In general, the devices, systems, and methods described here are for closing off a portion of tissue, e.g., the left atrial appendage, using a surgical, minimally invasive, or intravascular approach.
Atrial fibrillation is a common problem that afflicts millions of patients. Unfortunately, atrial fibrillation often results in the formation of a thrombus, or clot, in the appendage of the left atrium. This presents a problem, inasmuch as the thrombus can dislodge and embolize to distant organs, resulting in adverse events such as a stroke. For this reason, most patients with atrial fibrillation are treated with a blood thinner to help prevent the formation of a thrombus. Blood thinners, however, can present health risks (e.g., bleeding), particularly in the elderly, and often also require that the user make significant lifestyle changes.
Several methods have been developed to address the potential problem of thrombus formation in the left atrial appendage. One such method is suturing along the base, or ostial neck of the appendage, where it joins the atrial chamber. In this way, blood flow into the atrial appendage is cut-off, eliminating the risk of thrombus formation therein. This is typically done through open-heart surgery, making the availability of the procedure available to only those who are otherwise undergoing an open-heart procedure, or who are at particularly high risk. In addition, open-heart surgery requires general anesthesia and has a number of well-know risks, making it less desirable.
Other methods have also been investigated. For example, methods of stapling the base of the appendage and methods have been investigated, as have methods of filling the appendage with a space occupying, or occluding member. However, stapling is not a preferred method given the fragility of the appendage and the likelihood of its rupture. Occlusion devices may not effectively prevent all blood flow into the appendage, leaving areas of potential thrombus formation.
Additional devices and methods for closing the left atrial appendage would therefore be desirable. In particular, devices and methods for closing the left atrial appendage using minimally invasive, intravascular, or a combination of these techniques, would be desirable in order to avoid the need for opening the chest. Of course, additional devices for use in open surgical procedures are desirable as well, especially when those devices offer additional advantages over standard devices.
Described here are devices, systems and methods for closing the left atrial appendage. Some of the methods described here utilize one or more guide members having alignment members to aid in positioning of a closure device. In general, these methods comprise advancing a first guide having a first alignment member into the left atrial appendage, advancing a second guide, having a second alignment member, into the pericardial space, aligning the first and second alignment members, advancing a left atrial appendage closure device into the pericardial space and adjacent to the left atrial appendage, and closing the left atrial appendage with the closure device. In these variations, the closure device typically comprises an elongate body having a proximal end and a distal end, and a closure element at least partially housed within the elongate body. The closure element comprises a loop defining a continuous aperture therethrough.
Any of the devices used in any of the methods described here may be advanced under any of a variety of visualization techniques, e.g., fluoroscopic visualization, ultrasound, etc. For example, the first guide, second guide, or both guides may be advanced under fluoroscopic visualization in some variations. Similarly, any of the devices used in any of the methods described here may be advanced over a guide element or guide wire. For example, the first guide, second guide, closure device, any additional guide, or any combination thereof, may be advanced over a guidewire. In some variations, the second guide is coupled to the closure device for at least a portion of the method.
The alignment members may be, or may comprise, any suitable alignment member. For example, they may be or may comprise magnets, radiopaque markers, echogenic markings, members configured to produce one or more audible signals, interconnecting or interlocking members, one or more vacuum members, or the like. In some variations, the alignment members are magnets.
The first guide may further comprise an expandable member, e.g., an expandable cage, an expandable strutted structure, an expandable balloon, or the like. In some variations, the expandable member comprises an expandable balloon. The expandable member may be used for any suitable purpose, e.g., to atraumatically displace tissue, to help with identifying, sizing, protecting, isolating, stabilizing, or positioning tissue, or the like. In some variations, the expandable member is expanded within the left atrial appendage. In other variations of the methods described here, a third guide is advanced into the left atrial appendage, where the third guide has a proximal end and a distal end and comprises an expandable member. In some additional variations, the first and third guides are coupled together for at least a portion of the method. Again, the expandable member may comprise any suitable expandable member. In some variations, the expandable member is a balloon, which may or may not have one or more apertures therein. The apertures, for example, may be useful in enabling inflation and deflation of the balloon, may be useful for enabling passage of one or more guides or guidewires therethrough, or may be useful in enabling delivery of fluids, such as saline, contrast, drugs, etc., distal of the balloon.
The closure device may further comprise a suture for encircling the left atrial appendage after it has been closed with the closure device. Of course, the closure device may also have the ability to encircle the left atrial appendage without having a suture coupled thereto. The closure element alone may capture and release the left atrial appendage (i.e., it can open and close around the left atrial appendage), which may help facilitate optimal closure of the left atrial appendage, prior to permanent exclusion. In some variations, where a suture is used, the suture may comprise a surgical slip knot. The suture may or may not be coupled to the closure element.
The methods described here may further comprise tensioning the suture. The methods may additionally comprise releasing the tension on the suture, e.g., to help facilitate repositioning of the device, and the like. The methods may further comprise releasing the suture from the closure element, tightening the suture, and severing the suture. When the methods include severing the suture, the suture may be severed in any suitable fashion. For example, the suture may be severed with a cutting element, or may be severed by the application of energy (e.g., light energy, thermal energy, RF energy, electrical energy, magnetic energy, electromagnetic energy, kinetic energy, chemical energy and combinations thereof). When a cutting element is used, it may be an element on the closure device itself, or it may be part of a separate device.
The methods described here may also include confirming satisfactory or optimal closure of the left atrial appendage prior to permanent exclusion, excluding or opening the left atrial appendage with the closure device, repositioning the closure device, reclosing the left atrial appendage, and permanently excluding the left atrial appendage.
Other methods for closing the left atrial appendage are also described. In these methods, a closure device is advanced into the pericardial space and adjacent to the left atrial appendage, the left atrial appendage is closed with the closure device, the left atrial appendage is secured with a suture, and then the suture is severed. In these variations, the closure device typically comprises an elongate body having a proximal end and a distal end, and a closure element that comprises a loop defining a continuous aperture therethrough.
As with the methods described just above, the severing of the suture may be accomplished in any suitable fashion. For example, the suture may be severed with a cutting element, or by the application of energy (e.g., light energy, thermal energy, RF energy, electrical energy, magnetic energy, electromagnetic energy, kinetic energy, chemical energy and combinations thereof). When a cutting element is used, it may be an element on the closure device itself, or may be part of a separate device, or some combination of both may be used.
The closure device may comprise one or more expandable elements, and the closure device, the suture, or both may comprise a radiopaque material, echogenic material, or some combination thereof. In some variations, the closure device is made from a shape-memory material (e.g., a nickel titanium alloy, or the like), and in some variations, the suture is coupled to the closure device. In these methods, the closure device may be visualized while advanced, e.g., using fluoroscopy, ultrasound, a combination thereof, etc., and may or may not be advanced over a guide element or guidewire.
Additional methods for closing a left atrial appendage are also described here. These methods typically comprise advancing a first guide having a proximal end and a distal end into the left atrial appendage, through the left atrial appendage, and out of the left atrial appendage, such that one of the proximal or distal ends is within the vasculature, and one of the proximal or distal ends is within a subthoracic space, and advancing a left atrial appendage closure device into the pericardial space and adjacent to the left atrial appendage, and closing the left atrial appendage with the closure device. In these methods, the closure device typically comprises an elongate body having a proximal end and a distal end, and a closure element housed within the elongate body, where the closure element comprises a loop defining a continuous aperture therethrough.
In these methods, the proximal end of the first guide may be within the vasculature, or within the stubthoracic space. In some variations, the closure device is advanced into the pericardial space over the first guide. Again, as with all the methods described here, any of the devices may be advanced under any of a variety of visualization techniques. For example, the first guide, closure device, or both may be advanced under fluoroscopic or ultrasound visualization, or both. In some variations, the methods further comprise advancing a second guide into the left atrial appendage, where the second guide has a proximal end, a distal end, and comprises an expandable member. The expandable member may be any suitable expandable member (e.g., expandable struts, expandable cage, expandable balloon, or the like). In some variations, the first and second guides are coupled together for at least a portion of the method.
Devices for closing the left atrial appendage are also described here. Some of the devices described here comprise an elongate body having a proximal end and a distal end, a closure element comprising a loop defining a continuous aperture therethrough at least partially housed within the elongate body, and a suture loop. The suture loop may or may not be coupled to the closure element. For example, the device may further comprise a retention member, where the retention member is configured to retain the closure element and the suture loop. The retention member may be configured to accomplish this task in any suitable fashion. For example, it may comprise first and second lumens, where the closure element is housed within the first lumen and the suture loop is housed within the second lumen. The second lumen may have a weakened region, a perforated region, or a slit or other opening configured to release and/or close the suture with the application of a force. In other variations, the retention member and the closure element are withdrawn or otherwise removed, leaving behind and/or closing the suture loop. In still other variations, the retention member comprises a first lumen and one or more releasable retention elements, where the closure element is housed within the first lumen and the suture loop is retained by the one or more releasable retention elements. The retention element may be any suitable element, for example, a releasable prong, a polymer tack, and the like.
The closure element may be made from any suitable material. In some variations, the closure element is made from a shape-memory material (e.g., a nickel titanium alloy). Similarly, the suture loop may be made from any suitable material (e.g., any suitable material useful for exclusion or closure). It may be bioabsorbable (e.g., biodegradable polymers, etc.), or non-bioabsorbable (e.g., non-biodegradable polymers, metals, etc.). The closure element, suture loop, or both may comprise a radiopaque or echogenic material.
In some variations, the elongate body has one or more curves along its length. The elongate body may or may not be steerable, and may or may not be configured as a catheter. In some variations, the closure element and the suture loop are separately actuatable. In other variations, the device further comprises a cutting element.
Systems for closing a left atrial appendage are also described here. Typically, the systems comprise a first guide having a size and length adapted for accessing the left atrial appendage through the vasculature, where the first guide comprises a first alignment member, a second guide having a size and length adapted for accessing the pericardial space from a subthoracic region, where the second guide comprises a second alignment member, and a closure device comprising an elongate body having a proximal end and a distal end, and a closure element housed at least partially therein, where the closure element comprises a loop defining a continuous aperture therethrough. The system may further comprise any suitable or useful device or component.
For example, in some variations the system further comprises an expandable member. The expandable member may be any suitable expandable member, and in some variations the expandable member is an expandable balloon with or without one or more apertures therein. The expandable member may be configured to be couplable to the first guide.
The systems described here may further comprise a suture, which may or may not be coupled to, or couplable with, the closure device. The systems may also comprise a device or element for severing the suture. In some variations, the closure device is couplable to the second guide.
The first and second alignment members may be any suitable alignment members. For example, they may be or may comprise magnets, radiopaque markers, echogenic markings, members configured to produce one or more audible signals, interconnecting or interlocking members, one or more vacuum members, or the like. In some variations, the alignment members are magnets, which may or may not be located at the distal ends of the first and second guides. The systems may further comprise instructions for using the first guide, second guide, closure device, or any combination thereof. In some variations, the elongate body of the closure device has one or more curves along its length, and the systems further comprise a straightening tube, configured to temporarily straighten the one or more curves.
Described here are devices, systems, and methods for closing the left atrial appendage. In this regard, it may be helpful to start by briefly identifying and describing the relevant heart anatomy. Shown in
As can be seen, the left atrial appendage (114) lies within the boundaries of the pericardium (116), and is in close proximity to the ventricular wall (112). The left atrial appendage typically has a tubular shape that approximates a cone, with a slight narrowing or neck in the plane of the orifice where it joins the left atrium (102). In patients with atrial fibrillation, the left atrial appendage (114) is the most common location for thrombosis formation, which, in time, may dislodge and cause a devastating stroke. Because stroke is the primary complication of atrial fibrillation, the left atrial appendage is frequently excluded from the left atrium in those patients undergoing procedures to treat atrial fibrillation, and is often removed or excluded at the time of other surgical procedures, such as mitral valve surgery, to reduce the risk of a future stroke. The devices and systems described here, help ensure proper closure of the left atrial appendage, at the neck or base of the left atrial appendage, along the anatomic ostial plane. In this way, exclusion of the entire left atrial appendage from systemic circulation may be facilitated.
