Devices for injection and dosing

Information

  • Patent Grant
  • 11185641
  • Patent Number
    11,185,641
  • Date Filed
    Monday, March 11, 2019
    5 years ago
  • Date Issued
    Tuesday, November 30, 2021
    2 years ago
Abstract
Skin can be treated by piercing skin with a plurality of needles of an injection device and ejecting a dose of fluid therethrough. The device can include a housing, a plunger disposed in the housing, a cartridge disposed in the housing, and one or more dosing chambers. The plurality of needles can be coupled to the housing and be in fluid communication with the cartridge. Advancement of the plunger can cause a dose of fluid to be ejected from the plurality of needles.
Description

The present invention generally relates to mechanisms for injection and dosing, and more specifically relates to devices for providing minute doses of dermal filler composition superficially into skin.


BACKGROUND

Aesthetic dermal filler procedures have become increasing popular in recent years, as they have proven to be quite effective in improving the appearance of the face, for example, in reducing the signs of aging by smoothing wrinkles and folds, such as the nasolabial folds, and plumping the midface. Some of the more popular dermal fillers are soft, colorless gel compositions made of hyaluronic acid. Hyaluronic acid (HA) is a long chain polymer, more specifically, a polysaccharide, which occurs naturally in body tissues. When chemically crosslinked, hyaluronic acid makes an excellent, long lasting, dermal filler material. Dermal filler procedures are quite minimally invasive, and the results are nearly immediate. Further, hyaluronic acid naturally degrades in the body tissues, and thus the fillers are temporary, for example, lasting several months to a year or more. Further, results of hyaluronic acid based dermal filler procedures can be reversed using hyaluronidase.


Conventional dermal filler procedures are generally performed by injection of the composition into or below the skin using a standard syringe and a fine gauge needle. A typical dermal filler patient may undergo from about 5 to about 10 injections in a single procedure, with injection points across various regions of the face. While the goal may be to improve the appearance of the entire face, a skilled aesthetic physician generally aims to correct one or more specific regions of the face, for example, regions that lack volume such as the lips or the cheeks, or regions that present specific wrinkles, such as deep nasolabial folds, with specific input from the patient regarding areas he or she finds detracting to his or her appearance.


It has been discovered that improvement of facial appearance can also be accomplished by introducing minute amounts of compositions into skin at a very superficial depth, and across wide regions of the skin, rather than focusing on specific wrinkles or specific areas of the face that lack volume.


SUMMARY

The present invention is generally directed to a device that can be used to deliver a composition into skin, for example, in a way that is effective to treat or improve the skin surface. The device is structured for treating or improving skin by delivering a composition, for example a gel, for example, a dermal filler gel, into skin, at a relatively shallow depth, to improve the appearance of the skin, and perhaps improve overall skin health and quality. The device advantageously facilitates treatment of a large surface area of skin, such as the entire face, neck and/or décolletage, or significant regions thereof. The device allows for controlled depth of injection, especially for superficial intradermal delivery of compositions, for example, dermal filler gels or other compositions effective to enhance the health or appearance of skin. The injection may be between about 0.5 mm about 3 mm for intradermal injection, or deeper for subdermal injection.


For example, the device is more efficient at delivering doses of a hyaluronic acid based dermal filler to a large surface area of skin than is currently possible with a standard needle and syringe.


In some embodiments, a dermal filler injection device is provided which generally comprises a handpiece including a housing having an interior space for containing a cartridge and a trigger coupled to the housing. The device further includes a head in communication with the interior space. In some embodiments, the head is removable with respect to the handpiece. In some embodiments, the device includes at least one retractable needle and at least one dosing chamber coupled thereto. Operation of the trigger causes the needle to be moved from a retracted position to an extended position and a dose of a composition to be delivered from the needle tip.


In some embodiments, the at least one needle comprises a plurality of needles, with each one of the needles coupled to a corresponding one of the dosing chambers. In this embodiment, the device may be structured such that operation of the trigger initially causes the plurality of needles to be moved from a retracted position to an extended position and subsequently causes a dose of fluid contained in the corresponding dosing chambers to be ejected from the needles, for example, substantially simultaneously, when the needles are in the extended position. The device may be further structured to cause retraction of the needles after the dosing. In some embodiments the device includes a mechanism capable of filling each dosing chamber between subsequent injections.


The plurality of needles may comprise linearly arranged needles, for example, at least three, for example, about four, or more linearly arranged needles. In some embodiments, the needles are arranged in an array. For example, the needles may be arranged in a two by two array, a two by three array, a four by four array, a six by six array, a two by four array, or any other suitable configuration.


In one embodiment, the head of the device may include a plurality of conical or tapered projections, each needle having a tip protruding from an individual conical or tapered projection. For example, each conical or tapered projection is spaced apart from each other conical or tapered projections so as to effect a preloading of skin when the head is applied to skin, to facilitate penetration of the needle tips into the skin.


In one aspect, a method for treating skin is provided, wherein the method generally comprises placing a distal end of a handheld device into direct contact with skin to be treated; causing the device to inject a dose of a composition into the skin through a plurality of needles, substantially simultaneously; moving the distal end of the device onto another portion of the skin while maintaining the direct contact with the skin; and, after the step of moving, causing the device to inject another dose of the composition into another portion of the skin. In another aspect of the invention, the needles are in a retracted position during the moving step. The needles are in an extended position during the dosing or delivery of the composition into the skin.





BRIEF DESCRIPTION OF THE DRAWINGS

The various aspects and advantages of the different embodiments may be better understood by referring to the following Detailed Description and accompanying Drawings of which:



FIG. 1 shows a perspective view of a device in accordance with an embodiment of the invention;



FIG. 2 shows a cross-sectional view of the device shown in FIG. 1, the device in a neutral position;



FIG. 3 shows a cross-sectional view of the device shown in FIG. 1, the device in an initial stage of trigger activation;



FIG. 4 shows a cross-sectional view of the device shown in FIG. 1, the device in a stage of full trigger activation;



FIG. 5 shows a cross-sectional view of the device shown in FIG. 1, the device in an initial stage of trigger retraction;



FIG. 5A shows an alternative one-way mechanism useful in some embodiments of the invention;



FIG. 6 shows a cross-sectional view of the device shown in FIG. 1, the device in a neutral position;



FIG. 7 shows a magnified view of a distal end of the device taken from FIG. 2.



FIG. 8 shows a magnified view of the distal end of the device taken from FIG. 3.



FIG. 9 shows a magnified view of the distal end of the device taken from FIG. 4.



FIG. 10 shows a magnified view of the distal end of the device taken from FIG. 5.



FIG. 11 shows a magnified view of the distal end of the device taken from FIG. 6.



FIG. 12 shows a cutaway view of the distal end of the device during injection.



FIGS. 13-15 show perspective views of the device including a removable head feature.



FIG. 16 shows the device of FIG. 1 with a removable cartridge.



FIG. 17 shows an alternative embodiment of the device of the invention.





DETAILED DESCRIPTION

A device 10 in accordance with an exemplary embodiment of the invention is shown in FIG. 1. Device 10 is configured and shaped to be held and operated by a single hand of a user, for example an aesthetic physician. Device may be used to deliver micro-depot injections of composition into skin, with the aim of improving the appearance of skin, for example, reducing the appearance of fine lines or superficial skin depressions, thereby improving skin texture. Depending on the composition being delivered, device 10 may also be effective for use in improving or increasing skin elasticity and hydration.


