The present invention generally relates to devices for deploying intraocular shunts without the use of an optical apparatus that contacts an eye, such as a goniolens.
Glaucoma is a disease of the eye that affects millions of people. Glaucoma is associated with an increase in intraocular pressure resulting either from a failure of a drainage system of an eye to adequately remove aqueous humor from an anterior chamber of the eye or overproduction of aqueous humor by a ciliary body in the eye. Build-up of aqueous humor and resulting intraocular pressure may result in irreversible damage to the optic nerve and the retina, which may lead to irreversible retinal damage and blindness.
Glaucoma may be treated by surgical intervention that involves placing a shunt in the eye to result in production of fluid flow pathways between the anterior chamber and various structures of the eye involved in aqueous humor drainage (e.g., Schlemm's canal, the sclera, or the subconjunctival space). Such fluid flow pathways allow for aqueous humor to exit the anterior chamber. Generally, the surgical intervention to implant the shunt involves inserting into the eye a delivery device that holds an intraocular shunt, and deploying the shunt within the eye. A delivery device holding the shunt enters the eye through a cornea (ab interno approach), and is advanced across the anterior chamber. The delivery device is advanced through the sclera until a distal portion of the device is in proximity to a drainage structure of the eye. The shunt is then deployed from the delivery device, producing a conduit between the anterior chamber and various structures of the eye involved in aqueous humor drainage (e.g., Schlemm's canal, the sclera, or the subconjunctival space). See for example, Yu et al. (U.S. Pat. No. 6,544,249 and U.S. patent application number 2008/0108933) and Prywes (U.S. Pat. No. 6,007,511).
Such a surgical procedure requires an optical apparatus, such as a goniolens, so that a surgeon may visualize the delivery device within the eye and ensure proper placement of the shunt after it has been deployed from the delivery device.
The present invention generally relates to devices for deploying intraocular shunts from a delivery device without use of an optical apparatus that contacts the eye, preferably without use of any optical apparatus. Devices of the invention accomplish shunt deployment without use of an optical apparatus by having a biased distal portion, such that upon entry of the distal portion of the device into an anterior chamber of an eye, the distal portion slides to fit within the anterior chamber angle of the eye. A resistance feedback feature of the device informs an operator that the deployment device is properly positioned within the anterior chamber angle of the eye for deployment and proper placement of the shunt within the eye.
In certain embodiments, devices of the invention include a housing having an angled distal end, a deployment mechanism at least partially disposed within the housing, and a hollow shaft coupled to the deployment mechanism, in which the shaft is configured to hold an intraocular shunt. Devices of the invention may further include an intraocular shunt that is at least partially disposed within the shaft. In particular embodiments, the angle of the distal end is substantially identical to an anterior chamber angle of an eye.
The housing of devices of the invention may include a proximal portion and a distal portion. In certain embodiments, the distal portion of the housing is movable within the proximal portion of the housing. The housing may further include a member that limits axial retraction of the distal portion of the housing. In certain embodiments, the distal portion includes a capsule and a sleeve. In other embodiments, a distal end of the sleeve further includes a protrusion. The protrusion may be formed integrally with the distal end of the sleeve or may be connected to a distal end of the sleeve. The protrusion may surround the distal end of the sleeve, or the protrusion may extend around only a portion of the sleeve. In certain embodiments, the protrusion is a collar that surrounds the distal end of the sleeve. In other embodiments, the protrusion includes a flat bottom portion and an angled top portion. In particular embodiments, the angle of the top portion is substantially identical to an anterior chamber angle of an eye.
Devices of the invention include numerous configurations, such as an insertion configuration, a shaft exposure configuration, and a deployment configuration. The insertion configuration includes the hollow shaft fully disposed within the sleeve. The shaft exposure configuration includes retraction of the capsule to at least partially within the proximal portion of the housing, thereby exposing a distal portion of the hollow shaft from the sleeve.
The deployment configuration involves engagement of the deployment mechanism. In certain embodiments, the deployment mechanism may include a two stage system. The first stage is a pusher component and the second stage is a retraction component. Rotation of the deployment mechanism sequentially engages the pusher component and then the retraction component. The pusher component pushes the shunt to partially deploy the shunt from within the shaft, and the retraction component retracts the shaft from around the shunt. The deployment mechanism further includes at least one member that limits axial movement of the shaft.
The hollow shaft of the deployment device may have various shapes and sizes. In certain embodiments, a distal end of the shaft is beveled. In particular embodiments, the bevel is a double bevel. In certain embodiments, the angle of the bevel is such that upon insertion of the shaft through the sclera of an eye, the bevel is substantially parallel with the conjunctiva of an eye. In certain embodiments, the hollow shaft is a needle.
Devices of the invention may be completely automated, partially automated, or completely manual. Devices of the invention may be connected to larger robotic systems or may be used as stand alone handheld deployment devices. In particular embodiments, the device is a handheld device.
