Devices for delivering energy and related methods of use

Information

  • Patent Grant
  • 9814618
  • Patent Number
    9,814,618
  • Date Filed
    Wednesday, June 4, 2014
    10 years ago
  • Date Issued
    Tuesday, November 14, 2017
    7 years ago
Abstract
A medical device is disclosed. The medical device may include an elongate member having a lumen extending at least partially between a proximal end and a distal end of the elongate member. The medical device may also include a plurality of legs coupled to a distal portion of the elongate member, and a distal end piece connected to each of the plurality of legs and located distally to the distal end of the elongate member. The medical device may also include an actuating member coupled to the distal end piece and extending between the plurality of legs and through the lumen. The reciprocal movement of the actuating member may be configured to reversibly move the plurality of legs from a first position to a second position. The medical device may also include a stopping member coupled to the actuating member and configured to limit a movement of the actuating member.
Description
FIELD OF THE DISCLOSURE

This disclosure relates generally to devices and methods for delivering thermal energy to a wall. More particularly, this disclosure relates to devices and methods treating a pulmonary system and airway. More particularly, the disclosure relates to medical and surgical devices and methods for treating a lung having at least one symptom of obstructive pulmonary disease. The disclosure also relates to devices and methods for delivering energy to an airway tissue of the lung in a controlled manner.


BACKGROUND OF THE DISCLOSURE

Devices that deliver energy to walls are often utilized to treat medical conditions. One such condition is, chronic obstructive pulmonary disease (COPD), which is a progressive disease that can cause obstruction in a lung airway limiting airflow into and out of the lung. Hence, a patient suffering from COPD may have difficulty breathing. There may be a number of factors responsible for COPD, such as smooth muscle contraction, excessive mucus production, thickening of the airway wall due to inflammation, and alteration of structures around the airway. More particularly, excessive and inappropriate constriction of airway smooth muscle (ASM) located within the walls of lung airways of such patients may be a contributory factor for COPD. Thus, reducing excessive ASM can provide a therapeutic benefit for treating COPD. Minimally invasive techniques have been developed to successfully reduce and/or eliminate excessive ASM.


An example of a minimally invasive technique for reducing (e.g., shrinking or debulking) excessive ASM involves delivery of thermal energy to the airway wall using a catheter. To apply the treatment, the catheter is positioned at a desired location within the airway. An electrode array at the tip of the catheter is expanded to contact the airway wall. The electrodes are expanded manually by squeezing a handle of the catheter to the desired expansion amount. In some embodiments, the treatment may involve damaging nerve tissue in airways of the pulmonary system to reduce the resting tone of smooth muscle tissue.


The use of conventional minimally invasive techniques may still be suboptimal. For example, it is possible to over-expand the electrodes by squeezing too much on the handle, leading to possible damage of the electrodes and adjacent body tissue. In addition, a user may not apply enough pressure to the handle, resulting in the electrodes not contacting or delivering thermal energy uniformly to the airway wall.


Thus, there are still shortcomings related to the known minimally invasive techniques utilized to reduce at least one symptom of COPD.


SUMMARY OF THE DISCLOSURE

The present disclosure is directed to a medical device for delivering thermal energy to wall of a tissue of a human body in a controlled manner for carrying out certain medical procedures, including general and surgical procedures.


In one aspect of the disclosure, a medical device may include an elongate member having a lumen extending at least partially between a proximal end and a distal end of the elongate member. The medical device may also include a plurality of legs coupled to a distal portion of the elongate member, and a distal end piece connected to each of the plurality of legs and located distally to the distal end of the elongate member. The medical device may also include an actuating member coupled to the distal end piece and extending between the plurality of legs and through the lumen. Reciprocal movement of the actuating member may be configured to reversibly move the plurality of legs from a first position to a second position. The medical device may also include a stopping member coupled to the actuating member and configured to limit a movement of the actuating member.


Various embodiments of the disclosure may also include one or more of the following aspects: wherein the stopping member may be configured to limit a movement of the actuating member along a longitudinal axis of the elongate member; wherein at least a portion of the stopping member may be disposed within the distal end piece; wherein the stopping member may define a lumen configured to receive a portion of the actuating member; wherein the actuating member may further include a protrusion disposed at a distal end of the actuating member, the protrusion may be configured to compress the stopping member; wherein the protrusion may be a disc attached to the distal end of the actuating member, wherein the disc may include a width greater than a width of the stopping member lumen; wherein the disc may engage a distal end of the stopping member to limit the movement of the actuating member; a support disposed around the actuating member and connected to the stopping member, the support may be configured to support a proximal end of the stopping member; wherein the stopping member may be formed in at least one end of each of the plurality of legs; wherein the stopping member may be disposed proximal to the plurality of legs; wherein the stopping member may be disposed between two portions of the actuating member; wherein the plurality of legs may be compressed in the first position, and are configured to bow outwardly from a longitudinal axis in the second position; and wherein the stopping member may be in a first configuration when the plurality of legs are in the first position, and in a second configuration when the plurality of legs are in the second position.


In another aspect, the present disclosure may be directed to a medical device having an elongate member having a lumen extending between a proximal end and a distal end of the elongate member. The medical device may also include a plurality of legs extending from the distal end of the elongate member. At least one of the legs may include an electrode for delivering energy, and each of the plurality of legs may include a distal end. The medical device may also include a distal end piece connected to the distal end of each of the plurality of legs, and an actuating member coupled to the distal end piece and extending between the plurality of legs and through the lumen. The actuating member may be configured to reversibly move the plurality of legs from a first position to a second position. The plurality of legs may move from the first position to the second position when a proximal force is applied to the actuating member, and the plurality of legs may move from the second position to the first position when the proximal force is released. The medical device may also include a stopping member coupled to the actuating member configured to limit a movement of the actuating member.


Various embodiments of the present disclosure may also include one or more of the following aspects: wherein at least a portion of the stopping member may be disposed within the distal end piece; and wherein the actuating member may further include a protrusion disposed at a distal end of the actuating member, the protrusion may be configured to engage the stopping member when the actuating member is moved in the proximal direction.


In yet another aspect, the present disclosure may be directed to a method of delivering energy to a wall of a body lumen using a medical device. The method may include inserting the medical device into the body lumen, and pulling proximally an actuating member to radially expand an expandable member at a distal end of the medical device. The method may also include limiting the radial expansion of the expandable member by compressing a stopping member coupled to the actuating member, and applying energy to the wall of the body lumen via the expandable member.


Various embodiments of the present disclosure may also include: wherein the radial expansion of the expandable member may be limited by limiting a movement of the actuating member along a longitudinal axis of the medical device; wherein at least a portion of the stopping member may be disposed within a distal end piece of the medical device; and wherein the stopping member may define a lumen configured to receive a portion of the actuating member.


Additional characteristics, features, and advantages of the disclosed subject matter will be set forth in part in the description that follows, and in part will be apparent from the description, or may be learned by practicing the disclosure. The characteristics and features of the disclosure can be realized and attained by way of the elements and combinations particularly pointed out in the appended claims.


It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only, and are not restrictive of the disclosed subject matter.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate exemplary embodiments of the present disclosure and together with the description, serve to explain the principles of the disclosure.



FIG. 1 is a schematic view of an exemplary medical device, according to one embodiment of the present disclosure;



FIG. 2 is a cross-sectional side view of the medical device of FIG. 1 depicting a stopping member in an uncompressed position;



FIG. 3 is a cross-sectional side view of the medical device of FIG. 1 depicting the stopping member in a compressed position;



FIG. 4 is a cross-sectional side view of the medical device of FIG. 1, according to an embodiment of the present disclosure;



FIG. 5 is a partial perspective view of a medical device, according to an embodiment of the present disclosure; and



FIG. 6 is a cross-sectional view of a medical device, according to an embodiment of the present disclosure.