Device 10 generally comprises a handpiece 12, and a head 14 coupled thereto. The handpiece 12 includes a main housing 18, and a trigger 16 coupled to the main housing 18.


As shown in FIGS. 2-4, device 10 is shown in the several operational stages that occur during operation of the device 10 when used to deliver multiple, shallow, doses of a composition 19 into skin.


Turning now to FIG. 2, the device 10 is shown, in cross-sectional view, in a neutral position, for example, a position of which the device 10 is not yet actuated, and is ready to be used to introduce the composition 19, for example, a dermal filler, for example, a crosslinked and/or uncrosslinked hyaluronic acid-based dermal filler, or other beneficial composition.


When the device 10 is in the neutral position, needles 22 of the device 10 are positioned in a retracted position within the head 14. At this stage, handpiece 12 is comfortably grasped by the user, and is placed into contact with a region of a patient's skin (not shown) to be treated, with the head 14 of the device 10 touching the skin.



FIG. 3 shows the device 10 during an initial stage of the trigger 16 being manually pressed, for example by a thumb or index finger of the user, in which the needles 22 are caused to be moved to an extended position. As the needles 22 extend, they are caused to puncture the surface of the skin in contact with the head 14.


Turning to FIG. 4, as the user continues to press trigger 16, multiple small, shallow doses 2, aliquots, or micro depots of the composition, are delivered from the extended needles 22 and into the skin.


Needles may be spaced apart from one another any suitable distance. In the embodiment shown, adjacent needles are spaced apart about 10 mm. In other embodiments, the spacing between adjacent needles may be, for example, less than 10 mm, for example, about 3 mm, about 5 mm, about 7 mm. In yet other embodiments, the needles are spaced apart more than 10 mm, for example, about 12 mm, about 14 mm, about 16 mm, or about 20 mm, or more. In yet other embodiments, spacing between adjacent needles is about 1 mm to about 20 mm, for example, about 3 mm to about 14 mm, for example, about 5 mm to about 12 mm, for example, about 7 mm to about 10 mm.


As illustrated in FIG. 5, as the user initially releases pressure on the trigger 16, the needles 22 remain for a moment in the extended position, while the dosing of composition from the device 10 is stopped. FIG. 6 shows that upon completion of the release of the trigger 16, the needles 22 have moved back into the retracted position, and the device 10 once again in the neutral position, is ready to be actuated for the next dose.


The operational mechanism of device 10 may be more clearly understood with reference to the magnified views of FIGS. 7-11.


Turning now to FIG. 7, head 14 comprises a needle array housing assembly 32, and a needle hub 34 disposed within the needle array housing assembly 32. A plurality of needles 22, for example, four needles 22, are secured in the needle hub 34. A needle assembly spring 38 is seated between the needle array housing assembly 32 and the needle hub 34.


Needles 22 may be arranged linearly, as shown, for example, arranged in a single row of three or more, for example, four to about 20 or more, needles. The exemplary embodiment shown comprises a 1×4 needle array. Alternative devices of the invention including different needle array arrangements include other devices having other arrays, such as, for example but certainly not limited to, a 1×3 array, a 3×3 array, a 2×3 array, or a 4×4 needle array 212, such as device 210 shown in FIG. 17. Any other suitable needle array (e.g. a×b, wherein a is at least one and up to 20, or more, and b is at least one and up to 20, or more), may be provided within the scope of the invention.


Needle array housing assembly 32 comprises a needle portion 42 having distal projecting regions 44, for example, four projecting regions 44, each distal projecting region 44 having an aperture 46 for receiving one of the needles 22, and a recess 47. Needle array housing assembly 32 further comprises a contact portion 48 having a distal surface 52 generally circumscribing the distal projecting regions 44. Needle array housing assembly 32 further comprises a base portion 54, which may abut against main housing 18 of handpiece 12.


In some embodiments, the device 10 is structured to facilitate injection. For example, the projecting regions 44 are in the form of conical or tapered projections, as shown, with each needle 22 protruding from an individual conical or tapered projection 44. In some embodiments, each conical or tapered projection 44 is spaced apart from each other conical or tapered projections so as to effect a preloading of skin when the head 14 is applied to skin during treatment. By preloading of the skin, the conical or tapered portions 44 facilitate penetration of the needle tips into the skin.


Needle hub 34 comprises a first portion 56 and a second portion 58 rigidly secured together and holding the needles 22. First portion 56 includes hub projecting regions 59, for example, four hub projecting regions 59. Each hub projecting region 59 is aligned with a recess 47 of a corresponding distal projecting region 44 of the needle array housing assembly 32, as shown.


Briefly turning back to FIG. 2, the handpiece 12 includes an internal assembly 70, which, upon manual activation of trigger 16, is urged forward, i.e. distally, within the handpiece main housing 18, to cause dispensing of an accurate, shallow dose of the composition 19 into skin by way of the needles 22, as will be described in greater detail hereinafter.


Referring back to FIG. 7, internal assembly 70 generally comprises a distribution manifold 72, a dosing manifold 74, a dosing block 76, a dosing spring 77, and a one-way mechanism 78 (see briefly FIG. 5 or FIG. 16). Distribution manifold 72 and dosing manifold 74 are rigidly connected together and sealed. Referring briefly to FIG. 12, dosing manifold 74 includes individual plungers 79 which correlate with individual dosing chambers 80 in the dosing block 76. Although they are not all visible in the Drawings, in this exemplary embodiment, there are four dosing chambers 80 and four corresponding dosing plungers 79, since the shown embodiment includes four needles 22.


Although the exemplary device 10 is a four needle embodiment, it should readily be appreciated that other embodiments of the device not shown may include any number of needles, for example, less than four, for example, two or three, or more than four, for example, five, ten, twenty or more, wherein the device is structured such that each needle has a corresponding dosing chamber and individual plunger, with the required modifications to the components of the invention, and all these embodiments are considered to fall within the scope of the invention.


As shown most clearly perhaps in FIG. 2, the handpiece 12 includes an interior space, for example, defined by the handpiece main housing 18, for receiving a cartridge assembly 82. The device 10 is structured such that the cartridge assembly 82 is removable from the handpiece main housing 18 and replaceable. Cartridge assembly 82 comprises a cartridge 84 containing the composition 19 to be injected, and a cartridge plunger 86 slidable within the cartridge 84 and including plunger head 88 in contact with composition 19. Cartridge 82 includes cartridge distal portion 92.


As shown in FIG. 5, the one-way mechanism 78 may be in the form of any mechanical structure that allows cartridge plunger 86 to move only in the distal direction during operation of the device 10. For example, one-way mechanism 78 may be in the form of elements 78a, such as leaves, for example, rigid or flexible leaves, that taper inwardly against and/or otherwise engage the cartridge plunger 86 and prevent the linear motion of that cartridge plunger 86 in one of two directions, for example, prevent the movement of the plunger 86 in a reverse or proximal direction, while enabling the plunger 86 to move in a forward, or distal direction. Alternative mechanisms are also contemplated and considered to be within the scope of the invention. For example, the one-way mechanism may be in the form of gears 78b and teeth 78c on plunger, such as shown in simplified view in FIG. 5A, such that the cartridge plunger 86 can move forwardly, but not backward.


Referring back to FIG. 7, distribution manifold 72 includes flange structure 94 which is mateable with cartridge distal portion 92. Forward (distal) motion of the cartridge plunger 86 pushes composition contained in the cartridge 84 forward and toward distribution manifold where it is distributed among the dosing chambers 80, and eventually ejected from the needles 22.