Devices of the invention may include an indicator that provides feedback to an operator as to the state of the deployment mechanism. The indicator may be any type of indicator know in the art, for example a visual indicator, an audio indicator, or a tactile indicator. In certain embodiments, the indicator is a visual indicator.
Other aspects of the invention provide devices for deploying an intraocular shunt that include a housing, in which a distal end of the housing includes a protrusion, a deployment mechanism at least partially disposed within the housing, and a hollow shaft coupled to the deployment mechanism, in which the shaft is configured to hold an intraocular shunt. The devices may further include an intraocular shunt that is at least partially disposed within the shaft.
The housing of devices of the invention may include a proximal portion and a distal portion. In certain embodiments, the distal portion of the housing is movable within the proximal portion of the housing. The housing may further include a member that limits axial retraction of the distal portion of the housing. In certain embodiments, the distal portion includes a capsule and a sleeve. In other embodiments, a distal end of the sleeve further includes a protrusion. The protrusion may be formed integrally with the distal end of the sleeve or may be connected to a distal end of the sleeve. The protrusion may surround the distal end of the sleeve, or the protrusion may extend around only a portion of the sleeve. In certain embodiments, the protrusion is a collar that surrounds the distal end of the sleeve. In other embodiments, the protrusion includes a flat bottom portion and an angled top portion. In particular embodiments, the angle of the top portion is substantially identical to an anterior chamber angle of an eye.
Devices of the invention include numerous configurations, such as an insertion configuration, a shaft exposure configuration, and a deployment configuration. The insertion configuration includes the hollow shaft fully disposed within the sleeve. The shaft exposure configuration includes retraction of the capsule to at least partially within the proximal portion of the housing, thereby exposing a distal portion of the hollow shaft from the sleeve.
The deployment configuration involves engagement of the deployment mechanism. In certain embodiments, the deployment mechanism may include a two stage system. The first stage is a pusher component and the second stage is a retraction component. Rotation of the deployment mechanism sequentially engages the pusher component and then the retraction component. The pusher component pushes the shunt to partially deploy the shunt from within the shaft, and the retraction component retracts the shaft from around the shunt. The deployment mechanism further includes at least one member that limits axial movement of the shaft.
The hollow shaft of the deployment device may have various shapes and sizes. In certain embodiments, a distal end of the shaft is beveled. In particular embodiments, the bevel is a double bevel. In certain embodiments, the angle of the bevel is such that upon insertion of the shaft through the sclera of an eye, the bevel is substantially parallel with the conjunctiva of an eye. In certain embodiments, the hollow shaft is a needle.
Devices of the invention may be completely automated, partially automated, or completely manual. Devices of the invention may be connected to larger robotic systems or may be used as stand alone handheld deployment devices. In particular embodiments, the device is a handheld device.
Devices of the invention may include an indicator that provides feedback to an operator as to the state of the deployment mechanism. The indicator may be any type of indicator know in the art, for example a visual indicator, an audio indicator, or a tactile indicator. In certain embodiments, the indicator is a visual indicator.
Another aspect of the invention provides devices for deploying an intraocular shunt that include a deployment mechanism, a hollow shaft coupled to the deployment mechanism and configured to hold an intraocular shunt, and a member adapted to provide resistance feedback to an operator upon a distal portion of the device contacting an anatomical feature of the eye, such as the sclera. The resistance feedback indicates to an operator that a distal portion of the device is properly positioned to deploy the shunt.
Another aspect of the invention provides devices for deploying an intraocular shunt that include a deployment mechanism, a hollow shaft coupled to the deployment mechanism and configured to hold an intraocular shunt, and means for providing feedback to an operator advancing the shaft. The feedback indicates to an operator that a distal portion of the shaft is properly positioned to deploy the shunt. In certain embodiments, the feedback is resistance feedback.
Other aspects of the invention provide devices for deploying an intraocular shunt including a housing having a proximal portion and a distal portion, in which the distal portion is movable within the proximal portion, a deployment mechanism at least partially disposed within the housing, and a hollow shaft coupled to the deployment mechanism, in which the shaft is configured to hold an intraocular shunt. The devices may further include an intraocular shunt that is at least partially disposed within the shaft. The housing may further include a member that limits axial retraction of the distal portion of the housing.
In certain embodiments, the distal portion includes a capsule and a sleeve. In other embodiments, a distal end of the sleeve further includes a protrusion. The protrusion may be formed integrally with the distal end of the sleeve or may be connected to a distal end of the sleeve. The protrusion may surround the distal end of the sleeve, or the protrusion may extend around only a portion of the sleeve. In certain embodiments, the protrusion is a collar that surrounds the distal end of the sleeve. In other embodiments, the protrusion includes a flat bottom portion and an angled top portion. In particular embodiments, the angle of the top portion is substantially identical to an anterior chamber angle of an eye.
Devices of the invention include numerous configurations, such as an insertion configuration, a shaft exposure configuration, and a deployment configuration. The insertion configuration includes the hollow shaft fully disposed within the sleeve. The shaft exposure configuration includes retraction of the capsule to at least partially within the proximal portion of the housing, thereby exposing a distal portion of the hollow shaft from the sleeve.