DESCRIPTION OF THE EMBODIMENTS

Reference will now be made to certain exemplary embodiments of the present disclosure, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. The term “distal” refers to the end farthest away from a medical professional when introducing a device in a patient. The term “proximal” refers to the end closest to the medical professional when placing a device in the patient.


Overview

Embodiments of the present disclosure relate to devices configured for delivering consistent thermal energy to wall of a tissue of a human body and methods thereof. For example, embodiments of the disclosed device(s) may facilitate delivery of thermal energy to a wall of an airway in a lung in a controlled manner to reduce, shrink, debulk, or otherwise eliminate excessive airway smooth muscle (ASM) to decrease at least one symptom of chronic or reversible obstructive pulmonary disease, including, but not limited to, asthma.


Exemplary Embodiments

The embodiments disclosed herein can be employed along with an elongate device, which may be an endoscopic system that functions as a means to introduce and deliver the disclosed embodiments to a target site within a patient's body. However, it should be noted that embodiments of the present disclosure may be used along with other introduction devices, sheaths, or systems, such as bronchoscopes, trocars, endoscopes, catheter sheaths, laparoscopes, colonoscopes, ureterscope, or the like.



FIG. 1 is a schematic view of an exemplary medical device for delivering thermal energy to a treatment site in accordance with the present disclosure. A medical device 10 may be configured to traverse through narrow lumens of the body having walls, e.g., airways of the lungs to reach the treatment site.


The medical device 10 may include a sheath 11 through which an elongate member 12 may pass. The elongate member 12 may have a distal end 20, a proximal end (not shown), and a lumen 13 extending between distal end 20 and the proximal end. Although the elongate member 12 may define a single lumen 13, the elongate member 12 may alternatively define a plurality of lumens. In some embodiments, the plurality of lumens may extend the entire length of the elongate member 12. In other embodiments, there may be additional lumens that only extend partly through elongate member 12. In some embodiments, the elongate member 12 may be coupled, or extended to other parts of the medical device 10.


Further, the elongate member 12 and the sheath 11 may have a tubular structure defining a circular cross-section. The respective cross-sectional profiles of elongate member 12 and sheath 11 may be relatively easy to assemble, remove, and/or use while being utilized in conjunction with any other elongated devices such as, e.g., a bronchoscope. Alternatively, elongate member 12 and the sheath 11 may have other configurations, such as, but not limited to, an elliptical cross-sectional profile, etc.


The sheath 11 may be a flexible, hollow member having dimensions that allow elongate member 12 to pass therethrough. That is, sheath 11 may have a diameter that is larger than the diameter of elongate member 12 and is smaller than the diameter of both a bronchoscope (or other suitable device) and a body lumen such as an airway. In particular, the dimensions of the sheath 11 may be compact enough to pass through the airway, while still allowing the elongate member 12 to be disposed therein.


Elongate member 12 and the sheath 11 may include any suitable flexible and/or biocompatible material, including, but not limited to, metals, polymers, alloys, and the like. In at least some embodiments, the elongate member 12 and the sheath 11 are made from one or more of nitinol, silicone, or the like. According to one embodiment, the material may exhibit sufficient flexibility to be maneuvered through the body lumens and positioned within without causing any injury to the surrounding tissue, such as, e.g., airways.


Elongate member 12 may further include a basket 14 having a plurality of legs 16 coupled to a distal portion (not shown) of the elongate member 12. In an alternative embodiment, basket 14 may be replaced with an inflatable, expandable member (e.g., a balloon). Each of the legs 16 may be configured to include an electrode disposed along the longitudinal length of the legs 16. Further, each electrode may be positioned along the legs 16 such that the electrode may be able to touch a tissue surface such as an airway wall to deliver energy to a treatment site when the legs 16 are expanded. However, each of the legs 16 may further include more than one electrode to transfer energy at the treatment site. The electrodes may be coupled to the legs 16 by any suitable means known in the art. In some embodiments, each of the legs 16 may include a conductive material, and the ends of legs 16 may be covered with an insulating material to leave an exposed active region.


Structurally, each of the legs 16 may have proximal portions emerging out of the lumen of the elongate member 12. In some embodiments, each of the legs 16 may have proximal portions joined or otherwise coupled to each other through an adhesive (or other attachment structure or material) and may form a proximal joint passing through the elongate member 12. Each of the legs 16 may have proximal portions extending continuously from the distal end 20 of the elongate member 12, as shown in FIG. 1. Further, distal portions of each of the legs 16 may be connected to each other by various mechanisms known in the art such as soldering, gluing, welding, using attachment structures, or the like.


Each of the legs 16 may be spaced at approximately any desired interval or equal intervals to form the basket 14. For instance, FIG. 1 may depict four legs 16 spaced at approximately 90 degree intervals around the basket 14. In an embodiment having five legs 16, e.g., the legs 16 may be spaced at approximately 72 degree intervals to form the basket 14. Therefore, the number and degree interval of the legs 16 around the basket 14 may depend upon various requirements such as size of the target airway, desired contact between each leg 16 and the airway wall, or the like.


Each of the legs 16 may have a length such that the basket 14 may be able to expand and contact a wall of the airway and traverse through the narrow airways of the lungs. Also, the legs 16 may include a sufficient thickness and modulus so as not to break or otherwise plastically deform while expanding and contracting during the procedure.


The basket 14 may be configured to reciprocate from a first, compressed position to a second, expanded position, e.g., a bowing outwardly state, and vice versa. The basket 14 may be configured to expand radially from the first position to the second position. In the second position, the basket 14 may be expanded such that arch shaped portions of the legs 16 contact a wall surface of an airway to deliver energy.


The legs forming the basket 14 may be formed from a resilient, highly tensile, and biocompatible material that may not deform (e.g., elastically) while expanding radially. Examples of such materials may include, but are not limited to silicone, super elastic alloy, stainless steel, shape memory alloy such as nitinol or the like. In some embodiments, the legs 16 may be made from the same material as that of the elongate member 12, and define a circular cross-sectional profile. However, the legs 16 may have other cross-sectional profiles such as elliptical, rectangular, or the like.


As discussed above, distal portions of each of the legs 16 may be joined together and further may be encompassed by a covering such as a distal cap or distal end piece 18. Thus, the distal cap 18 may be located distally to the distal end 20 of the elongate member 12. The distal cap 18 may have a diameter configured to facilitate insertion of the medical device 10 into narrow airways of the lungs without harming the airways. Accordingly, distal cap 18 may have an atraumatic configuration. Moreover, the distal cap 18 may be sized such that the distal cap 18 may be able to enter, pass through, and exit through a bronchoscope (or other suitable device) and the narrow airway.


The distal cap 18 may be a hollow cylindrical elongate member and configured to allow the distal portions of the legs 16 to pass through or into. In one embodiment, e.g., a distal end of distal cap 18 may be closed. The distal cap 18 may be long enough to substantially encompass a distal portion of the legs 16. Further details of the internal structure of the distal cap 18 will be discussed in conjunction with subsequent figures. In some embodiments, distal cap 18 may be electrically conductive with an insulating cover.


The distal cap 18 may have a circular cross-sectional profile. However, the distal cap 18 may have other cross-sections such as elliptical, rectangular, polygonal, non-symmetrical, or the like.


The distal cap 18 may be formed from a flexible, biocompatible material. Examples of such materials may include, but are not limited to, silicone, shape memory alloys such as nitinol, or the like.