The devices described here for closing the left atrial appendage generally comprise a closure element having one or more loops. The devices may be suitable for use with minimally invasive access to the left atrial appendage (e.g., through a small sub-xyphoid or other intercostal incision, through an incision in the costal cartilage, through a port, through the vasculature, etc.) or may be suitable for use with open surgical procedures. The lengths of the devices may be chosen as desirable.
In the variation shown in
The above described components may be made of any suitable material. For example, the closure element may be made from a shape-memory material, such as a shape-memory alloy (e.g., nickel titanium alloy, etc.), may be made from stainless steel, polyester, nylon, polyethylene, polypropylene, some combination thereof, etc. Similarly, the suture loop may be made of any suitable material useful in exclusion or closure, and the term “suture loop” should be understood accordingly. For example, it may be made of a biodegradable material (e.g., polylactic acid, polyglycolic acid, polylactic-co-glycolic acid, etc.), or may be made of a non-biodegradable material (e.g., metal, steel, polyester, nylon, propylene, silk, and combinations thereof). In some variations, as will be described in more detail below with reference to the methods, the suture loop is made from a biodegradable material such that the suture loop degrades after a period of time has elapsed (e.g., for sufficient scarring to be achieved). It should be understood, the any part of the device may comprise, include, or be made from a radiopaque or echogenic material to help facilitate visualization. For example, the closure element, the suture loop, the elongate body, or any combination of these components may comprise a radiopaque or echogenic material.
The suture loop and the closure element may be configured to have any appropriate perimeter. For example, they may have a perimeter of 4.5 inches in a fully expanded state, a perimeter of about 4.3 inches, about, 3.3 inches, about 4.0 inches, about 3.5 inches, about 3.3 inches, 3.0 inches, about 2.7 inches, about 2.5 inches, about 1.5 inches, about 1.25 inches, or the like. Of course, these perimeters will vary as the closure element and suture loop are actuated and retracted.
For additional clarity,
Also shown in
Also shown is a suture reel area (1118) and a suture severing slot (1120), which, as described briefly above, is used to help terminate the suture by placement of blade, scalpel, or other sharp instrument therein. As described above, in some variations, the closure device itself comprises a suture cutting device or mechanism, and this may be located at the same place as the suture severing slot (1120) or some other place. For example, the device may include a blade or other cutting mechanism that may be actuated by a blade, lever, knob, etc., whether or not located in the suture severing slot location. Lumen (1122) may be used for placement of a guide (with or without an alignment member), guidewire, one or more tools (e.g., a suture cutter, visualization devices, etc.), one or more fluids (e.g., saline, drugs, etc.), as described above.
Methods for closing the left atrial appendage are also described here. The left atrial appendage may be accessed in any suitable fashion, and any of the devices described here may be used. For example, the left atrial appendage may be accessed from the inside of the heart, or may be accessed from the outside of the heart. In some variations, the left atrial appendage is accessed from both the inside of the heart, and the outside of the heart. Typically, the appendage is closed off from the outside of the heart, even when accessed from the inside of the heart.
In variations when the left atrial appendage is accessed from both the inside and the outside of the heart, it may be useful to employ the use of guides having alignment members. In this way, accessing the left atrial appendage may be more easily facilitated. It may also be useful to employ the use of a positioner or stabilizer, to help position devices relative to the left atrial appendage and to stabilize the appendage while it is being closed off. The positioner or stabilizer may be any suitable stabilizer or positioner, e.g., an expandable member or the like. More details of this will be described below.
In some variations, the methods of closing the left atrial appendage comprise advancing a closure device into the pericardial space and adjacent to the left atrial appendage, closing the left atrial appendage with the closure device, securing the closed left atrial appendage with a suture, and then severing the suture. The closure device may be any suitable closure device, such as a device having an elongate body with a closure element comprising a loop defining a continuous aperture therethrough, as described above. The suture may be severed in any suitable fashion, and at any suitable location along its length (i.e., from immediately adjacent to the knot at the left atrial appendage to just proximal to, or just distal to, the skin surface). In some instances it may be desirable to sever the suture at the knot itself (e.g., in instances where it is desirable to release tension on the suture entirely).
An illustrative device (1200) for severing a suture is shown in
In some variations, the methods for closing the left atrial appendage include accessing the left atrial appendage from both the inside of the heart and the outside of the heart. In these variations, one or more guides having alignment members are often used to align the inside and outside access devices together. To access the inside of the heart, the vasculature is typically used. For example, access may be obtained via one or several of the various veins or arteries (jugular, femoral, carotid, etc.). In some variations, the heart is accessed on the inside via the common femoral vein (e.g., the left common femoral vein) using a standard Seldinger technique with a needle. An introducer wire may then be advanced through the needle, followed by an introducer sheath. The introducer wire may then be removed. In some variations, a guiding catheter sheath may be placed as an alternative to an introducer sheath or the initial sheath may be replaced with a guiding catheter sheath.
Using fluoroscopy, an angiogram performed through the sheath, a catheter placed through the sheath, a guiding catheter sheath, or any combination thereof, may be performed to observe anatomical characteristics and considerations of the access route for the purpose of transseptal access into the left atrium (e.g., tortuosity, clots, devices, such as vena cava filters, etc.). Fluoroscopy, ultrasound, intracardiac echocardiography, extracardiac echocardiography, transesophageal echocardiography, or combinations thereof, may be used to help visualize transseptal access to the left atrium, and access to the left atrium may be obtained using standard transseptal access techniques.
For access to the heart from the outside, a subthoracic access point may be used. The access point is typically identified based on patient anatomic characteristics. In some variations, the access point is right of the xyphoid process and pointed towards the patient's left shoulder, but may be at any suitable location (e.g., intercostal access via a sternotomy, thoracostomy, or thoracotomy, or in the costal cartilage itself). Once the access point has been determined, a needle (e.g., a 17G Tuohy needle) may be advanced using standard pericardiocentsesis techniques under fluoroscopic guidance. After access to the pericardium has been obtained, a guidewire may be advanced through the needle under fluoroscopic visualization within the pericardiac sac. The needle may then be removed. Access to the pericardial space has thus been obtained.
Turning now to the figures, after access from the inside and outside of the heart has been obtained using the above described devices and techniques, the devices of the current invention are ready for use. For example, first (1300) and second (1302) guides having alignment members as shown in
The guides may have any suitable lengths and/or dimensions. For example, the guides may have a diameter of about 0.010″ to about 0.050″, about 0.020″ to about 0.030″, or the like. In some variations the first guide has a diameter of about 0.025″ and the second guide has a diameter of about 0.035″. Similarly, the length may be any suitable length. For example, from about 50 cm to about 300 cm or more, from about 100 cm to about 200 cm, from about 200 cm to about 250 cm, and the like. In some variations, the first guide has a length of about 250 cm and the second guide has a length of about 90 cm. The outer diameter of the alignment element may also be selected as desirable. For example, it may be from about 0.05″ to about 0.2″ or more. In some variations, the outer diameter of the alignment member of the first guide is about 0.106″ and the outer diameter of the alignment member of the second guide is about 0.170″. It should be understood that these dimensions are suitable for any guide, not only guides having alignment members comprising one or more magnets.
For example, turning to
In instances where a balloon is used as an expandable member, it may be made of any suitable material. For example, it may be made of polyisoprene, or other suitable materials. Similarly, the balloon may have any suitable dimensions. For example, it may have an outer diameter of approximately 10-40 mm, approximately 20-30 mm, or the like. Similarly, it may have any suitable length. For example, it may have a length of about 5 mm to about 50 mm, about 10 mm to about 20 mm, or the like. In some variations, the balloon has an outer diameter of approximately 20-30 mm, and a length of about 20 mm.
The expandable member (in this variation, shown as an expandable balloon) is inflated to position and stabilize the left atrial appendage, as shown in
While the expandable member is still in its expanded state, a closure element (1410) of a closure device (1408) may be placed around the left atrial appendage and closed as shown in
Specifically, it is desirable that the left atrial appendage be closed off as close to the anatomical ostial plane as possible (i.e., the opening that separates the left atrium from the left atrial appendage). If the left atrial appendage is closed off above the plane of the orifice (toward the left atrial appendage tip or away from the anatomical ostial plane), this may result in a persistent diverticulum of the left atrial appendage, which in turn may result in an additional site or nidus for thrombus formation despite complete exclusion of the left atrial appendage from the left atrium. In some individuals, the geometry of the left atrium and left atrial appendage may be such that the neck or narrowing between them is poorly defined from the epicardial, or outer aspect. In addition, the external geometry of the left atrial appendage-left atrial junction is difficult to differentiate from an epicardial perspective. This may be compounded by the fact that the anatomy is moving vigorously when the procedures are employed while the heart is beating and the lungs remain inflated (i.e., closed chest procedures). From an inside aspect, or endocardial view, fluoroscopy and ultrasound methods provide limited information or ability to landmark the true three-dimensional characteristics of the anatomic ostial plane. Thus the use of the devices described here help facilitate proper positioning and closure of the left atrium, and may be used during beating heart procedures, thus resulting in significant advantages over known left atrial appendage closure devices.
Of course, many variations on this method are possible. For example, the guides may be used as guidewires or rails for additional devices to slide over, or the guides may be coupled to the devices described just above. Additional guides or guidewires may also be used, and confirmation steps may be used throughout as appropriate. The guides having the alignment members thereon may be used or removed during the methods as appropriate or desirable. In some variations, the closure device has one or more bends or curves along its length, and a tip straightener or straightening tube is used to temporarily straighten the bend during advancement of the device into the pericardial space. In other variations, where the device includes a straight elongate body, a pre-curved device may be used to aid in delivery after proper access has been obtained. In some variations, the suture loop is made from a biodegradable material and is configured to biodegrade after sufficient time has passed to ensure scarring or formation of new tissue that effectively seals of the appendage.
In the methods described just above, access to the left atrial appendage was obtained both from inside and outside the heart. Of course, the left atrial appendage may be closed off using the systems and devices described here without performing both access procedures as described above. For example, in some variations the methods comprise advancing a first guide having a proximal end and a distal end into the left atrial appendage, through the left atrial appendage, and out of the left atrial appendage, such that one of the proximal or distal ends is within the vasculature, and one of the proximal or distal ends is within the subthoracic space.
Once access has been obtained in this fashion, a closure device may then be advanced into the pericardial space and adjacent to the left atrial appendage, and the left atrial appendage closed off. Of course, the proximal end of the first guide may be within the vasculature, or may be within the subthoracic space. In some variations the closure element is advanced into the pericardial space over the first guide. In other variations, these methods further comprise advancing a second guide into the left atrial appendage, where the second guide comprises an expandable member. The second guide may be advanced to the left atrial appendage over the first guide, though need not be advanced in such a fashion.
Other methods of closing the left atrial appendage without performing both access procedures (i.e., transseptal and epicardial) are also described here. In general, these methods comprise accessing the inside of the left atrial appendage from the epicardial space, using a device that is configured to puncture the appendage wall. An expandable member, such as a balloon, is then advanced through the puncture and into the left atrial appendage and inflated to help position the left atrial appendage while it is being closed off.