The deployment configuration involves engagement of the deployment mechanism. In certain embodiments, the deployment mechanism may include a two stage system. The first stage is a pusher component and the second stage is a retraction component. Rotation of the deployment mechanism sequentially engages the pusher component and then the retraction component. The pusher component pushes the shunt to partially deploy the shunt from within the shaft, and the retraction component retracts the shaft from around the shunt. The deployment mechanism further includes at least one member that limits axial movement of the shaft.
The hollow shaft of the deployment device may have various shapes and sizes. In certain embodiments, a distal end of the shaft is beveled. In particular embodiments, the bevel is a double bevel. In certain embodiments, the angle of the bevel is such that upon insertion of the shaft through the sclera of an eye, the bevel is substantially parallel with the conjunctiva of an eye. In certain embodiments, the hollow shaft is a needle.
Devices of the invention may be completely automated, partially automated, or completely manual. Devices of the invention may be connected to larger robotic systems or may be used as stand alone handheld deployment devices. In particular embodiments, the device is a handheld device.
Devices of the invention may include an indicator that provides feedback to an operator as to the state of the deployment mechanism. The indicator may be any type of indicator know in the art, for example a visual indicator, an audio indicator, or a tactile indicator. In certain embodiments, the indicator is a visual indicator.
Other aspects of the invention provide devices for deploying an intraocular shunt including a housing, a deployment mechanism at least partially disposed within the housing, and a hollow shaft coupled inside the housing to the deployment mechanism, in which the shaft is configured to hold an intraocular shunt. These devices include an insertion configuration and a deployment configuration and the insertion configuration involves the shaft being fully disposed within the housing. The devices may further include an intraocular shunt that is at least partially disposed within the shaft.
The housing of devices of the invention may include a proximal portion and a distal portion. In certain embodiments, the distal portion of the housing is movable within the proximal portion of the housing. The housing may further include a member that limits axial retraction of the distal portion of the housing. In certain embodiments, the distal portion includes a capsule and a sleeve. In other embodiments, a distal end of the sleeve further includes a protrusion. The protrusion may be formed integrally with the distal end of the sleeve or may be connected to a distal end of the sleeve. The protrusion may surround the distal end of the sleeve, or the protrusion may extend around only a portion of the sleeve. In certain embodiments, the protrusion is a collar that surrounds the distal end of the sleeve. In other embodiments, the protrusion includes a flat bottom portion and an angled top portion. In particular embodiments, the angle of the top portion is substantially identical to an anterior chamber angle of an eye.
Devices of the invention also include a shaft exposure configuration. The shaft exposure configuration includes retraction of the capsule to at least partially within the proximal portion of the housing, thereby exposing a distal portion of the hollow shaft from the sleeve. The deployment configuration involves engagement of the deployment mechanism. In certain embodiments, the deployment mechanism may include a two stage system. The first stage is a pusher component and the second stage is a retraction component. Rotation of the deployment mechanism sequentially engages the pusher component and then the retraction component. The pusher component pushes the shunt to partially deploy the shunt from within the shaft, and the retraction component retracts the shaft from around the shunt. The deployment mechanism further includes at least one member that limits axial movement of the shaft.
The hollow shaft of the deployment device may have various shapes and sizes. In certain embodiments, a distal end of the shaft is beveled. In particular embodiments, the bevel is a double bevel. In certain embodiments, the angle of the bevel is such that upon insertion of the shaft through the sclera of an eye, the bevel is substantially parallel with the conjunctiva of an eye. In certain embodiments, the hollow shaft is a needle.
Devices of the invention may be completely automated, partially automated, or completely manual. Devices of the invention may be connected to larger robotic systems or may be used as stand alone handheld deployment devices. In particular embodiments, the device is a handheld device.
Devices of the invention may include an indicator that provides feedback to an operator as to the state of the deployment mechanism. The indicator may be any type of indicator know in the art, for example a visual indicator, an audio indicator, or a tactile indicator. In certain embodiments, the indicator is a visual indicator.
Reference is now made to
Distal portion 101b includes a capsule 129 and a hollow sleeve 130. Capsule 129 and sleeve 130 may be formed integrally or may be separate components that are coupled or connected to each other. The hollow sleeve 130 is configured for insertion into an eye and to extend into an anterior chamber of an eye.
A distal end of sleeve 130 includes a protrusion 131 (
In certain embodiments, protrusion 131 has a substantially flat bottom portion and an angled top portion (
Referring back to
Conversely, if sleeve 130 enters the anterior chamber 141 at too steep an angle, i.e., the protrusion 131 hit the iris 144 below the anterior chamber angle 143, the substantially flat bottom portion of the protrusion 131 causes the sleeve 130 to deflect off the iris 144 and proceed is a direction parallel to the iris 144 until the protrusion 131 is fit within the anterior chamber angle 143 of the eye 140 (
In certain embodiments, protrusion 131 is not required. In these embodiments, the sleeve 130 is of a sufficient outer diameter such that the sleeve itself may serve the function of the protrusion as described above. In these embodiments, a distal end of the sleeve is shaped to have a flat bottom portion and an angled top portion.