Next, an actuating member 22 such as a pull wire may be configured to extend from a proximal portion (not shown) of the medical device 10, passing through the lumen of the elongate member 12, extending through the basket 14 and between the legs 16, coupling the distal portions of the legs 16 and the distal cap 18, and further extending to pass through the distal cap 18. The actuating member 22 may be configured to move back and forth (i.e., reciprocate) as a force is applied manually or autonomously on the actuating member 22 at the proximal portion of the medical device 10. In some embodiments, actuating member 22 may be a braided pull wire and/or include a plurality of pull wires.


The actuating member 22 may be configured as an elongated wire that extends from the proximal portion of the medical device 10, through the basket 14, toward the distal cap 18.


The actuating member 22 may be formed from any suitable biocompatible material. Alternatively, actuating member 22 may be a rod, string, knot or other suitable mechanism capable of reciprocal movement. Examples of suitable materials may include but are not limited to nitinol, other shape memory alloys, stainless steel, silicone, or the like.


A proximal portion of the medical device 10 may be configured to emerge out of a distal end of an elongate device such as a bronchoscope (not shown). The bronchoscope may be employed to view internal structure of bronchioles. At an extreme proximal end (not shown) of the medical device 10, there may be a handle (not shown) that may be configured to be manually or autonomously squeezed. At the handle or other actuator, there may be a plug (not shown) for connection to an electrosurgical generator that may be configured to provide electrical energy to the medical device 10.



FIG. 2 is a cross-sectional view of the medical device 10 of FIG. 1 depicting the actuating member 22 in an unactivated position. As shown in FIG. 2, the distal cap 18 may encompass a portion of the distal portions of the legs 16 including the electrodes and the actuating member 22. Further, a stopping member 201 such as, e.g., a coiled spring, may be operatively coupled to and encompass the actuating member 22. The stopping member 201 may define a lumen that is configured to receive a distal portion of the actuating member 22. The stopping member 201 may be configured to limit a movement of the actuating member 22 in at least the proximal direction along a longitudinal axis of the elongate member 12. A substantial portion of the stopping member 201 may be disposed within the distal cap 18.


The stopping member 201 may compress and expand when a force is applied or released at the handle of the medical device 10. Stopping member 201 may include compression springs, coiled springs, Bellville washers, compressible polymeric materials, compressible elastic tubes, hydraulic or pneumatic bladders, inflatable members, leaf springs, rubber bands, sponges, or the like.


The stopping member 201 may be formed from a flexible, resilient, compressible, and/or biocompatible material. Example of such materials may include, but are not limited to, stainless steel, shape memory alloys, polymers, other suitable materials having elastic properties, or the like. In some embodiments, non-elastic materials can also be used to construct the stopping member 201, if desired.


Further, a protrusion 202 such as a disc may be disposed at a distalmost end of the actuating member 22. The protrusion 202 may be configured to engage a distal end of the stopping member 201 to limit the movement of the actuating member 22 in e.g., a proximal direction. The protrusion 202 may have a width greater than a width of the lumen of the stopping member 201. In some embodiments, protrusion 202 may be fixed to the distal ends of legs 16 such that when actuating member 22 is actuated (e.g., in a proximal direction), both protrusion 202 and the distal ends of legs 16 also move proximally.


The protrusion 202 may be configured to have a circular cross-sectional profile. However, the protrusion 202 may have other cross-sections and configurations which are not limited to elliptical, oblate, polygonal, irregular, or the like.


A proximal end of the stopping member 201 may be further connected or otherwise operatively coupled to a support 204 disposed around the actuating member 22. The support 204 may be configured to support the proximal end of the stopping member 201 and fix a proximal position of stopping member 201 relative to, e.g., a distal end portion of legs 16. Thus, forces applied to the distal end of legs 16 via actuating member 22 may be limited by compression of stopping member 201 against support 204, and not by the amount of force applied to actuating member 22 by, e.g., a handle coupled to actuating member 22. In some embodiments, when a force applied to the handle exceeds a predetermined limit, stopping member 201 may absorb the excess force to prevent the excess force from being transferred to the distal ends of legs 16. The protrusion 202 and/or support 204 may be formed from a resilient, flexible, conductive, and/or biocompatible material. Examples of such materials may include but are not limited to nitinol, silicone, stainless steel, metals, alloys, or the like.


The support 204 may be circular in shape. However, the support 204 may have other shapes such as a circular ring, an elliptical ring, polygonal, oblate, irregular, or the like.


A proximal end of the support 204 may further be connected or otherwise coupled to an elongated member such as a spacer 206 disposed around the actuating member 22. The spacer 206 may be configured to extend substantially from a proximal portion to a distal portion of the legs 16. The spacer 206 may be configured to provide support for preventing over-expansion of the basket 14.


The spacer 206 may be cylindrical in shape and have a cross-section of circular profile. However, the cross-section of the spacer 206 may depend on that of the actuating member 22 as, in some embodiments, the spacer 206 encompasses, or otherwise surrounds actuating member 22. The spacer 206 may also be shaped to externally support the position of the legs 16.


The spacer 206 may be formed from a resilient, flexible, and/or biocompatible material. Examples of such materials may include, but are not limited to nitinol, silicone, stainless steel, polymer, alloys, or the like.


As shown in FIG. 2, the stopping member 201 is uncompressed and the basket 14 (referring to FIG. 1) is in a first, compressed position.



FIG. 3 is a cross-sectional view of the medical device 10 including the stopping member 201 in a compressed position. As the handle at the proximal end of the medical device 10 is pulled or otherwise activated to apply a proximal pulling force to actuating member 22, the protrusion 202 and the actuating member 22 may move towards the proximal end of the medical device 10. As a result, the protrusion 202 may push and compress the stopping member 201 against support 204. Due to proximal movement of the actuating member 22, the basket 14 may expand radially outward (e.g., the proximal and distal ends (not shown) of the basket 14 may move from the first position to the second position). In some embodiments, the distal ends of legs 16 may be coupled to protrusion 202 and move proximally as protrusion 202 moves proximally. In the first position, the basket 14 may be compressed (e.g., the basket 14 may appear to be closed and the legs 16 may appear to be running generally straight from the proximal end of the medical device 10 to the distal end of the distal cap 18). While in the second position, the basket 14 may be expanded such that the legs 16 are bowed radially and outwardly. Without stopping member 201, protrusion 202, and support 204, it may be possible to apply too much force to actuating member 22, e.g., by pulling or otherwise activating the handle of the medical device 10, resulting in damage to legs 16 and/or an airway wall caused by, e.g., over-expansion of basket 14. However, because the protrusion 202 may compress the stopping member 201 by only a fixed amount limited by the support 204, legs 16 may be prevented from moving beyond a predetermined limit. This may help avoid over-expansion of the basket 14 and undue flexing of legs 16. Further, due to a fixed length of the spacer 206, the legs 16 may be able to bow in a controlled manner. Hence, over-expansion of the basket 14 may be further avoided, and possible damage to the legs 16 and the airways can also be further avoided.


Further, as the handle of the medical device 10 is released, the protrusion 202 and the actuating member 22 may move towards the distal end of the distal cap 18. This distal movement may uncompress the stopping member 201, causing the legs 16 to move from the second position to the first position. That is, the release of the handle may release the force compressing stopping member 201, causing stopping member 201 to release any stored potential energy and return to an uncompressed position so that basket 14 is returned to the compressed position. Thus, as actuating member 22 may be configured to move reciprocally, legs 16 may reciprocate between the compressed, first position to the second, expanded position (e.g., as the actuating member 22 moves proximally, the legs 16 may move from the first position to the second position, and as the actuating member 22 moves distally, the legs 16 may move from the second position to the first position). It should be noted however, that alternative embodiments are also contemplated. In one alternative embodiment, the distal movement of actuating member 22 may move legs 16 from the first, compressed position to the second, expanded position, while the proximal movement of actuating member 22 moves legs 16 from the second, expanded position to the first, compressed position.



