The present technology generally relates to devices for cleaning stents, embolic protection devices, other implants, and/or bare vessels and, more particularly, for example, to devices for intravascularly removing clot and/or other material from stents implanted in the vasculature of a patient (e.g., the venous vasculature).
Stents are tubes or similar structures that can be implanted within a blood vessel of a patient to mechanically keep the vessel open, restore flow, and/or bypass a diseased region of the blood vessel. Stents are typically made of metal or plastic, and can be crimped or packed down into a delivery catheter before being intravascularly delivered to a target location within the blood vessel.
After a stent is delivered to and implanted within a blood vessel of a patient, unwanted material can form around and/or adhere to the stent. For example, clot material can form and adhere to an inner surface of the stent. Similarly, vascular wall cells can abnormally accumulate within the stent (e.g., intimal hyperplasia).
Physicians are currently limited in their abilities to remove adherent clot or intimal hyperplasia from implanted stents and, in particular, venous stents. For example, while aspiration mechanisms exist to remove clot material from venous stents, these aspiration mechanisms are limited to non-adherent, acute clot, and cannot treat chronic adherent clot or intimal hyperplasia. Further, while mechanical clot treatment devices exist to target adherent clot material, many such devices are currently contraindicated for removing clot material from stents because the mechanical clot treatment devices can catch on the stent, causing damage. Other methods of medical management such as ballooning or re-stenting do not remove the clot that has been formed, likely causing additional clot to form. Pharmacological methods—such as administering tissue plasminogen activator (tPA)—do not work on aged, more adherent clot, and also carry other risks such as systemic bleeding. Surgery carries risks of adverse events and is more invasive than transcatheter methods.
Many aspects of the present technology can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale. Instead, emphasis is placed on illustrating clearly the principles of the present disclosure.
The present technology is generally directed to devices for mechanically removing clot and/or other material from the vasculature of a patient, and associated systems and methods. In particular, some of the embodiments are directed to devices for mechanically removing clot and/or other material from implants implanted in the vasculature of the patient, such as stents implanted within the venous vasculature. In some embodiments described below, a system for removing clot material from an implant—such as a venous stent—includes a (i) clot treatment device, (ii) a handle, and (iii) a first elongate member and a second elongate member coupling the clot treatment device to the handle. The clot treatment device is configured to be deployed within the implant, and includes a first end portion, a second end portion, and a plurality of struts extending between the first and second end portions. The first elongate member couples the first end portion of the clot treatment device to the handle, and the second elongate member couples the second end portion of the clot treatment device to the handle (e.g., to an actuator of the handle). Actuation of the actuator in a first direction is configured to move the second elongate member relative to the first elongate member and/or the first elongate member relative to the second elongate member to move the first and second end portions toward one another to radially expand the struts. The actuator can be actuated in a second direction (e.g., opposite the first direction) to move the second elongate member relative to the first elongate member and/or the first elongate member relative to the second elongate member to move the first and second end portions away from one another to radially collapse the struts.
When expanded within the implant, the clot treatment device can be (i) translated proximally and/or distally through the implant by translating the handle and (ii) rotated within the implant by rotating the handle. Such movements can mechanically engage the clot treatment device with clot material adhered to the implant to dislodge the clot material. In some aspects of the present technology, the clot treatment device is configured to be translated and/or rotated within the implant without catching on the implant, avoiding potential damage, deformation, movement, and/or migration of the implant. For example, the struts can extend generally axially between the first and second end portions—and not include any cross-members connected therebetween that are configured to contact the implant—to reduce the likelihood of the struts damaging the implant.
Certain details are set forth in the following description and in
The terminology used below is to be interpreted in its broadest reasonable manner, even though it is being used in conjunction with a detailed description of certain examples of embodiments of the technology. Indeed, certain terms may even be emphasized below; however, any terminology intended to be interpreted in any restricted manner will be overtly and specifically defined as such in this Detailed Description section.
The accompanying Figures depict embodiments of the present technology and are not intended to be limiting of its scope unless expressly indicated. The sizes of various depicted elements are not necessarily drawn to scale, and these various elements may be enlarged to improve legibility. Component details may be abstracted in the Figures to exclude details such as position of components and certain precise connections between such components when such details are unnecessary for a complete understanding of how to make and use the present technology. Many of the details, dimensions, angles and other features shown in the Figures are merely illustrative of particular embodiments of the disclosure. Accordingly, other embodiments can have other details, dimensions, angles and features without departing from the present technology. In addition, those of ordinary skill in the art will appreciate that further embodiments of the present technology can be practiced without several of the details described below.
With regard to the terms “distal” and “proximal” within this description, unless otherwise specified, the terms can reference a relative position of the portions of a catheter subsystem with reference to an operator and/or a location in the vasculature. Also, as used herein, the designations “rearward,” “forward,” “upward,” “downward,” and the like are not meant to limit the referenced component to a specific orientation. It will be appreciated that such designations refer to the orientation of the referenced component as illustrated in the Figures; the systems of the present technology can be used in any orientation suitable to the user. To the extent any materials incorporated herein by reference conflict with the present disclosure, the present disclosure controls.
Referring to
Referring to
In the illustrated embodiment, the system 100 includes a tip 108 coupled to the clot treatment device 130 and/or the inner elongate member 102 (
Referring to
The elongate members 102, 104 can comprise (i) metal, polymeric, and/or metallic (e.g., solid stainless steel, cobalt chrome, nitinol) tubes, (ii) metal, polymeric, and/or metallic (e.g., solid stainless steel, cobalt chrome, nitinol) tubes with relief cuts (e.g., laser-cuts) for flexibility, (iii) hollow helical spirals (e.g., including one or more axial metal (e.g., stainless-steel, cobalt chrome, nitinol) wires turned to create a closed-pitch coil with a hollow central lumen), (iv) reinforced polymeric shafts, and/or (v) the like. In the illustrated embodiment, for example, the inner elongate member 102 comprises a solid nitinol tube and the middle elongate member 104 comprises a hollow helical spiral (HHS). The hollow helical spiral can be a single layer spiral, or a multilayer spiral (e.g., two-layer, three-layer, or more layer spiral) to provide greater torque and/or tensile response. In some aspects of the present technology, such a hollow helical spiral allows the overall system 100 to be more flexible such that the system 100 can, for example, be inserted to treat clot material in more tortuous anatomies with less biasing of the clot treatment device 130 (e.g., to one side of an implant or vessel). In some aspects of the present technology, the elongate members 102, 104 can have a relatively high tensile, compression, and/or torque capability/response that allow for the controlled expansion and movement of the clot treatment device 130 during a procedure to remove clot material from an implanted stent, embolic protection device, other implant, and/or bare vessel, as described in greater detail below.
Referring to
As best seen in
As best seen in
The clot treatment device 130 has nine of the struts 133 in
In some embodiments, the clot treatment device 130 is an integral/continuous structure, such as a laser-cut metal (e.g., nitinol, cobalt chrome, stainless steel) element. In some embodiments, the clot treatment device 130 is configured (e.g., heat set) to self-expand from a compressed delivery state (e.g., when the clot treatment device 130 is positioned within the outer elongate member 106) to the expanded deployed state illustrated in
In some embodiments, the struts 133 can curve more or less back toward the longitudinal axis L.
Similarly, in other embodiments one or more of the struts 133 can have different shapes and/or profiles. For example,
Further,
In the illustrated embodiment, the handle 110 further comprises a leadscrew 520 attached to the inner elongate member 102 and movably positioned within the lumen 516 over one or more guiderails 522 (e.g., a pair of guiderails 522). The leadscrew 520 can have a threaded outer surface configured to mate with a threaded inner surface of the actuator 112 (shown as partially transparent in
Rotation of the actuator 112 relative to the housing 514 (e.g., by the user) can drive the leadscrew 520 to translate proximally and/or distally (e.g., between the distal and proximal portions 515a-b of the housing 514) to thereby drive the attached inner elongate member 102 to translate relative to the middle elongate member 104. This relative movement of the elongate members 102, 104 lengthens/shortens the clot treatment device 130 (
To move the clot treatment device 130 from the first position to the second position, the user can rotate the actuator 112 in a first direction to drive the leadscrew 520 distally through the housing 514. This movement drives the inner elongate member 102 distally through the lumen of the middle elongate member 104, thereby driving the distal end portion 131a of the clot treatment device 130 distally relative to the proximal end portion 131b to radially compress the clot treatment device 130 while lengthening the clot treatment device 130. Conversely, to move the clot treatment device 130 from the second position to the first position, the user can rotate the actuator 112 in a second direction opposite the first direction to drive the leadscrew 520 proximally through the housing 514. This movement drives the inner elongate member 102 proximally through the lumen of the middle elongate member 104, thereby driving the distal end portion 131a of the clot treatment device 130 proximally relative to the proximal end portion 131b to radially expand the clot treatment device 130 while shortening the clot treatment device 130. Although two discrete positions are shown in
Referring to
Referring to
At block 741, the method 740 can include advancing the system 100 through the vasculature of a patient to at or proximate the implant implanted within the patient. The implant can be identified as having clot material or other unwanted material (e.g., intimal hyperplasia) adhered thereto that would be beneficial to remove. In some embodiments, the implant is a stent implanted within the venous vasculature of the patient. In other embodiments, the implant can be a graft, embolic filter, inferior vena cava (IVC) filter, and/or other type of implant. In other embodiments, the method 740 can be used to clean and remove clot material from a bare vessel of the patient. In some embodiments, the elongate members 102-106 can be advanced together through the vasculature with the clot treatment device 130 constrained within the outer elongate member 106. The tip 108 can provide for atraumatic advancement of the system 100 through the vasculature to the implant. In other embodiments, the outer elongate member 106 can be positioned within the vasculature first, and the clot treatment device 130 can then be advanced through the vasculature to the implant.
At block 742, the method 740 can include deploying the clot treatment device 130 within the implant. For example, the handle 110 can be advanced distally (e.g., pushed by a physician) relative to the outer elongate member 106 to advance the elongate members 102, 104 and the coupled clot treatment device 130 distally from the distal end portion 107a of the outer elongate member 106. In some embodiments, the clot treatment device 130 can at least partially radially expand (e.g., self-expand) when the clot treatment device 130 is no longer constrained by the outer elongate member 106.
At block 743, the method 740 can include further radially expanding the clot treatment device 130. For example, the clot treatment device 130 can be radially expanded by actuating the actuator 112 of the handle 110 to drive the inner elongate member 102 proximally relative to the middle elongate member 104 to thereby move the distal end portion 131a of the clot treatment device 130 toward the proximal end portion 131b—thereby causing the struts 133 to flex radially outwardly away from the longitudinal axis L. In some embodiments, the clot treatment device 130 is radially expanded outwardly to contact the clot material adhered to the implant or the implant itself. In some aspects of the present technology, such radial expansion can comprise a mechanical “ballooning” effect of the clot treatment device 130. For example, the clot treatment device 130 can be expanded within a deformed or compressed stent to balloon open the stent and/or to disrupt clot material, intimal hyperplasia, and/or other material within the stent such that clot treatment device 130 can more effectively engage and disrupt clot material within the stent (block 744). In some embodiments, the clot treatment device 130 can be expanded within a bare vessel (e.g., outside a stent) to perform angioplasty. The clot treatment device 130 can provide a radial outward mechanical force (e.g., pressure) of between about 0.1-30 atmospheres, between about 0.1-6 atmospheres, etc. The outward mechanical force can be determined by the width and thickness of the struts 133 and/or the amount the clot treatment device 130 can be expanded (e.g., how far the leadscrew 520 can travel)—with greater strut thickness, strut width, and/or device expansion causing a greater outward mechanical force (and vice versa) In some aspects of the present technology, the clot treatment device advantageously does not include a burst failure mode like many conventional balloon treatment devices.
At block 744, the method 740 includes mechanically engaging the clot treatment device 130 with the clot material within the implant to at least partially dislodge the clot material. For example, the clot treatment device 130 can be rotated, translated, and/or radially compressed/expanded within the implant to engage and dislodge the clot material. Accordingly, in some aspects of the present technology the clot treatment device 130 can function similarly to a mechanical scoring balloon. More specifically,
In the illustrated embodiment, the clot treatment device 130 is expanded within a lumen 852 of the implant 850 such that the struts 133 contact an inner surface of the implant 850. In some embodiments, the struts 133 are the only part of the clot treatment device 130 that contacts the implant 850 when the clot treatment device 130 is expanded. With reference to
Referring again to
Referring again to
Finally, at block 747, the system 100 can be withdrawn from the patient. For example, the clot treatment device 130 can be retracted proximally into the outer elongate member 106 (e.g., by proximally withdrawing the handle 110 relative to the outer elongate member 106) and radially constrained therein. The outer elongate member 106 and the constrained clot treatment device 130 can then be withdrawn together from the patient.
Referring to
Referring again to
Referring to
In the illustrated embodiment, the clot treatment device 1230 includes a plurality of interconnected struts extending between a distal end portion 1231a and a proximal end portion 1231b. More specifically, the clot treatment device 1230 can include (i) distal struts 1264 that extend from the distal end portion 1231a generally axially relative to a longitudinal axis L of the clot treatment device 1230, (ii) proximal struts 1266 that extend from the proximal end portion 1231b generally axially relative to the longitudinal axis L of the clot treatment device 1230, and (iii) bracing struts 1265 connecting the distal struts 1264 to the proximal struts 1266. The bracing struts 1265 can extend at least partially circumferentially relative to the longitudinal axis L in a middle region of the clot treatment device 1230 and can have a chevron- or ring-like pattern. In some aspects of the present technology, the bracing struts 1265 can facilitate an increased torque response of the clot treatment device 1230, while the distal and proximal struts 1264, 1266 extend generally axially to allow the clot treatment device 1230 to be advanced and retracted through an implanted stent without catching on the stent, which could potentially damage or move the stent.
In the illustrated embodiment, the clot treatment device 1330 includes a plurality of interconnected struts extending between a distal end portion 1331a and a proximal end portion 1331b. More specifically, the clot treatment device 1330 can include (i) distal struts 1364 extending from the distal end portion 1331a, (ii) proximal struts 1366 extending from the proximal end portion 1331b, and (iii) middle struts 1365 (e.g., spanning struts, axial struts) extending between the distal and proximal struts 1364, 1366. In some embodiments, the clot treatment device 1330 includes fewer of the middle struts 1365 than the distal and proximal struts 1364, 1366, and the middle struts 1365 can be longer than the distal and proximal struts 1364, 1366. In the illustrated embodiment, the middle struts 1365 extend in a spiral or helical pattern relative to a longitudinal axis L of the clot treatment device 1330. The distal and proximal struts 1364, 1366 can have a chevron- or ring-like pattern. In some aspects of the present technology, the spiral shape of middle struts 1365 can facilitate an increased torque response of the clot treatment device 1330 while also reducing engagement of the clot treatment device 1330 with an implanted stent. In some embodiments, the clot treatment device 1330 can be rotated such that the middle struts 1365 turn away from the ends of an implanted stent (e.g., by rotating the distal and proximal end portions 1331a-b in opposite directions) to further reduce stent engagement.