Referring back to
Housing 101 and protrusion 131 may be made of any material that is suitable for use in medical devices. For example, housing 101 and protrusion 131 may be made of a lightweight aluminum or a biocompatible plastic material. Examples of such suitable plastic materials include polycarbonate and other polymeric resins such as DELRIN and ULTEM. In certain embodiments, housing 101 and protrusion 131 are made of a material that may be autoclaved, and thus allow for housing 101 and protrusion 131 to be re-usable. Alternatively, device 100, may be sold as a one-time-use device, and thus the material of the housing and the protrusion does not need to be a material that is autoclavable.
The proximal portion 101a of housing 101 may be made of multiple components that connect together to form the housing.
Deployment mechanism 103 includes a distal portion 109 and a proximal portion 110. The deployment mechanism 103 is configured such that distal portion 109 is movable within proximal portion 110. More particularly, distal portion 109 is capable of partially retracting to within proximal portion 110.
In this embodiment, the distal portion 109 is shown to taper to a connection with a hollow shaft 104. This embodiment is illustrated such that the connection between the hollow shaft 104 and the distal portion 109 of the deployment mechanism 103 occurs inside the housing 101. Hollow shaft 104 may be removable from the distal portion 109 of the deployment mechanism 103. Alternatively, the hollow shaft 104 may be permanently coupled to the distal portion 109 of the deployment mechanism 103.
Generally, hollow shaft 104 is configured to hold an intraocular shunt 115. An exemplary intraocular shunt 115 in shown in
The shaft 104 may be any length. A usable length of the shaft may be anywhere from about 5 mm to about 40 mm, and is 15 mm in certain embodiments. In certain embodiments, the shaft is straight. In other embodiments, shaft 104 is of a shape other than straight, for example a shaft having a bend along its length or a shaft having an arcuate portion. Exemplary shaped shafts are shown for example in Yu et al. (U.S. patent application number 2008/0108933). In particular embodiments, the shaft includes a bend at a distal portion of the shaft. In other embodiments, a distal end of the shaft is beveled or is sharpened to a point.
The shaft 104 may hold the shunt at least partially within the hollow interior of the shaft 104. In other embodiments, the shunt is held completely within the hollow interior of the shaft 104. Alternatively, the hollow shaft may hold the shunt on an outer surface of the shaft 104. In particular embodiments, the shunt is held within the hollow interior of the shaft 104. In certain embodiments, the hollow shaft is a needle having a hollow interior. Needles that are configured to hold an intraocular shunt are commercially available from Terumo Medical Corp. (Elkington, Md.).
A proximal portion of the deployment mechanism 103 includes optional grooves 116 to allow for easier gripping by an operator for easier rotation of the deployment mechanism, which will be discussed in more detail below. The proximal portion 110 of the deployment mechanism also includes at least one indicator that provides feedback to an operator as to the state of the deployment mechanism. The indicator may be any type of indicator known in the art, for example a visual indicator, an audio indicator, or a tactile indicator.
The proximal portion 110 includes a stationary portion 110b and a rotating portion 110a. The proximal portion 110 includes a channel 112 that runs part of the length of stationary portion 110b and the entire length of rotating portion 110a. The channel 112 is configured to interact with a protrusion 117 on an interior portion of housing component 101a (
Referring back to
Reference is now made to
In the pre-deployment or insertion configuration, the distal portion 101b of the housing 101 is in an extended position, with spring 121 in a relaxed state (
The deployment mechanism 103 is configured such that member 114a abuts a distal end of the first portion 113al of channel 113a, and member 114b abut a proximal end of the first portion 113bl of channel 113b (
Insertion without the use of an optical apparatus that contacts the eye, or any optical apparatus, is possible because of various features of the device described above and reviewed here briefly. The shape of the protrusion 131 is such that it corrects for an insertion angle that is too steep or too shallow, ensuring that the sleeve 130 is fitted into the anterior chamber angle of the eye, the place for proper deployment of an intraocular shunt. Further, the shape of the protrusion provides adequate surface area at the distal end of sleeve 130 to prevent enough force from being generated at the distal end of sleeve 130 that would result in sleeve 130 entering an improper portion of the sclera 142 (if the insertion angle is too shallow) or entering an improper portion of the iris 144 (if the insertion angle is too steep). Additionally, since the shaft 104 is fully disposed within the sleeve 130, it cannot pierce tissue of the eye until it is extended from the sleeve 130. Thus, if the insertion angle is too shallow or too steep, the protrusion 131 can cause movement and repositioning of the sleeve 130 so that the sleeve 130 is properly positioned to fit in the anterior chamber angle of the eye for proper deployment of the shunt. Due to these features of device 100, devices of the invention provide for deploying intraocular shunts without use of an optical apparatus that contacts the eye, preferably without use of any optical apparatus.