FIG. 4 is a cross-sectional view of the medical device 10 depicting the spacer 206 supporting the stopping member 201. In the embodiment of FIG. 4, the stopping member 201 may be directly supported by the spacer 206. Spacer 206 may be located adjacent to the proximal end of the stopping member 201, and directly fix a proximal position of stopping member 201. Thus, forces applied to the distal end of legs 16 via actuating member 22 may be limited by compression of stopping member 201 against spacer 206 and/or the stiffness of stopping member 201, and not by the amount of force applied to actuating member 22 by, e.g., a handle coupled to actuating member 22. In some embodiments, when a force applied to the handle exceeds a limit, stopping member 201 may absorb the excess force to prevent the excess force from being transferred to the distal ends of legs 16. The resiliency of the stopping member 201 can also be set such that upon actuation it provides a tactile signal to the practitioner indicating that the basket 14 is fully expanded.



FIG. 5 illustrates another embodiment of an exemplary medical device 500. Medical device 500 may be substantially similar to medical device 10 (referring to FIG. 1), but additionally or alternatively include a stopping member 504 integral with the distal ends of the plurality of legs 516. Legs 516 may be substantially similar to and include any one or more of the features of legs 16 described above. In an alternative embodiment, the stopping member 504 may be integral with a proximal end (not shown) of each of the plurality of the legs 516. Each of the legs 516 may include an electrode disposed along a longitudinal axis. Legs 516 may be integral and cut out from a tube having an outer diameter less than the inner diameter of a scope working channel. Alternatively, legs 516 may be cut out from a sheet of material and rolled, or may be formed by another suitable mechanism. A cap (not shown) may extend over the distal assembly. The cap may prevent tissue from entering the spaces within and limiting the compression of stopping member 504.


An actuating member 522 may extend from a proximal end (not shown) to a distal end of the medical device 500. A protrusion 502 may be disposed at a distal end of the actuating member 522. Actuating member 522 and protrusion 502 may be substantially similar to that of actuating member 22 and protrusion 202, respectively, shown in FIG. 2. Stopping member 504 may be a coiled spring or other suitable resilient member that surrounds a substantial distal portion of the actuating member 522 and may be located proximally adjacent to the protrusion 502. Stopping member 504 may be integrally connected to the distal end of each leg 516 via a support 506. That is, support 506 may be disposed between stopping member 504 and legs 516 (e.g., support 506 may be proximal to stopping member 504 and distal to the distal ends of legs 516). Support 506 may be generally cylindrical or may have any other suitable shape. In an alternative embodiment, each individual leg 516 may include a stopping member incorporated into a distal end portion (e.g., a basket having four legs 516 may include four stopping members, at least one incorporated into an end portion of each leg 516).


As actuating member 522 is pulled proximally, legs 516 may expand radially outward from a first, compressed position to a second, expanded position. Support 506 may be located adjacent to the proximal end of the stopping member 504, and directly fix a proximal position of stopping member 504. Thus, forces applied to the distal end of legs 516 via actuating member 522 may be limited by compression of stopping member 504 against support 506, and not by the amount of force applied to actuating member 22 by, e.g., a handle coupled to actuating member 22. In some embodiments, when a force applied to the handle exceeds a predetermined limit, stopping member 504 may absorb the excess force to prevent the excess force from being transferred to the distal ends of legs 516. Thus, when a basket formed by legs 516 reaches the predetermined expansion limit, further force applied to the actuation member 22 may not further expand the basket.


A distal end of a cap 518 may be configured to support stopping member 504 and the distal ends of legs 516. Cap 518 may be connected, or otherwise coupled to a distal end of an elongate member, such as, e.g., elongate member 12 (referring to FIG. 1) by an elongate connector 519. Cap 518 may be generally U-shaped, C-shaped, or have another suitable configuration.



FIG. 6 illustrates another embodiment of a medical device 600. Medical device 600 may include a stopping member 608 disposed proximally of legs 16, and between a distal portion 604 and a proximal portion 606 of an actuating member 602. In other words, a distal end of the stopping member 608 may be connected to a proximal end of distal portion 604 of the actuating member 602 and a proximal end of the stopping member 608 may be connected to a distal end of the proximal portion 606 of the actuating member 602. Actuating member 602 may be any suitable actuating member such as a pull wire, braided pull wire, a plurality of pull wires, a control rod, or the like. In one embodiment, as actuating member 602 is moved proximally, stopping member 608 may expand, causing the legs 16 to expand to the second, expanded position. The stiffness of stopping member 608 may be selected to prevent over-expansion of actuating member 602 in the proximal direction. When a proximal force applied to actuating member 602 is below a predetermined limit, the proximal force may be insufficient to expand stopping member 608 such that distal portion 604, stopping member 608, and proximal portion 606 may all move distally while their configurations remain generally constant relative to each other. However, as the proximal force is increased, e.g., to a point that would otherwise cause over-expansion of basket 14 and legs 16 (referring to FIG. 1), stopping member 608 may expand. The expansion of stopping member 608 may absorb the excess force, preventing the excess force from causing the over-expansion of basket 14 and legs 16. As the actuating member 602 is released in the distal direction, stopping member 608 may compress, release stored energy, and thereby move the legs 516 to the first, compressed position.


A method of delivering energy to an airway treating a lung using the disclosed medical device may include a number of consecutive, non-consecutive, simultaneous, non-simultaneous, or alternative steps. At the outset, a medical device made in accordance with principles of the disclosed subject matter can be provided. An elongated device such as a bronchoscope may be inserted through a natural or surgical opening such as a mouth of the patient. The bronchoscope may be required to traverse through narrow vessels such as a wind pipe followed by bronchioles of a lung of a patient. Thereafter, a bronchiole that is targeted for treatment may be viewed and examined through the bronchoscope. This may be followed by inserting a distal portion of the medical device 10 into a lumen of the bronchoscope to reach an area of the treatment site. A handle (not shown) at a proximal end of the medical device 10 may be connected to a plug (not shown) which may further be connected to an energy generator such as an electrosurgical generator (not shown). As the handle, or other actuator, is pulled or otherwise actuated (e.g., moved proximally), protrusion 202 coupled to actuating member 22 may move toward a proximal portion of the medical device 10. The proximal movement of actuating member 22 may cause legs 16 to bow radially and outwardly enabling the electrodes disposed on the legs 16 to contact an airway wall. Meanwhile, the electrosurgical generator may be activated and an electric current may travel through the plug toward actuating member 22. Further, as actuating member 22 moves back and forth (i.e., reciprocates), the electric current may transfer from actuating member 22 to protrusion 202. Because of the contact and conductive material of the protrusion 202 and the legs 16, the electric current may be transferred to each of the legs 16 via protrusion 202. As the legs 16 bow outwardly against a wall and become electrically activated, the electrical energy may be transferred from the legs 16 to an airway wall in a controlled manner.


Embodiments of the present disclosure may be used in any medical or non-medical environment or in any other application other than in an airway, where energy is applied to a wall through a device where control of expansion legs against the wall is desired. In addition, at least certain aspects of the aforementioned embodiments may be combined with other aspects of the embodiments, or removed, without departing from the scope of the disclosure.


Other embodiments of the present disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the embodiments disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the disclosure being indicated by the following claims.