The dosing chambers 80 may each be sized to contain a drop or an aliquot of composition to be injected. By way of example only, the dosing chamber 80 may be sized or structured to contain at least 2 μl and up to about 100 μl or 200 μl or greater of a composition. For example, in some embodiments, the dosing chamber 80 is sized and/or structured to contain between about 2 μl and about 100 μl of a composition, for example, between about 5 μl and about 50 μl, for example, between about 10 μl and about 40 μl of composition per dosing chamber 80. In some embodiments, each dosing chamber 80 is sized and/or structured to contain, for example, about 20 μl, about 40 μl, about 60 μl, about 80 μl, about 100 μl, or more of a composition.


Briefly referring to FIG. 16, cartridge assembly 82 may be removable from the handpiece 12, and replaceable. As shown, main housing 18 includes pivotable portion 98. Pivotable portion 98 may encompass the trigger 16. To replace the cartridge assembly 82, cartridge distal portion 92 snaps into flange structure 94 of distribution manifold 72, as well as retaining clips 95 of the distribution manifold 72, and cartridge plunger 86 is coupled to one-way mechanism 78. Once the cartridge assembly 82 is loaded into the handpiece 12, pivotable portion 98 is pivoted closed and the device 10 is in the neutral position (FIGS. 2 and 7) and is ready to use. In alternative embodiments, the cartridge assembly is refillable, but not readily removable by a user of the device.


Turning to FIG. 8, the user begins to press the trigger 16 in the direction indicated by arrow 99.


As the trigger 16 moves, a cam surface 96 on an internal portion of the trigger 16 presses on rollers 106 (see FIG. 12) which are attached to the distribution manifold 72. This action moves the distribution manifold 72, dosing manifold 74, dosing block 76, and one-way mechanism (not shown in FIG. 8), cartridge 84, cartridge plunger (not shown in FIG. 8), and needle hub 34 forward, compressing needle assembly spring 38. This causes the needles 22 to be extended relative to portion 42 of needle array housing assembly 32, and past the distal surface 52. In the shown embodiment, the needles extend approximately 0.5 mm to about 2.0 mm, or more specifically, about 1.5 mm. It can be appreciated that the needles may extend a distance less than 0.5 mm or greater than 2.0 mm, in accordance with different embodiments of the invention.


Once the needle hub 34 has fully compressed the needle assembly spring 38, and has reached the limit of its travel, the needle hub 34 and dosing block 76 and one way mechanism stop moving, and the dosing spring 77 begins to compress. As shown in FIG. 9, as the dosing spring 77 compresses, the distribution manifold 72, dosing manifold 74, cartridge 84 and cartridge plunger (not visible in FIG. 9) continue to move forward (distally).


Turning briefly back to FIG. 12, the individual plungers 79 of the dosing manifold 74 deliver small doses 2 of the composition 19 through the needles 22 by compressing the dosing chambers 80 defined in the dosing block 76, which is not moving with respect to the housing 18. (Prior to this stage, the dosing block 76 was slidable with respect to the housing 18). Check valves 108, closed during dosing, may be provided to prevent composition 19 from flowing back into the cartridge 84. When the trigger 16 is fully compressed (FIGS. 4, 9 and 12), the dose is fully delivered.


The present invention may further include a mechanism capable of filling each dosing chamber between subsequent injections. For example, turning to FIGS. 5 and 10, when the trigger 16 is released, the dosing spring 77 is the first to expand, which pushes the distribution manifold 72/dosing manifold 74 and cartridge 84 back (proximally), but the cartridge plunger 86 gets trapped in one-way mechanism 78 and cannot move back with the cartridge 84. The cartridge 84 moving back over the stationary cartridge plunger 86 causes liquid to flow from the cartridge 84 through the distribution manifold 72/dosing manifold 74 going through the check valves 108 (not visible in FIG. 10). In some embodiments, the needle diameter is small relative to other flow paths and acts as a shut off valve during the filling of the dosing chambers. so the injectable composition does not leak out the needles. Once full, the dosing spring 77 can no longer expand the assembly and now the whole internal assembly starts to move back under the force of the needle assembly spring 38. This retracts the needles 22 back into the device 10 (see FIG. 11) and it is now ready for another cycle.


Advantageously, in some embodiments, head 14, or at least the needle portion thereof, is detachable and replaceable from the handpiece 12. This feature is shown in FIGS. 13-14. In use, head 14 may be replaced at the same time cartridge (not shown in FIGS. 14-16) is replaced, for example, after a certain number of injections, thus providing new, sharp needles for each subsequent use. For example, head 14 is detachable from handpiece 12, and can be replaced with another head, for example, an identical head, by rotating head 14 with respect to handpiece 12. This may be accomplished in a number of ways, for example, the device 10 may be structured such that replacing head 14 comprises the steps of manually placing head 14 onto handpiece 12 at 90° out of alignment therewith, and subsequently twisting or rotating head 14 clockwise 90° into alignment to lock it in place on handpiece 12. Removing head 14 may be accomplished, for example, by performing the steps in reverse.


In the shown embodiment, head 14 is separable from a distal hub 112 portion of handpiece 12 which houses dosing block, dosing spring, and dosing manifold. Thus, in this particular example, head 14, including the needle array housing assembly 32, needles 22, needle hub and needle assembly spring, as described and shown elsewhere herein, is replaceable with respect to the handpiece 12. In alternative embodiments, replaceable components may include one or more components or portions of the dosing manifold or distribution manifold. Needles 22 may be in a retracted position when the head 14 is separated from handpiece 12. Distal hub 112 may include coupling threads 114 or other suitable structure, for engaging mating threads or other structure (not shown) within head 14.


Methods of using device 10 for treatment or improvement of skin are also provided. For example, a method comprises providing a device such as described and shown herein.


A user, for example, a physician or an aesthetician, selects a region of skin to be treated on a patient. Potential skin regions that may benefit by treatment with device include the entire face, or portions thereof, including the forehead, the cheek, the nose, and the chin, the neck, the décolletage, the shoulders, the back, and any other region of skin that would benefit from improved hydration, elasticity, improved texture, and reduced fine lines and depressions.


The head of the device is placed into contact with a boundary of the selected area of skin to be treated. The user activates the device, for example, by pressing trigger. While the device remains in contact with the skin, one aliquot of composition is delivered into the area, simultaneously from each of the needles, at spaced apart injection points. Thus, when using the exemplary device shown and described, four aliquots or doses of composition are delivered simultaneously into the skin at about 10 mm apart, at a depth of about 0.5 mm to about 3.0 mm, for example, about 1 mm. While the device is still positioned against the skin, the user releases the trigger and the needles are retracted from the skin. Once the needles have retracted, the user moves the device laterally to an adjacent region of the skin, and the user again activates the device, delivering another set of doses.


Interestingly, the structure of the present device allows the user to maintain the device in contact with the skin during the treatment and between trigger presses. Because the needles retract into the head and behind the distal-most region of the head (such as shown in FIGS. 2 and 6) instead of lifting the device between subsequently delivered doses, the user may safely slide the device head on the skin to the next portion of skin in the treatment region before pressing the trigger to deliver the next set of doses.