Once the device has been inserted into the eye and the protrusion 131 and the sleeve 130 are fitted within the anterior chamber angle of the eye, the hollow shaft 104 may be extended from within the sleeve 130. Referring now to
Retraction of the distal portion 101b of housing 101 to within proximal portion 101a of housing 101 is accomplished by an operator continuing to apply force to advance device 100 after the protrusion 131 and the sleeve 130 are fitted within the anterior chamber angle of the eye. The surface area of protrusion 131 prevents the application of the additional force by the operator from advancing sleeve 130 into the sclera 134. Rather, the additional force applied by the operator results in engagement of spring mechanism 120 and compression of spring 121 within spring mechanism 120. Compression of spring 120 results in retraction of distal portion 101b of housing 101 to within proximal portion 101a of housing 101. The amount of retraction of distal portion 101b of housing 101 to within proximal portion 101a of housing 101 is limited by member 122 that acts as a stopper and limits axial retraction of distal portion 101b within proximal portion 101a.
Retraction of distal portion 101b of housing 101 to within proximal portion 101a of housing 101 results in extension of hollow shaft 104, which now extends beyond the distal end of sleeve 130 and advances through the sclera 142 to an area of lower pressure than the anterior chamber. Exemplary areas of lower pressure include Schlemm's canal, the subconjunctival space, the episcleral vein, the suprachoroidal space, or the intra-Tenon's space.
In this figure, a distal end of the shaft is shown to be located within the intra-Tenon's space. Within an eye, there is a membrane known as the conjunctiva, and the region below the conjunctiva is known as the subconjunctival space. Within the subconjunctival space is a membrane known as Tenon's capsule. Below Tenon's capsule there are Tenon's adhesions that connect the Tenon's capsule to the sclera. The space between Tenon's capsule and the sclera where the Tenon's adhesions connect the Tenon's capsule to the sclera is known as the intra-Tenon's space. This figure is exemplary and depicts only one embodiment for a location of lower pressure. It will be appreciated that devices of the invention may deploy shunts to various different locations of the eye and are not limited to deploying shunts to the intra-Tenon's space is shown by way of example in this figure. In this configuration, the shunt 115 is still completely disposed within the shaft 104.
The distal end of shaft 104 may be beveled to assist in piercing the sclera and advancing the distal end of the shaft 104 through the sclera. In this figure, the distal end of the shaft 104 is shown to have a double bevel (See also
Reference is now made to
In the first stage of shunt deployment, the pusher component is engaged and the pusher partially deploys the shunt from the deployment device. During the first stage, rotating portion 110a of the proximal portion 110 of the deployment mechanism 103 is rotated, resulting in movement of members 114a and 114b along first portions 113al and 113bl in channels 113a and 113b. Since the first portion 113al of channel 113a is straight and runs perpendicular to the length of the rotating portion 110a, rotation of rotating portion 110a does not cause axial movement of member 114a. Without axial movement of member 114a, there is no retraction of the distal portion 109 to within the proximal portion 110 of the deployment mechanism 103. Since the first portion 113bl of channel 113b runs diagonally along the length of the rotating portion 110a, upwardly toward a distal end of the deployment mechanism 103, rotation of rotating portion 110a causes axial movement of member 114b toward a distal end of the device. Axial movement of member 114b toward a distal end of the device results in forward advancement of the pusher component 118 within the hollow shaft 104. Such movement of pusher component 118 results in partially deployment of the shunt 115 from the shaft 104.
Reference is now made to
Referring to
Referring to
Referring to
As will be appreciated by one skilled in the art, individual features of the invention may be used separately or in any combination. Particularly, it is contemplated that one or more features of the individually described above embodiments may be combined into a single shunt.
References and citations to other documents, such as patents, patent applications, patent publications, journals, books, papers, web contents, have been made throughout this disclosure. All such documents are hereby incorporated herein by reference in their entirety for all purposes.
The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting on the invention described herein.