Claims
  • 1. A medical device, comprising: a shaft having a shaft lumen extending at least partially between a proximal end and a distal end of the shaft;a plurality of legs proximate a distal portion of the shaft;a distal end piece coupled to each of the plurality of legs and located distally to the distal end of the shaft;an actuating member coupled to the distal end piece and extending between the plurality of legs and through the shaft lumen, wherein reciprocal movement of the actuating member is configured to reversibly move the plurality of legs from a first position to a second position; anda stopping member coupled to the actuating member and at least a portion of the stopping member is disposed within the distal end piece, the stopping member defines a stopping member lumen configured to receive a portion of the actuating member, wherein proximal movement of the actuating member compresses the stopping member, and compression of the stopping member limits the proximal movement of the actuating member and radial expansion of the plurality of legs.
  • 2. The medical device of claim 1, wherein the actuating member further includes a protrusion disposed at a distal end of the actuating member, the protrusion configured to compress the stopping member.
  • 3. The medical device of claim 2, wherein the protrusion is a disc attached to the distal end of the actuating member, wherein the disc has a width greater than a width of the stopping member lumen.
  • 4. The medical device of claim 3, wherein the disc engages a distal end of the stopping member to limit the movement of the actuating member.
  • 5. The medical device of claim 4, wherein the protrusion is movable relative to distalmost ends of each of the plurality of legs.
  • 6. The medical device of claim 5, wherein the stopping member is a spring and is: in a first, longitudinally expanded configuration when the plurality of legs are in the first position, wherein the plurality of legs are radially compressed in the first position; andin a second, longitudinally compressed configuration when the plurality of legs are in the second position, wherein the plurality of legs are radially expanded in the second position.
  • 7. The medical device of claim 1, wherein the stopping member is configured to limit a movement of the actuating member along a longitudinal axis of the shaft.
  • 8. The medical device of claim 1, further including a support disposed around the actuating member and connected to the stopping member, the support being configured to support a proximal end of the stopping member.
  • 9. The medical device of claim 1, wherein the stopping member is formed in at least one end of each of the plurality of legs.
  • 10. The medical device of claim 1, wherein the plurality of legs are compressed in the first position, and are configured to bow outwardly from a longitudinal axis in the second position.
  • 11. The medical device of claim 1, wherein the stopping member is: in a first, longitudinally expanded configuration when the plurality of legs are in the first position, wherein the plurality of legs are radially compressed in the first position; andin a second, longitudinally compressed configuration when the plurality of legs are in the second position, wherein the plurality of legs are radially expanded in the second position.
  • 12. A medical device, comprising: a shaft having a lumen extending at least partially between a proximal end and a distal end of the shaft;a plurality of legs proximate a distal portion of the shaft;a distal end piece coupled to each of the plurality of legs and located distally to the distal end of the shaft;an actuating member coupled to the distal end piece and extending between the plurality of legs and through the lumen, wherein reciprocal movement of the actuating member is configured to reversibly move the plurality of legs from a first, radially-collapsed, position to a second, radially expanded, position; wherein the actuating member includes a first portion having a proximal end and a distal end, and a second portion having a proximal end and a distal end, the proximal end of the second portion being distal to the distal end of the first portion; anda stopping member coupled to the actuating member and configured to limit a movement of the actuating member, wherein the stopping member is disposed proximal to the plurality of legs and the stopping member also is disposed between the distal end of the first portion and the proximal end of the second portion, and:when the plurality of legs are in the first position, application of a proximal force to the actuating member below a threshold amount moves the plurality of legs toward the second position; andafter the plurality of legs have been moved from the first position toward the second position, application of a proximal force to the actuating member above the threshold amount expands the stopping member to prevent further radial expansion of the plurality of legs.
  • 13. The medical device of claim 12, wherein application of a proximal force below the threshold amount is insufficient to expand the stopping member.
  • 14. The medical device of claim 13, wherein, after the stopping member has expanded, release of the proximal force enables the stopping member to compress, the actuating member to move distally, and the plurality of legs to move back to the first position.
  • 15. The medical device of claim 14, wherein the stopping member is a spring.
  • 16. A medical device, comprising: a shaft having a lumen extending between a proximal end and a distal end of the shaft;a plurality of legs extending from the distal end of the shaft, wherein: at least one of the legs includes an electrode for delivering energy; andwherein each of the plurality of legs includes a distal end;a distal end piece coupled to the distal end of each of the plurality of legs;an actuating member coupled to the distal end piece and extending between the plurality of legs and through the lumen, the actuating member configured to reversibly move the plurality of legs from a first position to a second position, wherein:the plurality of legs move from the first position to the second position when a proximal force is applied to the actuating member; andthe plurality of legs move from the second position to the first position when the proximal force is released; anda stopping member coupled to the actuating member and at least a portion of the stopping member is disposed within the distal end piece, the stopping member defines a stopping member lumen configured to receive a portion of the actuating member, wherein compression of the stopping member limits radial expansion of the plurality of legs.
CROSS-REFERENCE TO RELATED APPLICATION

This patent application claims the benefits of priority under 35 U.S.C. §119 to U.S. Provisional Patent Application No. 61/831,997, filed Jun. 6, 2013, the entirety of which is incorporated herein by reference.