The device may be structured to reduce or mitigate pain or anxiety in the patient. As mentioned above, the structure of the present invention, for example, when used as described, provides squeeze/slide action over the face or other treatment region. This feature may improve the comfort of the patient's experience, for example, in that the patient is not subjected to repeated lifting and contact of the device head on her skin, which may be relatively unpleasant to the patient and cumbersome to the physician. For example, when being treated with the present device, the patient may experience the treatment as a continuous, rather smooth, uninterrupted process, even between trigger presses, as the device maintains contact with the skin rather than the device needing to be repeatedly lifted and reapplied. Furthermore, the structure of the device provides an additional advantage in that it enables doses to be delivered without need to press the needles, or even the device head, into the skin. The doses are delivered by rapid trigger action as described herein, while the device is in gentle contact with the skin. Advantageously, the conical portions 44 described elsewhere herein may also provide some pain relief to the patient, by preloading or stretching the skin immediately prior to the injection, thereby possibly reducing or mitigating pain caused by the needle prick. In a similar respect, it is also contemplated to be within the scope of the invention to provide a vibrating motor on the device, effective to cause the head to vibrate when applied to the skin, thereby also mitigating pain of injection.


In some embodiments, the dose delivered from the sum of the needles, that is, from the plurality of needles in sum, e.g. during a single trigger pull, is for example about 1 ml, or about 2 ml, or about 3 ml, or about 4 ml or about 5 ml. In some embodiments, the dose delivered from the sum of the needles, is between about 10 μl to about 2 ml. In some embodiments, the dose delivered from the sum of the needles is between about 20 μl and about 1 ml. In some embodiments, the dose delivered from the sum of the needles is about 10 μl, about 20 μl, about 30 μl, about 40 μl, about 50 μl, about 60 μl, about 70 μl, about 80 μl, about 90 μl, about 100 μl, about 120 μL about 140 μL, about 160 μL, about 180 μL, about 200 μL, about 300 μL about 400 μL, or about 500 μL, or greater.


Again, by way of example only, in some embodiments, the dose delivered per needle of the plurality of needles, e.g. during a single trigger pull, is between about 2 μl and about 100 μl, between about 2 μL to about 200 μl, or between about 2 and about 300 μL. In some embodiments, the dose delivered per needle per trigger pull is, for example, between about 5 μL, to about 100 μL, from about 10 μL to about 80 μL, or from about 40 μL to about 60 μL. In some embodiments, the dose delivered per needle per trigger pull is between about 5 μl and about 50 μl, for example, between about 10 μl and about 40 μl per needle. In some embodiments, the device is capable of providing doses from each needle tip in an amount of about 6 μl, about 8 μl, about 10 μl, about 12 μl, about 14 μl, about 16 μl, about 18 μl, about 20 μl, about 22 μl, or about 24 μl, or greater. For example, in some embodiments, the device is capable of providing doses from each needle tip of about 30 μL, about 40 μL, about 50 μL, about 60 μL, about 70 μL, about 80 μL, about 90 μL, about 100 μL, or greater. In some embodiments, the dose delivered per needle per trigger pull is less than about 200 μL, less than about 100 μL, less than about 50 μL, less than about 25 μL, less than about 10 μL, or less than about 5 μL.


In one embodiment (e.g. a four needle embodiment), the device is structured to be capable of delivering 40 μL of composition, per trigger pull, by way of 4 spaced-apart, simultaneously injections of 10 μL. In another embodiment, (e.g. a ten needle embodiment), the device is capable of delivering 100 μL of composition, per trigger pull, by way of 10 spaced-apart, simultaneously injections of 10 μL. In another embodiment, (e.g. an eight needle embodiment), the device is capable of delivering 40 μL of composition, per trigger pull, by way of eight spaced-apart, simultaneously injections of 5 μL. In yet another embodiment (e.g. another ten needle embodiment), the device is capable of delivering 200 μL of composition, per trigger pull, by way of 10 spaced-apart, simultaneously injections of 20 μL. In yet a still further another embodiment (e.g. another ten needle embodiment), the device is capable of delivering 20 μL of composition, per trigger pull, by way of 10 spaced-apart, simultaneously injections of 2 μL. In still another embodiment (e.g. a 20 needle embodiment), the device is capable of delivering 400 μL of composition, per trigger pull, by way of 20 spaced-apart, simultaneously injections of 20 μL. In another embodiment (e.g. a two needle embodiment), the device is capable of delivering 200 μL of composition, per trigger pull, by way of 2 spaced-apart, simultaneously injections of 100 μL. These are some examples of various embodiments of the invention, and are not intended to limit the scope of the invention.


In yet other embodiments, the device enables treatment of a skin surface in a reduced amount of time, relative to conventional devices and techniques, for example, relative to treatment of a region of the same size using a standard needle and syringe. For example, in some embodiments, the device is capable of delivering about 1 ml to about 2 ml of a fluid into skin in depots of 5 μL to about 100 for example, in a time of about 45 minutes, about 30 minutes, about 20 minutes, about 15 minutes, or about 10 minutes.


The device may be structured such that a desired depth of injection is achieved, for example, to achieve a target depth in the epidermis, dermis or the hypodermis. It will be appreciated that the desired depth of injection may be at least somewhat dependent on the area of skin being treated, and/or the desired aesthetic or therapeutic effect to be achieved.


Embodiments of the invention include needle lengths, for example, lengths of between about 2 mm to about 20 mm, for example, a needle having a length of about 2 mm, about 3 mm, about 4 mm, about 5 mm, about 6 mm, about 7 mm, about 8 mm, about 9 mm, about 10 mm, about 11 mm, about 12 mm, about 13 mm, about 14 mm, about 15 mm, about 16 mm, about 17 mm, about 18 mm, about 19 mm, or about 20 mm, or other length suitable for delivering composition at a desired depth. In some embodiments, the needle gauge is 18 G, 22 G, 25 G, 27 G, or 30 G or thinner. In some embodiments, the needle gauge is at least 27 G up to about 34 G, for example, 30 G, 32 G, 33 G, or 34 G.


By way of example, the device may be structured to achieve treatment of skin by injection of composition at a very shallow level, for example, at a depth of about 0.1 mm or about 0.5 mm to about 2 mm or about 3 mm, into the epidermis. In other embodiments, deeper injection into the skin may be achieved. For example, in some embodiments, the depth of injection is between about 2 mm to about 4 mm. Even deeper injections may be between about 4 mm to about 10 mm, or even about 12 mm to about 15 mm in depth. In some embodiments, the depth of injection is about 0.5 mm to about 2 mm. In other embodiments, the depth of injection is about 4 mm to about 10 mm. In other embodiments, the depth of injection, is about 5 mm to about 12 mm.


Methods for using the device may include the step of moving the device along the skin between doses so as to effect subsequent, spaced apart doses so as to treat a desired surface area of skin with spaced apart injections. In some embodiments, the method includes delivering subsequent doses (each dose including delivery of composition from the plurality of needles) at spaced apart regions of the skin. For example, in some embodiments, the doses are spaced apart by about 5 mm and about 20 mm, for example, wherein the doses are spaced apart by about 10 mm, or about 15 mm. By thus moving the device along the skin between trigger pulls, a large surface area of skin can be treated by closely spaced apart injections.


Example

For the sake of simplicity, the following example, refers to a four-needle device, for example, device 10, but it should be appreciated that a similar sequence of steps can be used, mutatis mutandis, with other embodiments of the invention, which include, for example, different numbers and/or arrangements of needles.


A 43-year old woman complains to her dermatologist that she is dissatisfied with the appearance of her face, and more specifically, her skin. The dermatologist observes that the woman's facial skin, while having relatively few wrinkles and lines that are common to women her age, appears dry and blotchy, and the texture irregular, with highly visible pores and old acne scars in the form of shallow depressions.


