This disclosure relates to the reduction of noises generated by tires as they contact the road. More particularly, the disclosure relates to devices inserted within tires to reduce such noise. Even more particularly, the disclosure describes noise dampers, noise dampening annuluses, and tires including noise dampers. The noise reducing devices are permitted to move within the tire.
Known tire noise dampers, for example, are placed within the tire and permanently affixed to a tire innerliner. The dampers may include foam or fibers. The dampers reduce sound noise within the tire, and thus reduce noise emitted from the tire.
According to one embodiment, a tire and noise damper assembly includes a tire having a first annular bead and a second annular bead, and a body ply extending between the first annular bead and the second annular bead. The tire further includes an annular belt package, disposed radially upward of the body ply and extending axially across a portion of the body ply, and a circumferential tread disposed radially upward of the annular belt package and extending axially across a portion of the body ply. The tire also includes a first sidewall extending between the first annular bead and a first shoulder, the first shoulder being associated with the circumferential tread, and a second sidewall extending between the second annular bead and a second shoulder, the second shoulder being associated with the circumferential tread. The tire and noise damper assembly also includes a noise damper having at least one foam mass made of a compressible and elastic open-cell foam. The noise damper has at least one generally flat surface that is configured to conform to a tire innerliner. The tire and noise damper assembly further includes a thin film attached to the foam mass. The thin film has a generally flat surface that substantially coincides with the generally flat surface of the foam mass. The thin film has a radial height that is between 0.05-10% of a radial height of the foam mass.
According to another embodiment, a tire and noise damper assembly includes a tire having a first annular bead and a second annular bead, a body ply extending between the first annular bead and the second annular bead, and an annular belt package, disposed radially upward of the body ply and extending axially across a portion of the body ply. The tire also has a circumferential tread disposed radially upward of the annular belt package and extending axially across a portion of the body ply. The tire further includes a first sidewall extending between the first annular bead and a first shoulder, the first shoulder being associated with the circumferential tread, and a second sidewall extending between the second annular bead and a second shoulder, the second shoulder being associated with the circumferential tread. The tire and noise damper assembly also includes a noise damper including a foam mass, and a thin film attached to the foam mass.
According to another embodiment, a tire and noise damper assembly includes a tire, a noise damper including a foam mass, and a thin film attached to the foam mass. The tire and noise damper assembly further includes a lubricant configured to allow the noise damper to move freely against a surface of the tire.
In the accompanying drawings, structures are illustrated that, together with the detailed description provided below, describe exemplary embodiments of the claimed invention. Like elements are identified with the same reference numerals. It should be understood that elements shown as a single component may be replaced with multiple components, and elements shown as multiple components may be replaced with a single component. The drawings are not to scale and the proportion of certain elements may be exaggerated for the purpose of illustration.
The following includes definitions of selected terms employed herein. The definitions include various examples and/or forms of components that fall within the scope of a term and that may be used for implementation. The examples are not intended to be limiting. Both singular and plural forms of terms may be within the definitions.
“Axial” and “axially” refer to a direction that is parallel to the axis of rotation of a tire.
“Circumferential” and “circumferentially” refer to a direction extending along the perimeter of the surface of the tread perpendicular to the axial direction.
“Radial” and “radially” refer to a direction perpendicular to the axis of rotation of a tire.
“Sidewall” as used herein, refers to that portion of the tire between the tread and the bead.
“Tread” as used herein, refers to that portion of the tire that comes into contact with the road or ground under normal inflation and normal load.
“Tread depth” refers to the distance between a top surface of the tread and the bottom of a major tread groove.
“Tread width” refers to the width of the ground contact area of a tread which contacts with the road surface during the rotation of the tire under normal inflation and load.
While similar terms used in the following descriptions describe common tire components, it is understood that because the terms carry slightly different connotations, one of ordinary skill in the art would not consider any one of the following terms to be purely interchangeable with another term used to describe a common tire component. Furthermore, to the extent the term “under” is used in the specification or claims, it is intended to mean not only “directly under” but also “indirectly under” where intermediary tire layers or components are disposed between two identified components or layers.
Directions are stated herein with reference to the axis of rotation of the tire. The terms “upward” and “upwardly” refer to a general direction towards the tread of the tire, whereas “downward” and “downwardly” refer to the general direction towards the axis of rotation of the tire. Thus, when relative directional terms such as “upper” and “lower” or “top” and “bottom” are used in connection with an element, the “upper” or “top” element is spaced closer to the tread than the “lower” or “bottom” element. Additionally, when relative directional terms such as “above” or “below” are used in connection with an element, an element that is “above” another element is closer to the tread than the other element.
The terms “inward” and “inwardly” refer to a general direction towards the equatorial plane of the tire, whereas “outward” and “outwardly” refer to a general direction away from the equatorial plane of the tire and towards the sidewall of the tire. Thus, when relative directional terms such as “inner” and “outer” are used in connection with an element, the “inner” element is spaced closer to the equatorial plane of the tire than the “outer” element.