US Referenced Citations (448)
Number Name Date Kind
1155169 Starkweather Sep 1915 A
1207479 Bisgaard Dec 1916 A
2072346 Smith Mar 1937 A
3320957 Sokolik May 1967 A
3568659 Karnegis Mar 1971 A
3667476 Muller Jun 1972 A
3692029 Adair Sep 1972 A
4461283 Doi Jul 1984 A
4503855 Maslanka Mar 1985 A
4522212 Gelinas et al. Jun 1985 A
4565200 Cosman Jan 1986 A
4567882 Heller Feb 1986 A
4584998 McGrail Apr 1986 A
4612934 Borkan Sep 1986 A
4643186 Rosen et al. Feb 1987 A
4674497 Ogasawara Jun 1987 A
4706688 Don Michael et al. Nov 1987 A
4709698 Johnston et al. Dec 1987 A
4799479 Spears Jan 1989 A
4802492 Grunstein Feb 1989 A
4825871 Cansell May 1989 A
4827935 Geddes et al. May 1989 A
4862886 Clarke et al. Sep 1989 A
4920978 Colvin May 1990 A
4955377 Lennox et al. Sep 1990 A
4967765 Turner et al. Nov 1990 A
4976709 Sand Dec 1990 A
5010892 Colvin et al. Apr 1991 A
5019075 Spears et al. May 1991 A
5053033 Clarke Oct 1991 A
5056519 Vince Oct 1991 A
5074860 Gregory et al. Dec 1991 A
5078716 Doll Jan 1992 A
5084044 Quint Jan 1992 A
5096916 Skupin Mar 1992 A
5100388 Behl et al. Mar 1992 A
5100423 Fearnot Mar 1992 A
5103804 Abele et al. Apr 1992 A
5106360 Ishiwara et al. Apr 1992 A
5116864 March et al. May 1992 A
5117828 Metzger et al. Jun 1992 A
5135517 McCoy Aug 1992 A
5152286 Sitko et al. Oct 1992 A
5170803 Hewson et al. Dec 1992 A
5174288 Bardy et al. Dec 1992 A
5188602 Nichols Feb 1993 A
5191883 Lennox et al. Mar 1993 A
5215103 Desai Jun 1993 A
5254088 Lundquist et al. Oct 1993 A
5255678 Deslauriers et al. Oct 1993 A
5255679 Imran Oct 1993 A
5265604 Vince Nov 1993 A
5269758 Taheri Dec 1993 A
5279565 Klein et al. Jan 1994 A
5281218 Imran Jan 1994 A
5292331 Boneau Mar 1994 A
5293869 Edwards et al. Mar 1994 A
5309910 Edwards et al. May 1994 A
5311866 Kagan et al. May 1994 A
5313943 Houser et al. May 1994 A
5322503 Desai Jun 1994 A
5324284 Imran Jun 1994 A
5343936 Beatenbough et al. Sep 1994 A
5345936 Pomeranz et al. Sep 1994 A
5366443 Eggers et al. Nov 1994 A
5368591 Lennox et al. Nov 1994 A
5370644 Langberg Dec 1994 A
5370679 Atlee, III Dec 1994 A
5374287 Rubin Dec 1994 A
5383917 Desai et al. Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5394880 Atlee, III Mar 1995 A
5396887 Imran Mar 1995 A
5400783 Pomeranz et al. Mar 1995 A
5409469 Schaerf Apr 1995 A
5411025 Webster May 1995 A
5415166 Imran May 1995 A
5415656 Tihon et al. May 1995 A
5417687 Nardella et al. May 1995 A
5423744 Gencheff et al. Jun 1995 A
5423811 Imran et al. Jun 1995 A
5425703 Feiring Jun 1995 A
5431696 Atlee, III Jul 1995 A
5433730 Alt Jul 1995 A
5443470 Stern et al. Aug 1995 A
5454782 Perkins Oct 1995 A
5456667 Ham et al. Oct 1995 A
5456684 Schmidt et al. Oct 1995 A
5458596 Lax et al. Oct 1995 A
5464404 Abela et al. Nov 1995 A
5465717 Imran et al. Nov 1995 A
5471982 Edwards et al. Dec 1995 A
5474530 Passafaro et al. Dec 1995 A
5478309 Sweezer et al. Dec 1995 A
5496271 Burton et al. Mar 1996 A
5496311 Abele et al. Mar 1996 A
5500011 Desai Mar 1996 A
5505728 Ellman et al. Apr 1996 A
5505730 Edwards Apr 1996 A
5509411 Littmann et al. Apr 1996 A
5509419 Edwards et al. Apr 1996 A
5522862 Testerman et al. Jun 1996 A
5531779 Dahl et al. Jul 1996 A
5540681 Strul et al. Jul 1996 A
5545161 Imran Aug 1996 A
5545193 Fleischman et al. Aug 1996 A
5547469 Rowland et al. Aug 1996 A
5549559 Eshel Aug 1996 A
5549655 Erickson Aug 1996 A
5549661 Kordis et al. Aug 1996 A
RE35330 Malone et al. Sep 1996 E
5558073 Pomeranz et al. Sep 1996 A
5562608 Sekins et al. Oct 1996 A
5562619 Mirarchi et al. Oct 1996 A
5571088 Lennox et al. Nov 1996 A
5578067 Ekwall et al. Nov 1996 A
5582609 Swanson et al. Dec 1996 A
5588432 Crowley Dec 1996 A
5595183 Swanson et al. Jan 1997 A
5598848 Swanson et al. Feb 1997 A
5599345 Edwards et al. Feb 1997 A
5601088 Swanson et al. Feb 1997 A
5605157 Panescu et al. Feb 1997 A
5607419 Amplatz et al. Mar 1997 A
5607462 Imran Mar 1997 A
5620438 Amplatz et al. Apr 1997 A
5623940 Daikuzono Apr 1997 A
5624439 Edwards et al. Apr 1997 A
5626618 Ward et al. May 1997 A
5630425 Panescu et al. May 1997 A
5630794 Lax et al. May 1997 A
5634471 Fairfax et al. Jun 1997 A
5647870 Kordis et al. Jul 1997 A
5678535 DiMarco Oct 1997 A
5680860 Imran Oct 1997 A
5681280 Rusk et al. Oct 1997 A
5681308 Edwards et al. Oct 1997 A
5693078 Desai et al. Dec 1997 A
5699799 Xu et al. Dec 1997 A
5707352 Sekins et al. Jan 1998 A
5722401 Pietroski et al. Mar 1998 A
5722403 McGee et al. Mar 1998 A
5722416 Swanson et al. Mar 1998 A
5725525 Kordis Mar 1998 A
5728094 Edwards Mar 1998 A
5730128 Pomeranz et al. Mar 1998 A
5730726 Klingenstein Mar 1998 A
5730741 Horzewski et al. Mar 1998 A
5740808 Panescu et al. Apr 1998 A
5752518 McGee et al. May 1998 A
5755753 Knowlton May 1998 A
5759158 Swanson Jun 1998 A
5769846 Edwards et al. Jun 1998 A
5772590 Webster Jun 1998 A
5779669 Haissaguerre et al. Jul 1998 A
5779698 Clayman et al. Jul 1998 A
5782239 Webster Jul 1998 A
5782795 Bays Jul 1998 A
5782827 Gough et al. Jul 1998 A
5782899 Imran Jul 1998 A
5792064 Panescu et al. Aug 1998 A
5795303 Swanson et al. Aug 1998 A
5807306 Shapland et al. Sep 1998 A
5810807 Ganz et al. Sep 1998 A
5814029 Hassett Sep 1998 A
5823189 Kordis Oct 1998 A
5824359 Khan et al. Oct 1998 A
5827277 Edwards Oct 1998 A
5833632 Jacobsen et al. Nov 1998 A
5836946 Diaz et al. Nov 1998 A
5836947 Fleischman et al. Nov 1998 A
5837001 Mackey Nov 1998 A
5843075 Taylor Dec 1998 A
5843077 Edwards Dec 1998 A
5846238 Jackson et al. Dec 1998 A
5848969 Panescu et al. Dec 1998 A
5848972 Triedman et al. Dec 1998 A
5849011 Jones et al. Dec 1998 A
5855577 Murphy-Chutorian et al. Jan 1999 A
5860974 Abele Jan 1999 A
5863291 Schaer Jan 1999 A
5865791 Whayne et al. Feb 1999 A
5868740 LeVeen et al. Feb 1999 A
5871443 Edwards et al. Feb 1999 A
5871523 Fleischman et al. Feb 1999 A
5873865 Horzewski et al. Feb 1999 A
5876340 Tu et al. Mar 1999 A
5876399 Chia et al. Mar 1999 A