The physician explains to the woman that a traditional dermal filler treatment would be helpful to fill in the few, and mostly insignificant, wrinkles, but that such traditional dermal filler treatment would not necessarily provide what she is looking for, that is, an improvement in the overall appearance of her skin, e.g. restoration of a youthful glow, decreased dryness, and improvement in texture and smoothness. The dermatologist recommends a microinjection treatment using a device (e.g. device 10) as described herein, to introduce, through multiple shallow injections, a hyaluronic-based composition, which may contain vitamins, antioxidants and/or other beneficial ingredients. The patient agrees to undergo the treatment.


Beginning near the jawline of the patient, the dermatologist gently places the distal end of the device on the skin. Without pressing the device into the skin, e.g. any more than is necessary to simply maintain gentle contact therewith, the physician presses the trigger. Four doses of composition are simultaneously delivered from the needles shallowly into the skin. Each needle delivers a single drop of the composition, for example, about 10 μl. A single trigger squeeze delivers therefor about 40 μl of the composition (4×10 μl) into a region of skin about 40 mm in length. The depth of the injection is between about 0.5 mm and about 3 mm. The needles automatically retract. While retaining contact with the skin, the dermatologist slides the device laterally along the face, a distance of only about 5 to about 10 mm, and again presses the trigger. A second injection is administered, e.g. another 40 μl provided through the four needles. The dermatologist repeats the slide and trigger action until the region of skin has been treated with multiple, shallow injections of small drops of the composition. After 25 trigger pulls, or in other words, 25 deliveries of 40 μl doses (4×10 μl), about 1 ml of composition has been delivered to the skin (40 μl×25=1 ml).


The physician next ejects the spent cartridge from the device, and replaces it with a new full 1.0 ml cartridge (see FIG. 16). The dermatologist also removes and replaces original, spent head with a new, unused head 14 (see FIG. 13-15), the new head having brand new, sharp needles (the needles of original head having become dull from the 25 injections). The dermatologist repeats the treatment on the other portion of the patient's face using the new head and a new cartridge. This process is repeated until the full skin area is treated as desired. The procedure is relatively painless and fast, and takes only about 20 to about 45 minutes. The patient is told to wear sunscreen when she is outdoors and to drink plenty of water over the next few days to protect her newly treated skin.


Within several days of treatment, the patient notices a visible improvement of her complexion. Her skin is noticeably suppler and less dry, more hydrated. The minute acne scar depressions are nearly gone, and her pores appear less visible. She returns to the dermatologist for a follow up treatment every 6 weeks, and tells him she is pleased that her face has a more youthful glow.


Although the invention has been described and illustrated with a certain degree of particularity, it is understood that the present disclosure has been made only by way of example, and that numerous changes in the combination and arrangement of parts can be resorted to by those skilled in the art without departing from the scope of the invention, as hereinafter claimed.

Claims
  • 1. A dermal filler injection device comprising: a handpiece comprising: a handpiece housing including an interior space for containing a cartridge having a plunger slidable within the cartridge; anda trigger coupled to the housing;a head, in communication with the interior space, the head comprising a needle array housing assembly and a needle hub disposed within the needle array housing assembly and a plurality of needles secured to the needle hub; anda plurality of dosing chambers, wherein a lumen of each needle is in communication with a corresponding dosing chamber,wherein the device is structured such that operation of the trigger initially causes the plurality of needles to be moved from a retracted position to an extended position; andwherein the head being manually separable from, and replaceable with respect to, the handpiece.
  • 2. The device of claim 1, wherein the plurality of dosing chambers is disposed in the handpiece.
  • 3. The device of claim 1, wherein radial compression to the trigger is configured to cause distal advancement of the plunger relative to the cartridge disposed within the housing to cause a dose of composition contained in each dosing chamber to be delivered.
  • 4. A dermal filler injection device comprising: a housing including an interior space for containing a cartridge;a trigger coupled to the housing;a head in communication with the interior space and including a plurality of dosing chambers, and a plurality of retractable needles coupled thereto;wherein the device is structured such that operation of the trigger initially causes the plurality of needles to be moved from a retracted position to an extended position and subsequently causes a dose of fluid contained in each of the dosing chambers to be ejected from a respective lumen of each of the needles when each needle is in the extended position; the device further structured to cause retraction of the needles after the dosing; anda mechanism capable of filling each dosing chamber between subsequent injections.
  • 5. The device of claim 4, wherein the plurality of needles comprises adjacent needles spaced apart by at least about 10 mm.
  • 6. The device of claim 4, wherein the plurality of needles comprises adjacent needles spaced apart by less than 10 mm.
  • 7. The device of claim 4, wherein the plurality of needles comprises adjacent needles spaced apart by about 3 mm to about 14 mm.
  • 8. The device of claim 4, wherein the plurality of needles comprises linearly arranged needles.
  • 9. The device of claim 4, wherein the plurality of needles comprises at least four linearly arranged needles.
  • 10. The device of claim 4, wherein the plurality of needles comprises a two by two array of needles.
  • 11. The device of claim 4, wherein the head further includes a plurality of conical or tapered projections, each needle having a tip protruding from an individual conical or tapered projection.
  • 12. The device of claim 11, wherein each conical or tapered projection is spaced apart from each other conical or tapered projections so as to effect a preloading of skin when the head is applied to skin, to facilitate penetration of the needle tips into the skin.
Parent Case Info

This application is a continuation of U.S. patent application Ser. No. 14/852,903, filed on Sep. 14, 2015, which claims the benefit of U.S. Patent Application Ser. No. 62/058,587 filed on Oct. 1, 2014, and claims the benefit of U.S. Patent Application Ser. No. 62/187,077, filed on Jun. 30, 2015, the entire contents of each of these applications being incorporated herein by this specific reference.