Making reference now to the figures,
Also described here are systems for closing a left atrial appendage. In general, the systems may comprise a closure device useful for performing a left atrial appendage closure procedure as described above, together with one or more additional components. For example, the system may comprise a first guide having a size and length adapted for accessing the left atrial appendage through the vasculature and comprising an alignment member, a second guide having a size and a length adapted for accessing the pericardial space from a subthoracic region and comprising an alignment member, and a closure device. The alignment member may be any suitable alignment member. For example, the alignment member may comprise radiopaque or echogenic markers, members configured to produce an audible response, one or more interconnecting members, one or more vacuum members, or magnets. In some variations, the alignment members of the first and second guides comprise magnets as shown in
The closure device may be any of the closure devices described above. For example, the closure device may be one having a closure element that comprises a loop defining a continuous aperture therethrough. The system may further comprise an expandable member or a device comprising an expandable member. The expandable member may be any suitable expandable member, such as, e.g., the balloon catheters described above. The expandable member may have one or more apertures therein for allowing contrast or other fluids to pass therethrough. The system may further comprise a suture loop, and the suture loop may or may not be coupled or couplable to the closure device.
The systems may also comprise one or more devices for severing the suture. Similarly, the systems may also comprise one or more devices for temporarily straightening one or more curves along the elongate body of the closure device. Of course, the device may comprise instructions for using any, all, or a portion of, the system components (e.g., first guide, second guide, closure device, straightening tube, suture cutter, or some combination thereof).
Although the foregoing invention has, for the purposes of clarity and understanding been described in some detail by way of illustration and example, it will be apparent that certain changes and modifications may be practiced, and are intended to fall within the scope of the appended claims.
This application is a continuation of U.S. patent application Ser. No. 12/055,213, filed on Mar. 25, 2008, which issued as U.S. Pat. No. 8,771,297 on Jul. 8, 2014, which claims priority to U.S. Provisional Patent Application Ser. No. 60/921,002, filed on Mar. 30, 2007, all of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3496932 | Prisk at al. | Feb 1970 | A |
3677597 | Stipek | Jul 1972 | A |
3802074 | Hoppe | Apr 1974 | A |
3841685 | Kolodziej | Oct 1974 | A |
3999555 | Person | Dec 1976 | A |
4018229 | Komiya | Apr 1977 | A |
4030509 | Heilman et al. | Jun 1977 | A |
4078305 | Akiyama | Mar 1978 | A |
4181123 | Crosby | Jan 1980 | A |
4249536 | Vega | Feb 1981 | A |
4257278 | Papadofrangakis et al. | Mar 1981 | A |
4319562 | Crosby | Mar 1982 | A |
4596530 | McGlinn | Jun 1986 | A |
4662377 | Heilman et al. | May 1987 | A |
4765341 | Mower et al. | Aug 1988 | A |
4817608 | Shapland et al. | Apr 1989 | A |
4901405 | Grover et al. | Feb 1990 | A |
4944753 | Burgess et al. | Jul 1990 | A |
4991578 | Cohen | Feb 1991 | A |
4991603 | Cohen et al. | Feb 1991 | A |
4998975 | Cohen et al. | Mar 1991 | A |
5033477 | Chin et al. | Jul 1991 | A |
5108406 | Lee | Apr 1992 | A |
5163942 | Rydell | Nov 1992 | A |
5163946 | Li | Nov 1992 | A |
5176691 | Pierce | Jan 1993 | A |
5181123 | Swank | Jan 1993 | A |
5226535 | Rosdhy et al. | Jul 1993 | A |
5226908 | Yoon | Jul 1993 | A |
5242459 | Buelna | Sep 1993 | A |
5243977 | Trabucco et al. | Sep 1993 | A |
5269326 | Verrier | Dec 1993 | A |
5281238 | Chin et al. | Jan 1994 | A |
5300078 | Buelna | Apr 1994 | A |
5306234 | Johnson | Apr 1994 | A |
5318578 | Hasson | Jun 1994 | A |
5336229 | Noda | Aug 1994 | A |
5336252 | Cohen | Aug 1994 | A |
5385156 | Oliva | Jan 1995 | A |
5387219 | Rappe | Feb 1995 | A |
5403331 | Chesterfield et al. | Apr 1995 | A |
5405351 | Kinet et al. | Apr 1995 | A |
5417684 | Jackson et al. | May 1995 | A |
5423821 | Pasque | Jun 1995 | A |
5423830 | Schneebaum et al. | Jun 1995 | A |
5433457 | Wright | Jul 1995 | A |
5433730 | Alt | Jul 1995 | A |
5443481 | Lee | Aug 1995 | A |
5449367 | Kadry | Sep 1995 | A |
5494240 | Waugh | Feb 1996 | A |
5498228 | Royalty et al. | Mar 1996 | A |
5540711 | Kieturakis et al. | Jul 1996 | A |
5571161 | Starksen | Nov 1996 | A |
5591177 | Lehrer | Jan 1997 | A |
5609597 | Lehrer | Mar 1997 | A |
5624430 | Eton et al. | Apr 1997 | A |
5624453 | Ahmed | Apr 1997 | A |
5634895 | Igo et al. | Jun 1997 | A |
5676162 | Larson, Jr. et al. | Oct 1997 | A |
5676651 | Larson, Jr. et al. | Oct 1997 | A |
5678547 | Faupel et al. | Oct 1997 | A |
5681278 | Igo et al. | Oct 1997 | A |
5682906 | Sterman et al. | Nov 1997 | A |
5683348 | Diener | Nov 1997 | A |
5683364 | Zadini et al. | Nov 1997 | A |
5683445 | Swoyer | Nov 1997 | A |
5693091 | Larson, Jr. et al. | Dec 1997 | A |
5699748 | Linskey et al. | Dec 1997 | A |
5702430 | Larson, Jr. et al. | Dec 1997 | A |
5707336 | Rubin | Jan 1998 | A |
5716367 | Koike et al. | Feb 1998 | A |
5716392 | Bourgeois et al. | Feb 1998 | A |
5727569 | Benetti et al. | Mar 1998 | A |
5728151 | Garrison et al. | Mar 1998 | A |
5735877 | Pagedas | Apr 1998 | A |
5741281 | Martin | Apr 1998 | A |
5752526 | Cosgrove | May 1998 | A |
5766151 | Valley et al. | Jun 1998 | A |
5766216 | Gangal et al. | Jun 1998 | A |
5766217 | Christy | Jun 1998 | A |
5769863 | Garrison | Jun 1998 | A |
5779727 | Orejola | Jul 1998 | A |
5792151 | Heck et al. | Aug 1998 | A |
5797870 | March et al. | Aug 1998 | A |
5797929 | Andreas et al. | Aug 1998 | A |
5797946 | Chin | Aug 1998 | A |
5799661 | Boyd et al. | Sep 1998 | A |
5810845 | Yoon | Sep 1998 | A |
5823946 | Chin | Oct 1998 | A |
5827216 | Igo et al. | Oct 1998 | A |
5840059 | March et al. | Nov 1998 | A |
5855586 | Habara et al. | Jan 1999 | A |
5865791 | Whayne et al. | Feb 1999 | A |
5871531 | Struble | Feb 1999 | A |
5873876 | Christy | Feb 1999 | A |
5879375 | Larson, Jr. et al. | Mar 1999 | A |
5882299 | Rastegar et al. | Mar 1999 | A |
5893869 | Barnhart | Apr 1999 | A |
5895298 | Faupel et al. | Apr 1999 | A |
5897586 | Molina | Apr 1999 | A |
5900433 | Igo et al. | May 1999 | A |
5906579 | Vander Salm et al. | May 1999 | A |
5906620 | Nakao et al. | May 1999 | A |
5908429 | Yoon | Jun 1999 | A |
5908435 | Samuels | Jun 1999 | A |
5910124 | Rubin | Jun 1999 | A |
5910129 | Koblish et al. | Jun 1999 | A |
5921994 | Andreas et al. | Jul 1999 | A |
5924424 | Stevens et al. | Jul 1999 | A |
RE36269 | Wright | Aug 1999 | E |
5941819 | Chin | Aug 1999 | A |
5961440 | Schweich, Jr. et al. | Oct 1999 | A |
5964699 | Rullo et al. | Oct 1999 | A |
5968010 | Waxman et al. | Oct 1999 | A |
5972013 | Schmidt | Oct 1999 | A |
5984866 | Rullo et al. | Nov 1999 | A |
5984917 | Fleischman et al. | Nov 1999 | A |
5991668 | Leinders et al. | Nov 1999 | A |
5997525 | March et al. | Dec 1999 | A |
6006122 | Smits | Dec 1999 | A |
6010531 | Donlon et al. | Jan 2000 | A |
6015382 | Zwart et al. | Jan 2000 | A |
6045570 | Epstein et al. | Apr 2000 | A |
6048329 | Thompson et al. | Apr 2000 | A |
6059750 | Fogarty et al. | May 2000 | A |
6067942 | Fernandez | May 2000 | A |
6071281 | Burnside et al. | Jun 2000 | A |
6081738 | Hinohara et al. | Jun 2000 | A |
6083153 | Rullo et al. | Jul 2000 | A |
6090042 | Rullo et al. | Jul 2000 | A |
6095968 | Snyders | Aug 2000 | A |
6110170 | Taylor et al. | Aug 2000 | A |
6120431 | Magovern et al. | Sep 2000 | A |
6132438 | Fleischman et al. | Oct 2000 | A |
6148230 | KenKnight | Nov 2000 | A |
6149595 | Seitz et al. | Nov 2000 | A |
6152144 | Lesh et al. | Nov 2000 | A |
6152920 | Thompson et al. | Nov 2000 | A |
6152936 | Christy et al. | Nov 2000 | A |
6155968 | Wilk | Dec 2000 | A |
6157852 | Selmon et al. | Dec 2000 | A |
6161543 | Cox et al. | Dec 2000 | A |
6162195 | Igo et al. | Dec 2000 | A |
6167889 | Benetti | Jan 2001 | B1 |
6199556 | Benetti et al. | Mar 2001 | B1 |
6200303 | Verrior et al. | Mar 2001 | B1 |
6206004 | Schmidt et al. | Mar 2001 | B1 |
6224584 | March et al. | May 2001 | B1 |
6231518 | Grabek et al. | May 2001 | B1 |
6237605 | Vaska et al. | May 2001 | B1 |
6241667 | Vetter et al. | Jun 2001 | B1 |
6258021 | Wilk | Jul 2001 | B1 |
6266550 | Selmon et al. | Jul 2001 | B1 |
6280415 | Johnson | Aug 2001 | B1 |
6283127 | Sterman et al. | Sep 2001 | B1 |
6290674 | Roue et al. | Sep 2001 | B1 |
6293906 | Vanden Hoek et al. | Sep 2001 | B1 |
6296630 | Altman et al. | Oct 2001 | B1 |
6311692 | Vaska et al. | Nov 2001 | B1 |
6311693 | Sterman et al. | Nov 2001 | B1 |
6314962 | Vaska et al. | Nov 2001 | B1 |
6314963 | Vaska et al. | Nov 2001 | B1 |
6319201 | Wilk | Nov 2001 | B1 |
6333347 | Hunter et al. | Dec 2001 | B1 |
6346074 | Roth | Feb 2002 | B1 |
6379366 | Fleischman et al. | Apr 2002 | B1 |
6423051 | Kaplan et al. | Jul 2002 | B1 |