In the illustrated embodiment, the clot treatment device 1430 includes a plurality of interconnected struts extending between a distal end portion 1431a and a proximal end portion 1431b. More specifically, the clot treatment device 1430 can include (i) distal struts 1464 extending from the distal end portion 1431a, (ii) proximal struts 1466 extending from the proximal end portion 1431b, and (iii) middle struts 1465 (e.g., spanning struts, axial struts) extending between the distal and proximal struts 1464, 1466 and generally axially relative to a longitudinal axis L of the clot treatment device 1430. In some embodiments, the clot treatment device 1430 includes fewer of the middle struts 1465 than the distal and proximal struts 1464, 1466, and the middle struts 1465 can be longer than the distal and proximal struts 1464, 1466. In some aspects of the present technology, the distal and proximal struts 1464, 1466 can facilitate an increased torque response of the clot treatment device 1430, while the axially-extending middle struts 1465 reduce engagement of the clot treatment device 1430 with an implanted stent. In some embodiments, the clot treatment device 1430 further includes bumps 1467 (e.g., radially-extending portions) on the middle struts 1465 configured to increase the radial force of the clot treatment device 1430 for, for example, engaging and dislodging the most adhered clot or other material within the implanted stent.
In the illustrated embodiment, the clot treatment device 1570 includes an inner clot treatment device 1530 and an outer clot treatment device 1572 (e.g., a stent protection element) that houses the inner clot treatment device 1530. The inner clot treatment device 1530 can be identical to any of the clot treatment devices 130, 1130, 1230, 1330, and/or 1430 described in detail above with reference to
During a clot treatment procedure, the outer clot treatment device 1572 can directly engage an implanted stent while the inner clot treatment device 1530 is rotated therein and/or while the clot treatment device 1570 is translated distally and/or proximally within the implanted stent. Moreover, the outer clot treatment device 1572 can be fixed so that it does not rotate with the inner clot treatment device 1530 via its connection to the elongate member 1574. In some aspects of the present technology, the outer clot treatment device 1572 can partially or fully protect the implanted stent from being directly contacted by the inner clot treatment device 1530—thereby reducing stent engagement that might damage or disrupt the stent. Further, the outer clot treatment device 1572 can still provide a large inner diameter that allows the inner clot treatment device 1530 to engage and disrupt clot or other material adhered to the stent.
Referring to
In any of the embodiments described above with reference to
In other embodiments, a handle in accordance with the present technology can have other configurations for (i) driving a pair of elongate members (e.g., the elongate members 102, 104 of
In the illustrated embodiment, the handle 2010 further includes a lock mechanism 2024 coupled to the housing 2014. The lock mechanism 2024 can include a lock member 2025 configured to engage the leadscrew 2020 and/or the actuator 2012 to inhibit movement of the leadscrew 2020 through the housing 2014. In the illustrated embodiment, the lock mechanism 2024 is in a locked position in which the lock member 2025 engages the actuator 2012 to inhibit movement of the actuator 2012 and the leadscrew 2020. In some embodiments, the user can actuate (e.g., push, translate, rotate, depress) the lock mechanism 2024 to withdraw the lock member 2025 away from the actuator 2012 to allow the leadscrew 2020 to move through the housing 2014. Accordingly, with additional reference to
Accordingly, in operation, a user can press the actuator 2212 linearly against the biasing force of the biasing members 2291 to drive the gear rack 2292 linearly relative to the first gear 2293. The movement of the gear rack 2292 rotates the first gear 2293 via the engagement of the gear rack 2292 and the first gear 2293. The rotation of the first gear 2293 rotates the coupled second gear 2295, which in turn rotates the third gear 2297 via the engagement of the second and third gears 2295, 2297. In some embodiments, the larger size of the second gear 2295 steps up the rotation speed of the first gear 2293. In some embodiments, the second gear can 2295 can be omitted and the first gear 2293 can directly engage the third gear 2297 or the first shaft 2294 can directly engage the ratchet mechanism 2298. The ratchet mechanism 2298 inhibits or even prevents the third gear 2297 from rotating in multiple directions, such as when the biasing members 2291 return the actuator 2212 to an initial position after being depressed. Accordingly, the actuation mechanism 2290 translates the linear motion of the actuator 2212 to unidirectional rotation of the ratchet mechanism 2298 and the third gear 2297. The ratchet mechanism 2298 and/or the third gear 2297 can be coupled directly to one or both of the elongate members 102, 104 (
In some embodiments, a handle coupled to a clot treatment device can include one or more features for inhibiting or even preventing over expansion and/or over torquing of the clot treatment device.
In other embodiments, some or all of the balls 2371 and corresponding detents can be replaced with other mechanisms for inhibiting over torquing of the clot treatment device 130. For example, some or all of the balls 2371 can be replaced with pairs of magnets including a first one of the pair coupled to the distal handle portion 2370 and a second one of the pair coupled to the proximal handle portion 2372. The magnets can be selected such that, when the handle 2310 is over torqued, the pairs of magnets disengage (e.g., shear apart) from one another to permit the proximal handle portion 2372 to rotate relative to the distal handle portion 2370 without rotating the distal handle portion 2370.
In the illustrated embodiment, the handle 2510 further comprises an indicator 2511 coupled to the leadscrew 2520. The indicator 2511 can be coupled to (e.g., integrally formed with, rotatably mounted to) the leadscrew 2520 and can project into and/or otherwise be visible through one or more second openings 2518 (e.g., slots) in the housing 2514 (e.g., a pair of openings on opposing sides of the housing 2514). The housing 2514 can further include one or more markings 2517 (
In the illustrated embodiment, the handle 2610 further comprises an indicator 2611 coupled to the leadscrew 2620 and that is visible through one or more slot/openings in the housing 2614 to provide an indication of an amount of radial expansion of the clot treatment device 130. In some aspects of the present technology, forming the outer surface of the actuator 2612 and the corresponding inner surface of the leadscrew 2620 to be threaded can allow for easier visualization of the indicator 2611, as the actuator 2612 does not block the view of the indicator 2611 and the leadscrew 2620 anywhere along the path of the leadscrew 2620.
In the illustrated embodiment, the handle 2710 further comprises one or more elongate guide members 2784 (e.g., torque guide pins) coupling the first adaptor 2790 to the second adaptor 2740 and a rotary motor 2782. The rotary motor 2782 can be operably coupled to an actuator 2780 (e.g., a switch, a button), a power source, a controller, and/or the like, and is actuatable to cause the rotary motor 2782 to rotate the elongate guide members 2784 to thereby rotate the first and second adaptors 2790, 2794 to thereby rotate the elongate members 102, 104. Accordingly, the handle 2710 is motorized to rotate the clot treatment device 130 (e.g., via actuation of the actuator 2780 and operation of the rotary motor 2782) while still being manually actuatable by a user (e.g., via actuation of the actuator 2712 and corresponding movement of the leadscrew 2720) to radially expand the clot treatment device 130.
In some embodiments, the rotary motor 2782 is configured to fully rotate (e.g., 360°) the clot treatment device 130 in one or both of the clockwise and counterclockwise directions. In some embodiments, the rotary motor 2782 is configured to only partially rotate the clot treatment device 130 (e.g., by about 10°-60°) in the clockwise and/or counterclockwise directions. In some embodiments, of the rotary motor 2782 (e.g., a controller operably coupled thereto) and/or other aspects of the present technology described herein may take the form of computer- or machine- or controller-executable instructions, including routines executed by a programmable computer or controller. Those skilled in the relevant art will appreciate that the technology can be practiced on computer/controller systems other than those shown and described below. The technology can be embodied in a special-purpose computer, controller or data processor that is specifically programmed, configured or constructed to perform one or more of the computer-executable instructions described below. Accordingly, the terms “computer” and “controller” as generally used herein refer to any data processor and can include Internet appliances and hand-held devices (including palm-top computers, wearable computers, cellular or mobile phones, multi-processor systems, processor-based or programmable consumer electronics, network computers, mini computers and the like). Information handled by these computers can be presented at any suitable display medium, including a liquid crystal display (LCD).
The technology can also be practiced in distributed environments, where tasks or modules are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules or subroutines may be located in local and remote memory storage devices. Aspects of the technology described below may be stored or distributed on computer-readable media, including magnetic or optically readable or removable computer disks, as well as distributed electronically over networks. Data structures and transmissions of data particular to aspects of the technology are also encompassed within the scope of the embodiments of the technology.
In the illustrated embodiment, the system 2800 further includes a first balloon 2870 coupled to the outer elongate member 106 (e.g., coupled to a distal portion thereof) and a second balloon 2872 coupled to an innermost (e.g., fourth) elongate member 2807. The innermost elongate member 2807 can be moved (e.g., advanced and/or retracted) through the lumen in the tip 108 and the inner elongate member 102. The first and second balloons 2870, 2872 can be inflated via one or more components of the handle 110 (
The system 2800 can be used to treat the clot material C when the clot material C is positioned within a bare vessel and/or an implant. The clot material C can be chronic or adherent clot material that may otherwise be difficult to treat and remove. In operation, during a clot removal procedure, the outer elongate member 106 can be positioned proximal to the clot material C such that the first balloon 2870 is positioned proximal to the clot material C within the vessel V. The innermost elongate member 2807 can be positioned such that the second balloon 2872 is distal to the clot material C within the vessel V. The clot treatment devices 130 can be deployed between the first and second balloons 2870, 2872 within the clot material C. With the first and second balloons 2870, 2872 inflated, the clot treatment device 130 can be translated and/or rotated through the clot material C to treat and remove the clot material C as described in detail above with reference to, for example,
Several aspects of the present technology are set forth in the following examples:
1. A system for removing clot material from an implant positioned within a body vessel, comprising:
2. The system of example 1 wherein the implant is a stent.
3. The system of example 1 or example 2 wherein the first end portion is a proximal end portion of the clot treatment device, and wherein the second end portion is a distal end portion of the clot treatment device.
4. The system of example 3 wherein the second elongate member extends through a lumen of the first elongate member.
5. The system of example 1 or example 2 wherein the first end portion is a distal end portion of the clot treatment device, and wherein the second end portion is a proximal end portion of the clot treatment device.
6. The system of any one of examples 1-5 wherein actuation of the actuator is configured to move both the first elongate member and the second elongate member relative to the handle.
7. The system of any one of examples 1-6 wherein the handle is rotatable to rotate the clot treatment device relative to the implant.
8. The system of any one of examples 1-7 wherein the handle is longitudinally movable to move the clot treatment device longitudinally relative to the implant.
9. The system of any one of examples 1-8 wherein the handle is rotatable and longitudinally movable to rotate and longitudinally move the clot treatment device relative to the implant.
10. The system of any one of examples 1-9, further comprising a guide catheter, wherein the clot treatment device is configured to be (a) covered within the guide catheter in a first state and (b) uncovered from the guide catheter and expanded to a second state.
11. The system of any one of examples 1-10 wherein the struts extend generally axially between the first and second end portions and each have an undulating shape.
12. The system of any one of examples 1-11 wherein the struts each extend axially between the first and second end portions, and wherein the clot treatment device does not include any cross-members interconnecting the struts.
13. The system of any one of examples 1-12 wherein the actuator is a rotatable knob or a slider.
14. The system of any one of examples 1-13 wherein the handle includes an indicator configured to indicate an amount that the struts are radially expanded.
15. A method of removing clot material from an implant positioned within a body vessel, the method comprising:
16. The method of example 15 wherein the first end portion of the clot treatment device is coupled to a first elongate member, wherein the second end portion of the clot treatment device is coupled to a second elongate member, and wherein moving the second elongate relative to the first elongate member comprises actuating an actuator on a handle coupled to the first elongate member and the second elongate member to move the second elongate member relative to the first elongate member.
17. The method of example 15 or example 16 wherein the struts each extend axially between the first and second end portions, and wherein the clot treatment device does not include any cross-members interconnecting the struts.
18. The method of any one of examples 15-17 wherein the implant is a stent.
19. A clot treatment device, compressing:
20. The clot treatment device of example 19 wherein the clot treatment device does not include any cross-members interconnecting the struts.
The above detailed descriptions of embodiments of the technology are not intended to be exhaustive or to limit the technology to the precise form disclosed above. Although specific embodiments of, and examples for, the technology are described above for illustrative purposes, various equivalent modifications are possible within the scope of the technology as those skilled in the relevant art will recognize. For example, although steps are presented in a given order, alternative embodiments may perform steps in a different order. The various embodiments described herein may also be combined to provide further embodiments.
From the foregoing, it will be appreciated that specific embodiments of the technology have been described herein for purposes of illustration, but well-known structures and functions have not been shown or described in detail to avoid unnecessarily obscuring the description of the embodiments of the technology. Where the context permits, singular or plural terms may also include the plural or singular term, respectively.
Moreover, unless the word “or” is expressly limited to mean only a single item exclusive from the other items in reference to a list of two or more items, then the use of “or” in such a list is to be interpreted as including (a) any single item in the list, (b) all of the items in the list, or (c) any combination of the items in the list. Additionally, the term “comprising” is used throughout to mean including at least the recited feature(s) such that any greater number of the same feature and/or additional types of other features are not precluded. It will also be appreciated that specific embodiments have been described herein for purposes of illustration, but that various modifications may be made without deviating from the technology. Further, while advantages associated with some embodiments of the technology have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the technology. Accordingly, the disclosure and associated technology can encompass other embodiments not expressly shown or described herein.