US Referenced Citations (369)
Number Name Date Kind
1250114 Bigelow et al. Dec 1917 A
1558037 Morton Oct 1925 A
1591021 Davis Jul 1926 A
2007140 Ragnar Jul 1935 A
2302986 Vollrath Nov 1942 A
2491978 Helfman Dec 1949 A
2551902 Rieck May 1951 A
2737946 Hein, Jr. Mar 1956 A
2853070 Julliard Sep 1958 A
3086530 Groom Apr 1963 A
3161323 Bent Dec 1964 A
D202754 Fnftolin Nov 1965 S
D214112 Langdon May 1969 S
3517668 Brickson Jun 1970 A
3595231 Pistor Jul 1971 A
D224066 McDonald Jun 1972 S
3720211 Kyrias Mar 1973 A
3767085 Cannon et al. Oct 1973 A
3807048 Malmin Apr 1974 A
3910282 Messer et al. Oct 1975 A
3916777 Earl Nov 1975 A
4064879 Leibinsohn Dec 1977 A
4240423 Akhavi Dec 1980 A
4240426 Akhavi Dec 1980 A
4273122 Whitney et al. Jun 1981 A
4326517 Whitney et al. Apr 1982 A
4346708 Leeven Aug 1982 A
4444560 Jacklich Apr 1984 A
4529401 Leslie et al. Jul 1985 A
4617016 Blomberg Oct 1986 A
4624659 Goldberg Nov 1986 A
4671255 Dubrul et al. Jun 1987 A
4695273 Brown Sep 1987 A
4699612 Hamacher Oct 1987 A
4710172 Jacklich Dec 1987 A
4719918 Bonomo et al. Jan 1988 A
4755169 Samoff Jul 1988 A
4759750 Devries Jul 1988 A
4800901 Rosenberg Jan 1989 A
4832692 Box May 1989 A
4841948 Bauser et al. Jun 1989 A
4841992 Sasaki et al. Jun 1989 A
4846886 Fey et al. Jul 1989 A
D303010 Jabbusch Aug 1989 S
4869717 Adair Sep 1989 A
4908029 Bark et al. Mar 1990 A
4955905 Reed Sep 1990 A
4957744 dellaValle et al. Sep 1990 A
5024656 Gasaway et al. Jun 1991 A
5046506 Singer Sep 1991 A
5066303 Bark et al. Nov 1991 A
5092348 Dubrul et al. Mar 1992 A
5100390 Lubeck et al. Mar 1992 A
5104375 Lubeck et al. Mar 1992 A
5116358 Granger et al. May 1992 A
5127436 Campion et al. Jul 1992 A
5141496 Daito et al. Aug 1992 A
5211644 VanBeek et al. May 1993 A
5258013 Granger et al. Nov 1993 A
5270685 Hagen Dec 1993 A
5279544 Gross Jan 1994 A
5295980 Ersek Mar 1994 A
5305788 Mayeux Apr 1994 A
5318544 Drypen Jun 1994 A
5322511 Armbruster et al. Jun 1994 A
5344407 Ryan Sep 1994 A
5354279 Hofling Oct 1994 A
5368572 Shirota Nov 1994 A
5383851 Mackinnon, Jr. Jan 1995 A
5405330 Zunitch et al. Apr 1995 A
5433352 Ronvig Jul 1995 A
5478327 McGregor et al. Dec 1995 A
5540657 Kurjan Jul 1996 A
5549672 Maddock et al. Aug 1996 A
5611809 Marshall et al. Mar 1997 A
D378939 Smith et al. Apr 1997 S
5690618 Smith et al. Nov 1997 A
5752970 Yoon May 1998 A
5807340 Pokras Sep 1998 A
5817033 DeSantis Oct 1998 A
5824335 Dorigatti et al. Oct 1998 A
5846225 Rosengart et al. Dec 1998 A
5941845 Tu et al. Aug 1999 A
5964737 Caizza Oct 1999 A
D424194 Holdaway et al. May 2000 S
6077251 Ting et al. Jun 2000 A
6102929 Conway et al. Aug 2000 A
6159233 Matsuzawa Dec 2000 A
6171276 Lippe Jan 2001 B1
6183434 Eppstein Feb 2001 B1
D441077 Garito et al. Apr 2001 S
6231552 Jentzen May 2001 B1
6231570 Tu et al. May 2001 B1
6283951 Flaherty et al. Sep 2001 B1
6293925 Safabash et al. Sep 2001 B1
6303518 Aceti Oct 2001 B1
6312412 Saied Nov 2001 B1
6432046 Yarush et al. Aug 2002 B1
6451240 Sherman et al. Sep 2002 B1
6482187 Gibbs Nov 2002 B1
6488651 Morris Dec 2002 B1
6551290 Elsberry et al. Apr 2003 B1
6595960 West et al. Jul 2003 B2
6607512 Oliver Aug 2003 B2
6607513 Down Aug 2003 B1
6611707 Prausnitz et al. Aug 2003 B1
6613010 Castellano Sep 2003 B2
6616448 Friedman Sep 2003 B2
D483116 Castellano Dec 2003 S
6689095 Garitano et al. Feb 2004 B1
6689103 Palasis Feb 2004 B1
6780171 Gabel Aug 2004 B2
6783514 Tovey et al. Aug 2004 B2
6824526 Castellano Nov 2004 B2
6896666 Kochamba May 2005 B2
6901850 Corominas Jun 2005 B2
6908453 Fleming Jun 2005 B2
6936297 Roby et al. Aug 2005 B2
6945952 Kwon Sep 2005 B2
7004928 Aceti Feb 2006 B2
7018356 Wise et al. Mar 2006 B2
7033337 Hjertman Apr 2006 B2
7041088 Nawrocki et al. May 2006 B2
7047070 Wilkinson et al. May 2006 B2
7048729 Meglin et al. May 2006 B2
7097631 Trautman Aug 2006 B2
7108681 Gartstein Sep 2006 B2
7115108 Wilkinson et al. Oct 2006 B2
7150726 Dalton Dec 2006 B2
7302885 Townsend Dec 2007 B2
7361163 Cohen Apr 2008 B2
7419472 Hibner et al. Sep 2008 B2
7442187 Khayal et al. Oct 2008 B2
7494473 Eggers et al. Feb 2009 B2
7504386 Pressato et al. Mar 2009 B2
7556615 Pettis et al. Jul 2009 B2
7559952 Pinchuck Jul 2009 B2
7588547 Deem Sep 2009 B2
7611495 Gianturco Nov 2009 B1
7651475 Angel Jan 2010 B2
7662110 Flaherty Feb 2010 B2
7664545 Westersten et al. Feb 2010 B2
7666339 Chaouk et al. Feb 2010 B2
D615192 Mudd et al. May 2010 S
7722582 Lina et al. May 2010 B2
7762983 Amissolle Jul 2010 B2
7850656 McKay et al. Dec 2010 B2
7850683 Elkins Dec 2010 B2
7878981 Strother et al. Feb 2011 B2
7896837 Wilkinson et al. Mar 2011 B2
D637287 Mudd et al. May 2011 S
7998170 Cunningham Aug 2011 B2
8012139 McKay et al. Sep 2011 B2
8029460 Rush et al. Oct 2011 B2
8066629 Dlugos Nov 2011 B2
8083722 McKay et al. Dec 2011 B2
8088108 Kraft Jan 2012 B2
8157830 Wenchell Apr 2012 B2
8172815 Down et al. May 2012 B2
8216190 Gartstein Jul 2012 B2
8236021 Kluge Aug 2012 B2
8291768 Spiegel Oct 2012 B2
8303518 Aceti Nov 2012 B2
8303545 Schraga Nov 2012 B2
8343132 Heneveld et al. Jan 2013 B2
8349554 Bahrami et al. Jan 2013 B2
8353871 Zimmerman Jan 2013 B2
8366643 Deem Feb 2013 B2
8394118 Jones et al. Mar 2013 B2
8409147 Kraft Apr 2013 B2
8409185 Burger Apr 2013 B2
8480630 Mudd et al. Jul 2013 B2
8535278 Mudd et al. Sep 2013 B2
8562571 Mudd et al. Oct 2013 B2
8603028 Mudd et al. Dec 2013 B2
8632501 Kraft Jan 2014 B2
8636797 Chitre et al. Jan 2014 B2
8657786 Bahrami et al. Feb 2014 B2
8668675 Chase Mar 2014 B2