Foam body 105a is depicted with a rectangular cross section. Thus, foam body 105a has at least one generally flat surface 125 that is configured to conform to a tire innerliner. In one embodiment (not shown), the foam body conforms to the tire innerliner by mechanical deformation. In another embodiment, the generally flat surface includes a slight arch so that the foam body is preformed to match a tire innerliner's curvature.
In
Although not shown in the figures, the foam body may be made from compressible and elastic open-cell foam such as polyurethane, polyester, polyether, or melamine. The foam has a sound absorption coefficient between 0.4 and 1.5. In an alternative embodiment, the foam has a sound absorption coefficient between 0.7 and 1.1.
Foam body 105a has a radial height (RH) and an axial length (AL). In one embodiment, the axial length is between 3 and 6 times the radial height. In additional embodiments, the foam body is configured according to one of the following exemplary dimensions:
In another embodiment, the dimensions are specifically configured for a particular size of a tire. In yet another embodiment, the dimensions are configured for use across multiple tires. As one of ordinary skill in the art will understand, the axial length can vary based on, amongst other things, tire application and noise suppression desired.
With continued reference to
Noise damper 100a further includes an adhesive 115. Adhesive 115 bonds foam body 105a to thin film 110a. The adhesive can be applied to the foam body or the thin film. Exemplary adhesives include, without limitation, gels, liquids, sprays, or tape.
As shown in
Because noise damper 100a (including foam body 105a and thin film 110a) is not affixed to a tire, noise damper 100a is free to move (e.g., rotate or translate) within a tire cavity.
In particular,
The exemplary embodiments shown in
As shown in
With continued reference to
As also shown in
Although not shown, the annulus 200c includes an outer diameter. In a particular embodiment, the outer diameter of the annulus is 95-140% of a wheel diameter. In this embodiment, the annulus is constrained by the tire and imparts a light force on it, which thereby slightly hinders its movement within the tire.
As shown, tire 300 includes a first annular bead 305 and a second annular bead 310. The annular beads 305 and 310, in part, secure tire 300 to a wheel (not shown). In an alternative embodiment (not shown), the tire comprises four or more beads.
As shown, tire 300 further includes a body ply 315 extending between first annular bead 305 and second annular bead 310. Body ply 315 forms an annulus and imparts shape to the tire. As one of ordinary skill in the art will understand, body ply 315 may contain reinforcing cords or fabric (not shown). In alternative embodiments (not shown), various turn-up and turn-down configurations, or multiple body plies, are used.
Tire 300 further comprises a first circumferential belt 320 and a second circumferential belt 325. First circumferential belt 320 is disposed radially upward of body ply 315 and extends axially across a portion of body ply 315. Second circumferential belt 325 is disposed radially upward of first circumferential belt 320 and extends axially across a portion of body ply 315. The circumferential belts reinforce the tire and increase its stiffness. As one of ordinary skill in the art will understand, the circumferential belts may contain steel cords and reinforcing cords (both not shown). In an alternative embodiment (not shown), the tire contains a third and/or fourth circumferential belt.
Tire 300 further includes cap plies 330 and 335. First cap ply 330 is disposed radially upward of circumferential belts 320 and 325 and extends axially across a portion of body ply 315. Second cap ply 335 is disposed radially upward of first cap ply 330 and extends axially across a portion of body ply 315. The cap plies restrict tire expansion when the tire rotates. In an alternative embodiment (not shown), the plies are omitted.
Tire 300 further comprises a circumferential tread 340. Circumferential tread 340 is disposed radially upward of circumferential belts 320 and 325 and extends axially across a portion of body ply 315. Circumferential grooves (not labeled) divide circumferential tread 340 into ribs. As one of ordinary skill in the art will understand, circumferential tread 340 is affixed to tire 300 when tire 300 is new. In an alternative embodiment (not shown), the circumferential tread is affixed as a retread.
Tire 300 further comprises a first sidewall 345 and a second sidewall 350. First sidewall 345 extends between the first annular bead 305 and a first shoulder 355, which is proximately associated with an edge of circumferential tread 340. Second sidewall 350 extends between the second annular bead 310 and a second shoulder 360, which is proximately associated with an opposite edge of circumferential tread 340. In an alternative embodiment (not shown), the sidewalls are proximately associated with an undertread (not shown).
Tire 300 further comprises a noise damper 365. Noise damper 365, which includes a foam body 370 and a thin film 375, fits inside the tire cavity (not labeled) and reduces noise within the tire cavity. It is free to move (e.g., rotate or translate) within the tire cavity. In one embodiment, one of the noise dampers 100 described above constitutes the noise damper. In another embodiment, one of the noise dampening annuluses 200 described above constitutes the noise damper.
This application is a divisional of U.S. patent application Ser. No. 16/335,016, filed on Mar. 20, 2019, which in turn is a national stage entry of PCT/US17/52263, filed on Sep. 19, 2017, which in turn claims the benefit of priority of U.S. Provisional Application No. 62/398,574, filed on Sep. 23, 2016. Each of these documents is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62398574 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16335016 | Mar 2019 | US |
Child | 17885718 | US |