This application claims the benefit of U.S. Provisional Patent Application No. 63/298,399, filed Jan. 11, 2022, and titled “DEVICES FOR REMOVING CLOT MATERIAL FROM INTRAVASCULARLY IMPLANTED STENTS, AND ASSOCIATED SYSTEMS AND METHODS,” which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1101890 | Tunstead | Jun 1914 | A |
2502639 | Blake | Feb 1948 | A |
2707954 | J.L., Sr. | May 1955 | A |
2784717 | Thompson | Mar 1957 | A |
2846179 | Monckton | Aug 1958 | A |
2955592 | Maclean | Oct 1960 | A |
3088363 | Sparks | May 1963 | A |
3197173 | Taubenheim | Jul 1965 | A |
3383131 | Rosfelder | May 1968 | A |
3416531 | Edwards | Dec 1968 | A |
3435826 | Fogarty | Apr 1969 | A |
3438607 | Williams et al. | Apr 1969 | A |
3515137 | Santomieri | Jun 1970 | A |
3661144 | Jensen et al. | May 1972 | A |
3675657 | Gauthier | Jul 1972 | A |
3785380 | Brumfield | Jan 1974 | A |
3860006 | Patel | Jan 1975 | A |
3863624 | Gram | Feb 1975 | A |
3892161 | Sokol | Jul 1975 | A |
3923065 | Nozick et al. | Dec 1975 | A |
4030503 | Clark, III | Jun 1977 | A |
4034642 | Iannucci et al. | Jul 1977 | A |
4036232 | Genese | Jul 1977 | A |
4187849 | Stim | Feb 1980 | A |
4222380 | Terayama | Sep 1980 | A |
4243040 | Beecher | Jan 1981 | A |
4287808 | Leonard et al. | Sep 1981 | A |
4324262 | Hall | Apr 1982 | A |
4393872 | Reznik et al. | Jul 1983 | A |
4401107 | Harber et al. | Aug 1983 | A |
4469100 | Hardwick | Sep 1984 | A |
4523738 | Raftis et al. | Jun 1985 | A |
4551862 | Haber | Nov 1985 | A |
4604094 | Shook | Aug 1986 | A |
4611594 | Grayhack et al. | Sep 1986 | A |
4634421 | Hegemann | Jan 1987 | A |
4643184 | Mobin-Uddin | Feb 1987 | A |
4646736 | Auth et al. | Mar 1987 | A |
4650466 | Luther | Mar 1987 | A |
4693257 | Markham | Sep 1987 | A |
4705518 | Baker et al. | Nov 1987 | A |
4776337 | Palmaz | Oct 1988 | A |
4790812 | Hawkins, Jr. et al. | Dec 1988 | A |
4826483 | Molnar, IV | May 1989 | A |
4863440 | Chin et al. | Sep 1989 | A |
4870953 | DonMichael et al. | Oct 1989 | A |
4872579 | Palmer | Oct 1989 | A |
4880408 | Cumes et al. | Nov 1989 | A |
4883458 | Shiber | Nov 1989 | A |
4886062 | Wiktor | Dec 1989 | A |
4890611 | Monfort et al. | Jan 1990 | A |
4898575 | Fischell et al. | Feb 1990 | A |
4946440 | Hall | Aug 1990 | A |
4960259 | Sunnanvader et al. | Oct 1990 | A |
4978341 | Niederhauser | Dec 1990 | A |
4981478 | Evard et al. | Jan 1991 | A |
5030201 | Palestrant | Jul 1991 | A |
5053008 | Bajaj | Oct 1991 | A |
5059178 | Ya | Oct 1991 | A |
5100423 | Fearnot | Mar 1992 | A |
5127626 | Hilal et al. | Jul 1992 | A |
5129910 | Phan et al. | Jul 1992 | A |
5135484 | Wright | Aug 1992 | A |
5154724 | Andrews | Oct 1992 | A |
5158533 | Strauss et al. | Oct 1992 | A |
5158564 | Schnepp-Pesch et al. | Oct 1992 | A |
5192274 | Bierman | Mar 1993 | A |
5192286 | Phan et al. | Mar 1993 | A |
5192290 | Hilal | Mar 1993 | A |
5197485 | Grooters | Mar 1993 | A |
5234403 | Yoda et al. | Aug 1993 | A |
5242461 | Kortenbach et al. | Sep 1993 | A |
5244619 | Burnham | Sep 1993 | A |
5246011 | Caillouette | Sep 1993 | A |
5323514 | Masuda et al. | Jun 1994 | A |
5329923 | Lundquist | Jul 1994 | A |
5337780 | Kee | Aug 1994 | A |
5360417 | Gravener et al. | Nov 1994 | A |
5364345 | Lowery et al. | Nov 1994 | A |
5370653 | Cragg | Dec 1994 | A |
5376071 | Henderson | Dec 1994 | A |
5376101 | Green et al. | Dec 1994 | A |
5378230 | Mahurkar | Jan 1995 | A |
5383887 | Nadal | Jan 1995 | A |
5389100 | Bacich et al. | Feb 1995 | A |
5391152 | Patterson et al. | Feb 1995 | A |
5419774 | Willard et al. | May 1995 | A |
5421824 | Clement et al. | Jun 1995 | A |
5429610 | Vaillancourt | Jul 1995 | A |
5443443 | Shiber | Aug 1995 | A |
5456667 | Ham et al. | Oct 1995 | A |
5476450 | Ruggio | Dec 1995 | A |
5484418 | Quiachon et al. | Jan 1996 | A |
5490859 | Mische et al. | Feb 1996 | A |
5496365 | Sgro | Mar 1996 | A |
5527326 | Hermann et al. | Jun 1996 | A |
5549626 | Miller et al. | Aug 1996 | A |
5591137 | Stevens | Jan 1997 | A |
5639276 | Weinstock et al. | Jun 1997 | A |
5653684 | Laptewicz et al. | Aug 1997 | A |
5662703 | Yurek et al. | Sep 1997 | A |
5746758 | Nordgren et al. | May 1998 | A |
5749858 | Cramer | May 1998 | A |
5769816 | Barbut et al. | Jun 1998 | A |
5782817 | Franzel et al. | Jul 1998 | A |
5800457 | Gelbfish | Sep 1998 | A |
5827229 | Auth et al. | Oct 1998 | A |
5846251 | Hart | Dec 1998 | A |
5860938 | Lafontaine et al. | Jan 1999 | A |
5873866 | Kondo et al. | Feb 1999 | A |
5873882 | Straub et al. | Feb 1999 | A |
5867385 | Ikari et al. | Mar 1999 | A |
5876414 | Straub | Mar 1999 | A |
5882329 | Patterson | Mar 1999 | A |
5895406 | Gray et al. | Apr 1999 | A |
5908435 | Samuels | Jun 1999 | A |
5911710 | Barry et al. | Jun 1999 | A |
5911728 | Sepetka et al. | Jun 1999 | A |
5911733 | Parodi | Jun 1999 | A |
5911754 | Kanesaka et al. | Jun 1999 | A |
5941869 | Patterson et al. | Aug 1999 | A |
5947985 | Imram | Sep 1999 | A |
5951539 | Nita et al. | Sep 1999 | A |
5954737 | Lee | Sep 1999 | A |
5971938 | Hart et al. | Oct 1999 | A |
5971958 | Zhang | Oct 1999 | A |
5972019 | Engelson et al. | Oct 1999 | A |
5974938 | Lloyd | Nov 1999 | A |
5989233 | Yoon | Nov 1999 | A |
5993483 | Gianotti | Nov 1999 | A |
6017335 | Burnham | Jan 2000 | A |
6030397 | Moneti et al. | Feb 2000 | A |
6059745 | Gelbfish | May 2000 | A |
6059814 | Ladd | May 2000 | A |
6066158 | Engelson et al. | May 2000 | A |
6068645 | Tu | May 2000 | A |
6126635 | Simpson et al. | Oct 2000 | A |
6142987 | Tsugita | Nov 2000 | A |
6146396 | Konya et al. | Nov 2000 | A |
6146403 | St. Germain | Nov 2000 | A |
6152144 | Lesh et al. | Nov 2000 | A |
6152909 | Bagaoisan et al. | Nov 2000 | A |
6152946 | Broome et al. | Nov 2000 | A |
6156055 | Ravenscroft | Dec 2000 | A |
6159230 | Samuels | Dec 2000 | A |
6165196 | Stack et al. | Dec 2000 | A |
6168579 | Tsugita | Jan 2001 | B1 |
6179859 | Bates et al. | Jan 2001 | B1 |
6221006 | Dubrul et al. | Apr 2001 | B1 |
6228060 | Howell | May 2001 | B1 |
6238412 | Dubrul et al. | May 2001 | B1 |
6245078 | Ouchi | Jun 2001 | B1 |
6245089 | Daniel et al. | Jun 2001 | B1 |
6254571 | Hart | Jul 2001 | B1 |
6258115 | Dubrul | Jul 2001 | B1 |
6264663 | Cano | Jul 2001 | B1 |
6306163 | Fitz | Oct 2001 | B1 |
6322572 | Lee | Nov 2001 | B1 |
6350271 | Kurz et al. | Feb 2002 | B1 |
6361545 | Macoviak et al. | Mar 2002 | B1 |
6364895 | Greenhalgh | Apr 2002 | B1 |
6368339 | Amplatz | Apr 2002 | B1 |
6383205 | Samson et al. | May 2002 | B1 |
6402771 | Palmer et al. | Jun 2002 | B1 |
6413235 | Parodi | Jul 2002 | B1 |
6423032 | Parodi | Jul 2002 | B2 |
6432122 | Gilson et al. | Aug 2002 | B1 |
6436085 | Lauer | Aug 2002 | B1 |
6451036 | Heitzmann et al. | Sep 2002 | B1 |
6458103 | Albert et al. | Oct 2002 | B1 |
6475236 | Roubin et al. | Nov 2002 | B1 |
6485502 | Don Michael et al. | Nov 2002 | B2 |
6508782 | Evans et al. | Jan 2003 | B1 |
6511492 | Rosenbluth et al. | Jan 2003 | B1 |
6514273 | Voss et al. | Feb 2003 | B1 |
6530923 | Dubrul et al. | Mar 2003 | B1 |
6530935 | Wensel et al. | Mar 2003 | B2 |
6540722 | Boyle et al. | Apr 2003 | B1 |
6544276 | Azizi | Apr 2003 | B1 |
6544278 | Vrba et al. | Apr 2003 | B1 |
6544279 | Hopkins et al. | Apr 2003 | B1 |
6551342 | Shen et al. | Apr 2003 | B1 |
6564828 | Ishida | May 2003 | B1 |
6569181 | Burns | May 2003 | B1 |
6575995 | Huter et al. | Jun 2003 | B1 |
6589263 | Hopkins et al. | Jul 2003 | B1 |
6589264 | Barbut et al. | Jul 2003 | B1 |
6596011 | Johnson et al. | Jul 2003 | B2 |
6602271 | Adams et al. | Aug 2003 | B2 |
6605074 | Zadno-azizi et al. | Aug 2003 | B2 |
6605102 | Mazzocchi et al. | Aug 2003 | B1 |
6610077 | Hancock et al. | Aug 2003 | B1 |
6620148 | Tsugita | Sep 2003 | B1 |
6620179 | Brook et al. | Sep 2003 | B2 |
6620182 | Khosravi et al. | Sep 2003 | B1 |
6623460 | Heck | Sep 2003 | B1 |
6635068 | Dubrul et al. | Oct 2003 | B1 |
6645222 | Parodi et al. | Nov 2003 | B1 |
6660013 | Rabiner et al. | Dec 2003 | B2 |
6660014 | Demarais et al. | Dec 2003 | B2 |
6663650 | Sepetka et al. | Dec 2003 | B2 |
6679893 | Tran | Jan 2004 | B1 |
6692504 | Kurz et al. | Feb 2004 | B2 |
6699260 | Dubrul et al. | Mar 2004 | B2 |
6702830 | Demarais et al. | Mar 2004 | B1 |
6719717 | Johnson et al. | Apr 2004 | B1 |
6755847 | Eskuri | Jun 2004 | B2 |
6767353 | Shiber | Jul 2004 | B1 |
6790204 | Zadno-azizi et al. | Sep 2004 | B2 |
6800080 | Bates | Oct 2004 | B1 |
6818006 | Douk et al. | Nov 2004 | B2 |
6824545 | Sepetka et al. | Nov 2004 | B2 |
6824550 | Noriega et al. | Nov 2004 | B1 |
6824553 | Gene et al. | Nov 2004 | B1 |
6830561 | Jansen et al. | Dec 2004 | B2 |
6846029 | Ragner et al. | Jan 2005 | B1 |
6902540 | Dorros et al. | Jun 2005 | B2 |
6908455 | Hajianpour | Jun 2005 | B2 |
6939361 | Kleshinski | Sep 2005 | B1 |
6942682 | Vrba et al. | Sep 2005 | B2 |
6945977 | Demarais et al. | Sep 2005 | B2 |
6960189 | Bates et al. | Nov 2005 | B2 |
6960222 | Vo et al. | Nov 2005 | B2 |
7004931 | Hogendijk | Feb 2006 | B2 |
7004954 | Voss et al. | Feb 2006 | B1 |
7036707 | Aota et al. | May 2006 | B2 |
7041084 | Fotjik | May 2006 | B2 |
7052500 | Bashiri et al. | May 2006 | B2 |
7056328 | Arnott | Jun 2006 | B2 |
7063707 | Bose et al. | Jun 2006 | B2 |
7069835 | Nishri et al. | Jul 2006 | B2 |
7094249 | Thomas et al. | Aug 2006 | B1 |
7122034 | Belhe et al. | Oct 2006 | B2 |
7128073 | van der Burg et al. | Oct 2006 | B1 |
7152605 | Khairkhahan et al. | Dec 2006 | B2 |
7179273 | Palmer et al. | Feb 2007 | B1 |
7223253 | Hogendijk | May 2007 | B2 |
7232432 | Fulton, III et al. | Jun 2007 | B2 |
7244243 | Lary | Jul 2007 | B2 |
7285126 | Sepetka et al. | Oct 2007 | B2 |
7300458 | Henkes et al. | Nov 2007 | B2 |
7306618 | Demond et al. | Dec 2007 | B2 |
7320698 | Eskuri | Jan 2008 | B2 |
7323002 | Johnson et al. | Jan 2008 | B2 |
7331980 | Dubrul et al. | Feb 2008 | B2 |
7481805 | Magnusson | Jan 2009 | B2 |
7534234 | Fotjik | May 2009 | B2 |
7578830 | Kusleika et al. | Aug 2009 | B2 |
7621870 | Berrada et al. | Nov 2009 | B2 |
7674247 | Fotjik | Mar 2010 | B2 |
7678131 | Muller | Mar 2010 | B2 |
7691121 | Rosenbluth et al. | Apr 2010 | B2 |
7695458 | Belley et al. | Apr 2010 | B2 |
7713282 | Frazier et al. | May 2010 | B2 |
7722641 | van der Burg et al. | May 2010 | B2 |
7763010 | Evans et al. | Jul 2010 | B2 |
7766934 | Pal et al. | Aug 2010 | B2 |
7775501 | Kees | Aug 2010 | B2 |
7780696 | Daniel et al. | Aug 2010 | B2 |
7815608 | Schafersman et al. | Oct 2010 | B2 |
7837630 | Nieoson et al. | Nov 2010 | B2 |
7905877 | Oscar et al. | Mar 2011 | B1 |
7905896 | Straub | Mar 2011 | B2 |
7938809 | Lampropoulos et al. | May 2011 | B2 |
7938820 | Webster et al. | May 2011 | B2 |
7967790 | Whiting et al. | Jun 2011 | B2 |
7976511 | Fotjik | Jul 2011 | B2 |
7993302 | Hebert et al. | Aug 2011 | B2 |
7993363 | Demond et al. | Aug 2011 | B2 |
8021351 | Boldenow et al. | Sep 2011 | B2 |
8043313 | Krollk et al. | Oct 2011 | B2 |
8052640 | Fiorella et al. | Nov 2011 | B2 |
8057496 | Fischer, Jr. | Nov 2011 | B2 |
8057497 | Raju et al. | Nov 2011 | B1 |
8066757 | Ferrera et al. | Nov 2011 | B2 |
8070694 | Galdonik et al. | Dec 2011 | B2 |
8070769 | Broome | Dec 2011 | B2 |
8070791 | Ferrera et al. | Dec 2011 | B2 |
8075510 | Aklog et al. | Dec 2011 | B2 |
8080032 | van der Burg et al. | Dec 2011 | B2 |
8088140 | Ferrera et al. | Jan 2012 | B2 |