8708965 Boyden Apr 2014 B2
8712815 Nichols et al. Apr 2014 B1
8821446 Trautman Sep 2014 B2
8900181 Knowlton Dec 2014 B2
8900186 Pettis et al. Dec 2014 B2
8945060 Bunch Feb 2015 B2
9017289 Backes Apr 2015 B2
9017318 Fourkas Apr 2015 B2
9039688 Palmer, III May 2015 B2
9066712 Fourkas Jun 2015 B2
9072498 Elkins Jul 2015 B2
9101346 Burger Aug 2015 B2
9113855 Burger Aug 2015 B2
9149331 Deem Oct 2015 B2
9155584 Fourkas Oct 2015 B2
9180273 Konstantino Nov 2015 B2
9214030 Sole et al. Dec 2015 B2
9227023 Kraft Jan 2016 B2
9241753 Fourkas Jan 2016 B2
9254162 Burger Feb 2016 B2
9289605 Choi Mar 2016 B2
9314568 Gurtner et al. Apr 2016 B2
9468748 Bang Oct 2016 B2
20010008937 Callegaro et al. Jul 2001 A1
20020010433 Johnson Jan 2002 A1
20020026039 Bellini et al. Feb 2002 A1
20020065483 Leon May 2002 A1
20020133114 Itoh Sep 2002 A1
20020151843 Correa et al. Oct 2002 A1
20030028154 Ros Feb 2003 A1
20030050602 Pettis Mar 2003 A1
20030078912 Oliver Apr 2003 A1
20030144632 Hommann et al. Jul 2003 A1
20030181863 Ackley Sep 2003 A1
20030199883 Laks Oct 2003 A1
20040010224 Bodmeier Jan 2004 A1
20040015133 Karim Jan 2004 A1
20040092927 Podhajsky et al. May 2004 A1
20040147883 Tsai Jul 2004 A1
20040192643 Pressato et al. Sep 2004 A1
20040220532 Caizza Nov 2004 A1
20050033362 Grafton Feb 2005 A1
20050085767 Menassa Apr 2005 A1
20050131346 Douglas Jun 2005 A1
20050131353 Mossanen-Shams et al. Jun 2005 A1
20050137496 Walsh et al. Jul 2005 A1
20050177117 Crocker et al. Aug 2005 A1
20050182446 DeSantis Aug 2005 A1
20050215956 Nerney Sep 2005 A1
20050261633 Khalaj Nov 2005 A1
20060041320 Matsuda Feb 2006 A1
20060079765 Neer Apr 2006 A1
20060089594 Landau Apr 2006 A1
20060150742 Esnouf Jul 2006 A1
20060178631 Gillespie Aug 2006 A1
20070038181 Melamud Feb 2007 A1
20070083155 Muller Apr 2007 A1
20070085767 Menassa Apr 2007 A1
20070100363 Dollar et al. May 2007 A1
20070167920 Hommann Jul 2007 A1
20070212385 David Sep 2007 A1
20070250010 Hohlfelder et al. Oct 2007 A1
20070270710 Frass et al. Nov 2007 A1
20080015522 Yeshurun Jan 2008 A1
20080033347 D'Arrigo et al. Feb 2008 A1
20080058706 Zhang Mar 2008 A1
20080058839 Nobles Mar 2008 A1
20080071385 Binette et al. Mar 2008 A1
20080097325 Tanaka et al. Apr 2008 A1
20080108952 Horvath et al. May 2008 A1
20080114305 Gerondale May 2008 A1
20080119797 Kim May 2008 A1
20080119876 Price et al. May 2008 A1
20080161772 Nayak Jul 2008 A1
20080167674 Bodduluri et al. Jul 2008 A1
20080188816 Shimazaki Aug 2008 A1
20080200758 Orbay et al. Aug 2008 A1
20080281278 Williams Nov 2008 A1
20090088703 Azar Apr 2009 A1
20090124996 Heneveld et al. May 2009 A1
20090125050 Dixon May 2009 A1
20090143746 Mudd et al. Jun 2009 A1
20090187118 Kim Jul 2009 A1
20090234322 Fischer Sep 2009 A1
20090240200 Heneveld et al. Sep 2009 A1
20090247953 Yeshurun Oct 2009 A1
20090259180 Choi Oct 2009 A1
20090275917 Azar Nov 2009 A1
20090287161 Traub Nov 2009 A1
20090299328 Mudd et al. Dec 2009 A1
20100006095 Woodcock Jan 2010 A1
20100030152 Lee et al. Feb 2010 A1
20100069848 Alferness Mar 2010 A1
20100100114 Berger Apr 2010 A1
20100121307 Lockard May 2010 A1
20100152675 McClintock Jun 2010 A1
20100152679 Tezel Jun 2010 A1
20100179488 Spiegel Jul 2010 A1
20100256594 Kimmell Oct 2010 A1
20100256596 Chomas Oct 2010 A1
20100280488 Pruiitt et al. Nov 2010 A1
20100282774 Greter et al. Nov 2010 A1
20100286618 Choi Nov 2010 A1
20110009808 AlGhamdi Jan 2011 A1
20110021905 Patrick et al. Jan 2011 A1
20110028910 Weber Feb 2011 A1
20110092883 Uchiyama Apr 2011 A1
20110092916 Tezel et al. Apr 2011 A1
20110137286 Mudd et al. Jun 2011 A1
20110152926 Vetrecin Jun 2011 A1
20110160674 Holmes et al. Jun 2011 A1
20110172645 Moga Jul 2011 A1
20110190974 Holmes et al. Aug 2011 A1
20110202014 Mutzbauer Aug 2011 A1
20110218494 Assaf Sep 2011 A1
20110218497 Assaf Sep 2011 A1
20110230839 Bahrami et al. Sep 2011 A1
20110238038 Sefi Sep 2011 A1
20110263724 Gurtner Oct 2011 A1
20110319865 Buss Dec 2011 A1
20120041374 Lee Feb 2012 A1
20120089211 Curtis Apr 2012 A1
20120101475 Wilmot Apr 2012 A1
20120123194 Beckman May 2012 A1
20120123537 Manesis et al. May 2012 A1
20120141532 Blanda et al. Jun 2012 A1
20120150266 Shalev Jun 2012 A1
20120245629 Gross et al. Sep 2012 A1
20120259322 Fourkas Oct 2012 A1
20120265064 Bahrami et al. Oct 2012 A1
20120265171 Thome Oct 2012 A1
20120296206 Bahrami et al. Nov 2012 A1
20130012865 Sallberg et al. Jan 2013 A1
20130041346 Alon Feb 2013 A1
20130096531 Estepa et al. Apr 2013 A1
20130122068 Fermanian et al. May 2013 A1
20130131632 Mudd et al. May 2013 A1
20130131633 Mudd et al. May 2013 A1
20130150826 Almohizea Jun 2013 A1
20130184648 Inou et al. Jul 2013 A1
20130184696 Fourkas Jul 2013 A1
20130197446 Gustafsson Aug 2013 A1
20130197449 Franklin et al. Aug 2013 A1
20130211374 Hetherington Aug 2013 A1
20130253289 Hadvary Sep 2013 A1
20130274655 Jennings Oct 2013 A1
20130274670 Mudd et al. Oct 2013 A1
20130280755 Hubert Oct 2013 A1
20130310763 Mudd et al. Nov 2013 A1
20140018770 Sutkin Jan 2014 A1
20140018835 Scherkowski Jan 2014 A1
20140066845 Mudd et al. Mar 2014 A1
20140088502 Matheny et al. Mar 2014 A1
20140088553 Hetherington Mar 2014 A1
20140114279 Klinghoffer Apr 2014 A1
20140121587 Sallberg et al. May 2014 A1
20140128685 Na May 2014 A1
20140128810 Ozawa et al. May 2014 A1
20140162901 Bahrami et al. Jun 2014 A1
20140170299 Gill Jun 2014 A1
20140228950 Whitcup et al. Aug 2014 A1
20140228971 Kim Aug 2014 A1
20140249504 Franklin et al. Sep 2014 A1
20140257190 Yue et al. Sep 2014 A1
