (1997).
Ricchi et al, Linear Segmental Annuloplasty for Mitral Valve Repair, Ann. Thorac. Surg., Jan. 7, 1997, pp. 1805-1806, vol. 63.
Tager et al, Long-Term Follow-Up of Rheumatic Patients Undergoing Left-Sided Valve Replacement With Tricuspid Annuloplasty—Validity of Preoperative Echocardiographic Criteria in the Decision to Perform Tricuspid Annuloplasty, Am. J. Cardiol., Apr. 15, 1998, pp. 1013-1016, vol. 81.
Takizawa H et al.: “Development of a microfine active bending catheter equipped with MIF tactile sensors”, Micro Electro Mechanical Systems, 1999. MEMS '99. Twelfth IEEE Interna tional Conference on Orlando, FL, USA Jan. 17-21, 1999, Piscataway, NJ, USA,IEEE, US, Jan. 17, 1999 (Jan. 17, 1999), pp. 412-417, XP010321677, ISBN: 978-0-7803-5194-3 figures 1-3.
Tamura et al., “Edge to Edge Repair for Mitral Regurgitation in a Patient with Chronic Hemodialysis: Report of A Case,” Kyobu Geka. The Japanese Journal of Thoracic Surgery, 54(9):788-790 (2001).
Tibayan et al., #59 Annular Geometric Remodeling in Chronic Ischemic Mitral Regurgitation, 2003 STS Presentation, [Abstract Only].
Uchida et al, Percutaneous Cardiomyotomy and Valvulotomy with Angioscopic Guidance, Am. Heart J., Apr. 1991, pp. 1221-1224, vol. 121.
Umana et al, ‘Bow-Tie’ Mitral Valve Repair: An Adjuvant Technique for Ischemic Mitral Regurgitation, Ann. Thorac. Surg., May 12, 1998, pp. 1640-1646, vol. 66.
U.S. Appl. No. 14/216,813, filed Mar. 9, 2017, Office Action.
U.S. Appl. No. 14/216,813, filed Dec. 15, 2017, Office Action.
U.S. Appl. No. 14/216,813, filed Apr. 6, 2018, Office Action.
U.S. Appl. No. 14/216,813, filed Jan. 31, 2019, Office Action.
U.S. Appl. No. 14/577,852, filed Oct. 20, 2016, Office Action.
U.S. Appl. No. 14/577,852, filed May 16, 2017, Office Action.
U.S. Appl. No. 14/577,852, filed Sep. 7, 2017, Office Action.
U.S. Appl. No. 14/577,852, filed Apr. 25, 2018, Notice of Allowance.
U.S. Appl. No. 15/347,543, filed Dec. 28, 2018, Office Action.
U.S. Appl. No. 15/347,543, filed Mar. 18, 2019, Notice of Allowance.
U.S. Appl. No. 15/354,644, filed Nov. 5, 2018, Office Action.
U.S. Appl. No. 15/354,644, filed Feb. 28, 2019, Office Action.
U.S. Appl. No. 15/354,644, filed May 22, 2019, Notice of Allowance.
Abe et al., “Updated in 1996—De Vega's Annuloplasty for Acquired Tricuspid Disease: Early and Late Results in 110 Patients”, Ann. Thorac. Surg., pp. 1876-1877, vol. 62 (1996).
Bhudia et al., “Edge-to-edge Mitral Repair: A Versatile Mitral Repair,” http://wvvw.sts.org/doc/7007 accessed on Sep. 24, 2008.
Related Publications (1)
Number Date Country
20190274831 A1 Sep 2019 US
Continuations (1)
Number Date Country
Parent 15347543 Nov 2016 US
Child 16420882 US