8092486 | Berrada et al. | Jan 2012 | B2 |
8100935 | Rosenbluth et al. | Jan 2012 | B2 |
8109962 | Pal | Feb 2012 | B2 |
8118275 | Mialhe | Feb 2012 | B2 |
8118829 | Carrison et al. | Feb 2012 | B2 |
8187465 | Nierich | May 2012 | B2 |
8197493 | Ferrera et al. | Jun 2012 | B2 |
8246641 | Osborne et al. | Aug 2012 | B2 |
8261648 | Marchand et al. | Sep 2012 | B1 |
8267897 | Wells | Sep 2012 | B2 |
8298257 | Sepetka et al. | Oct 2012 | B2 |
8317748 | Fiorella et al. | Nov 2012 | B2 |
8337450 | Fotjik | Dec 2012 | B2 |
RE43902 | Hopkins et al. | Jan 2013 | E |
8343167 | Henson | Jan 2013 | B2 |
8357178 | Grandfield et al. | Jan 2013 | B2 |
8361104 | Jones et al. | Jan 2013 | B2 |
8409215 | Sepetka et al. | Apr 2013 | B2 |
8439858 | Huang et al. | May 2013 | B2 |
8480708 | Kassab et al. | Jul 2013 | B2 |
8486105 | Demond et al. | Jul 2013 | B2 |
8491539 | Fotjik | Jul 2013 | B2 |
8512352 | Martin | Aug 2013 | B2 |
8523897 | van der Burg et al. | Sep 2013 | B2 |
8529596 | Grandfield et al. | Sep 2013 | B2 |
8535283 | Heaton et al. | Sep 2013 | B2 |
8535334 | Martin | Sep 2013 | B2 |
8535343 | van der Burg et al. | Sep 2013 | B2 |
8545526 | Martin et al. | Oct 2013 | B2 |
8568432 | Straub | Oct 2013 | B2 |
8568465 | Freudenthal et al. | Oct 2013 | B2 |
8574262 | Ferrera et al. | Nov 2013 | B2 |
8579915 | French et al. | Nov 2013 | B2 |
8585713 | Ferrera et al. | Nov 2013 | B2 |
8608754 | Wensel et al. | Dec 2013 | B2 |
8613717 | Aklog et al. | Dec 2013 | B2 |
8632584 | Henkes et al. | Jan 2014 | B2 |
8647367 | Kassab et al. | Feb 2014 | B2 |
8657867 | Dorn et al. | Feb 2014 | B2 |
8696622 | Fiorella et al. | Apr 2014 | B2 |
8715314 | Janardhan et al. | May 2014 | B1 |
8721714 | Kelley | May 2014 | B2 |
8753322 | Hu et al. | Jun 2014 | B2 |
8764730 | Taber | Jul 2014 | B2 |
8771289 | Mohluddin et al. | Jul 2014 | B2 |
8777893 | Malewicz | Jul 2014 | B2 |
8784441 | Rosenbluth et al. | Jul 2014 | B2 |
8784442 | Jones et al. | Jul 2014 | B2 |
8784469 | Kassab | Jul 2014 | B2 |
8795305 | Martin et al. | Aug 2014 | B2 |
8795317 | Grandfield et al. | Aug 2014 | B2 |
8795345 | Grandfield et al. | Aug 2014 | B2 |
8801748 | Martin | Aug 2014 | B2 |
8808259 | Walton et al. | Aug 2014 | B2 |
8814927 | Shin et al. | Aug 2014 | B2 |
8820207 | Marchand et al. | Sep 2014 | B2 |
8826791 | Thompson et al. | Sep 2014 | B2 |
8828044 | Aggerholm et al. | Sep 2014 | B2 |
8833224 | Thompson et al. | Sep 2014 | B2 |
8834519 | van der Burg et al. | Sep 2014 | B2 |
8845621 | Fotjik | Sep 2014 | B2 |
8852226 | Gilson et al. | Oct 2014 | B2 |
8939991 | Krolik et al. | Jan 2015 | B2 |
8945143 | Ferrera et al. | Feb 2015 | B2 |
8945172 | Ferrera et al. | Feb 2015 | B2 |
8956384 | Berrada et al. | Feb 2015 | B2 |
8992504 | Castella et al. | Mar 2015 | B2 |
9005172 | Chung | Apr 2015 | B2 |
9011551 | Oral et al. | Apr 2015 | B2 |
9028401 | Bacich et al. | May 2015 | B1 |
9044575 | Beasley et al. | Jun 2015 | B2 |
9072537 | Grandfield et al. | Jul 2015 | B2 |
9078682 | Lenker et al. | Jul 2015 | B2 |
9101382 | Krolik et al. | Aug 2015 | B2 |
9125683 | Farhangnia et al. | Sep 2015 | B2 |
9126016 | Fulton | Sep 2015 | B2 |
9126020 | Farhangnia et al. | Sep 2015 | B2 |
9149609 | Ansel et al. | Oct 2015 | B2 |
9155552 | Ulm, III | Oct 2015 | B2 |
9161766 | Slee et al. | Oct 2015 | B2 |
9168043 | van der Burg et al. | Oct 2015 | B2 |
9173668 | Ulm, III | Nov 2015 | B2 |
9186487 | Dubrul et al. | Nov 2015 | B2 |
D744639 | Aklog et al. | Dec 2015 | S |
9204887 | Cully et al. | Dec 2015 | B2 |
9216277 | Myers | Dec 2015 | B2 |
9241669 | Pugh et al. | Jan 2016 | B2 |
9358037 | Farhangnia et al. | Jan 2016 | B2 |
9254352 | Kumar et al. | Feb 2016 | B2 |
9259237 | Quick et al. | Feb 2016 | B2 |
9265512 | Carrison et al. | Feb 2016 | B2 |
9283066 | Hopkins et al. | Mar 2016 | B2 |
9301769 | Brady et al. | Apr 2016 | B2 |
9351747 | Kugler et al. | May 2016 | B2 |
9402938 | Aklog et al. | Aug 2016 | B2 |
9439664 | Sos | Sep 2016 | B2 |
9439751 | White et al. | Sep 2016 | B2 |
9456834 | Folk | Oct 2016 | B2 |
9463035 | Greenhalgh et al. | Oct 2016 | B1 |
9463036 | Brady et al. | Oct 2016 | B2 |
9492635 | Beasley et al. | Nov 2016 | B2 |
9526864 | Quick | Dec 2016 | B2 |
9526865 | Quick | Dec 2016 | B2 |
9532792 | Galdonik et al. | Jan 2017 | B2 |
9545464 | Roche et al. | Jan 2017 | B2 |
9566073 | Kassab et al. | Feb 2017 | B2 |
9566179 | Andreas et al. | Feb 2017 | B2 |
9566424 | Pessin | Feb 2017 | B2 |
9579116 | Nguyen et al. | Feb 2017 | B1 |
9581942 | Shippert | Feb 2017 | B1 |
9616213 | Furnish et al. | Apr 2017 | B2 |
9636206 | Nguyen et al. | May 2017 | B2 |
9643035 | Mastenbroek | May 2017 | B2 |
9662129 | Galdonik et al. | May 2017 | B2 |
9700332 | Marchand et al. | Jul 2017 | B2 |
9717488 | Kassab et al. | Aug 2017 | B2 |
9717514 | Martin et al. | Aug 2017 | B2 |
9717519 | Rosenbluth et al. | Aug 2017 | B2 |
9744024 | Nguyen et al. | Aug 2017 | B2 |
9757137 | Krolik et al. | Sep 2017 | B2 |
9827084 | Bonnette et al. | Nov 2017 | B2 |
9827364 | Peticca et al. | Nov 2017 | B2 |
9844386 | Nguyen et al. | Dec 2017 | B2 |
9844387 | Marchand et al. | Dec 2017 | B2 |
9844643 | Beasley et al. | Dec 2017 | B2 |
9848975 | Hauser | Dec 2017 | B2 |
9849014 | Kusleika | Dec 2017 | B2 |
9884387 | Plha | Feb 2018 | B2 |
9937321 | Welch et al. | Apr 2018 | B2 |
9962178 | Greenhalgh et al. | May 2018 | B2 |
9980813 | Eller | May 2018 | B2 |
9999493 | Nguyen et al. | Jun 2018 | B2 |
10004531 | Rosenbluth et al. | Jun 2018 | B2 |
10010335 | Greenhalgh et al. | Jul 2018 | B2 |
10016206 | Yang | Jul 2018 | B1 |
10016266 | Hauser | Jul 2018 | B2 |
10028759 | Wallace et al. | Jul 2018 | B2 |
10045790 | Cox et al. | Aug 2018 | B2 |
10058339 | Galdonik et al. | Aug 2018 | B2 |
10098651 | Marchand et al. | Oct 2018 | B2 |
10130385 | Farhangnia et al. | Nov 2018 | B2 |
10130795 | Parhangnia et al. | Nov 2018 | B2 |
10179224 | Yang et al. | Jan 2019 | B2 |
10183147 | Yang et al. | Jan 2019 | B2 |
10183159 | Nobles et al. | Jan 2019 | B2 |
10188829 | Beasley et al. | Jan 2019 | B2 |
10195320 | Fisher et al. | Feb 2019 | B2 |
10226263 | Look et al. | Mar 2019 | B2 |
10238406 | Cox et al. | Mar 2019 | B2 |
10271864 | Greenhalgh et al. | Apr 2019 | B2 |
10327883 | Yachia | Jun 2019 | B2 |
10335186 | Rosenbluth et al. | Jul 2019 | B2 |
10342571 | Marchand et al. | Jul 2019 | B2 |
10349960 | Quick | Jul 2019 | B2 |
10383644 | Molael et al. | Aug 2019 | B2 |
10383983 | Aklog et al. | Aug 2019 | B2 |
10384034 | Carrison et al. | Aug 2019 | B2 |
10426510 | Farhangnia et al. | Oct 2019 | B2 |
10426644 | Shrivastava et al. | Oct 2019 | B2 |
10441745 | Yang et al. | Oct 2019 | B2 |
10456151 | Slee et al. | Oct 2019 | B2 |
10456555 | Carrison et al. | Oct 2019 | B2 |
10471234 | Taber | Nov 2019 | B2 |
10478535 | Ogle | Nov 2019 | B2 |
10485952 | Carrison et al. | Nov 2019 | B2 |
10492805 | Culbert et al. | Dec 2019 | B2 |
10524811 | Marchand et al. | Jan 2020 | B2 |
10531883 | Deville et al. | Jan 2020 | B1 |
10537710 | Jalgaonkar et al. | Jan 2020 | B2 |
10561440 | Look et al. | Feb 2020 | B2 |
10588655 | Rosenbluth et al. | Mar 2020 | B2 |
10648268 | Jaffrey et al. | May 2020 | B2 |
10661053 | Yang et al. | May 2020 | B2 |
10695159 | Hauser | Jun 2020 | B2 |
10709471 | Rosenbluth et al. | Jul 2020 | B2 |
10716880 | Culbert et al. | Jul 2020 | B2 |
10729455 | Goyal et al. | Aug 2020 | B2 |
10743907 | Bruzzi et al. | Aug 2020 | B2 |
10772636 | Kassab et al. | Sep 2020 | B2 |
10779852 | Bruzzi et al. | Sep 2020 | B2 |
10779855 | Garrison | Sep 2020 | B2 |
10792056 | Vale et al. | Oct 2020 | B2 |
10799331 | Hauser | Oct 2020 | B2 |
10799671 | Shimada et al. | Oct 2020 | B2 |
10813663 | Bruzzi et al. | Oct 2020 | B2 |
10828061 | Bonnette et al. | Nov 2020 | B2 |
10835711 | Yang et al. | Nov 2020 | B2 |
10874421 | Bruzzi et al. | Dec 2020 | B2 |
10912577 | Marchand et al. | Feb 2021 | B2 |
10926060 | Stern et al. | Feb 2021 | B2 |
10939932 | Yang | Mar 2021 | B1 |
10953195 | Jalgaonkar et al. | Mar 2021 | B2 |
10960114 | Goisis | Mar 2021 | B2 |
10967111 | Iida | Apr 2021 | B2 |
10994063 | Fisher et al. | May 2021 | B2 |
11000682 | Merritt et al. | May 2021 | B2 |
11013523 | Arad Hadar | May 2021 | B2 |
11058445 | Cox et al. | Jul 2021 | B2 |
11058451 | Marchand et al. | Jul 2021 | B2 |
11065019 | Chou et al. | Jul 2021 | B1 |
11065028 | Parhangnia et al. | Jul 2021 | B2 |
11147571 | Cox et al. | Oct 2021 | B2 |
11147948 | Beasley et al. | Oct 2021 | B2 |
11147949 | Yang et al. | Oct 2021 | B2 |
11154314 | Quick | Oct 2021 | B2 |
11166703 | Kassab et al. | Nov 2021 | B2 |
11185664 | Carrison et al. | Nov 2021 | B2 |
11197684 | Ngo et al. | Dec 2021 | B1 |
11213356 | Tanner et al. | Jan 2022 | B2 |
11224450 | Chou et al. | Jan 2022 | B2 |
11224721 | Carrison et al. | Jan 2022 | B2 |
11253277 | Buck et al. | Feb 2022 | B2 |
11259821 | Buck et al. | Mar 2022 | B2 |
11266825 | Peter et al. | Mar 2022 | B2 |
11278307 | Bruzzi et al. | Mar 2022 | B2 |
11305094 | Carrison et al. | Apr 2022 | B2 |
11317939 | Bruzzi et al. | May 2022 | B2 |
11337714 | Ferrera et al. | May 2022 | B2 |
11383064 | Carrison et al. | Jul 2022 | B2 |
11395903 | Carrison et al. | Jul 2022 | B2 |
11406418 | Bruzzi et al. | Aug 2022 | B2 |
11419621 | Goyal et al. | Aug 2022 | B2 |
11433218 | Quick et al. | Sep 2022 | B2 |
11439799 | Buck et al. | Sep 2022 | B2 |
11457936 | Buck et al. | Oct 2022 | B2 |
11478262 | Ngo et al. | Oct 2022 | B2 |
11529158 | Hauser | Dec 2022 | B2 |
11553935 | Buck et al. | Jan 2023 | B2 |
11553942 | Bonnette et al. | Jan 2023 | B2 |
11554005 | Merritt et al. | Jan 2023 | B2 |
11559382 | Merritt et al. | Jan 2023 | B2 |
11576691 | Chou et al. | Feb 2023 | B2 |
11589880 | Aklog et al. | Feb 2023 | B2 |
11596768 | Stern et al. | Mar 2023 | B2 |
11607483 | Iida | Mar 2023 | B2 |
11633272 | Buck et al. | Apr 2023 | B2 |
11638637 | Buck et al. | May 2023 | B2 |
11642209 | Merritt et al. | May 2023 | B2 |
11648028 | Rosenbluth et al. | May 2023 | B2 |
11672561 | Look et al. | Jun 2023 | B2 |
11678905 | Look et al. | Jun 2023 | B2 |
11697011 | Merritt et al. | Jul 2023 | B2 |
11697012 | Merritt et al. | Jul 2023 | B2 |
11724052 | White et al. | Aug 2023 | B2 |
11730925 | Saadat et al. | Aug 2023 | B2 |
11744691 | Merritt et al. | Sep 2023 | B2 |
11806033 | Marchand et al. | Nov 2023 | B2 |
11819228 | Buck et al. | Nov 2023 | B2 |
11832837 | Hauser | Dec 2023 | B2 |
11832838 | Hauser | Dec 2023 | B2 |
11833023 | Hauser | Dec 2023 | B2 |
11839393 | Hauser | Dec 2023 | B2 |
11844921 | Merritt et al. | Dec 2023 | B2 |
11849963 | Quick | Dec 2023 | B2 |
11865291 | Merritt et al. | Jan 2024 | B2 |
11890180 | Merritt et al. | Feb 2024 | B2 |
11918243 | Marchand et al. | Mar 2024 | B2 |
11918244 | Marchand et al. | Mar 2024 | B2 |
11925369 | Hauser | Mar 2024 | B2 |
11937834 | Dinh | Mar 2024 | B2 |
11937838 | Cox et al. | Mar 2024 | B2 |
11963861 | Strauss et al. | Apr 2024 | B2 |
11969178 | Hauser | Apr 2024 | B2 |
11969331 | Merritt et al. | Apr 2024 | B2 |
11969332 | Merritt et al. | Apr 2024 | B2 |
11969333 | Merritt et al. | Apr 2024 | B2 |
11974909 | Merritt et al. | May 2024 | B2 |
11974910 | Merritt et al. | May 2024 | B2 |
11980537 | Merritt et al. | May 2024 | B2 |
11986382 | Merritt et al. | May 2024 | B2 |
11998436 | Merritt et al. | Jun 2024 | B2 |
12016580 | Quick et al. | Jun 2024 | B2 |