Number | Name | Date | Kind |
---|---|---|---|
3788327 | Donowitz et al. | Jan 1974 | A |
3960150 | Hussain et al. | Jun 1976 | A |
4722724 | Schocket | Feb 1988 | A |
4750901 | Molteno | Jun 1988 | A |
4787885 | Binder | Nov 1988 | A |
4804382 | Turina et al. | Feb 1989 | A |
4820626 | Williams et al. | Apr 1989 | A |
4826478 | Schocket | May 1989 | A |
4863457 | Lee | Sep 1989 | A |
4902292 | Joseph | Feb 1990 | A |
4911161 | Schechter | Mar 1990 | A |
4915684 | Mackeen et al. | Apr 1990 | A |
4934363 | Smith et al. | Jun 1990 | A |
4936825 | Ungerleider | Jun 1990 | A |
4946436 | Smith | Aug 1990 | A |
4968296 | Ritch et al. | Nov 1990 | A |
4978352 | Fedorov et al. | Dec 1990 | A |
5041081 | Odrich | Aug 1991 | A |
5057098 | Zelman | Oct 1991 | A |
5071408 | Ahmed | Dec 1991 | A |
5092837 | Ritch et al. | Mar 1992 | A |
5098443 | Parel et al. | Mar 1992 | A |
5178604 | Baerveldt et al. | Jan 1993 | A |
5180362 | Worst | Jan 1993 | A |
5201750 | Hocherl et al. | Apr 1993 | A |
5275622 | Lazarus et al. | Jan 1994 | A |
5290295 | Querals et al. | Mar 1994 | A |
5300020 | L'Esperance, Jr. | Apr 1994 | A |
5333619 | Burgio | Aug 1994 | A |
5338291 | Speckman et al. | Aug 1994 | A |
5342370 | Simon et al. | Aug 1994 | A |
5360339 | Rosenberg | Nov 1994 | A |
5370607 | Memmen | Dec 1994 | A |
5476445 | Baerveldt et al. | Dec 1995 | A |
5516522 | Peyman et al. | May 1996 | A |
5520631 | Nordquist et al. | May 1996 | A |
5558629 | Baerveldt et al. | Sep 1996 | A |
5558630 | Fisher | Sep 1996 | A |
5601094 | Reiss | Feb 1997 | A |
5665093 | Atkins et al. | Sep 1997 | A |
5665114 | Weadock et al. | Sep 1997 | A |
5670161 | Healy et al. | Sep 1997 | A |
5695474 | Daugherty | Dec 1997 | A |
5702414 | Richter et al. | Dec 1997 | A |
5704907 | Nordquist et al. | Jan 1998 | A |
5722948 | Gross | Mar 1998 | A |
5743868 | Brown et al. | Apr 1998 | A |
5763491 | Brandt et al. | Jun 1998 | A |
5868697 | Richter et al. | Feb 1999 | A |
5908449 | Bruchman et al. | Jun 1999 | A |
5932299 | Katoot | Aug 1999 | A |
5968058 | Richter et al. | Oct 1999 | A |
6007511 | Prywes | Dec 1999 | A |
6007578 | Schachar | Dec 1999 | A |
6050970 | Baerveldt | Apr 2000 | A |
6086543 | Anderson et al. | Jul 2000 | A |
6102045 | Nordquist et al. | Aug 2000 | A |
6165210 | Lau et al. | Dec 2000 | A |
6203513 | Yaron et al. | Mar 2001 | B1 |
6228873 | Brandt et al. | May 2001 | B1 |
6261256 | Ahmed | Jul 2001 | B1 |
6264665 | Yu et al. | Jul 2001 | B1 |
6280468 | Schachar | Aug 2001 | B1 |
6450937 | Mercereau et al. | Sep 2002 | B1 |
6450984 | Lynch et al. | Sep 2002 | B1 |
6464724 | Lynch et al. | Oct 2002 | B1 |
6468283 | Richter et al. | Oct 2002 | B1 |
6471666 | Odrich | Oct 2002 | B1 |
6510600 | Yaron et al. | Jan 2003 | B2 |
6524275 | Lynch et al. | Feb 2003 | B1 |
6533768 | Hill | Mar 2003 | B1 |
6544249 | Yu et al. | Apr 2003 | B1 |
6558342 | Yaron et al. | May 2003 | B1 |
6595945 | Brown | Jul 2003 | B2 |
6626858 | Lynch et al. | Sep 2003 | B2 |
6638239 | Bergheim et al. | Oct 2003 | B1 |
6666841 | Gharib et al. | Dec 2003 | B2 |
6699210 | Williams et al. | Mar 2004 | B2 |
6726664 | Yaron et al. | Apr 2004 | B2 |
D490152 | Myall et al. | May 2004 | S |
6736791 | Tu et al. | May 2004 | B1 |
6780164 | Bergheim et al. | Aug 2004 | B2 |
6783544 | Lynch et al. | Aug 2004 | B2 |
6827699 | Lynch et al. | Dec 2004 | B2 |
6827700 | Lynch et al. | Dec 2004 | B2 |
6881198 | Brown | Apr 2005 | B2 |
6939298 | Brown et al. | Sep 2005 | B2 |
6955656 | Bergheim et al. | Oct 2005 | B2 |
6981958 | Gharib et al. | Jan 2006 | B1 |
7008396 | Straub | Mar 2006 | B1 |
7037335 | Freeman et al. | May 2006 | B2 |
7041077 | Shields | May 2006 | B2 |