6474340 | Vaska et al. | Nov 2002 | B1 |
6485407 | Alferness et al. | Nov 2002 | B2 |
6488689 | Kaplan et al. | Dec 2002 | B1 |
6494211 | Boyd et al. | Dec 2002 | B1 |
6551303 | Van Tassel et al. | Apr 2003 | B1 |
6561969 | Frazier et al. | May 2003 | B2 |
6592552 | Schmidt | Jul 2003 | B1 |
6610055 | Swanson et al. | Aug 2003 | B1 |
6610072 | Christy et al. | Aug 2003 | B1 |
6613062 | Leckrone et al. | Sep 2003 | B1 |
6632229 | Yamanouchi | Oct 2003 | B1 |
6652555 | Van Tassel et al. | Nov 2003 | B1 |
6656175 | Francischelli et al. | Dec 2003 | B2 |
6666861 | Grabek | Dec 2003 | B1 |
6692491 | Phan | Feb 2004 | B1 |
6733509 | Nobles et al. | May 2004 | B2 |
6736774 | Benetti et al. | May 2004 | B2 |
6755338 | Hahnen et al. | Jun 2004 | B2 |
6786898 | Guenst | Sep 2004 | B2 |
6789509 | Motsinger | Sep 2004 | B1 |
6830174 | Hillstead et al. | Dec 2004 | B2 |
6830576 | Fleischman et al. | Dec 2004 | B2 |
6985776 | Kane et al. | Jan 2006 | B2 |
7011671 | Welch | Mar 2006 | B2 |
7041111 | Chu | May 2006 | B2 |
7056294 | Khairkhahan et al. | Jun 2006 | B2 |
7063682 | Whayne et al. | Jun 2006 | B1 |
7063693 | Guenst | Jun 2006 | B2 |
7175619 | Koblish et al. | Feb 2007 | B2 |
7186214 | Ness | Mar 2007 | B2 |
7207988 | Leckrone et al. | Apr 2007 | B2 |
7226440 | Gelfand et al. | Jun 2007 | B2 |
7226458 | Kaplan et al. | Jun 2007 | B2 |
7264587 | Chin | Sep 2007 | B2 |
7294115 | Wilk | Nov 2007 | B1 |
7297144 | Fleischman et al. | Nov 2007 | B2 |
7309328 | Kaplan et al. | Dec 2007 | B2 |
7318829 | Kaplan et al. | Jan 2008 | B2 |
7326221 | Sakamoto et al. | Feb 2008 | B2 |
7331979 | Khosravi et al. | Feb 2008 | B2 |
7473260 | Opolski et al. | Jan 2009 | B2 |
7608091 | Goldfarb et al. | Oct 2009 | B2 |
7618425 | Yamamoto et al. | Nov 2009 | B2 |
7722641 | van der Burg et al. | May 2010 | B2 |
7828810 | Liddicoat et al. | Nov 2010 | B2 |
7846168 | Liddicoat et al. | Dec 2010 | B2 |
7905900 | Palermo et al. | Mar 2011 | B2 |
7918865 | Liddicoat et al. | Apr 2011 | B2 |
7967808 | Fitzgerald et al. | Jun 2011 | B2 |
8105342 | Onuki et al. | Jan 2012 | B2 |
8157818 | Gartner et al. | Apr 2012 | B2 |
8287561 | Nunez et al. | Oct 2012 | B2 |
8469983 | Fung et al. | Jun 2013 | B2 |
8636767 | McClain | Jan 2014 | B2 |
8771297 | Miller et al. | Jul 2014 | B2 |
8795297 | Liddicoat et al. | Aug 2014 | B2 |
8986325 | Miller et al. | Mar 2015 | B2 |
9198664 | Fung et al. | Dec 2015 | B2 |
20010025132 | Alferness et al. | Sep 2001 | A1 |
20020017306 | Cox et al. | Feb 2002 | A1 |
20020022860 | Borillo et al. | Feb 2002 | A1 |
20020049457 | Kaplan et al. | Apr 2002 | A1 |
20020058925 | Kaplan et al. | May 2002 | A1 |
20020062136 | Hillstead et al. | May 2002 | A1 |
20020068970 | Cox et al. | Jun 2002 | A1 |
20020099390 | Kaplan et al. | Jul 2002 | A1 |
20020103492 | Kaplan et al. | Aug 2002 | A1 |
20020107531 | Schreck et al. | Aug 2002 | A1 |
20020111636 | Fleischman et al. | Aug 2002 | A1 |
20020111637 | Kaplan et al. | Aug 2002 | A1 |
20030014049 | Koblish et al. | Jan 2003 | A1 |
20030024537 | Cox et al. | Feb 2003 | A1 |
20030045900 | Hahnen et al. | Mar 2003 | A1 |
20030069577 | Vaska et al. | Apr 2003 | A1 |
20030083542 | Alferness et al. | May 2003 | A1 |
20030083674 | Gibbens, III | May 2003 | A1 |
20030109863 | Francischelli et al. | Jun 2003 | A1 |
20030120264 | Lattouf | Jun 2003 | A1 |
20030158464 | Bertolero | Aug 2003 | A1 |
20030181942 | Sutton et al. | Sep 2003 | A1 |
20030187460 | Chin et al. | Oct 2003 | A1 |
20030236535 | Onuki et al. | Dec 2003 | A1 |
20040030335 | Zenati et al. | Feb 2004 | A1 |
20040034347 | Hall et al. | Feb 2004 | A1 |
20040044361 | Frazier et al. | Mar 2004 | A1 |
20040049210 | VanTassel et al. | Mar 2004 | A1 |
20040059352 | Burbank et al. | Mar 2004 | A1 |
20040064138 | Grabek | Apr 2004 | A1 |
20040078069 | Francischelli et al. | Apr 2004 | A1 |
20040102804 | Chin | May 2004 | A1 |
20040106918 | Cox et al. | Jun 2004 | A1 |
20040111101 | Chin | Jun 2004 | A1 |
20040116943 | Brandt et al. | Jun 2004 | A1 |
20040162579 | Foerster | Aug 2004 | A1 |
20040225212 | Okerlund et al. | Nov 2004 | A1 |
20040225300 | Goldfarb et al. | Nov 2004 | A1 |
20040243176 | Hahnen et al. | Dec 2004 | A1 |
20040260273 | Wan | Dec 2004 | A1 |
20050033280 | Francischelli et al. | Feb 2005 | A1 |
20050033287 | Sra | Feb 2005 | A1 |
20050033321 | Fleischman et al. | Feb 2005 | A1 |
20050043745 | Alferness et al. | Feb 2005 | A1 |
20050085843 | Opolski et al. | Apr 2005 | A1 |
20050107824 | Hillstead et al. | May 2005 | A1 |
20050149068 | Williams et al. | Jul 2005 | A1 |
20050149069 | Bertolero et al. | Jul 2005 | A1 |
20050154376 | Riviere et al. | Jul 2005 | A1 |
20050154404 | Liddicoat | Jul 2005 | A1 |
20050165466 | Morris et al. | Jul 2005 | A1 |
20050256532 | Nayak et al. | Nov 2005 | A1 |
20060004323 | Chang et al. | Jan 2006 | A1 |
20060004388 | Whayne et al. | Jan 2006 | A1 |
20060009715 | Khairkhahan et al. | Jan 2006 | A1 |
20060020162 | Whayne et al. | Jan 2006 | A1 |
20060020271 | Stewart et al. | Jan 2006 | A1 |
20060020336 | Liddicoat | Jan 2006 | A1 |
20060034930 | Khosravi et al. | Feb 2006 | A1 |
20060100545 | Ayala et al. | May 2006 | A1 |
20060200169 | Sniffin | Sep 2006 | A1 |
20060212045 | Schilling et al. | Sep 2006 | A1 |
20060247672 | Vidlund et al. | Nov 2006 | A1 |
20060253128 | Sekine et al. | Nov 2006 | A1 |
20060253129 | Liddicoat et al. | Nov 2006 | A1 |
20070016228 | Salas | Jan 2007 | A1 |
20070027456 | Gartner et al. | Feb 2007 | A1 |
20070038229 | de la Torre | Feb 2007 | A1 |
20070060951 | Shannon | Mar 2007 | A1 |
20070073313 | Liddicoat et al. | Mar 2007 | A1 |
20070083082 | Kiser et al. | Apr 2007 | A1 |
20070083225 | Kiser et al. | Apr 2007 | A1 |
20070083232 | Lee | Apr 2007 | A1 |
20070088369 | Shaw et al. | Apr 2007 | A1 |
20070100405 | Thompson et al. | May 2007 | A1 |
20070135822 | Onuki et al. | Jun 2007 | A1 |
20070149988 | Michler et al. | Jun 2007 | A1 |
20070179345 | Santilli | Aug 2007 | A1 |
20070249991 | Whayne et al. | Oct 2007 | A1 |
20070260278 | Wheeler et al. | Nov 2007 | A1 |
20070270637 | Takemoto et al. | Nov 2007 | A1 |
20070270891 | McGuckin, Jr. | Nov 2007 | A1 |
20080009843 | de la Torre | Jan 2008 | A1 |
20080033241 | Peh et al. | Feb 2008 | A1 |
20080033457 | Francischelli et al. | Feb 2008 | A1 |
20080039879 | Chin et al. | Feb 2008 | A1 |
20080097489 | Goldfarb et al. | Apr 2008 | A1 |
20080147097 | Liddicoat et al. | Jun 2008 | A1 |
20080221593 | Liddicoat et al. | Sep 2008 | A1 |
20080228265 | Spence et al. | Sep 2008 | A1 |
20080243183 | Miller et al. | Oct 2008 | A1 |
20080294174 | Bardsley et al. | Nov 2008 | A1 |
20080294175 | Bardsley et al. | Nov 2008 | A1 |
20080312664 | Bardsley et al. | Dec 2008 | A1 |
20090043317 | Cavanaugh et al. | Feb 2009 | A1 |
20090082797 | Fung et al. | Mar 2009 | A1 |
20090143791 | Miller et al. | Jun 2009 | A1 |
20100069925 | Friedman et al. | Mar 2010 | A1 |
20100174296 | Vakharia et al. | Jul 2010 | A1 |
20110087247 | Fung et al. | Apr 2011 | A1 |
20110144660 | Liddicoat et al. | Jun 2011 | A1 |
20130144311 | Fung et al. | Jun 2013 | A1 |
20150157328 | Miller et al. | Jun 2015 | A1 |
Number | Date | Country |
---|---|---|
0 598 219 | May 1994 | EP |
0 598 219 | May 1994 | EP |
0 598 219 | May 1994 | EP |
1 010 397 | Nov 1999 | EP |
1010397 | Nov 1999 | EP |
1 506 142 | Apr 1978 | GB |
7-296645 | Nov 1995 | JP |
7-299073 | Nov 1995 | JP |
11-507262 | Jun 1999 | JP |
2001-120560 | May 2001 | JP |
2002-540834 | Dec 2002 | JP |
2002-540901 | Dec 2002 | JP |
2003-225241 | Aug 2003 | JP |
2004-000601 | Jan 2004 | JP |
2005-110860 | Apr 2005 | JP |
2005-296645 | Oct 2005 | JP |
2005-531360 | Oct 2005 | JP |
2007-504886 | Mar 2007 | JP |
WO-9401045 | Jan 1994 | WO |
WO-9404079 | Mar 1994 | WO |
WO-9408514 | Apr 1994 | WO |
WO-9640356 | Dec 1996 | WO |
WO-9711644 | Apr 1997 | WO |
WO-9743957 | Nov 1997 | WO |
WO-0059383 | Oct 2000 | WO |
WO-0061202 | Oct 2000 | WO |
WO-2004002327 | Jan 2004 | WO |
WO-2004066828 | Aug 2004 | WO |
WO-2004066828 | Aug 2004 | WO |
WO-2005034767 | Apr 2005 | WO |
WO-2005034767 | Apr 2005 | WO |
WO-2005034802 | Apr 2005 | WO |
WO-2005-034802 | Apr 2005 | WO |
WO-2006096805 | Sep 2006 | WO |
WO-2006110734 | Oct 2006 | WO |
WO-2006115689 | Nov 2006 | WO |
WO-2007056502 | May 2007 | WO |
WO-2008017080 | Feb 2008 | WO |
WO-2008017080 | Feb 2008 | WO |
WO-2008017080 | Feb 2008 | WO |
WO-2008036408 | Mar 2008 | WO |
WO-2008036408 | Mar 2008 | WO |
WO-2008091612 | Jul 2008 | WO |
WO-2008-091612 | Jul 2008 | WO |
WO-2008121278 | Oct 2008 | WO |
WO-2009039191 | Mar 2009 | WO |
WO-2009094237 | Jul 2009 | WO |
WO-2010006061 | Jan 2010 | WO |
WO-2010006061 | Jan 2010 | WO |
WO-2010048141 | Apr 2010 | WO |
WO-2010048141 | Apr 2010 | WO |
WO-2010115030 | Oct 2010 | WO |
Entry |
---|
afibfacts.com (Date Unknown). “Cox-Maze III: The Gold Standard Treatment for Atrial Fibrillation: Developing a Surgical Option for Atrial Fibrillation,” located at <http://www.afibfacts.com/Treatment—Options—for—Atrial—Fibrillation/Cox-Maze—III%—3a—The—Gold—Standard—Treatment—for—Atrial—Fibrillation >, last visited on Apr. 20, 2007, 4 pages. |
Al-Saady, N.M. et al. (1999). “Left Atrial Appendage: Structure, Function, and Role in Thromboembolism,” Heart 82:547-554. |