12023057 | Hauser | Jul 2024 | B2 |
12102343 | Quick | Oct 2024 | B2 |
12109384 | Merritt et al. | Oct 2024 | B2 |
12156669 | Quick et al. | Dec 2024 | B2 |
12239333 | Quick et al. | Mar 2025 | B2 |
20010004699 | Gittings et al. | Jun 2001 | A1 |
20010031981 | Evans et al. | Oct 2001 | A1 |
20010041881 | Sarge et al. | Nov 2001 | A1 |
20010041909 | Tsugita et al. | Nov 2001 | A1 |
20010049486 | Evans et al. | Dec 2001 | A1 |
20010051810 | Dubrul et al. | Dec 2001 | A1 |
20020022858 | Demond et al. | Feb 2002 | A1 |
20020022859 | Hogendijk | Feb 2002 | A1 |
20020026211 | Khosravi et al. | Feb 2002 | A1 |
20020032455 | Boock et al. | Mar 2002 | A1 |
20020049452 | Kurz et al. | Apr 2002 | A1 |
20020095161 | Dhindsa | Jul 2002 | A1 |
20020095171 | Belef | Jul 2002 | A1 |
20020111648 | Kusleika et al. | Aug 2002 | A1 |
20020120277 | Hauschild et al. | Aug 2002 | A1 |
20020147458 | Hiblar et al. | Oct 2002 | A1 |
20020151918 | Lafontaine et al. | Oct 2002 | A1 |
20020156457 | Fisher | Oct 2002 | A1 |
20020161392 | Dubrul | Oct 2002 | A1 |
20020169474 | Kusleika | Nov 2002 | A1 |
20020173819 | Leeflang et al. | Nov 2002 | A1 |
20020188276 | Evans et al. | Dec 2002 | A1 |
20030004536 | Boylan et al. | Jan 2003 | A1 |
20030023263 | Krolik et al. | Jan 2003 | A1 |
20030069601 | Nowakowski et al. | Apr 2003 | A1 |
20030083693 | Daniel et al. | May 2003 | A1 |
20030100919 | Hopkins et al. | May 2003 | A1 |
20030114875 | Sjostrom | Jun 2003 | A1 |
20030116731 | Hartley | Jun 2003 | A1 |
20030125663 | Coleman et al. | Jul 2003 | A1 |
20030135151 | Deng | Jul 2003 | A1 |
20030135230 | Massey et al. | Jul 2003 | A1 |
20030135258 | Andreas et al. | Jul 2003 | A1 |
20030153873 | Luther et al. | Aug 2003 | A1 |
20030153973 | Soun et al. | Aug 2003 | A1 |
20030168068 | Poole et al. | Sep 2003 | A1 |
20030176884 | Berrada et al. | Sep 2003 | A1 |
20030191425 | Rosenblatt et al. | Oct 2003 | A1 |
20030191516 | Weldon et al. | Oct 2003 | A1 |
20030208224 | Broome | Nov 2003 | A1 |
20030216774 | Larson | Nov 2003 | A1 |
20030225379 | Schaffer et al. | Dec 2003 | A1 |
20040019310 | Hogendijk | Jan 2004 | A1 |
20040039351 | Barrett | Feb 2004 | A1 |
20040039412 | Isshiki et al. | Feb 2004 | A1 |
20040068288 | Palmer et al. | Apr 2004 | A1 |
20040073243 | Sepetka et al. | Apr 2004 | A1 |
20040098033 | Leeflang et al. | May 2004 | A1 |
20040102807 | Kusleika et al. | May 2004 | A1 |
20040122359 | Wenz et al. | Jun 2004 | A1 |
20040127936 | Salahieh et al. | Jul 2004 | A1 |
20040133232 | Rosenbluth et al. | Jul 2004 | A1 |
20040138525 | Saadat et al. | Jul 2004 | A1 |
20040138692 | Phung et al. | Jul 2004 | A1 |
20040167567 | Cano et al. | Aug 2004 | A1 |
20040199201 | Kellett et al. | Oct 2004 | A1 |
20040199202 | Dubrul et al. | Oct 2004 | A1 |
20040260344 | Lyons et al. | Dec 2004 | A1 |
20040267272 | Henniges et al. | Dec 2004 | A1 |
20050004534 | Lockwood et al. | Jan 2005 | A1 |
20050033172 | Dubrul et al. | Feb 2005 | A1 |
20050038468 | Panetta et al. | Feb 2005 | A1 |
20050054995 | Barzell et al. | Mar 2005 | A1 |
20050055047 | Greenhalgh | Mar 2005 | A1 |
20050080398 | Markel et al. | Apr 2005 | A1 |
20050085769 | MacMahon et al. | Apr 2005 | A1 |
20050085826 | Nair et al. | Apr 2005 | A1 |
20050085846 | Carrison et al. | Apr 2005 | A1 |
20050085849 | Sepetka et al. | Apr 2005 | A1 |
20050119668 | Teague et al. | Jun 2005 | A1 |
20050131387 | Pursley | Jun 2005 | A1 |
20050177132 | Lentz et al. | Aug 2005 | A1 |
20050187570 | Nguyen et al. | Aug 2005 | A1 |
20050203605 | Dolan | Sep 2005 | A1 |
20050283165 | Gadberry | Dec 2005 | A1 |
20050283166 | Greenhalgh et al. | Dec 2005 | A1 |
20050283186 | Berrada et al. | Dec 2005 | A1 |
20060020286 | Niermann | Jan 2006 | A1 |
20060042786 | West | Mar 2006 | A1 |
20060047286 | West | Mar 2006 | A1 |
20060074401 | Ross | Apr 2006 | A1 |
20060079787 | Whiting et al. | Apr 2006 | A1 |
20060085952 | Kaneko et al. | Apr 2006 | A1 |
20060089533 | Ziegler et al. | Apr 2006 | A1 |
20060100662 | Daniel et al. | May 2006 | A1 |
20060149219 | Calderon | Jul 2006 | A1 |
20060155305 | Freudenthal et al. | Jul 2006 | A1 |
20060173525 | Behl et al. | Aug 2006 | A1 |
20060195137 | Sepetka et al. | Aug 2006 | A1 |
20060200221 | Malewicz | Sep 2006 | A1 |
20060217664 | Hattler et al. | Sep 2006 | A1 |
20060224177 | Finitsis | Oct 2006 | A1 |
20060229645 | Bonnette et al. | Oct 2006 | A1 |
20060247500 | Voegele et al. | Nov 2006 | A1 |
20060253145 | Lucas | Nov 2006 | A1 |
20060264905 | Eskridge et al. | Nov 2006 | A1 |
20060276874 | Wilson et al. | Dec 2006 | A1 |
20060282111 | Morsi | Dec 2006 | A1 |
20060293696 | Fahey et al. | Dec 2006 | A1 |
20070010787 | Hackett et al. | Jan 2007 | A1 |
20070038225 | Osborne | Feb 2007 | A1 |
20070060911 | Webster et al. | Mar 2007 | A1 |
20070093744 | Elmaleh | Apr 2007 | A1 |
20070112374 | Paul, Jr. et al. | May 2007 | A1 |
20070118165 | DeMello et al. | May 2007 | A1 |
20070149996 | Coughlin | Jun 2007 | A1 |
20070161963 | Smalling | Jul 2007 | A1 |
20070179513 | Deutsch | Aug 2007 | A1 |
20070191866 | Palmer et al. | Aug 2007 | A1 |
20070198028 | Miloslavski et al. | Aug 2007 | A1 |
20070208361 | Okushi et al. | Sep 2007 | A1 |
20070208367 | Fiorella et al. | Sep 2007 | A1 |
20070213753 | Waller | Sep 2007 | A1 |
20070213765 | Adams et al. | Sep 2007 | A1 |
20070233043 | Dayton et al. | Oct 2007 | A1 |
20070255252 | Mehta | Nov 2007 | A1 |
20070288054 | Tanaka et al. | Dec 2007 | A1 |
20080015541 | Rosenbluth et al. | Jan 2008 | A1 |
20080087853 | Kees | Apr 2008 | A1 |
20080088055 | Ross | Apr 2008 | A1 |
20080157017 | Macatangay et al. | Jul 2008 | A1 |
20080167678 | Morsi | Jul 2008 | A1 |
20080183136 | Lenker et al. | Jul 2008 | A1 |
20080228209 | DeMello et al. | Sep 2008 | A1 |
20080234715 | Pesce et al. | Sep 2008 | A1 |
20080234722 | Bonnette et al. | Sep 2008 | A1 |
20080262528 | Martin | Oct 2008 | A1 |
20080269798 | Ramzipoor et al. | Oct 2008 | A1 |
20080294096 | Uber et al. | Nov 2008 | A1 |
20080300466 | Gresham | Dec 2008 | A1 |
20080312681 | Ansel et al. | Dec 2008 | A1 |
20090018566 | Escudero et al. | Jan 2009 | A1 |
20090054918 | Henson | Feb 2009 | A1 |
20090062841 | Amplatz et al. | Mar 2009 | A1 |
20090069828 | Martin et al. | Mar 2009 | A1 |
20090076417 | Jones | Mar 2009 | A1 |
20090082857 | Lashinski et al. | Mar 2009 | A1 |
20090160112 | Ostrovsky | Jun 2009 | A1 |
20090163846 | Aklog et al. | Jun 2009 | A1 |
20090182362 | Thompson et al. | Jul 2009 | A1 |
20090192495 | Ostrovsky et al. | Jul 2009 | A1 |
20090281525 | Harding et al. | Nov 2009 | A1 |
20090292307 | Razack | Nov 2009 | A1 |
20090299393 | Martin et al. | Dec 2009 | A1 |
20090312786 | Trask et al. | Dec 2009 | A1 |
20100016837 | Howat | Jan 2010 | A1 |
20100030256 | Dubrul et al. | Feb 2010 | A1 |
20100042136 | Berrada et al. | Feb 2010 | A1 |
20100087844 | Fischer, Jr. | Apr 2010 | A1 |
20100087850 | Razack | Apr 2010 | A1 |
20100094201 | Mallaby | Apr 2010 | A1 |
20100106081 | Brandeis | Apr 2010 | A1 |
20100114017 | Lenker et al. | May 2010 | A1 |
20100114113 | Dubrul et al. | May 2010 | A1 |
20100121312 | Gielenz et al. | May 2010 | A1 |
20100137846 | Desai et al. | Jun 2010 | A1 |
20100190156 | Van Wordragen et al. | Jul 2010 | A1 |
20100204712 | Mallaby | Aug 2010 | A1 |
20100217276 | Garrison et al. | Aug 2010 | A1 |
20100249815 | Jantzen et al. | Sep 2010 | A1 |
20100268264 | Bonnette et al. | Oct 2010 | A1 |
20100318178 | Rapaport et al. | Dec 2010 | A1 |
20110009950 | Grandfield et al. | Jan 2011 | A1 |
20110034986 | Chou et al. | Feb 2011 | A1 |
20110034987 | Kennedy | Feb 2011 | A1 |
20110054405 | Whiting et al. | Mar 2011 | A1 |
20110060212 | Slee et al. | Mar 2011 | A1 |
20110071503 | Takagi et al. | Mar 2011 | A1 |
20110087173 | Sibbitt, Jr. et al. | Apr 2011 | A1 |
20110118817 | Gunderson et al. | May 2011 | A1 |
20110125181 | Brady et al. | May 2011 | A1 |
20110144592 | Wong et al. | Jun 2011 | A1 |
20110152823 | Mohiuddin et al. | Jun 2011 | A1 |
20110152889 | Ashland | Jun 2011 | A1 |
20110152993 | Marchand et al. | Jun 2011 | A1 |
20110160742 | Ferrera et al. | Jun 2011 | A1 |
20110160763 | Ferrera et al. | Jun 2011 | A1 |
20110190806 | Wittens | Aug 2011 | A1 |
20110196309 | Wells | Aug 2011 | A1 |
20110196414 | Porter et al. | Aug 2011 | A1 |
20110213290 | Chin et al. | Sep 2011 | A1 |
20110213403 | Aboytes | Sep 2011 | A1 |
20110224707 | Miloslavski et al. | Sep 2011 | A1 |
20110245807 | Sakata et al. | Oct 2011 | A1 |
20110251629 | Galdonik et al. | Oct 2011 | A1 |
20110264132 | Strauss et al. | Oct 2011 | A1 |
20110264133 | Hanlon et al. | Oct 2011 | A1 |
20110265681 | Allen et al. | Nov 2011 | A1 |
20110288529 | Fulton | Nov 2011 | A1 |
20110288572 | Martin | Nov 2011 | A1 |
20110309037 | Lee | Dec 2011 | A1 |
20110319917 | Ferrera et al. | Dec 2011 | A1 |
20120059309 | di Palma et al. | Mar 2012 | A1 |
20120059356 | di Palma et al. | Mar 2012 | A1 |
20120083824 | Berrada et al. | Apr 2012 | A1 |
20120083868 | Shrivastava | Apr 2012 | A1 |
20120089216 | Rapaport et al. | Apr 2012 | A1 |
20120095448 | Kajii | Apr 2012 | A1 |
20120101480 | Ingle et al. | Apr 2012 | A1 |
20120101510 | Lenker et al. | Apr 2012 | A1 |
20120109109 | Kajii | May 2012 | A1 |
20120138832 | Townsend | Jun 2012 | A1 |
20120143123 | Agnew | Jun 2012 | A1 |
20120143239 | Aklog et al. | Jun 2012 | A1 |
20120165919 | Cox et al. | Jun 2012 | A1 |
20120172918 | Fifer et al. | Jul 2012 | A1 |
20120179181 | Straub et al. | Jul 2012 | A1 |
20120197277 | Stinis | Aug 2012 | A1 |
20120232655 | Lorrison et al. | Sep 2012 | A1 |
20120271105 | Nakamura et al. | Oct 2012 | A1 |
20120271231 | Agrawal | Oct 2012 | A1 |
20120277788 | Cattaneo | Nov 2012 | A1 |
20120310166 | Huff | Dec 2012 | A1 |
20130030460 | Marks et al. | Jan 2013 | A1 |
20130035628 | Garrison et al. | Feb 2013 | A1 |
20130046332 | Jones et al. | Feb 2013 | A1 |
20130066348 | Fiorella et al. | Mar 2013 | A1 |
20130092012 | Marchand et al. | Apr 2013 | A1 |
20130096571 | Massicotte et al. | Apr 2013 | A1 |
20130102996 | Strauss | Apr 2013 | A1 |
20130116708 | Ziniti et al. | May 2013 | A1 |
20130116721 | Takagi et al. | May 2013 | A1 |
20130123705 | Holm et al. | May 2013 | A1 |
20130126559 | Cowan et al. | May 2013 | A1 |
20130144326 | Brady et al. | Jun 2013 | A1 |
20130150793 | Beissel et al. | Jun 2013 | A1 |
20130165871 | Fiorella et al. | Jun 2013 | A1 |
20130184703 | Shireman et al. | Jul 2013 | A1 |
20130190701 | Kirn | Jul 2013 | A1 |
20130197454 | Shibata et al. | Aug 2013 | A1 |
20130197567 | Brady et al. | Aug 2013 | A1 |
20130204297 | Melsheimer et al. | Aug 2013 | A1 |
20130226196 | Smith | Aug 2013 | A1 |
20130270161 | Kumar et al. | Oct 2013 | A1 |
20130281788 | Garrison | Oct 2013 | A1 |
20130289608 | Tanaka et al. | Oct 2013 | A1 |
20130317589 | Martin et al. | Nov 2013 | A1 |
20130345739 | Brady et al. | Dec 2013 | A1 |
20140005712 | Martin | Jan 2014 | A1 |
20140005713 | Bowman | Jan 2014 | A1 |
20140005715 | Castella et al. | Jan 2014 | A1 |
20140005717 | Martin et al. | Jan 2014 | A1 |
20140025048 | Ward | Jan 2014 | A1 |
20140031856 | Martin | Jan 2014 | A1 |
20140046133 | Nakamura et al. | Feb 2014 | A1 |
20140046243 | Ray et al. | Feb 2014 | A1 |
20140052161 | Cully et al. | Feb 2014 | A1 |
20140074144 | Shrivastava et al. | Mar 2014 | A1 |
20140121672 | Folk | May 2014 | A1 |