5881727 Edwards Mar 1999 A
5882346 Pomeranz et al. Mar 1999 A
5891135 Jackson et al. Apr 1999 A
5891136 McGee et al. Apr 1999 A
5891138 Tu et al. Apr 1999 A
5893847 Kordis Apr 1999 A
5897554 Chia et al. Apr 1999 A
5899882 Waksman et al. May 1999 A
5904651 Swanson et al. May 1999 A
5904711 Flom et al. May 1999 A
5906636 Casscells, III et al. May 1999 A
5908445 Whayne et al. Jun 1999 A
5908446 Imran Jun 1999 A
5911218 DiMarco Jun 1999 A
5916235 Guglielmi Jun 1999 A
5919147 Jain Jul 1999 A
5921999 Dileo Jul 1999 A
5928228 Kordis et al. Jul 1999 A
5935079 Swanson et al. Aug 1999 A
5941869 Patterson et al. Aug 1999 A
5951494 Wang et al. Sep 1999 A
5954661 Greenspon et al. Sep 1999 A
5954662 Swanson et al. Sep 1999 A
5954717 Behl et al. Sep 1999 A
5957842 Littmann et al. Sep 1999 A
5957961 Maguire et al. Sep 1999 A
5964753 Edwards Oct 1999 A
5964756 McGaffigan et al. Oct 1999 A
5964796 Imran Oct 1999 A
5968087 Hess et al. Oct 1999 A
5971983 Lesh Oct 1999 A
5972026 Laufer et al. Oct 1999 A
5979456 Magovern Nov 1999 A
5980563 Tu et al. Nov 1999 A
5991650 Swanson et al. Nov 1999 A
5992419 Sterzer et al. Nov 1999 A
5993462 Pomeranz et al. Nov 1999 A
5997534 Tu et al. Dec 1999 A
5999855 DiMarco Dec 1999 A
6003517 Sheffield et al. Dec 1999 A
6004269 Crowley et al. Dec 1999 A
6006755 Edwards Dec 1999 A
6009877 Edwards Jan 2000 A
6010500 Sherman et al. Jan 2000 A
6014579 Pomeranz et al. Jan 2000 A
6016437 Tu et al. Jan 2000 A
6023638 Swanson Feb 2000 A
6024740 Lesh et al. Feb 2000 A
6029091 De La Rama et al. Feb 2000 A
6032673 Savage et al. Mar 2000 A
6033397 Laufer et al. Mar 2000 A
6033404 Melzer et al. Mar 2000 A
6036687 Laufer et al. Mar 2000 A
6036689 Tu et al. Mar 2000 A
6039731 Taylor et al. Mar 2000 A
6045549 Smethers et al. Apr 2000 A
6045550 Simpson et al. Apr 2000 A
6050992 Nichols Apr 2000 A
6053172 Hovda et al. Apr 2000 A
6056744 Edwards May 2000 A
6056769 Epstein et al. May 2000 A
6066132 Chen et al. May 2000 A
6071279 Whayne et al. Jun 2000 A
6071280 Edwards et al. Jun 2000 A
6071281 Burnside et al. Jun 2000 A
6071282 Fleischman Jun 2000 A
6083255 Laufer et al. Jul 2000 A
6092528 Edwards Jul 2000 A
6102886 Lundquist et al. Aug 2000 A
6119030 Morency Sep 2000 A
6123703 Tu et al. Sep 2000 A
H0001905 Hill Oct 2000 H
6129751 Lucchesi et al. Oct 2000 A
6139527 Laufer et al. Oct 2000 A
6142993 Whayne et al. Nov 2000 A
6143013 Samson et al. Nov 2000 A
6149647 Tu et al. Nov 2000 A
6152899 Farley et al. Nov 2000 A
6159194 Eggers et al. Dec 2000 A
6179833 Taylor Jan 2001 B1
6183468 Swanson et al. Feb 2001 B1
6198970 Freed et al. Mar 2001 B1
6200311 Danek et al. Mar 2001 B1
6200332 Del Giglio Mar 2001 B1
6200333 Laufer Mar 2001 B1
6210367 Carr Apr 2001 B1
6214002 Fleischman et al. Apr 2001 B1
6216043 Swanson et al. Apr 2001 B1
6216044 Kordis Apr 2001 B1
6217576 Tu et al. Apr 2001 B1
6231571 Ellman et al. May 2001 B1
6235024 Tu May 2001 B1
6241727 Tu et al. Jun 2001 B1
6251104 Kesten et al. Jun 2001 B1
6254598 Edwards et al. Jul 2001 B1
6258083 Daniel et al. Jul 2001 B1
6258087 Edwards et al. Jul 2001 B1
6270476 Santoianni et al. Aug 2001 B1
6273907 Laufer Aug 2001 B1
6283988 Laufer et al. Sep 2001 B1
6283989 Laufer et al. Sep 2001 B1
6296639 Truckai et al. Oct 2001 B1
6299633 Laufer Oct 2001 B1
6322559 Daulton et al. Nov 2001 B1
6322584 Ingle et al. Nov 2001 B2
6325795 Lindemann et al. Dec 2001 B1
6338727 Noda et al. Jan 2002 B1
6338836 Kuth et al. Jan 2002 B1
6355031 Edwards et al. Mar 2002 B1
6379349 Muller et al. Apr 2002 B1
6379352 Reynolds et al. Apr 2002 B1
6409723 Edwards Jun 2002 B1
6411852 Danek et al. Jun 2002 B1
6416511 Lesh et al. Jul 2002 B1
6423058 Edwards et al. Jul 2002 B1
6423105 Iijima et al. Jul 2002 B1
6425895 Swanson et al. Jul 2002 B1
6428538 Blewett et al. Aug 2002 B1
6438400 Beard et al. Aug 2002 B1
6440129 Simpson Aug 2002 B1
6442435 King et al. Aug 2002 B2
6460545 Kordis Oct 2002 B2
6488673 Laufer et al. Dec 2002 B1
6493589 Medhkour et al. Dec 2002 B1
6496738 Carr Dec 2002 B2
6514246 Swanson et al. Feb 2003 B1
6526320 Mitchell Feb 2003 B2
6529756 Phan et al. Mar 2003 B1
6544226 Gaiser et al. Apr 2003 B1
6544262 Fleischman Apr 2003 B2
6547788 Maguire et al. Apr 2003 B1
6572612 Stewart et al. Jun 2003 B2
6575623 Werneth Jun 2003 B2
6582427 Goble et al. Jun 2003 B1
6582430 Hall Jun 2003 B2
6589235 Wong et al. Jul 2003 B2
6610054 Edwards et al. Aug 2003 B1
6613002 Clark et al. Sep 2003 B1
6620159 Hegde Sep 2003 B2
6626903 McGuckin et al. Sep 2003 B2
6634363 Danek et al. Oct 2003 B1
6638273 Farley et al. Oct 2003 B1
6638275 McGaffigan et al. Oct 2003 B1
6640120 Swanson et al. Oct 2003 B1
6645199 Jenkins et al. Nov 2003 B1
6645200 Koblish et al. Nov 2003 B1
6652548 Evans et al. Nov 2003 B2
6669693 Friedman Dec 2003 B2
6673068 Berube Jan 2004 B1
6673290 Whayne Jan 2004 B1
6692492 Simpson et al. Feb 2004 B2
6699243 West et al. Mar 2004 B2
6714822 King et al. Mar 2004 B2
6723091 Goble et al. Apr 2004 B2
6743197 Edwards Jun 2004 B1
6749604 Eggers et al. Jun 2004 B1
6749606 Keast et al. Jun 2004 B2
6749607 Edwards et al. Jun 2004 B2
6767347 Sharkey et al. Jul 2004 B2
6770070 Balbierz Aug 2004 B1
6802843 Truckai et al. Oct 2004 B2
6805131 Kordis Oct 2004 B2
6827717 Brommersma et al. Dec 2004 B2
6837888 Ciarrocca et al. Jan 2005 B2
6840243 Deem et al. Jan 2005 B2
6849073 Hoey et al. Feb 2005 B2
6852091 Edwards et al. Feb 2005 B2
6852110 Roy et al. Feb 2005 B2
6866662 Fuimaono et al. Mar 2005 B2
6869437 Hausen et al. Mar 2005 B1
6872206 Edwards et al. Mar 2005 B2
6881213 Ryan et al. Apr 2005 B2
6893436 Woodard et al. May 2005 B2
6893439 Fleischman May 2005 B2
6895267 Panescu et al. May 2005 B2
6904303 Phan et al. Jun 2005 B2
6917834 Koblish et al. Jul 2005 B2
6954977 Maguire et al. Oct 2005 B2
7001382 Gallo, Sr. Feb 2006 B2
7027869 Danek et al. Apr 2006 B2
7043307 Zelickson et al. May 2006 B1
7104987 Biggs et al. Sep 2006 B2
7118568 Hassett et al. Oct 2006 B2