Albers, G.W. (Jul. 11, 1994). “Atrial Fibrillation and Stroke: Three New Studies, Three Remaining Questions,” Arch Intern Med 154:1443-1448. |
Alonso, M. et al. (Mar. 4, 2003). “Complications With Femoral Access in Cardiac Catheterization. Impact of Previous Systematic Femoral Angiography and Hemostasis With VasoSeal-Es® Collagen Plug,” Rev. Esp. Cardiol. 56(6):569-577. |
Aronow, W.S. et al. (Apr. 2009). “Atrial Fibrillation: The New Epidemic of the Ageing World,” Journal of Atrial Fibrillation 1(6):337-361. |
Babaliaros, V.C. et al. (Jun. 3, 2008). “Emerging Applications for Transseptal Left Heart Catheterization: Old Techniques for New Procedures,” Journal of the American College of Cardiology 51(22):2116-2122. |
Bath, P.M.W. et al. (2005). “Current Status of Stroke Prevention in Patients with Atrial Fibrillation,” European Heart Journal Supplements 7(Supplement C):C12-C18. |
Benjamin, B.A. et al. (1994). “Effect of Bilateral Atrial Appendectomy on Postprandial Sodium Excretion in Conscious Monkeys,” Society for Experimental Biology and Medicine 2006: 1 page. |
Beygui, F. et al. (2005, e-pub. Oct. 21, 2005). “Multimodality Imaging of Percutaneous Closure of the Left Atrial Appendage,” Clinical Vignette, 1 page. |
Bisleri, G. et al. (Jun. 3, 2005). “Innovative Monolateral Approach for Closed-Chest Atrial Fibrillation Surgery,” The Annals of Thoracic Surgery 80:e22-e25. |
Björk, V.O. et al. (Aug. 1961). “Sequelae of Left Ventricular Puncture with Angiocardiography,” Circulation 24:204-212. |
Blackshear, J.L. et al. (Feb. 1996). “Appendage Obliteration to Reduce Stroke in Cardiac Surgical Patients With Atrial Fibrillation,” Ann. Thorac. Surg. 61(2), 13 pages. |
Bonanomi, G. et al. (Jan. 1, 2003). “Left Atrial Appendectomy and Maze,” Journal of the American College of Cardiology 41(1):169-171. |
Bonow, R.O. et al. (1998). “Guidelines for the Management of Patients With Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Patients With Valvular Heart Disease),” Journal of the American Heart Association 98:1949-1984. |
Botham, R.J. et al. (1959). “Pericardial Tamponade Following Percutaneous Left Ventricular Puncture,” Circulation 19:741-744. |
Brock, R. et al. (1956). “Percutaneous Left Ventricular Puncture in the Assessment of Aortic Stenosis,” Thorax 11:163-171. |
Burke, R.P. et al. (1992). “Improved Surgical Approach to Left Atrial Appendage Aneurysm,” Journal of Cardiac Surgery 7(2):104-107. |
Canaccord Adams (Aug. 11, 2008). “A-Fib: Near a Tipping Point,” 167 pages. |
Chung, M.K. (Jul. 2003). “Current Clinical Issues in Atrial Fibrillation,” Cleveland Clinic Journal of Medicine 70(Supp. 3):S6-S11. |
Coffin, L.H. (Jun. 1985). “Use of the Surgical Stapler to Obliterate the Left Atrial Appendage,” Surgery, Gynecology & Obstetric 160:565-566. |
Connolly, S.J. (Sep. 7, 1999). “Preventing Stroke in Atrial Fibrillation: Why Are So Many Eligible Patients Not Receiving Anticoagulant Therapy?” Canadian Medical Association 161(5):533-534. |
Costa, R. et al. (2006). “Bi-Atrial Subxiphoid Epicardial Pacemaker in Superior Vena Cava Syndrome,” Arq. Bras. Cardiol. 87:e45-e47. |
Cox, J.L. et al. (2004). “The Role of Surgical Intervention in the Management of Atrial Fibrillation,” Texas Heart Institute Journal 31(3):257-265. |
Crystal, E. et al. (2003). “Left Atrial Appendage Occlusion Study (LAAOS): A Randomized Clinical Trial of Left Atrial Appendage Occlusion During Routine Coronary Artery Bypass Graft Surgery for Long-term Stroke Prevention,” Am Heart J 145(1):174-178. |
D'Avila, A. et al. (Apr. 2003). “Pericardial Anatomy for the Interventional Electrophysiologist,” Journal of Cardiovascular Electrophysiology 14(4):422-430. |
D'Avila, A. et al. (Nov. 2007). “Experimental Efficacy of Pericardial Instillation of Anti-inflammatory Agents During Percutaneous Epicardial Catheter Ablation to Prevent Postprocedure Pericarditis,” Journal of Cardiovascular Electrophysiology 18(11):1178-1183. |
Demaria, A.N. et al. (Dec. 17, 2003). “Highlights of the Year JACC 2003,” Journal of the American College of Cardiology 42(12):2156-2166. |
Deneu, S. et al. (Jul. 11, 1999). “Catheter Entrapment by Atrial Suture During Minimally Invasive Port-access Cardiac Surgery,” Canadian Journal of Anesthesia 46(10):983-986. |
Deponti, R. et al. (Mar. 7, 2006). “Trans-Septal Catheterization in the Electrophysiology Laboratory: Data From a Multicenter Survey Spanning 12 Years,” Journal of the American College of Cardiology 47(5):1037-1042. |
Donal, E. et al. (Sep. 2005). “The Left Atrial Appendage, a Small Blind-Ended Structure: A Review of Its Echocardiographic Evaluation and Its Clinical Role,” Chest 128(3):1853-1862. |
Donnino, R. et al. (2007). “Left Atrial Appendage Thrombus Outside of a ‘Successful’ Ligation,” European Journal of Echocardiography pp. 1-2. |
Feinberg, W.M. et al. (Mar. 13, 1995). “Prevalence, Age Distribution, and Gender of Patients With Atrial Fibrillation,” Arch Intern Med 155:469-473. |
Fieguth, H.G. et al. (1997) “Inhibition of Atrial Fibrillation by Pulmonary Vein Isolation and Auricular Resection—Experimental Study in a Sheep Model,” European Journal of Cardio-Thoracic Surgery 11:714-721. |
Fisher, D.C. et al. (Dec. 1998). “Large Gradient Across a Partially Ligated Left Atrial Appendage,” Journal of the American Society of Echocardiography 11(12):1163-1165. |
Friberg, L. et al. (2006). “Stroke Prophylaxis in Atrial Fibrillation: Who Gets it and Who Does Not?” European Heart Journal 27:1954-1964. |
Friedman, P.A. et al. (Aug. 2009). “Percutaneous Epicardial Left Atrial Appendage Closure: Preliminary Results of an Electrogram Guided Approach,” Journal of Cardiovascular Electrophysiology 29(8):908-915. |
Fuster, V. et al. (2001). “ACC/AHA/ESC Guidelines for the Management of Patients with Atrial Fibrillation,” European Heart Journal 22:1852-1923. |
Garcia-Fernandez, M.A. et al. (Oct. 1, 2003). “Role of Left Atrial Appendage Obliteration in Stroke Reduction in Patients With Mitral Valve Prosthesis,” Journal of the American College of Cardiology 42(7):1253-1258. |
Gardiner, G.A. Jr. et al. (Apr. 1986). “Complications of Transluminal Angioplasty,” Radiology 159:201-208. |
Gillinov, A.M. (2007). “Advances in Surgical Treatment of Atrial Fibrillation,” Journal of the American Heart Association 38(part 2):618-623. |
Gilman, R.A. et al. (Apr. 1963). “Direct Left Ventricular Puncture,” California Medicine 98(4):200-203. |
Goodwin, W.E. et al. (Nov. 1950). “Translumbar Aortic Puncture and Retrograde Catheterization of the Aorta in Aortography and Renal Arteriography,” Annals of Surgery 132(5):944-958. |
Gottlieb, L.K. et al. (Sep. 12, 1994). “Anticoagulation in Atrial Fibrillation,” Arch Intern Med. 154:1945-1953. |
Graffigna, A. et al. (1993). “Surgical Treatment of Wolff-Parkinson-White Syndrome: Epicardial Approach Without the Use of Cardiopulmonary Bypass,” J. Card. Surg. 8:108-116. |
Haissaguerre, M. et al. (Nov. 2005). “Catheter Ablation of Long-Lasting Persistent Atrial Fibrillation: Clinical Outcome and Mechanisms of Subsequent Arrhythmias,” Journal of Cardiovascular Electrophysiology 16(11):1138-1147. |
Halperin, J.L. et al. (Aug. 1988), “Atrial Fibrillation and Stroke: New Ideas, Persisting Dilemmas,” Journal of the American Heart Association 19(8):937-941. |
Halperin, J.L. et al. (2003). “Obliteration of the Left Atrial Appendage for Prevention of Thromboembolism,” Journal of the American College of Cardiology 42(7):1259-1261. |
Hammill, S.C. (May 2006). “Epicardial Ablation: Reducing the Risks,” J. Cardiovasc. Electrophysiol. 17:550-552. |
Hara, H. et al. (Jan. 2008). “Percutaneous Left Atrial Appendage Obliteration,” JACC: Cardiovascular Imagin 1(1):92-93. |
Hart, R.G. et al. (1999). “Atrial Fibrillation Thromboembolism: A Decade of Progress in Stoke Prevention,” Annals of Internal Medicine 131(9):688-695. |
Hart, R.G. et al. (2001). “Atrial Fibrillation and Stroke: Concept and Controversies,” Stroke 32:803-808. |
Hart, R.G. (Sep. 11, 2003). “Atrial Fibrillation and Stroke Prevention,” The New England Journal of Medicine 349(11):1015-1016. |
Healey, J.S. et al. (Oct. 2003). “Surgical Closure of the Left Atrial Appendage for the Prevention of Stroke: A Randomized Pilot Trial of Safety and Efficacy (The Left Atrial Appendage Occlusion Study—LAAOS),” presented at the Canadian Cardiovascular Congress 2003, Toronot, Canada, Abstract No. 666, 2 pages. |
Healey, J.S. et al. (2005). “Left Atrial Appendage Occlusion Study (LAAOS): Results of a Randomized Controlled Pilot Study of Left Atrial Appendage Occlusion During Coronary Bypass Surgery in Patients at Risk for Stroke,” Surgery 150(2):288-293. |
Hein, R. et al. (2005). “Patent Foramen Ovale and Left Atrial Appendage: New Devices and Methods for Closure,” Pediatric Cardiology 26(3):234-240. |
Heist, E.K. et al. (Nov. 2006). “Analysis of Left Atrial Appendage by Magnetic Resonance Angiography in Patients with Atrial Fibrillation,” Heart Rhythm 3(11):1313-1318. |
Ho, I. et al. (Apr. 24, 2007). “Percutaneous Epicardial Mapping Ablation of a Posteroseptal Accessory Pathway,” Circulation 115:418-421. |
Ho, S.Y. et al. (Nov. 1999). “Anatomy of the Left Atrium: Implications for Radiofrequency Ablation of Atrial Fibrillation,” Journal of Cardiovascular Electrophysiology 10(11):1525-1533. |