7094225 | Tu et al. | Aug 2006 | B2 |
7118547 | Dahan | Oct 2006 | B2 |
7135009 | Tu et al. | Nov 2006 | B2 |
7163543 | Smedley et al. | Jan 2007 | B2 |
7186232 | Smedley et al. | Mar 2007 | B1 |
7207980 | Christian et al. | Apr 2007 | B2 |
7220238 | Lynch et al. | May 2007 | B2 |
7291125 | Coroneo | Nov 2007 | B2 |
7331984 | Tu et al. | Feb 2008 | B2 |
7431710 | Tu et al. | Oct 2008 | B2 |
7458953 | Peyman | Dec 2008 | B2 |
7488303 | Haffner et al. | Feb 2009 | B1 |
7563241 | Tu et al. | Jul 2009 | B2 |
7625384 | Eriksson et al. | Dec 2009 | B2 |
7708711 | Tu et al. | May 2010 | B2 |
7867186 | Haffner et al. | Jan 2011 | B2 |
7879001 | Haffner et al. | Feb 2011 | B2 |
8109896 | Nissan et al. | Feb 2012 | B2 |
8267882 | Euteneuer et al. | Sep 2012 | B2 |
8277437 | Saal et al. | Oct 2012 | B2 |
8308701 | Horvath et al. | Nov 2012 | B2 |
8337509 | Schieber et al. | Dec 2012 | B2 |
8425449 | Wardle et al. | Apr 2013 | B2 |
8444589 | Silvestrini | May 2013 | B2 |
8486000 | Coroneo | Jul 2013 | B2 |
8529492 | Clauson et al. | Sep 2013 | B2 |
8535333 | de Juan, Jr. et al. | Sep 2013 | B2 |
8545430 | Silvestrini | Oct 2013 | B2 |
20020099434 | Buscemi et al. | Jul 2002 | A1 |
20020133168 | Smedley et al. | Sep 2002 | A1 |
20020177856 | Richter et al. | Nov 2002 | A1 |
20020188308 | Tu et al. | Dec 2002 | A1 |
20030050574 | Krueger | Mar 2003 | A1 |
20030060752 | Bergheim et al. | Mar 2003 | A1 |
20030079329 | Yaron et al. | May 2003 | A1 |
20030093084 | Nissan et al. | May 2003 | A1 |
20030229303 | Haffner et al. | Dec 2003 | A1 |
20030236483 | Ren | Dec 2003 | A1 |
20030236484 | Lynch et al. | Dec 2003 | A1 |
20040024345 | Gharib et al. | Feb 2004 | A1 |
20040050392 | Tu et al. | Mar 2004 | A1 |
20040077987 | Rapacki et al. | Apr 2004 | A1 |
20040088048 | Richter et al. | May 2004 | A1 |
20040147870 | Burns et al. | Jul 2004 | A1 |
20040216749 | Tu | Nov 2004 | A1 |
20040254521 | Simon | Dec 2004 | A1 |
20040260227 | Lisk et al. | Dec 2004 | A1 |
20050049578 | Tu et al. | Mar 2005 | A1 |
20050125003 | Pinchuk et al. | Jun 2005 | A1 |
20050143363 | De Juan et al. | Jun 2005 | A1 |
20050246023 | Yeung | Nov 2005 | A1 |
20050266047 | Tu et al. | Dec 2005 | A1 |
20050267398 | Protopsaltis et al. | Dec 2005 | A1 |
20050271704 | Tu et al. | Dec 2005 | A1 |
20050277864 | Haffner et al. | Dec 2005 | A1 |
20050288619 | Gharib et al. | Dec 2005 | A1 |
20060052721 | Dunker et al. | Mar 2006 | A1 |
20060106370 | Baerveldt et al. | May 2006 | A1 |
20060116625 | Renati et al. | Jun 2006 | A1 |
20060149194 | Conston et al. | Jul 2006 | A1 |
20060155238 | Shields | Jul 2006 | A1 |
20060173397 | Tu et al. | Aug 2006 | A1 |
20060173446 | Dacquay et al. | Aug 2006 | A1 |
20060200113 | Haffner et al. | Sep 2006 | A1 |
20070118065 | Pinchuk et al. | May 2007 | A1 |
20070118066 | Pinchuk et al. | May 2007 | A1 |
20070123812 | Pinchuk et al. | May 2007 | A1 |
20070141116 | Pinchuk et al. | Jun 2007 | A1 |
20070172903 | Toner et al. | Jul 2007 | A1 |
20070191863 | De Juan et al. | Aug 2007 | A1 |
20070276315 | Haffner et al. | Nov 2007 | A1 |
20080108933 | Yu et al. | May 2008 | A1 |
20080147001 | Al-Marashi et al. | Jun 2008 | A1 |
20080228127 | Burns et al. | Sep 2008 | A1 |
20080281277 | Thyzel | Nov 2008 | A1 |
20080312661 | Downer et al. | Dec 2008 | A1 |
20090036818 | Grahn et al. | Feb 2009 | A1 |
20090043321 | Conston et al. | Feb 2009 | A1 |
20090082863 | Schieber et al. | Mar 2009 | A1 |
20090124973 | D'Agostino et al. | May 2009 | A1 |
20090132040 | Frion et al. | May 2009 | A1 |
20090182421 | Silvestrini et al. | Jul 2009 | A1 |
20090209910 | Kugler et al. | Aug 2009 | A1 |
20090264813 | Chang | Oct 2009 | A1 |