20140309590 Bahrami et al. Oct 2014 A1
20140343481 Ignon Nov 2014 A1
20140350514 Levin Nov 2014 A1
20140350516 Schwab Nov 2014 A1
20140350517 Dominguez Nov 2014 A1
20140350518 Franklin et al. Nov 2014 A1
20140350536 Allison Nov 2014 A1
20150025459 Kimmell Jan 2015 A1
20150025563 Mosharrafa et al. Jan 2015 A1
20150119875 Fischell et al. Apr 2015 A1
20150126929 Franklin et al. May 2015 A1
20150141956 Hoffman et al. May 2015 A1
20150157809 Park et al. Jun 2015 A1
20150209265 Horne Jul 2015 A1
20150343147 Franklin et al. Dec 2015 A1
20160007990 Solish et al. Jan 2016 A1
20160058488 Fourkas Mar 2016 A1
20160095984 Franklin et al. Apr 2016 A1
20160114144 Sumida Apr 2016 A1
20160144125 Franklin May 2016 A1
20160207253 Down et al. Jul 2016 A9
20160213854 Schwab et al. Jul 2016 A1
20160263358 Unger Sep 2016 A1
20160303314 Momose Oct 2016 A1
20170080154 Mudd et al. Mar 2017 A1
20170290987 Mandaroux et al. Oct 2017 A1
Foreign Referenced Citations (86)
Number Date Country
2535071 Feb 2003 CN
200960353 Oct 2007 CN
0362484 Apr 1990 EP
0205915 Jul 1990 EP
0167662 Dec 1990 EP
0648474 Apr 1995 EP
0809968 Dec 1997 EP
1051988 Nov 2000 EP
1486218 Dec 2004 EP
1395320 Jun 2006 EP
1859827 Nov 2007 EP
1923086 May 2008 EP
2189173 May 2010 EP
2335755 Jun 2011 EP
2422832 Feb 2012 EP
2103262 Feb 2013 EP
2184016 Apr 2013 EP
2671516 Dec 2013 EP
53011 Sep 1945 FR
2622457 May 1989 FR
2857654 Jan 2005 FR
2336783 May 2003 GB
209387 Sep 2007 IN
20120007473 Jan 2012 KR
101246570 Mar 2013 KR
20130036921 Apr 2013 KR
20130130436 Dec 2013 KR
20130132196 Dec 2013 KR
20140029007 Mar 2014 KR
2286803 Nov 2006 RU
WO 90001349 Feb 1990 WO
WO 92013579 Aug 1992 WO
WO 94012228 Jun 1994 WO
WO 96025965 Aug 1996 WO
WO 97028840 Aug 1997 WO
WO 99048601 Sep 1999 WO
WO 0100190 Jan 2001 WO
WO 02055135 Jul 2002 WO
WO 2004022603 Mar 2004 WO
WO 2005095225 Oct 2005 WO
WO 2006065837 Jun 2006 WO
WO 2008086479 Aug 2006 WO
WO 2006118804 Nov 2006 WO
WO 2006133111 Dec 2006 WO
WO 2007092929 Aug 2007 WO
WO 2008019265 Feb 2008 WO
WO 2008053481 May 2008 WO
WO 2008072229 Jun 2008 WO
WO 2008079824 Jul 2008 WO
WO 2008148071 Dec 2008 WO
WO 2009003135 Dec 2008 WO
WO 2009035680 Mar 2009 WO
WO 2009091099 Jul 2009 WO
WO 2009098666 Aug 2009 WO
WO 2009158145 Dec 2009 WO
WO 2010028025 Mar 2010 WO
WO 2011016785 Feb 2011 WO
WO 2011073796 Jun 2011 WO
WO 2011075731 Jun 2011 WO
WO 2011109129 Sep 2011 WO
WO 2011109130 Sep 2011 WO
WO 2012054301 Apr 2012 WO
WO 2012054311 Apr 2012 WO
WO 2012127856 Sep 2012 WO
WO 2012172424 Dec 2012 WO
WO 2013005881 Jan 2013 WO
WO 2013054165 Apr 2013 WO
WO 2013055832 Apr 2013 WO
WO 2013082112 Jun 2013 WO
WO 2013106857 Aug 2013 WO
WO 2014026044 Feb 2014 WO
WO 2014034032 Mar 2014 WO
WO 2012174464 May 2014 WO
WO 2014064536 May 2014 WO
WO 2014189161 Nov 2014 WO
WO 2015007243 Jan 2015 WO
WO 2015020982 Feb 2015 WO
WO 2013065235 Apr 2015 WO
WO 2015064031 May 2015 WO
WO 2015105269 Jul 2015 WO
WO 2015127339 Aug 2015 WO
WO 2015149031 Oct 2015 WO
WO 2016008845 Jan 2016 WO
WO 2016022865 Feb 2016 WO
WO 2016033584 Mar 2016 WO
WO 2016033586 Mar 2016 WO
Non-Patent Literature Citations (15)
Entry
Bleyer, “Sis Facial Implant 510(k) Summary,” Cook Biotech Inc., May 2005, 1 page.
Davidenko et al., “Collagen-hyaluronic acid scaffolds for adipose tissue engineering”, ACTA Biomaterialia, vol. 6, No. 10, Oct. 1, 2010, pp. 3957-3968.
Galderma, “New Restylane Skinboosters SmartClick delivery system wins prestigious Red Dot design award,” Jul. 4, 2014, retrieved from http://www.galderma.com/News/articleType/ArticleView/articleId/64/New-Restylane-Skinboosters-SmartClick-delivery-system-wins-prestigious-Red-Dot-design-award.
Galderma, “Restylane Smart Click System Injection Device,” Mar. 2015, retrieved from http://www.red-dot-21.com/products/restylane-smart-click-system-injection-device-22169.
Hamza et al., “A new external filling device in tissue expansion,” Plastic and Reconstructive Surgery, March 1998, vol. 101, No. 3, pp. 813-815
Indian Patent Application No. 190/CHE/2002, filed Mar. 20, 2002, entitled A Subcutaneous Tissue Expander, 5 pages.
Indian Patent Application No. IN2012KO01267 for Tissue Expander, Feb. 8, 2017, 7 pages.
International Search Report from PCT/US2016/021838, dated May 17, 2016, 3 pages.
International Search Report and Written Opinion from PCT/US2009/045831, dated Feb. 24, 2010, 14 pages.
International Search Report and Written Opinion from PCT/US2014/039265, dated Nov. 18, 2014, 18 pages.
International Search Report and Written Opinion from PCT/US2014/039266, dated Aug. 26, 2014, 13 pages.
Park et al., “Biological characterization of EDC-crosslinked collagen-hyaluronic acid matrix in dermal tissue restoration”, Biomaterials, Elsevier Science Publishers BV, vol. 24, No. 9, Apr. 1, 2003, pp. 1631-1641.
Prime Journal, “Galderma to launch two new syringes at AMWC 2014,” Mar. 2014, 4 pages.
Turtlepin, “The Painless Direct Dermal Injector” Product Information, JM Biotech Co Ltd, 2013, 18 pages.
Wang et al., “In vivo stimulation of de novo collagen production caused by cross-linked hyaluronic acid dermal filler injections in photodamaged human skin.”, Archives of Dermatology, American Medical Association, US, vol. 143, No. 2, Feb. 1, 2007, pp. 155-163.
Related Publications (1)
Number Date Country
20190201635 A1 Jul 2019 US
Provisional Applications (2)
Number Date Country
62058587 Oct 2014 US
62187077 Jun 2015 US
Continuations (1)
Number Date Country
Parent 14852903 Sep 2015 US
Child 16299029 US