Hoit, B.D. et al. (Jan. 1993). “Altered Left Atrial Compliance After Atrial Appendectomy. Influence on Left Atrial and Ventricular Filling,” Circulation Research 72(1):167-175. |
Inoue, Y. et al. (Jul.-Aug. 1997). “Video Assisted Thoracoscopic and Cardioscopic Radiofrequency Maze Ablation,” Asaio Journal 43(4):334-337, Abstract Only. |
Jais, P. et al. (2003). “Radiofrequency Ablation for Atrial Fibrillation,” European Society of Cardiology 5(Supplement H):H34-H39. |
Johnson, W.D. et al. (2000). “The Left Atrial Appendage: Our Most Lethal Human Attachment! Surgical Implications,” Euro. J. Cardiothoracic. Surg. 17:718-722. |
Jongbloed, M.R.M. et al. (2005). “Clinical Applications of Intracardiac Echocardiography in Interventional Procedures,” Heart 91:981-990. |
Kamohara, K. et al. (2006). “Evaluation of a Novel Device for Left Atrial Appendage Exclusion: The Second-generation Atrial Exclusion Device,” The Journal of Thoracic and Cardiovascular Surgery 132(2):340-346. |
Kanderian, A.S. et al. (2008). “Success of Surgical Left Atrial Appendage Closure: Assessment by Transesophageal Echocardiography,” Journal of the American College of Cardiology 52(11):924-929. |
Kato, H. et al. (Aug. 1, 1996). “Evaluation of Left Atrial Appendage Stasis in Patients With Atrial Fibrillation Using Transesophageal Echocardiography With an Intravenous Albumin-Contrast Agent,” The American Journal of Cardiology 78:365-369. |
Katz, E.S. et al. (Aug. 2000). “Surgical Left Atrial Appendage Ligation is Frequently Incomplete: A Transesophageal Echocardiographic Study,” Journal of the American College of Cardiology 36(2):468-471. |
Kenner, H.M. et al. (Dec. 1966). “Intrapericardial, Intrapleural, and Intracardiac Pressures During Acute Heart Failure in Dogs Studied without Thoracotomy,” Circulation Research 19:1071-1079. |
Kerut, E.K. et al. (2008). “Anatomy of the Left Atrial Appendage,” Echocardiography 25(6):669-673. |
Khargi, K. et al. (2005). “Surgical Treatment of Atrial Fibrillation: A Systematic Review,” European Journal of Cardiothoracic Surgery 27:258-265. |
Kistler, P.M. et al. (May 2007). “The Left Atrial Appendage: Not Just an Innocent Bystander,” J. Cardiovasc Electrophysiol 18(5):465-466. |
Klein, H. et al. (Apr. 1990). “The Implantable Automatic Cardioverter-Defibrillator,” Herz 15(2):111-125, Abstract Only. |
Kolb, C. et al. (Feb. 2004). “Incidence of Antitachycardia Therapy Suspension Due to Magnet Reversion in Implantable Cardioverter Defibrillators,” Pace 27:221-223. |
Krikorian, J.G. et al. (Nov. 1978). “Pericardiocentesis,” Am. J. Med. 65(5):808-814. |
Krum, D. et al. (2004). “Visualization of Remnants of the left Atrial Appendage Following Epicardial Surgical Removal,” Heart Rhythm 1:249. |
Lacomis, J.M. et al. (Oct. 2003). “Multi-Detector Row CT of the Left Atrium and Pulmonary Veins before Radio-frequency Catheter Ablation for Atrial Fibrillation,” Radio Graphics 23:S35-S48. |
Lacomis, J.M. et al. (2007, e-pub. Oct. 17, 2007). “Dynamic Multidimensional Imaging of the Human Left Atrial Appendage,” Eurospace Advance Access 9:1134-1140. |
Lee, R. et al. (1999). “The Closed Heart Maze: A Nonbypass Surgical Technique,” The Annals of Thoracic Surgery 67:1696-1702. |
Levinson, M.L. et al. (1998). “Minimally Invasive Atrial Septal Defect Closure Using the Subxyphoid Approach,” Heart Surg. Forum 1(1):49-53, Abstract Only. |
Lewis, D.R. et al. (1999). “Vascular Surgical Intervention for Complications of Cardiovascular Radiology: 13 Years' Experience in a Single Centre,” Ann. R. Coll. Surg. Engl. 81:23-26. |
Li, H. (2007). “Magnet Decoration, Beautiful But Potentially Dangerous for Patients with Implantable Pacemakers or Defibrillators,” Heart Rhythm 4(1):5-6. |
Lindsay, B.D. (1996). “Obliteration of the Left Atrial Appendage: A Concept Worth Testing,” The Annals of Thoracic Surgery 51:515. |
Lip, G.Y.H. et al. (Jun. 2001). “Thromboprophylaxis for Atrial Flutter,” European Heart Journal 22(12):984-987. |
Lustgarten, D.L. et al. “Cryothermal Ablation: Mechanism of Tissue Injury and Current Experience in the Treatment of Tachyarrhythmias,” Progress in Cardiovascular Diseases 41(6):481-498. |
Maisch, B. et al. (Jan. 1999). “Intrapreicardial Treatment of Inflammatory and Neoplastic Pericarditis Guided by Pericardioscopy and Epicardial Biopsy-Results from a Pilot Study,” Clin. Cardiol. 22(Supp. I):1-17-I-22. |
Mannam, A.P. et al. (Apr. 1, 2002). “Safety of Subxyphoid Pericardial Access Using a Blunt-Tip Needle,” The American Journal of Cardiology 89:891-893. |
Mattox, K.L. et al. (May 1997). “Newer Diagnostic Measure and Emergency Management,” Ches Surg Clin N Am. 7(2):213-216, Abstract Only. |
McCarthy, P.M. et al. (2008). “Epicardial Atrial Fibrillation Ablation,” Chapter 23 in Contemporary Cardiology: Atrial Fibrillation From Bench to Bedside, Natale, A. et al. eds., Humana Press,: Totowa, NJ, pp. 323-332. |
McCaughan, J.J. Jr., et al. (2009). “Aortography Utilizing Percutaneous Left Ventricular Puncture,” located at <http://www.archsurg.com>, last visited on Apr. 7, 2009, p. 746-751. |
McClelland, R.R. (1978). “Congenital Aneurysmal Dilatation of the Left Auricle Demonstrated by Sequential Cardiac Blood-Pool Scintiscanning,” J. Nucl. Med. 19(5):507-509. |
Melo, J. et al. (Apr. 21, 2008). “Surgery for Atrial Fibrillation in Patients with Mitral Valve Disease: Results at Five Years from the International Registry of Atrial Fibrillation Surgery,” The Journal of Thoracic and Cardiovascular Surgery 135(4):863-869. |
Miller, P.S.J. et al. (Feb. 2005). “Are Cost Benefits of Anticoagulation for Stroke Prevention in Atrial Fibrillation Underestimated?” Stroke 366:360-366. |
Miyasaka, Y. et al. (Jul. 11, 2006). “Secular Trends in Incidence of Atrial Fibrillation in Olmsted County, Minnesota, 1980 to 2000, and Implications on the Projections for Future Prevalence,” Epidemiology 114:119-125. |
Mráz, T. et al. (Apr. 2007). “Role of Echocardiography in Percutaneous Occlusion of the left Atrial Appendage,” Echocardiography 24(4):401-404. |
Nakai, T. et al. (May 7, 2002). “Percutaneous Left Atrial Appendage Occlusion (PLAATO) for Preventing Cardioembolism First Experience in Canine Model,” Circulation 105:2217-2222. |
Nakajima, H. et al. (2004). “Consequence of Atrial Fibrillation and the Risk of Embolism After Percutaneous Mitral Commissurotomy: The Necessity of the Maze Procedure,” The Annals of Thoracic Surgery 78:800-806. |
O'Donnell, M. et al. (2005). “Emerging Therapies for Stroke Prevention in Atrial Fibrillation,” European Heart Journal 7(Supplement C):C19-C27. |
Omran, H. et al. (1997). “Left Atrial Appendage Function in Patients with Atrial Flutter,” Heart 78:250-254. |
Onalan, O. et al. (2005). “Nonpharmacologic Stroke Prevention in Atrial Fibrillation,” Expert Rev. Cardiovasc. Ther. 3(4):619-633. |
Onalan, O. et al. (2007). “Left Atrial Appendage Exclusion for Stroke Prevention in Patients With Nonrheumatic Atrial Fibrillation,” Stroke 38(part 2):624-630. |
Ostermayer, S. et al. (2003). “Percutaneous Closure of the Left Atrial Appendage,” Journal of Interventional Cardiology 16(6):553-556. |
Ota, T. et al. (2006). “Epicardial Atrial Ablation Using a Novel Articulated Robotic Medical Probe Via a Percutaneous Subxiphoid Approach,” National Institute of Health 1(6):335-340. |
Ota, T. et al. (Oct. 2007). “Impact of Beating Heart left Atrial Ablation on Left-sided Heart Mechanics,” The Journal of Thoracic and Cardiovascular Surgery 134:982-988. |
Pennec, P-Y. et al. (2003). “Assessment of Different Procedures for Surgical Left Atrial Appendage Exclusion,” The Annals of Thoracic Surgery 76:2167-2168. |
Perk, G. et al. (Aug. 2009). “Use of Real Time Three-Dimensional Transesophageal Echocardiography in Intracardiac Catheter Based Interventions,” J. Am Soc Echocardiogr 22(8):865-882. |
Pollick C. (Feb. 2000). “Left Atrial Appendage Myopathy,” Chest 117(2):297-308. |
Poulsen, T.S. et al. (Feb. 15, 2005). “Is Aspirin Resistance or Female Gender Associated With a High Incidence of Myonecrosis After Nonurgent Percutaneous Coronary Intervention?” J. Am. Coll. Cardiol. 45(4):635-636. |
Reznik, G. et al. (Oct. 1992). “Percutaneous Endoscopic Implantation of Automatic Implantable Cardioverter/Defibrillator (AICD): An Animal Study of a New Nonthoracotomy Technique,” J. Laparoendosc. Surg. 2(5):255-261, Abstract Only. |
Robicsek, F. (1987). “Closed-Chest Decannulation of Transthoracically Inserted Aortic Balloon Catheter without Grafting ,” Journal of Cardiac Surgery 2(2):327-329. |
Ross, J. Jr. et al. (Jun. 3, 2008). “Transseptal Left Heart Catheterization: a 50-Year Odyssey,” Journal of the American College of Cardiology 51(22):2107-2115. |
Rubin, D.N. et al. (Oct. 1, 1996). “Evaluation of Left Atrial Appendage Anatomy and Function in Recent-Onset Atrial Fibrillation by Transesophageal Echocardiography,” Am J Cardiol 78:774-778. |
Ruchat, P. et al. (2002). “Off-pump Epicardial Compartmentalization for Ablation of Atrial Fibrillation,” Interactive Cardio Vascular and Thoracic Surgery 1:55-57. |