20090287136 | Castillejos | Nov 2009 | A1 |
20100010416 | Juan, Jr. et al. | Jan 2010 | A1 |
20100087774 | Haffner et al. | Apr 2010 | A1 |
20100100104 | Yu et al. | Apr 2010 | A1 |
20100114006 | Baerveldt | May 2010 | A1 |
20100119696 | Yu et al. | May 2010 | A1 |
20100121248 | Yu et al. | May 2010 | A1 |
20100121249 | Yu et al. | May 2010 | A1 |
20100134759 | Silvestrini et al. | Jun 2010 | A1 |
20100137981 | Silvestrini et al. | Jun 2010 | A1 |
20100191103 | Stamper et al. | Jul 2010 | A1 |
20100234790 | Tu et al. | Sep 2010 | A1 |
20100274258 | Silvestrini et al. | Oct 2010 | A1 |
20100280317 | Silvestrini et al. | Nov 2010 | A1 |
20110009874 | Wardle et al. | Jan 2011 | A1 |
20110046536 | Stegmann et al. | Feb 2011 | A1 |
20110098627 | Wilcox | Apr 2011 | A1 |
20110105990 | Silvestrini | May 2011 | A1 |
20110118745 | Yu et al. | May 2011 | A1 |
20110118835 | Silvestrini et al. | May 2011 | A1 |
20110230890 | Thyzel | Sep 2011 | A1 |
20110234976 | Kocaoglu et al. | Sep 2011 | A1 |
20120123315 | Horvath et al. | May 2012 | A1 |
20120123316 | Horvath et al. | May 2012 | A1 |
20120123317 | Horvath et al. | May 2012 | A1 |
20120123430 | Horvath et al. | May 2012 | A1 |
20120123433 | Horvath et al. | May 2012 | A1 |
20120123434 | Grabner et al. | May 2012 | A1 |
20120123437 | Horvath et al. | May 2012 | A1 |
20120123438 | Horvath | May 2012 | A1 |
20120123439 | Romoda et al. | May 2012 | A1 |
20120123440 | Horvath et al. | May 2012 | A1 |
20120165720 | Horvath et al. | Jun 2012 | A1 |
20120165721 | Grabner et al. | Jun 2012 | A1 |
20120165722 | Horvath et al. | Jun 2012 | A1 |
20120165723 | Horvath et al. | Jun 2012 | A1 |
20120165933 | Haffner et al. | Jun 2012 | A1 |
20120197175 | Horvath et al. | Aug 2012 | A1 |
20130149429 | Romoda et al. | Jun 2013 | A1 |
20130150770 | Horvath et al. | Jun 2013 | A1 |
20130245573 | de Juan, Jr. et al. | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
2 296 663 | Jul 1996 | GB |
WO-9413234 | Jun 1994 | WO |
WO-9421205 | Sep 1994 | WO |
WO-9508310 | Mar 1995 | WO |
WO 9823237 | Jun 1998 | WO |
WO 02074052 | Sep 2002 | WO |
WO-2007087061 | Aug 2007 | WO |
Entry |
---|
International Search Report in PCT application No. PCT/US2007/072547, mailed May 23, 2008, 7 pages. |
Written Opinion in PCT application No. PCT/US2007/072547, mailed Dec. 31, 2008, 8 pages. |
International Preliminary Report on Patentability in PCT application No. PCT/US2007/072547, mailed Jun. 1, 2009, 9 pages. |
U.S. Appl. No. 12/964,298, filed Dec. 9, 2010, inventors Yu et al. |
International Search Report and Written Opinion for PCT/US2011/060819 dated Feb. 29, 2012 (19 pages). |
Office Action dated Jul. 17, 2013, which issued in U.S. Appl. No. 12/946,240. |
Office Action dated Sep. 6, 2013, which issued in U.S. Appl. No. 12/946,565. |
Office Action dated Mar. 11, 2013, which issued in U.S. Appl. No. 12/946,565. |
Office Action dated May 2, 2013, which issued in U.S. Appl. No. 12/946,251. |
Office Action dated Sep. 24, 2012, which issued in U.S. Appl. No. 12/946,251. |
Notice of Allowance dated Aug. 31, 2012, which issued in U.S. Appl. No. 12/946,210. |
Notice of Allowance dated Jul. 24, 2013, which issued in U.S. Appl. No. 13/314,946. |
Office Action dated Mar. 22, 2013, which issued in U.S. Appl. No. 13/314,946. |
Office Action dated Mar. 29, 2013, which issued in U.S. Appl. No. 13/336,803. |
U.S. Appl. No. 13/952,543, filed Jul. 26, 2013. |
Office Action dated Sep. 26, 2013, which issued in U.S. Appl. No. 12/946,222. |
Office Action dated Oct. 25, 2013, which issued in U.S. Appl. No. 13/336,803. |
Number | Date | Country | |
---|---|---|---|
20120123436 A1 | May 2012 | US |