20140155830 | Bonnette et al. | Jun 2014 | A1 |
20140155980 | Turjman | Jun 2014 | A1 |
20140163615 | Gadlage et al. | Jun 2014 | A1 |
20140180055 | Glynn et al. | Jun 2014 | A1 |
20140180397 | Gerberding et al. | Jun 2014 | A1 |
20140155908 | Rosenbluth et al. | Jul 2014 | A1 |
20140188127 | Dubrul et al. | Jul 2014 | A1 |
20140188143 | Martin et al. | Jul 2014 | A1 |
20140222070 | Belson et al. | Aug 2014 | A1 |
20140236219 | Dubrul et al. | Aug 2014 | A1 |
20140243882 | Ma | Aug 2014 | A1 |
20140257253 | Jemison | Sep 2014 | A1 |
20140257363 | Lippert | Sep 2014 | A1 |
20140276403 | Follmer et al. | Sep 2014 | A1 |
20140276592 | Mottola et al. | Sep 2014 | A1 |
20140296868 | Garrison et al. | Oct 2014 | A1 |
20140303658 | Bonnette et al. | Oct 2014 | A1 |
20140318354 | Thompson et al. | Oct 2014 | A1 |
20140324091 | Rosenbluth | Oct 2014 | A1 |
20140330286 | Wallace et al. | Nov 2014 | A1 |
20140336691 | Jones et al. | Nov 2014 | A1 |
20140343593 | Chin et al. | Nov 2014 | A1 |
20140364896 | Consigny | Dec 2014 | A1 |
20140371779 | Vale et al. | Dec 2014 | A1 |
20150005781 | Lund-Clausen et al. | Jan 2015 | A1 |
20150005792 | Ahn | Jan 2015 | A1 |
20150018859 | Quick | Jan 2015 | A1 |
20150018860 | Quick | Jan 2015 | A1 |
20150018929 | Martin et al. | Jan 2015 | A1 |
20150025555 | Sos | Jan 2015 | A1 |
20150032144 | Holloway | Jan 2015 | A1 |
20150059908 | Mollen | Mar 2015 | A1 |
20150088190 | Jensen | Mar 2015 | A1 |
20150119862 | Cajamarca et al. | Apr 2015 | A1 |
20150127035 | Trapp et al. | May 2015 | A1 |
20150133990 | Davidson | May 2015 | A1 |
20150150672 | Ma | Jun 2015 | A1 |
20150164523 | Brady et al. | Jun 2015 | A1 |
20150164666 | Johnson et al. | Jun 2015 | A1 |
20150173782 | Garrison et al. | Jun 2015 | A1 |
20150190155 | Ulm, III | Jul 2015 | A1 |
20150190156 | Ulm, III | Jul 2015 | A1 |
20150196380 | Berrada et al. | Jul 2015 | A1 |
20150196744 | Aboytes | Jul 2015 | A1 |
20150209058 | Ferrera et al. | Jul 2015 | A1 |
20150209165 | Grandfield et al. | Jul 2015 | A1 |
20150238207 | Cox et al. | Aug 2015 | A1 |
20150250578 | Cook et al. | Sep 2015 | A1 |
20150265299 | Cooper et al. | Sep 2015 | A1 |
20150283309 | Look et al. | Oct 2015 | A1 |
20150305756 | Rosenbluth | Oct 2015 | A1 |
20150305859 | Eller | Oct 2015 | A1 |
20150314050 | Beer | Nov 2015 | A1 |
20150327875 | Look et al. | Nov 2015 | A1 |
20150352325 | Quick | Dec 2015 | A1 |
20150360001 | Quick | Dec 2015 | A1 |
20150366690 | Lumauig | Dec 2015 | A1 |
20150374391 | Quick | Dec 2015 | A1 |
20160022293 | Dubrul et al. | Jan 2016 | A1 |
20160030708 | Casiello et al. | Feb 2016 | A1 |
20160038267 | Allen et al. | Feb 2016 | A1 |
20160058540 | Don Michael | Mar 2016 | A1 |
20160074627 | Cottone | Mar 2016 | A1 |
20160106353 | Schuetz et al. | Apr 2016 | A1 |
20160106448 | Brady et al. | Apr 2016 | A1 |
20160106449 | Brady et al. | Apr 2016 | A1 |
20160113663 | Brady et al. | Apr 2016 | A1 |
20160113664 | Brady et al. | Apr 2016 | A1 |
20160113665 | Brady et al. | Apr 2016 | A1 |
20160113666 | Quick | Apr 2016 | A1 |
20160128857 | Kao | May 2016 | A1 |
20160135829 | Holochwost et al. | May 2016 | A1 |
20160143721 | Rosenbluth | May 2016 | A1 |
20160151605 | Welch et al. | Jun 2016 | A1 |
20160192912 | Kassab et al. | Jul 2016 | A1 |
20160206344 | Bruzzi et al. | Jul 2016 | A1 |
20160008014 | Rosenbluth | Aug 2016 | A1 |
20160220741 | Garrison et al. | Aug 2016 | A1 |
20160220795 | Korkuch et al. | Aug 2016 | A1 |
20160228134 | Martin et al. | Aug 2016 | A1 |
20160262774 | Honda | Sep 2016 | A1 |
20160262790 | Rosenbluth et al. | Sep 2016 | A1 |
20160287276 | Cox et al. | Oct 2016 | A1 |
20160367285 | Sos | Dec 2016 | A1 |
20170014560 | Minskoff et al. | Jan 2017 | A1 |
20170021130 | Dye | Jan 2017 | A1 |
20170037548 | Lee | Feb 2017 | A1 |
20170042571 | Levi | Feb 2017 | A1 |
20170049942 | Conlan et al. | Feb 2017 | A1 |
20170056032 | Look et al. | Mar 2017 | A1 |
20170058623 | Jaffrey et al. | Mar 2017 | A1 |
20170079672 | Quick | Mar 2017 | A1 |
20170086864 | Greenhalgh et al. | Mar 2017 | A1 |
20170100142 | Look et al. | Apr 2017 | A1 |
20170105743 | Vale et al. | Apr 2017 | A1 |
20170105745 | Rosenbluth et al. | Apr 2017 | A1 |
20170112514 | Marchand et al. | Apr 2017 | A1 |
20170113005 | Linder et al. | Apr 2017 | A1 |
20170143359 | Nguyen et al. | May 2017 | A1 |
20170143880 | Luxon et al. | May 2017 | A1 |
20170143938 | Ogle et al. | May 2017 | A1 |
20170165468 | Nobles et al. | Jun 2017 | A1 |
20170172591 | Ulm, III | Jun 2017 | A1 |
20170112513 | Marchand et al. | Jul 2017 | A1 |
20170189041 | Cox et al. | Jul 2017 | A1 |
20170196576 | Long et al. | Jul 2017 | A1 |
20170233908 | Kroczynski et al. | Aug 2017 | A1 |
20170238951 | Yang et al. | Aug 2017 | A1 |
20170252057 | Bonnette et al. | Sep 2017 | A1 |
20170265878 | Marchand et al. | Sep 2017 | A1 |
20170281204 | Garrison et al. | Oct 2017 | A1 |
20170303939 | Greenhalgh et al. | Oct 2017 | A1 |
20170303942 | Greenhalgh et al. | Oct 2017 | A1 |
20170303947 | Greenhalgh et al. | Oct 2017 | A1 |
20170303948 | Wallace et al. | Oct 2017 | A1 |
20170319221 | Chu | Nov 2017 | A1 |
20170325839 | Rosenbluth et al. | Nov 2017 | A1 |
20170340867 | Accisano, II | Nov 2017 | A1 |
20170348014 | Wallace et al. | Dec 2017 | A1 |
20180014840 | Panian | Jan 2018 | A1 |
20180042623 | Batiste | Feb 2018 | A1 |
20180042624 | Greenhalgh et al. | Feb 2018 | A1 |
20180042626 | Greenhalgh et al. | Feb 2018 | A1 |
20180055999 | Bare et al. | Mar 2018 | A1 |
20180064453 | Garrison et al. | Mar 2018 | A1 |
20180064454 | Losordo et al. | Mar 2018 | A1 |
20180070968 | Wallace et al. | Mar 2018 | A1 |
20180078707 | Loonan | Mar 2018 | A1 |
20180092652 | Marchand et al. | Apr 2018 | A1 |
20180104404 | Ngo-Chu | Apr 2018 | A1 |
20180105963 | Quick | Apr 2018 | A1 |
20180125512 | Nguyen et al. | May 2018 | A1 |
20180184912 | Al-Ali | Jul 2018 | A1 |
20180193043 | Marchand et al. | Jul 2018 | A1 |
20180235742 | Fields et al. | Aug 2018 | A1 |
20180236205 | Krautkremer et al. | Aug 2018 | A1 |
20180250498 | Stern et al. | Sep 2018 | A1 |
20180256177 | Cooper et al. | Sep 2018 | A1 |
20180256178 | Cox et al. | Sep 2018 | A1 |
20180280623 | Pilkington et al. | Oct 2018 | A1 |
20180296240 | Rosenbluth et al. | Oct 2018 | A1 |
20180338770 | Mogi et al. | Nov 2018 | A1 |
20180339130 | Ogle | Nov 2018 | A1 |
20180344339 | Cox et al. | Dec 2018 | A1 |
20180353195 | Sigmon, Jr. et al. | Dec 2018 | A1 |
20180361116 | Quick et al. | Dec 2018 | A1 |
20190000492 | Casey et al. | Jan 2019 | A1 |
20190015298 | Beatty et al. | Jan 2019 | A1 |
20190046219 | Marchand et al. | Feb 2019 | A1 |
20190070401 | Merritt et al. | Mar 2019 | A1 |
20190117244 | Wallace et al. | Apr 2019 | A1 |
20190133622 | Wallace et al. | May 2019 | A1 |
20190133623 | Wallace et al. | May 2019 | A1 |
20190133624 | Wallace et al. | May 2019 | A1 |
20190133625 | Wallace et al. | May 2019 | A1 |
20190133626 | Wallace et al. | May 2019 | A1 |
20190133627 | Wallace et al. | May 2019 | A1 |
20190150959 | Cox et al. | May 2019 | A1 |
20190216476 | Barry et al. | Jul 2019 | A1 |
20190223893 | Gilvarry et al. | Jul 2019 | A1 |
20190231373 | Quick | Aug 2019 | A1 |
20190239910 | Brady et al. | Aug 2019 | A1 |
20190321071 | Marchand et al. | Oct 2019 | A1 |
20190328411 | Vale et al. | Oct 2019 | A1 |
20190336142 | Torrie et al. | Nov 2019 | A1 |
20190336148 | Greenhalgh et al. | Nov 2019 | A1 |
20190365395 | Tran et al. | Dec 2019 | A1 |
20190366036 | Jalgaonkar et al. | Dec 2019 | A1 |
20190366049 | Hannon et al. | Dec 2019 | A1 |
20190374239 | Martin et al. | Dec 2019 | A1 |
20200009301 | Yee | Jan 2020 | A1 |
20200022711 | Look et al. | Jan 2020 | A1 |
20200030579 | Taber | Jan 2020 | A1 |
20200046368 | Merritt et al. | Feb 2020 | A1 |
20200046940 | Carrison et al. | Feb 2020 | A1 |
20200054861 | Korkuch et al. | Feb 2020 | A1 |
20200069889 | Lin | Mar 2020 | A1 |
20200078029 | Hansen et al. | Mar 2020 | A1 |
20200113412 | Jensen | Apr 2020 | A1 |
20200121334 | Galdonik et al. | Apr 2020 | A1 |
20200129741 | Kawwas et al. | Apr 2020 | A1 |
20200324079 | Jalgaonkar et al. | Oct 2020 | A1 |
20210022843 | Hauser | Jan 2021 | A1 |
20210038385 | Popp et al. | Feb 2021 | A1 |
20210113224 | Dinh | Apr 2021 | A1 |
20210128182 | Teigen et al. | May 2021 | A1 |
20210128184 | Fulkerson et al. | May 2021 | A1 |
20210128185 | Nguyen et al. | May 2021 | A1 |
20210137667 | Sonnette et al. | May 2021 | A1 |
20210138194 | Carrison et al. | May 2021 | A1 |
20210154433 | Casey et al. | May 2021 | A1 |
20210186537 | Buck et al. | Jun 2021 | A1 |
20210186541 | Thress | Jun 2021 | A1 |
20210205577 | Jalgaonkar et al. | Jul 2021 | A1 |
20210236148 | Marchand et al. | Aug 2021 | A1 |
20210290925 | Merritt et al. | Sep 2021 | A1 |
20210315598 | Buck et al. | Oct 2021 | A1 |
20210316127 | Buck et al. | Oct 2021 | A1 |
20210330344 | Rosenbluth et al. | Oct 2021 | A1 |
20210378692 | Xiang et al. | Dec 2021 | A1 |
20210378694 | Thress et al. | Dec 2021 | A1 |
20210393278 | O'Malley et al. | Dec 2021 | A1 |
20210404464 | Patoskie | Dec 2021 | A1 |
20220000505 | Hauser | Jan 2022 | A1 |
20220000506 | Hauser | Jan 2022 | A1 |
20220000507 | Hauser | Jan 2022 | A1 |
20220015798 | Marchand et al. | Jan 2022 | A1 |
20220021197 | Zhao et al. | Jan 2022 | A1 |
20220022898 | Cox et al. | Jan 2022 | A1 |
20220033888 | Schnall-Levin et al. | Feb 2022 | A1 |
20220039815 | Thress et al. | Feb 2022 | A1 |
20220047281 | Kamalova | Feb 2022 | A1 |
20220125451 | Hauser | Apr 2022 | A1 |
20220142638 | Enright et al. | May 2022 | A1 |
20220151647 | Dolendo et al. | May 2022 | A1 |
20220160381 | Hauser | May 2022 | A1 |
20220160382 | Hauser | May 2022 | A1 |
20220160383 | Hauser | May 2022 | A1 |
20220226555 | Sunenshine et al. | Jun 2022 | A1 |
20220211400 | Cox et al. | Jul 2022 | A1 |
20220211992 | Merritt et al. | Jul 2022 | A1 |
20220240959 | Quick | Aug 2022 | A1 |
20220296797 | Chawla | Sep 2022 | A1 |
20220331554 | Beasley et al. | Oct 2022 | A1 |
20220346800 | Merritt et al. | Nov 2022 | A1 |
20220346801 | Merritt et al. | Nov 2022 | A1 |
20220346813 | Quick | Nov 2022 | A1 |
20220346814 | Quick | Nov 2022 | A1 |
20220347455 | Merritt et al. | Nov 2022 | A1 |
20220362512 | Quick et al. | Nov 2022 | A1 |
20220370761 | Chou et al. | Nov 2022 | A1 |
20220378445 | Culbert et al. | Dec 2022 | A1 |
20220378446 | Culbert et al. | Dec 2022 | A1 |
20220378447 | Culbert et al. | Dec 2022 | A1 |
20220378448 | Culbert et al. | Dec 2022 | A1 |
20220378451 | Goyal et al. | Dec 2022 | A1 |
20220378460 | Culbert et al. | Dec 2022 | A1 |
20220387072 | Look et al. | Dec 2022 | A1 |
20230015259 | Buck et al. | Jan 2023 | A1 |
20230047682 | Deaton et al. | Feb 2023 | A1 |
20230052964 | Singh et al. | Feb 2023 | A1 |
20230059721 | Chou et al. | Feb 2023 | A1 |
20230062809 | Merritt et al. | Mar 2023 | A1 |
20230063701 | Horowitz et al. | Mar 2023 | A1 |
20230070120 | Cox et al. | Mar 2023 | A1 |
20230122587 | Chou et al. | Apr 2023 | A1 |
20230149034 | Aklog et al. | May 2023 | A1 |
20230181200 | Deville et al. | Jun 2023 | A1 |
20230200970 | Merritt et al. | Jun 2023 | A1 |
20230210554 | Bruzzi et al. | Jul 2023 | A1 |
20230218313 | Rosenbluth et al. | Jul 2023 | A1 |
20230218383 | Merritt et al. | Jul 2023 | A1 |
20230233311 | Merritt et al. | Jul 2023 | A1 |
20230240705 | Rosenbluth et al. | Aug 2023 | A1 |