7122033 Wood Oct 2006 B2
7186251 Malecki et al. Mar 2007 B2
7198635 Danek et al. Apr 2007 B2
7200445 Dalbec et al. Apr 2007 B1
7211041 Mueller May 2007 B2
7425212 Danek Sep 2008 B1
7507232 Garito et al. Mar 2009 B1
7556624 Laufer et al. Jul 2009 B2
7931647 Wizeman et al. Apr 2011 B2
20020072737 Belden et al. Jun 2002 A1
20020147391 Morency Oct 2002 A1
20020173785 Spear et al. Nov 2002 A1
20030050631 Mody et al. Mar 2003 A1
20030065371 Satake Apr 2003 A1
20030109778 Rashidi Jun 2003 A1
20030159700 Laufer et al. Aug 2003 A1
20030233099 Danaek et al. Dec 2003 A1
20040031494 Danek et al. Feb 2004 A1
20040153056 Muller et al. Aug 2004 A1
20040182399 Danek et al. Sep 2004 A1
20040193243 Mangiardi et al. Sep 2004 A1
20040249401 Rabiner et al. Dec 2004 A1
20050010138 Mangiardi et al. Jan 2005 A1
20050010270 Laufer Jan 2005 A1
20050049586 Daniel et al. Mar 2005 A1
20050096644 Hall et al. May 2005 A1
20050154386 West et al. Jul 2005 A1
20050182431 Hausen et al. Aug 2005 A1
20050203503 Edwards et al. Sep 2005 A1
20050240176 Oral et al. Oct 2005 A1
20050272971 Ohnishi et al. Dec 2005 A1
20050288664 Ford et al. Dec 2005 A1
20060062808 Laufer et al. Mar 2006 A1
20060089637 Werneth et al. Apr 2006 A1
20060100652 Beaupre May 2006 A1
20060135953 Kania et al. Jun 2006 A1
20060212032 Daniel et al. Sep 2006 A1
20060247617 Danek et al. Nov 2006 A1
20060247618 Kaplan et al. Nov 2006 A1
20060247619 Kaplan et al. Nov 2006 A1
20060247746 Danek et al. Nov 2006 A1
20060259028 Utley et al. Nov 2006 A1
20060259029 Utley et al. Nov 2006 A1
20060259030 Utley et al. Nov 2006 A1
20060265035 Yachi et al. Nov 2006 A1
20060282071 Utley et al. Dec 2006 A1
20070021745 McIntyre et al. Jan 2007 A1
20070055228 Berg et al. Mar 2007 A1
20070093802 Danek et al. Apr 2007 A1
20070100390 Danaek et al. May 2007 A1
20070106108 Hermann et al. May 2007 A1
20070106292 Kaplan et al. May 2007 A1
20070106296 Laufer et al. May 2007 A1
20070118184 Danek et al. May 2007 A1
20070123958 Laufer May 2007 A1
20070123961 Danek et al. May 2007 A1
20070208336 Kim et al. Sep 2007 A1
20080103498 West et al. May 2008 A1
20080172048 Martin et al. Jul 2008 A1
20080312649 Guerra et al. Dec 2008 A1
20080312650 Daniel et al. Dec 2008 A1
20080319436 Daniel et al. Dec 2008 A1
20090018538 Webster et al. Jan 2009 A1
20090043301 Jarrard et al. Feb 2009 A1
20090043302 Ford et al. Feb 2009 A1
20090069797 Danek et al. Mar 2009 A1
20090171274 Harlev Jul 2009 A1
20090275864 Hirai Nov 2009 A1
20100042096 Ellman Feb 2010 A1
20100094288 Kerr Apr 2010 A1
20100160906 Jarrard Jun 2010 A1
20100193569 Yates et al. Aug 2010 A1
20100292684 Cybulski et al. Nov 2010 A1
20110028963 Gilbert Feb 2011 A1
20110071518 Gilbert Mar 2011 A1
20110087213 Messerly et al. Apr 2011 A1
20120330299 Webster et al. Dec 2012 A1
Foreign Referenced Citations (41)
Number Date Country
2012201427 Apr 2012 AU
1078595 Nov 1993 CN
189329 Jun 1987 EP
0873710 Oct 1998 EP
908713 Apr 1999 EP
908150 May 2003 EP
1297795 Aug 2005 EP
2 170 459 Feb 2014 EP
2170459 Feb 2014 EP
2659240 Jul 1997 FR
7289557 Nov 1995 JP
2053814 Feb 1996 RU
2091054 Sep 1997 RU
WO-8911311 Nov 1989 WO
WO-9304734 Mar 1993 WO
WO-9502370 Mar 1995 WO
WO-9510322 Apr 1995 WO
WO-9604860 Feb 1996 WO
WO-9610961 Apr 1996 WO
WO-9732532 Sep 1997 WO
WO-9733715 Sep 1997 WO
WO-9737715 Oct 1997 WO
WO-9844854 Oct 1998 WO
WO-9846150 Oct 1998 WO
WO-9852480 Nov 1998 WO
WO-9856234 Dec 1998 WO
WO-9856324 Dec 1998 WO
WO-9903413 Jan 1999 WO
WO-9858681 Mar 1999 WO
WO-9913779 Mar 1999 WO
WO-9934741 Jul 1999 WO
WO-9944506 Sep 1999 WO
WO-9945855 Sep 1999 WO
WO-0051510 Sep 2000 WO
WO-0062699 Oct 2000 WO
WO-0103642 Jan 2001 WO
WO-0232334 Apr 2002 WO
WO-2006007284 Jan 2006 WO
WO-2006044581 Apr 2006 WO
WO-2008051706 May 2008 WO
WO-2014043687 Mar 2014 WO
Non-Patent Literature Citations (15)
Entry
Abandoned U.S. Appl. No. 09/095,323, filed Jun. 10, 1998.
Abandoned U.S. Appl. No. 09/244,173, filed Feb. 4, 1999.
Abandoned U.S. Appl. No. 11/551,639, filed Oct. 20, 2006.
Expired U.S. Appl. No. 60/951,655, filed Jul. 24, 2007.
Dierkesmann R., “Indication and Results of Endobronchial Laser Therapy,” Lung, 1990, 168, 1095-1102.
Hogg J. C., “The Pathology of Asthma,” APMIS, 1997, 105 (10), 735-745.
International Search Report and Written Opinion dated Oct. 1, 2008, International Application No. PCT/US2008/065867 (8 pages).
Ivanyuta O.M., et al., “Effect of Low-Power Laser Irradiation of Bronchial Mucosa on the State of Systemic and Local Immunity in Patients with Chronic Bronchitis,” Problemy Tuberkuleza, 1991, 6, 26-29.
Johnson S. R., et al., “Synthetic Functions of Airway Smooth Muscle in Asthma,” Trends Pharmacol. Sci., 1997, 18 (8), 288-292.
Macklem P. T., “Mechanical Factors Determining Maximum Bronchoconstriction,” European Respiratory Journal, 1989, 6, 516s-519s.
Netter F.H., “Respiratory System: A Compilation of Paintings Depicting Anatomy and Embryology, Physiology, Pathology, Pathophysiology, and Clinical Features and Treatment of Diseases,In The CIBA Collection of Medical Illustrations M.B. Divertie, ed., Summit: New Jerse,” 1979, 7, 119-135.
Provotorov V.M., et al., “The Clinical Efficacy of Treating Patients with Nonspecific Lung Diseases Using Low-energy Laser Irradiation and Intrapulmonary Drug Administration,” Terapevticheskii Arkhiv, 1991, 62 (12), 18-23.
Vorotnev A.I., et al., “The Treatment of Patients with Chronic Obstructive Bronchitis by Using a Low-power Laser at a General Rehabilitation Center,” Terapevticheskii Arkhiv, 1997, 69 (3), 17-19.
Wiggs B.R., et al., “On the Mechanism of Mucosal Folding in Normal and Asthmatic Airways,” Journal of Applied Physiology, 1997, 83 (6), 1814-1821.
Co-pending U.S. Appl. No. 12/640,644, filed Dec. 17, 2009, Inventor Jerry Jarrard.
Related Publications (1)
Number Date Country
20140364926 A1 Dec 2014 US
Provisional Applications (1)
Number Date Country
61831997 Jun 2013 US