Salzberg, S.P. et al. (2008). “Surgical Left Atrial Appendage Occlusion: Evaluation of a Novel Device with Magnetic Resonance Imaging,” European Journal of Cardiothoracic Surgery 34:766-770. |
Sapp, J. et al. (Dec. 2001). “Electrophysiology and Anatomic Characterization of an Epicardial Accessory Pathway,” Journal of Cardiovascular Electrophysiology 12(12):1411-1414. |
Scharf, C. et al. (2005). “Catheter Ablation for Atrial Fibrillation: Pathophysiology, Techniques, Results and Current Indications,” Continuous Medical Education 8:53-61. |
Scherr, D. et al. (Apr. 2009). “Incidence and Predictors of left Atrial Thrombus Prior to Catheter Ablation of Atrial Fibrillation,” Journal of Cardiovascular Electrophysiology 20(4):379-384. |
Schmidt, H. et al. (2001). “Prevalence of Left Atrial Chamber and Appendage Thrombi in Patients With Atrial Flutter and Its Clinical Significance,” Journal of the American College of Cardiology 38(3):778-784. |
Schneider, B. et al. (2005). “Surgical Closure of the Left Atrial Appendage—A Beneficial Procedure?” Cardiology 104:124-132. |
Schweikert, R.A. et al. (Sep. 16, 2003). “Percutaneous Pericardial Instrumentation for Endo-Epicardial Mapping of Previously Failed Ablation,” Circulation 108:1329-1335. |
Schweikert, R.A. et al. (2005). “Epicardial Access: Present and Future Applications for Interventional Electrophysiologists,” Chapter 25 in New Arrhythmia Technologies, Wang, P.J. ed., Blackwell Publishing, pp. 242-256. |
Sengupta, P.P. et al. (2005). “Transoesophageal Echocardiography,” Heart 91:541-547. |
Sharada, K. et al. (2005). “Non-Surgical Transpericardial Catheter Ablation of Post-Infarction Ventricular Tachycardia,” Indian Heart J 57:58-61. |
Sievert, H. et al. (Apr. 23, 2002). “Percutaneous Left Atrial Appendage Transcatheter Occlusion to Prevent Stroke in High-Risk Patients With Atrial Fibrillation,” Circulation 105:1887-1889. |
Singer, D.E. et al. (Sep. 2004). “Antithrombotic Therapy in Atrial Fibrillation: The Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy,” Chest 126(3):429-456. |
Smith, P.W. (Nov. 1956). “Diagnosis of Mitral Regurgitation by Cardioangiography,” Circulation 14:847-853. |
Soejima, K. et al. (2004). “Subxiphoid Surgical Approach for Epicardial Catheter-Based Mapping and Ablation in Patients With Prior Cardiac Surgery or Difficult Pericardial Access,” Circulation 110:1197-1201. |
Sosa, E. et al. (Jul. 15, 2002). “Gaining Access to the Pericardial Space,” The American Journal of Cardiology 90:203-204. |
Sosa, E. et al. (Apr. 2005). “Epicardial Mapping and Ablation Technique to Control Centricular Tachycardia,” Techniques and Technology 16(4):449-452. |
Sparks, P.B. et al. (2001). “Is Atrial Flutter a Risk Factor for Stroke?” Journal of the American College of Cardiology 38(3):785-788. |
Spodick, D.H. (Nov. 1970). “Medical History of the Pericardium,” The American Journal of Cardiology 26:447-454. |
Stewart, J.M. et al. (Apr. 1992). “Bilateral Atrial Appendectomy Abolishes Increased Plasma Atrial Natriuretic Peptide Release and Blunts Sodium and Water Excretion During Volume Loading in Conscious Dogs,” Circulation Research 70(4):724-732. |
Stoddard, M.F. et al. (1995). “Left Atrial Appendage Thrombus is not Uncommon in Patients with Acute Atrial Fibrillation and a Recent Embolic Event: A Transesophageal Echocardiographic Study,” J. Am. Coll. Cardiol. 25:452-459, Abstract Only. |
Stollberger, C. et al. (2000). “Is the Left Atrial Appendage Our Most Lethal Attachment?” European Journal of Cardio-Thoracic Surgery 18:625-626. |
Stollberger, C. et al. (Dec. 2003). “Elimination of the Left Atrial Appendage to Prevent Stroke or Embolism?: Anatomic, Physiologic, and Pathophysiologic Considerations,” 124(6):2356-2362. |
Stollberger, C. et al. (2006). “Stroke Prevention by Means of Epicardial Occlusion of the left Atrial Appendage,” Journal of Thoracic and Cardiovascular Surgery 132(1):207-208. |
Stollberger, C. et al. (2007). “Arguments Against Left Atrial Appendage occlusion for Stroke Prevention,” Stroke 38: 1 page. |
Stollberger, C. et al. (2007). “Leave the Left Atrial Appendage Untouched for Stroke Prevention!” Journal of Thoracic and Cardiovascular Surgery 134(2):549-550. |
Su, P. et al. (Sep. 2008, e-pud. May 8, 2007). “Occluding the Left Atrial Appendage: Anantomical Considerations,” Heart 94(9):1166-1170. |
Subramanian, V.A. (Jun. 1997). “Less Invasive Arterial CABG on a Beating Heart,” Ann. Thorac. Surg. 63(6 Suppl.):S68-S71. |
Subramanian, V.A. et al. (Dec. 1997). “Minimally Invasive Direct Coronary Artery Bypass Grafting: two-Year Clinical Experience,” Ann. Thorac. Surg. 64(6):1648-1653, Abstract Only. |
Sun, F. et al. (Feb. 2006). “Subxiphoid Access to Normal Pericardium with Micropuncture Set: Technical Feasibility Study in Pigs,” Radiology 238(2):719-724. |
Szili-Torok, T. et al. (2001). “Transseptal Left heart Catheterisation Guided by Intracardiac Echocardiography,” Heart 86:e11-e15. |
Tabata, T. et al. (Feb. 1, 2998). “Role of Left Atrial Appendage in left Atrial Reservoir Function as Evaluated by Left Atrial Appendage Clamping During Cardiac Surgery,” The American Journal of Cardiology 81:327-332. |
Tomar, M. et al. (Jul.-Aug. 2006). “Transcatheter Closure of Fossa Ovalis Atrial Septal Defect: A Single Institutional Experience,” Indian Heart Journal 58(4):325-329. |
Troughton, R.W. et al. (Feb. 28, 2004). “Pericarditis,” The Lancet 363:717-727. |
Ulicny K.S. et al. (Jun. 1992). “Conjoined Subrectus Pocket for Permanent Pacemaker Placement in the Neonate,” Ann Thorac Surg. 53(6):1130-1131, Abstract Only. |
Valderrabano, M. et al. (Sep. 2004). “Percutaneous Epicardial Mapping During Ablation of Difficult Accessory Pathways as an Alternative to Cardiac Surgery,” Heart Rhythm 1(3):311-316. |
Von Korn, H. et al. (2006). “Simultaneous Combined Interventional Percutaneous Left Atrial Auricle and Atrial Septal Defect Closure,” Heart 92:1462. |
Wang, T.J. et al. (Aug. 27, 2003). “A Risk Score for Predicting Stroke or Death in Individuals With new-Onset Atrial Fibrillation in the Community,” American Medical Association 290(8):1049-1056. |
W.L. Gore & Associates (Aug. 11, 2006). “Gore Helex™ Septal Occluder,” located at <http://www.fda.gov/cdrh/pdf5/p050006a.pdf>, last visited on Jun. 14, 2007, 3 pages. |
Wolber, T. et al. (Jan. 2007). “Potential Interference of Small Neodymium Magnets with Cardiac pacemakers and Implantable Cardioverter-defibrillators,” Heart Rhythm 4(1):1-4. |
Wolf, P.A. et al. (Oct. 1978). “Epidemiologic Assessment of Chronic Atrial Fibrillation and Risk of Stroke: The Fiamingham Study,” Neurology 28:973-977. |
Wolf, P.A. et al. (1991). “Atrial Fibrillation as an Independent Risk Factor for Stroke: The Framingham Study,” Journal of the American Heart Association 22(8):983-988. |
Wolf, P.A et al. (Feb. 1998). “Impact of Atrial Fibrillation on Mortality, Stroke, and Medical Costs,” Arch Intern Med 158:229-234. |
Wong, J.W.W. et al. (2006). “Impact of Maze and Concomitant Mitral Valve Surgery on Clinical Outcomes,” The Annals of Thoracic Surgery 82:1938-1947. |
Wongcharoen, W. et al. (Sep. 2006). “Morphologic Characteristics of the Left Atrial Appendage, Roof, and Septum: Implications for the Ablation of Atrial Fibrillation,” Journal of Cardiovascular Electrophysiology 17(9):951-956. |
Wood, M.A. (Jan. 2006). “Percutaneous Pericardial Instrumentation in the Electrophysiology Laboratory: A Case of Need,” Heart Rhythm 3(1):11-12. |
Wudel, J.H. et al. (Apr. 3, 2008). “Video-Assisted Epicardial Ablation and left Atrial Appendage Exclusion for Atrial Fibrillation: Extended Follow-Up,” The Annals of Thoracic Surgery 85:34-38. |
Wyse, D.G. et al. (Dec. 5, 2002). “Of ‘Left Atrial Appendage Amputation, Ligation, or Occlusion in Patients with Atrial Fibrillation’,” N Engl J Med 347(23):1825-1833, Abstract Only. |
Yamada, Y. et al. (Aug. 2006). “Video-Assisted Thoracoscopy to Treat Atrial Tachycardia Arising from Left Atrial Appendage,” Journal of Cardiovascular Electrophysiology 17(8):895-898. |
Zapolanski, A. et al. (May 2008). “Safe and Complete Exclusion of the left Atrial Appendage, A Simple Epicardial Approach,” Innovations 3(3):161-163. |
Zenati, M.A. et al. (Sep. 2003). “Left Heart Pacing Lead Implantation Using Subxiphoid Videopericardioscopy,” Journal of Cariodvascular Electrophysiology 14(9):949-953. |
Zenati, M.A. et al. (2004). “Mechanical Function of the Left Atrial Appendage Following Epicardial Bipolar Radiofrequency Ablation,” Cardiothoracic Techniques and Technologies X, Abstract 121A, p. 176. |
Zenati, M.A. et al. (2005). “Modification of the Left Atrial Appendage,” Chapter 12 in Innovation Mangement of Atrial Fibrillation, Schwartzman, David ed., Blackwell Science Ltd., 5 pages. |
Blackshear, J.L. et al. (2003). “Thorascopic Extracardiac Obliteration of the Left Atrial Appendage for Stroke Risk Reduction in Atrial Fibrillation,” J. Am. Coll. Cardiol. 42:1249-1252. |
Cox, J.L. et al. (1991). “The Surgical Treatment of Atrial Fibrillation IV. Surgical Technique,” J. Thorac. Cardiovasc. Surg. 101(4):584-592. |
Cox, J.L. et al. (Aug. 1995). “Modification of the Maze Procedure for Atrial Flutter and Atrial Fibrillation I. Rationale and Surgical Results,” J. Thorac. Cardiovasc. Surg. 110(2):473-484. |