20230240706 | Rosenbluth et al. | Aug 2023 | A1 |
20230241302 | Merritt et al. | Aug 2023 | A1 |
20230248380 | Long et al. | Aug 2023 | A1 |
20230248498 | Buck et al. | Aug 2023 | A1 |
20230248499 | Buck et al. | Aug 2023 | A1 |
20230248500 | Buck et al. | Aug 2023 | A1 |
20230248501 | Buck et al. | Aug 2023 | A1 |
20230248502 | Buck et al. | Aug 2023 | A1 |
20230248503 | Buck et al. | Aug 2023 | A1 |
20230248504 | Buck et al. | Aug 2023 | A1 |
20230270991 | Merritt et al. | Aug 2023 | A1 |
20230310137 | Merritt et al. | Oct 2023 | A1 |
20230310138 | Merritt et al. | Oct 2023 | A1 |
20230310751 | Merritt et al. | Oct 2023 | A1 |
20230320834 | Merritt et al. | Oct 2023 | A1 |
20230329734 | Marchand et al. | Oct 2023 | A1 |
20230338130 | Merritt et al. | Oct 2023 | A1 |
20230338131 | Merritt et al. | Oct 2023 | A1 |
20230355256 | Dinh | Nov 2023 | A1 |
20230355259 | Marchand et al. | Nov 2023 | A1 |
20230355371 | Buck et al. | Nov 2023 | A1 |
20230355938 | Merritt et al. | Nov 2023 | A1 |
20230363776 | Quick | Nov 2023 | A1 |
20230363883 | Merritt et al. | Nov 2023 | A1 |
20230389932 | Ozenne et al. | Dec 2023 | A1 |
20230390045 | Merritt et al. | Dec 2023 | A1 |
20240016505 | Horowitz et al. | Jan 2024 | A1 |
20240016993 | Haslam et al. | Jan 2024 | A1 |
20240058113 | Strauss et al. | Feb 2024 | A1 |
20240074771 | Quick et al. | Mar 2024 | A1 |
20240082540 | Brodt et al. | Mar 2024 | A1 |
20240108366 | Horowitz et al. | Apr 2024 | A1 |
20240131235 | Horowitz et al. | Apr 2024 | A1 |
20240157041 | Zikry et al. | May 2024 | A1 |
20240173042 | Yang et al. | May 2024 | A1 |
20240198072 | Merritt et al. | Jun 2024 | A1 |
20240207593 | Merritt et al. | Jun 2024 | A1 |
20240225674 | Dederich et al. | Jul 2024 | A1 |
20240245501 | Strauss et al. | Jul 2024 | A1 |
20240245502 | Merritt et al. | Jul 2024 | A1 |
20240261492 | Yang et al. | Aug 2024 | A1 |
20240285387 | Merritt et al. | Aug 2024 | A1 |
20240299053 | Hauser | Sep 2024 | A1 |
20240307082 | Marchand et al. | Sep 2024 | A1 |
20240307166 | Merritt et al. | Sep 2024 | A1 |
20240341779 | Dinh | Oct 2024 | A1 |
20240341788 | Cox et al. | Oct 2024 | A1 |
20240407905 | Merrit et al. | Dec 2024 | A1 |
20240415626 | Merrit et al. | Dec 2024 | A1 |
20240415627 | Merrit et al. | Dec 2024 | A1 |
20250017618 | Truty et al. | Jan 2025 | A1 |
20250049456 | Cox et al. | Feb 2025 | A1 |
20250064464 | Barkley et al. | Feb 2025 | A1 |
Number | Date | Country |
---|---|---|
2015210338 | Aug 2015 | AU |
1501825 | Jun 2004 | CN |
102014772 | Apr 2011 | CN |
102186427 | Sep 2011 | CN |
102316809 | Jan 2012 | CN |
103764049 | Apr 2014 | CN |
103932756 | Jul 2014 | CN |
104068910 | Oct 2014 | CN |
106178227 | Dec 2016 | CN |
106470728 | Mar 2017 | CN |
108348319 | Jul 2018 | CN |
110312481 | Oct 2019 | CN |
110652645 | Jan 2020 | CN |
111281482 | Jun 2020 | CN |
215082793 | Dec 2021 | CN |
1116001 | Oct 1961 | DE |
102017004383 | Jul 2018 | DE |
0914807 | May 1999 | EP |
1254634 | Nov 2002 | EP |
1991138 | Nov 2008 | EP |
2073864 | Jul 2009 | EP |
2203209 | Jul 2010 | EP |
2209509 | Jul 2010 | EP |
2394680 | Dec 2011 | EP |
1867290 | Feb 2013 | EP |
2624905 | Aug 2013 | EP |
2540328 | Oct 2013 | EP |
2726135 | May 2014 | EP |
2908783 | Aug 2015 | EP |
2939704 | Nov 2015 | EP |
2942624 | Nov 2015 | EP |
2967614 | Jan 2016 | EP |
2977072 | Jan 2016 | EP |
2367482 | Oct 2016 | EP |
3102274 | Dec 2016 | EP |
3122412 | Feb 2017 | EP |
3202340 | Aug 2017 | EP |
3302624 | Apr 2018 | EP |
3305220 | Apr 2018 | EP |
3305221 | Apr 2018 | EP |
3311875 | Apr 2018 | EP |
2231256 | May 2018 | EP |
3344157 | Jul 2018 | EP |
3417893 | Dec 2018 | EP |
3419528 | Jan 2019 | EP |
3422963 | Jan 2019 | EP |
3439561 | Feb 2019 | EP |
3449967 | Mar 2019 | EP |
3544528 | Oct 2019 | EP |
3583972 | Dec 2019 | EP |
3589348 | Jan 2020 | EP |
3603690 | Feb 2020 | EP |
3612264 | Feb 2020 | EP |
3620204 | Mar 2020 | EP |
3013404 | Apr 2020 | EP |
4039205 | Aug 2022 | EP |
4072613 | Oct 2022 | EP |
4076611 | Oct 2022 | EP |
4079344 | Oct 2022 | EP |
4137070 | Feb 2023 | EP |
4144310 | Mar 2023 | EP |
4252992 | Oct 2023 | EP |
4419159 | Aug 2024 | EP |
1588072 | Apr 1981 | GB |
2498349 | Jul 2013 | GB |
H6190049 | Jul 1994 | JP |
H07323090 | Dec 1995 | JP |
2001522631 | May 1999 | JP |
2000175925 | Jun 2000 | JP |
2004097807 | Apr 2004 | JP |
2005511989 | Apr 2005 | JP |
2005-095242 | Jun 2005 | JP |
2005230132 | Sep 2005 | JP |
2005323702 | Nov 2005 | JP |
2006094876 | Apr 2006 | JP |
2007-222658 | Sep 2007 | JP |
2011526820 | Jan 2010 | JP |
2011517424 | Jun 2011 | JP |
05694718 | Apr 2015 | JP |
2015208685 | Nov 2015 | JP |
2016513505 | May 2016 | JP |
2016104212 | Jun 2016 | JP |
2017533051 | Nov 2017 | JP |
2018525088 | Sep 2018 | JP |
2003033359 | Feb 2023 | JP |
7253376 | Mar 2023 | JP |
7324264 | Aug 2023 | JP |
7491974 | May 2024 | JP |
WO1997017889 | May 1997 | WO |
WO199833443 | Aug 1998 | WO |
WO199838920 | Sep 1998 | WO |
WO199839053 | Sep 1998 | WO |
WO199851237 | Nov 1998 | WO |
WO1999044542 | Sep 1999 | WO |
WO9951140 | Oct 1999 | WO |
WO2000032118 | Jun 2000 | WO |
WO2000053120 | Sep 2000 | WO |
WO0202162 | Jan 2002 | WO |
WO2002055146 | Jul 2002 | WO |
WO2003015840 | Feb 2003 | WO |
WO2004018916 | Mar 2004 | WO |
WO2004093696 | Nov 2004 | WO |
WO2005046736 | May 2005 | WO |
WO2006029270 | Mar 2006 | WO |
WO2006110186 | Oct 2006 | WO |
WO2006124307 | Nov 2006 | WO |
WO2007092820 | Aug 2007 | WO |
WO2009082513 | Jul 2009 | WO |
WO2009086482 | Jul 2009 | WO |
WO2009105710 | Aug 2009 | WO |
WO2009126747 | Oct 2009 | WO |
WO2009155571 | Dec 2009 | WO |
WO2010002549 | Jan 2010 | WO |
WO2010010545 | Jan 2010 | WO |
WO2010023671 | Mar 2010 | WO |
WO2010049121 | May 2010 | WO |
WO2010095712 | Aug 2010 | WO |
WO2010102307 | Sep 2010 | WO |
WO2011032712 | Mar 2011 | WO |
WO2011054531 | May 2011 | WO |
WO2011073176 | Jun 2011 | WO |
WO2012009675 | Jan 2012 | WO |
WO2012011097 | Jan 2012 | WO |
WO2012049652 | Apr 2012 | WO |
WO2012065748 | May 2012 | WO |
WO2012114633 | Aug 2012 | WO |
WO2012120490 | Sep 2012 | WO |
WO2012162437 | Nov 2012 | WO |
WO2014047650 | Mar 2014 | WO |
WO2014081892 | May 2014 | WO |
WO2014139845 | Sep 2014 | WO |
WO2015006782 | Jan 2015 | WO |
WO2015061365 | Apr 2015 | WO |
WO2015121424 | Aug 2015 | WO |
WO2015179329 | Nov 2015 | WO |
WO2015189354 | Dec 2015 | WO |
WO2015191646 | Dec 2015 | WO |
WO2016014955 | Jan 2016 | WO |
WO2016071524 | May 2016 | WO |
WO2017024258 | Feb 2017 | WO |
WO2017033182 | Mar 2017 | WO |
WO2017058280 | Apr 2017 | WO |
WO2017070702 | Apr 2017 | WO |
WO2017106877 | Jun 2017 | WO |
WO2017189535 | Nov 2017 | WO |
WO2017189550 | Nov 2017 | WO |
WO2017189591 | Nov 2017 | WO |
WO2017189615 | Nov 2017 | WO |
WO2017210487 | Dec 2017 | WO |
WO2018049317 | Mar 2018 | WO |
WO2018065092 | Apr 2018 | WO |
WO2018080590 | May 2018 | WO |
WO2018148174 | Aug 2018 | WO |
WO2019010318 | Jan 2019 | WO |
WO2019050765 | Mar 2019 | WO |
WO2019064306 | Apr 2019 | WO |
WO2019075444 | Apr 2019 | WO |
WO2019094456 | May 2019 | WO |
WO2019173475 | Sep 2019 | WO |
WO2019222117 | Nov 2019 | WO |
WO2019246240 | Dec 2019 | WO |
WO2020036809 | Feb 2020 | WO |
WO2020142381 | Jul 2020 | WO |
WO2021067134 | Apr 2021 | WO |
WO2021076954 | Apr 2021 | WO |
WO2021127202 | Jun 2021 | WO |
WO2021248042 | Dec 2021 | WO |
WO2022032173 | Feb 2022 | WO |
WO2022103848 | May 2022 | WO |
WO2022109021 | May 2022 | WO |
WO2022109034 | May 2022 | WO |
WO2022261448 | Dec 2022 | WO |
WO2023018819 | Feb 2023 | WO |
WO2023069874 | Apr 2023 | WO |
WO2003048616 | Jun 2023 | WO |
WO2023115032 | Jun 2023 | WO |
WO2023137341 | Jul 2023 | WO |
WO2023147353 | Aug 2023 | WO |
WO2023154612 | Aug 2023 | WO |
WO2023192925 | Oct 2023 | WO |
WO2023215779 | Nov 2023 | WO |
WO2023239706 | Dec 2023 | WO |
WO2024054988 | Mar 2024 | WO |
WO2024103036 | May 2024 | WO |
WO2024151629 | Jul 2024 | WO |
WO2025014517 | Jan 2025 | WO |
Entry |
---|
US 12,114,876 B2, 10/2024, Quick et al. (withdrawn) |
US 12,115,056 B2, 10/2024, Merritt et al. (withdrawn) |
Gibbs, et al., “Temporary Stent as a bail-out device during percutaneous transluminal coronary angioplasty: preliminary clinical experience,” British Heart Journal, 1994, 71:372-377, Oct. 12, 1993, 6 pgs. |
Gupta, S. et al., “Acute Pulmonary Embolism Advances in Treatment”, JAPI, Association of Physicians India, Mar. 2008, vol. 56, 185-191. |
International Search Report and Written Opinion for International App. No. PCT/US13/61470, malled Jan. 17, 2014, 7 pages. |
International Search Report and Written Opinion for International App. No. PCT/US2014/046567, mailed Nov. 3, 2014, 13 pages. |
International Search Report and Written Opinion for International App. No. PCT/US2014/061645, mailed Jan. 23, 2015, 15 pages. |
International Search Report for International App. No. PCT/US13/71101, mailed Mar. 31, 2014, 4 pages. |
Konstantinides, S. et al., “Pulmonary embolism hotline 2012—Recent and expected trials”, Thrombosis and Haemostasis, Jan. 9, 2013:33; 43-50. |
Konstantinides, S. et al., “Pulmonary embolism: risk assessment and management”, European Society of Cardiology; European Heart Journal, Sep. 7, 2012:33, 3014-3022. |
Kucher, N. et al., “Percutaneous Catheter Thrombectomy Device for Acute Pulmonary Embolism: In Vitro and in Vivo Testing”, Circulation, Sep. 2005:112:e28-e32. |
Kucher, N., “Catheter Interventions in Massive Pulmonary Embolism”, Cardiology Rounds, Mar. 2006 vol. 10, Issue 3, 6 pages. |
Kucher, N. et al., “Management of Massive Pulmonary Embolism”, Radiology, Sep. 2005:236:3852-858. |
Kucher, N. et al., “Randomized, Controlled Trial of Ultrasound-Assisted Catheter-Directed Thrombolysis for Acute Intermediate-Risk Pulmonary Embolism.” Circulation, 2014, 129, pp. 9 pages. |
Kuo. W. et al., “Catheter-directed Therapy for the Treatment of Massive Pulmonary Embolism: Systematic Review and Meta-analysis of Modern Techniques”, Journal of Vascular and Interventional Radiology, Nov. 2009:20:1431-1440. |
Kuo, W. et al., “Catheter-Directed Embolectomy, Fragmentation, and Thrombolysis for the Treatment of Massive Pulmonary Embolism After Failure of Systemic Thrombolysis”, American College of CHEST Physicians 2008: 134:250-254. |
Kuo, W. MD, “Endovascular Therapy for Acute Pulmonary Embolism”, Continuing Medical Education Society of Interventional Radiology (“CME”); Journal of Vascular and Interventional Radiology, Feb. 2012: 23:167-179. |
Lee, L. et al., “Massive pulmonary embolism: review of management strategies with a focus on catheter-based techniques”, Expert Rev. Cardiovasc. Ther. 8(6), 863-873 (2010). |
Liu, S. et al., “Massive Pulmonary Embolism: Treatment with the Rotarex Thrombectomy System”, Cardiovascular Interventional Radiology; 2011: 34:106-113. |
Muller-Hulsbeck, S. et al. “Mechanical Thrombectomy of Major and Massive Pulmonary Embolism with Use of the Amplatz Thrombectomy Device”, Investigative Radiology, Jun. 2001:36:6:317-322. |
Reekers, J. et al., “Mechanical Thrombectomy for Early Treatment of Massive Pulmonary Embolism”, CardioVascular and Interventional Radiology, 2003: 26:246-250. |
Schmitz-Rode et al., “New Mesh Basket for Percutaneous Removal of Wall-Adherent Thrombi in Dialysis Shunts,” Cardiovasc Intervent Radiol 16:7-10 1993 4 pgs. |
Schmitz-Rode et al., “Temporary Pulmonary Stent Placement as Emergency Treatment of Pulmonary Embolism,” Journal of the American College of Cardiology, vol. 48, No. 4, 2006 (5 pgs.). |