Cox, J.L. et al. (Aug. 1995). “Modification of the Maze Procedure for Atrial Flutter and Atrial Fibrillation II. Surgical Technique of the Maze III Procedure,” J. Thorac. Cardiovasc. Surg. 110(2):485-495. |
Cox, J.L. et al. (Nov. 1999). “Impact of the Maze Procedure on the Stroke Rate in Patients with Atrial Fibrillation,” J. Thorac. Cardiovasc. Surg. 118:833-840. |
Dullum, M.K.C. et al. (1999). “Xyphoid MIDCAB: Report of the Technique and Experience with a Less Invasive MIDCAB Procedure,” Heart Surgery Forum 2(1):77-81. |
International Search Report mailed on Feb. 27, 2007, for PCT Application No. PCT/US2008/003938, filed on Mar. 25, 2008, 2 pages. |
Kim, K.B. et al. (Jan. 1998). “Effect of the Cox Maze Procedure on the Secretion of Atrial Natriuretic Peptide,” J. Thorac. Cardiovasc. Surf. 115(1):139-46; discussion 146-147. |
Macris, M. et al. (Jan. 1999). “Minimally Invasive Access of the Normal of the Normal Pericardium: Initial Clinical Experience with a Novel Device,” Clin. Cardiol. 22(Suppl. I):I-36-I-39. |
Morris, J.J. Jr. (1997). “Transvenous Versus Transthoracic Cardiac Pacing,” Chapter 16 in Cardiac Pacing pp. 239-245. |
Naclerio, et al. (1997). “Surgical Techniques for Permanent Ventricular Pacing,” Chapter 10 in Cardiac Pacing pp. 145-168. |
Non-Final Office Action mailed on Mar. 13, 2008 for U.S. Appl. No. 10/963,371, filed Oct. 11, 2004, 13 pages. |
Non-Final Office Action mailed on Aug. 6, 2008 for U.S. Appl. No. 10/963,371, filed Oct. 11, 2004, 14 pages. |
Odell, J.A. et al. (1996). “Thorascopic Obliteration of the Left Atrial Appendage: Potential for Stroke Reduction?” Ann. Thorac. Surg. 61:565-569. |
Seferovic, P. et al. (Jan. 1999). “Initial Clinical Experience with the Perducer Device: Promising New Tool in the Diagnosis and Treatment of Pericardial Disease,” Clin. Cardiol. 22(Supp I.):1-30-1-35. |
Sosa, E. et al. (1996). “A New Technique to Perform Epicardial Mapping in the EP Laboratory,” J. Cardiovasc. Electrophysiol. 7(6):531-536. |
Sosa, E. et al. (Mar. 1998). “Endocardial and Epicardial Ablation Guided by Nonsurgical Transthoracic Epicardial Mapping to Treat Recurrent Ventricular Tachycardia,” J. Cardiovasc. Elecytophysiol. 9(3):229-239. |
Sosa, E. et al. (Dec. 14, 1999). “Different Ways of Approaching the Normal Pericardial Space,” Circulation 100(24):e115-e116. |
Stewart, S. (1974). “Placement of the Sutureless Epicardial Pacemaker Lead by the Subxiphoid Approach,” Ann. of Thoracic Surg. 18(3):308-131. |
Stokes, K. (Jun. 1990). “Implantable Pacing Lead Technology,” IEEE Engineering in Medicine and Biology pp. 43-49. |
Suehiro, S. et al. (1996). “Echocardiography-Guided Pericardiocentesis With a Needle Attached to a Probe,” Ann. Thoracic Surg. 61:741-742. |
U.S. Appl. No. 12/363,381, filed Jan. 30, 2009, for Miller et al. |
Watkins, L. et al. (Nov. 1982). “Implantation of the Automatic Defibrillator: The Subxiphoid Approach,” Ann. of Thoracic Surg. 34(5):514-520. |
Written Opinion of the International Searching Authority mailed on Feb. 27, 2007, for PCT Application No. PCT/US2008/003938, filed on Mar. 25, 2008, 10 pages. |
Final Office Action mailed on Jun. 22, 2009, for U.S. Appl. No. 10/963,371, filed Oct. 11, 2004, 11 pages. |
Non-Final Office Action mailed on Jun. 26, 2009, for U.S. Appl. No. 11/600,671, filed Nov. 15, 2006, 9 pages. |
Final Office Action mailed on Apr. 14, 2010, for U.S. Appl. No. 11/600,671, filed Nov. 15, 2006, 7 pages. |
Final Office Action mailed on Jul. 21, 2010, for U.S. Appl. No. 11/400,714, filed Apr. 7, 2006, 10 pages. |
Non-Final Office Action mailed on Dec. 30, 2009, for U.S. Appl. No. 11/400,714, filed Apr. 7, 2006, 8 pages. |
Non-Final Office Action mailed on Jul. 22, 2010, for U.S. Appl. No. 12/037,802, filed Feb. 26, 2008, 10 pages. |
Notice of Allowance mailed on Sep. 17, 2010, for U.S. Appl. No. 10/963,371, filed Oct. 11, 2004, 7 pages. |
Notice of Allowance mailed on Sep. 17, 2010, for U.S. Appl. No. 11/600,671, filed Nov. 15, 2006, 7 pages. |
European Office Action mailed on Sep. 16, 2010, for European Patent Application No. 08727155.7, filed on Mar. 25, 2008, 5 pages. |
Final Office Action mailed on Apr. 26, 2011, for U.S. Appl. No. 12/037,802, filed Feb. 26, 2008, 9 pages. |
Final Office Action mailed on Sep. 20, 2011, for U.S. Appl. No. 12/212,511, filed Sep. 17, 2008, 8 pages. |
Final Office Action mailed on Oct. 28, 2011, for U.S. Appl. No. 12/055,213, filed Mar. 25, 2008, 15 pages. |
International Preliminary Report on Patentability mailed on Oct. 15, 2009, for PCT Application No. PCT/US2008/003938, filed on Mar. 25, 2008, 7 pages. |
Non-Final Office Action mailed on Nov. 15, 2010, for U.S. Appl. No. 12/055,213, filed Mar. 25, 2008, 18 pages. |
Non-Final Office Action mailed on Feb. 17, 2011, for U.S. Appl. No. 12/212,511, filed Sep. 17, 2008, 14 pages. |
Non-Final Office Action mailed on Apr. 28, 2011, for U.S. Appl. No. 12/055,213, filed Mar. 25, 2008, 20 pages. |
Non-Final Office Action mailed on Nov. 9, 2011, for U.S. Appl. No. 12/363,381, filed Jan. 30, 2009, 10 pages. |
Non-Final Office Action mailed on Dec. 22, 2011, for U.S. Appl. No. 13/033,532, filed Feb. 23, 2011, 8 pages. |
Notice of Allowance mailed on Nov. 24, 2010, for U.S. Appl. No. 11/400,714, filed Apr. 7, 2006, 8 pages. |
Final Office Action mailed on May 16, 2012, for U.S. Appl. No. 12/363,381, filed Jan. 30, 2009, 8 pages. |
Final Office Action mailed on Jul. 11, 2012, for U.S. Appl. No. 13/033,532, filed Feb. 23, 2011, 8 pages. |
Final Office Action mailed on Jul. 24, 2012, for U.S. Appl. No. 12/212,511, filed Sep. 17, 2008, 6 pages. |
Final Office Action mailed on Oct. 18, 2012, for U.S. Appl. No. 12/124,023, filed May 20, 2008, 15 pages. |
Non-Final Office Action mailed on Mar. 7, 2012, for U.S. Appl. No. 12/124,023, filed May 20, 2008, 13 pages. |
Non-Final Office Action mailed on Apr. 2, 2012, for U.S. Appl. No. 12/212,511, filed Sep. 17, 2008, 5 pages. |
Canadian Office Action mailed on Apr. 16, 2014 for Canadian Patent Application No. 2,682,398, filed on Mar. 25, 2008, 4 pages. |
Final Office Action mailed on Nov. 8, 2013, for U.S. Appl. No. 12/037,802, filed Feb. 26, 2008, 15 pages. |
Final Office Action mailed on Jan. 13, 2014, for U.S. Appl. No. 12/752,873, filed Apr. 1, 2010, 10 pages. |
Final Office Action mailed on Aug. 12, 2014, for U.S. Appl. No. 13/033,532, filed Feb. 23, 2011, 6 pages. |
Japanese Office Action mailed on Jul. 29, 2014, for Japanese Patent Application No. 2013-206216, filed on Mar. 25, 2008, 2 pages. |
Non-Final Office Action mailed on Sep. 18, 2013, for U.S. Appl. No. 12/055,213, filed Mar. 25, 2008, 15 pages. |
Non-Final Office Action mailed on May 31, 2013, for U.S. Appl. No. 12/124,023, filed May 20, 2008, 14 pages. |
Non-Final Office Action mailed on Apr. 2, 2014, for U.S. Appl. No. 13/033,532, filed Feb. 23, 2011, 8 pages. |
Notice of Allowance mailed on Feb. 22, 2013, for U.S. Appl. No. 12/212,511, filed Sep. 17, 2008, 8 pages. |
Notice of Allowance mailed on Mar. 18, 2013, for U.S. Appl. No. 12/212,511, filed Sep. 17, 2008, 6 pages. |
Notice of Allowance mailed on Mar. 4, 2014, for U.S. Appl. No. 12/055,213, filed Mar. 25, 2008, 9 pages. |
Notice of Allowance mailed on Apr. 1, 2014, for U.S. Appl. No. 12/363,381, filed Jan. 30, 2009, 9 pages. |
Notice of Allowance mailed on Apr. 3, 2014, for U.S. Appl. No. 12/037,802, filed Feb. 26, 2008, 8 pages. |
Notice of Allowance mailed on Feb. 18, 2014, for Australian Patent Application No. 2008233242, filed on Mar. 25, 2008, 2 pages. |
Australian Office Action mailed on Mar. 13, 2015, for Australian Patent Application No. 2014202620, filed on Mar. 25, 2008, three pages. |
European Office Action mailed on Oct. 17, 2014, for European Patent Application No. 12186090.2, filed on Mar. 25, 2008, 8 pages. |
Non-Final Office Action mailed on Nov. 10, 2014, for U.S. Appl. No. 12/752,873, filed Apr. 1, 2010, 10 pages. |
Notice of Allowance mailed on Dec. 29, 2014, for U.S. Appl. No. 12/363,381, filed Jan. 30, 2009, 9 pages. |
Notice of Allowance mailed on Jan. 29, 2015, for Canadian Patent Application No. 2682398, filed on Mar. 25, 2008, 1 page. |
U.S. Appl. No. 14/625,540, filed Feb. 18, 2015, for Miller et al. |
Extended European Search Report mailed on Jul. 10, 2015, for European Patent Application No. 15153029.2, filed on Mar. 25, 2008, 6 pages. |
Non-Final Office Action mailed on Oct. 28, 2015, for U.S. Appl. No. 13/033,532, filed Feb. 23, 2011, 9 pages. |
Non-Final Office Action mailed on May 4, 2015, for U.S. Appl. No. 12/124,023, filed May 20, 2008, 8 pages. |
Notice of Allowance mailed on Jul. 22, 2015, for U.S. Appl. No. 12/752,873, filed Apr. 1, 2010, 8 pages. |
Notice of Allowance mailed on Mar. 26, 2015, for European Patent Application No. 12186090.2, filed on Mar. 25, 2008, 2 pages. |
Notice of Allowance mailed on Apr. 24, 2015, for Australian Patent Application No. 2014202620, filed on Mar. 25, 2008, 2 pages. |
Notice of Allowance mailed on Oct. 21, 2015, for U.S. Appl. No. 12/124,023, filed May 20, 2008, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20090157118 A1 | Jun 2009 | US |
Number | Date | Country | |
---|---|---|---|
60921002 | Mar 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12055213 | Mar 2008 | US |
Child | 12363359 | US |