Schmitz-Rode, T. et al., “Massive Pulmonary Embolism: Percutaneous Emergency Treatment by Pigtail Rotation Catheter”, JACC Journal of the American College of Cardiology, Aug. 2000:36:2:375-380. |
Spiotta, A et al., “Evolution of thrombectomy approaches and devices for acute stroke: a technical review.” J NeuroIntervent Surg 2015, 7, pp. 7 pages. |
Svilaas, T. et al., “Thrombus Aspiration During Primary Percutaneous Coronary Intervention.” The New England Journal of Medicine, 2008, vol. 358, No. 6, 11 pages. |
Tapson, V., “Acute Pulmonary Embolism”, The New England Journal of Medicine, Mar. 6, 2008:358:2037-52. |
The Penumbra Pivotal Stroke Trial Investigators, “The Penumbra Pivotal Stroke Trial: Safety and Effectiveness of a New Generation of Mechanical Devices for Clot Removal in Intracranial Large Vessel Occlusive Disease.” Stroke, 2009, 40: p. 9 pages. |
Truong et al., “Mechanical Thrombectomy of Iliocaval Thrombosis Using a Protective Expandable Sheath,” Cardiovasc Intervent Radiol27-254-258, 2004, 5 pgs. |
Turk et al., “Adapt Fast study: a direct aspiration first pass technique for acute stroke thrombectomy.” J Neurointervent Surg, vol. 6, 2014, 6 pages. |
Uflacker, R., “Interventional Therapy for Pulmonary Embolism”, Journal of Vascular and Interventional Radiology, Feb. 2001: 12:147-164. |
Verma, R., MD et al. “Evaluation of a Newly Developed Percutaneous Thrombectomy Basket Device in Sheep With Central Pulmonary Embolisms”, Investigative Radiology, Oct. 2006, 41, 729-734. |
International Search Report and Written Opinion for International App. No. PCT/US2015/034987 filed Jun. 9, 2015, Applicant: Inceptus Medical, LLC, Date of Mailing: Sep. 17, 2015, 12 pages. |
International Search Report and Written Opinion for International App. No. PCT/US2016/067628 filed Dec. 19, 2016, Applicant: Inari Medical, Inc., Date of Mailing: Apr. 10, 2017, 11 pages. |
Goldhaber, S. et al. “Percutaneous Mechanical Thrombectomy for Acute Pulmonary Embolism—A Double-Edged Sword,” American College of CHEST Physicians, Aug. 2007, 132:2, 363-372. |
Goldhaber, S., “Advanced treatment strategies for acute pulmonary embolism, including thrombolysis and embolectomy,” Journal of Thrombosis and Haemostasis, 2009: 7 (Suppl. 1): 322-327. |
International Search Report and Written Opinion for International App. No. PCT/US2017/029696, Date of Filing: Apr. 26, 2017, Applicant: Inari Medical, Inc., Date of Mailing: Sep. 15, 2017, 19 pages. |
International Search Report and Written Opinion for International App. No. PCT/US2016/058536, Date of Filing: Oct. 24, 2016, Applicant: Inari Medical, Inc., Date of Mailing: Mar. 13, 2017, 14 pages. |
International Search Report and Written Opinion for International App. No. PCT/US2018/048786, Date of Filing: Aug. 30, 2018, Applicant: Inari Medical, Inc., Date of Malling: Dec. 13, 2018, 12 pages,. |
International Search Report and Written Opinion for International App. No. PCT/US2018/055780, Date of Filing: Oct. 13, 2018, Applicant: Inceptus Medical LLC., Date of Mailing: Jan. 22, 2019, 8 pages. |
International Search Report and Written Opinion for International App. No. PCT/US2019/045794, Date of Filing: Aug. 8, 2019, Applicant: Inari Medical, Inc., Date of Mailing: Nov. 1, 2019, 17 pages. |
International Search Report and Written Opinion for International App. No. PCT/US2020/056067, Date of Filing: Oct. 16, 2020; Applicant: Inari Medical, Inc., Date of Mailing: Jan. 22, 2021, 8 pages. |
International Search Report and Written Opinion for International App. No. PCT/US2020/055645, Date of Filing: Dec. 17, 2020; Applicant: Inari Medical, Inc., Date of Mailing: Apr. 14, 2021, 12 pages. |
Vorwerk, D. MD, et al., “Use of a Temporary Caval Filter to Assist Percutaneous Iliocaval Thrombectomy: Experimental Results.” SCVIR, 1995, 4 pages. |
Wikipedia; Embolectomy; retrieved from the internet: https://en.wikipedia.org/wiki/Embolectorny; 4 pgs.; retrieved/printed: Mar. 24, 2016. |
O'sullivan; Thrombolysis versus thrombectomy in acute deep vein thrombosis; Interventional Cardiology; 3(5): pp. 589-596; Oct. 2011. |
Capture Vascular Systems; (company website); retrieved from the internet: http://www.capturevascular.com; 3 pgs .; retrieved/printed: Mar. 24, 2016. |
Edwards Lifesciences; Fogarty® Occlusion Catheters (product brochure); retrieved from the internet: http://web.archive.org/web/20150228193218/http://www.edwards.com/products/vascular/atraumaticocclusion/pages/occlusioncatheter.aspx; © 2011; 2 pgs.; retrieved/printed: Mar. 24, 2011. |
Boston Scientific; Fetch(TM) 2 Aspiration Catheter (product information); retrieved from the internet: http://www.bostonscientific.com/en-US/products/thrombectomy-systems/fetch2-aspiration-catheter.html; 2 pgs.; retrieved/printed: Mar. 24, 2016. |
Penumbra, Inc.; Indigo® System (product information); retrieved from the internet: http://www.penumbrainc.com/peripherallpercutaneous-thromboembolectorny/indigo-system; 7 pgs.; retrieved/printed: Mar. 24, 2016. |
Youtube; Merci Retrieval System X Series Animation; uploaded Mar. 16, 2009 (product information); posted on May 7, 2009 by SSMDePAUL, time 1:09, retrieved from the internet: https://www.youtube.com/watch?v=MGX7deuFkhc; 3 pgs.; retrieved/printed: Mar. 24, 2016. |
Covidien; Solitaire(TM) AS Neurovascular Remodeling Device (product information); retrieved from the internet: http://www.ev3.net/neuro/intl/remodeling-devices/solitaire-ab.htm;© 2015; 2 pgs.; retrieved/printed: Mar. 24, 2016. |
International Search Report and Written Opinion for International App. No. PCT/US21/35965, Date of Filing: Jun. 4, 2021, Applicant: Inari Medical, Inc., Date of Mailing: Sep. 28, 2021, 12 pages. |
International Search Report and Written Opinion for International App. No. PCT/US21/45072 Date of Filing: Aug. 6, 2021, Applicant: Inari Medical, Inc., Date of Mailing: Jan. 20, 2022, 10 pages. |
International Search Report and Written Opinion for International App. No. PCT/US21/58793; Date of Filing: Nov. 10, 2021, Applicant: Inari Medical, Inc., Date of Mailing: Mar. 16, 2022, 13 pages. |
International Search Report and Written Opinion for International App. No. PCT/US21/59718; Date of Filing: Nov. 17, 2021, Applicant: Inari Medical, Inc., Date of Mailing: Mar. 22, 2022, 13 pages. |
International Search Report and Written Opinion for International App. No. PCT/US21/59735; Date of Filing: Nov. 17, 2021, Applicant: Inari Medical, Inc., Date of Mailing: Mar. 22, 2022, 11 pages. |
International Search Report and Written Opinion for International App. No. PCT/US2023/079428; Applicant: Inari Medical, Inc., Date of Mailing: May 29, 2024, 18 pages. |
Extended European Search Report for European Application No. 21818772.2, Applicant: Inari Medical, Inc., Date of Mailing: May 10, 9 pages. |
Chinese Office Action received for Application No. 202111061740.2, Applicant: Inari Medical, Inc, Date of Mailing: May 23, 2024, 15 pages. |
English translation of Japanese Office Action mailed Jun. 25, 2024 for Japanese Application No. 2022-574456, 5 pages. |
Japanese Office Action mailed Jul. 8, 2024 for Japanese Application No. 2022-522892, 14 pages. |
Chinese first Office Action mailed May 10, 2024 for Chinese Application No. 202080087833.X, 11 pages. |
Partial Supplementary European Search Report received for European Application No. 21852966.7; Applicant: Inari Medical, Inc., Date of Mailing: Jul. 23, 2024, 12 pages. |
Japanese Office Action mailed Aug. 2, 2024 for Japanese Application No. 2023-213724, 3 pages. |
English Translation of Japanese Office Action mailed Jul. 23, 2024 for Japanese Application No. 2022-535535, 11 pages. |
Extended European Search Report received for European Application No. 21895504.5; Applicant: Inari Medical, Inc., Date of Mailing: Aug. 16, 2024, 10 pages. |
English translation of Japanese Office Action mailed Sep. 17, 2024 for Japanese Application No. 2023-203650, 6 pages. |
English machine translation of Japanese Office Action mailed Oct. 10, 2024 for Japanese Application No. 2022-522892, 11 pages. |
Extended European Search Report issued for EP Application No. 20877370.5, Date of Mailing: Oct. 17, 2023, 11 pages. |
International Search Report and Written Opinion for International App. No. PCT/US23/65128; Date of Filing: Mar. 30, 2023, Applicant: Inari Medical, Inc., Date of Mailing: Nov. 14, 2023, 14 pages. |
International Search Report and Written Opinion for International App. No. PCT/US23/66538; Date of Filing: May 3, 2023, Applicant: Inari Medical, Inc., Date of Mailing: Jan. 4, 2024, 14 pages. |
English translation of Japanese Office Action received for JP Application No. 2022-574456, Applicant: Inari Medical, Inc, Date of Mailing: Jan. 23, 2024, 12 pages. |
Chinese First Office Action received for CN Application No. 201980067623.1, Applicant: Inari Medical, Inc., Date of Mailing: Jan. 31, 2024, 10 pages. |
International Search Report and Written Opinion for International App. No. PCT/US23/73765; Date of Filing: Sep. 8, 2023, Applicant: Inari Medical, Inc., Date of Mailing: Feb. 28, 2024, 7 pages. |
International Search Report and Written Opinion for International App. No. PCT/US23/69892; Date of Filing: Jul. 10, 2023, Applicant: Inari Medical, Inc., Date of Mailing: Feb. 29, 2024, 12 pages. |
English translation of Japanese Office Action mailed Jan. 19, 2024 for Japanese Application No. 2022-160947, 8 pages. |
International Search Report and Written Opinion for International App. No. PCT/US2024/010875; Applicant: Inari Medical, Inc., Date of Mailing: Apr. 26, 2024, 15 pages. |
International Search Report and Written Opinion for International App. No. PCT/US23/60927; Date of Filing: Jan. 19, 2023, Applicant: Inari Medical, Inc., Date of Mailing: Jul. 20, 2023, 12 pages. |
International Search Report and Written Opinion for International App. No. PCT/US23/60502; Date of Filing: Jan. 11, 2023, Applicant: Inari Medical, Inc., Date of Mailing: May 25, 2023, 9 pages. |
International Search Report and Written Opinion for International App. No. PCT/US23/61256; Date of Filing: Jan. 25, 2023, Applicant: Inari Medical, Inc., Date of Mailing: Jun. 7, 2023, 8 pages. |
Gross et al., “Dump the pump: manual aspiration thrombectomy (MAT) with a syringe is technically effective, expeditious, and cost-efficient,” J NeuroIntervent Surg, 2018, 4 pages. |
International Search Report and Written Opinion for International App. No. PCT/US2024/043504; Applicant: Inari Medical, Inc., Date of Mailing: Nov. 12, 2024, 12 pages. |
International Search Report and Written Opinion for International App. No. PCT/US2024/037570; Applicant: Inari Medical, Inc., Date of Mailing: Nov. 20, 2024, 12 pages. |
International Search Report and Written Opinion for International App. No. PCT/US2024/046723; Applicant: Inari Medical, Inc., Date of Mailing: Nov. 27, 2024, 11 pages. |
English translation of Chinese Office Action mailed Jan. 22, 2025 for Chinese Application No. 202210842779.6, 17 pages. |
Extended European Search Report received for European Application No. 24209030.6; Applicant: Inari Medical, Inc., Date of Mailing: Feb. 3, 2025, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20230218310 A1 | Jul 2023 | US |
Number | Date | Country | |
---|---|---|---|
63298399 | Jan 2022 | US |