Embodiments of devices and methods herein are directed to blocking a flow of fluid through a tubular vessel or into a small interior chamber of a saccular cavity or vascular defect within a mammalian body. More specifically, embodiments herein are directed to devices and methods for treatment of a vascular defect of a patient including some embodiments directed specifically to the treatment of cerebral aneurysms of patients.
The mammalian circulatory system is comprised of a heart, which acts as a pump, and a system of blood vessels that transport the blood to various points in the body. Due to the force exerted by the flowing blood on the blood vessel the blood vessels may develop a variety of vascular defects. One common vascular defect known as an aneurysm results from the abnormal widening of the blood vessel. Typically, vascular aneurysms are formed as a result of the weakening of the wall of a blood vessel and subsequent ballooning and expansion of the vessel wall. If, for example, an aneurysm is present within an artery of the brain, and the aneurysm should burst with resulting cranial hemorrhaging, death could occur.
Surgical techniques for the treatment of cerebral aneurysms typically involve a craniotomy requiring creation of an opening in the skull of the patient through which the surgeon can insert instruments to operate directly on the patient's brain. For some surgical approaches, the brain must be retracted to expose the parent blood vessel from which the aneurysm arises. Once access to the aneurysm is gained, the surgeon places a clip across the neck of the aneurysm thereby preventing arterial blood from entering the aneurysm. Upon correct placement of the clip the aneurysm will be obliterated in a matter of minutes. Surgical techniques may be effective treatment for many aneurysms. Unfortunately, surgical techniques for treating these types of conditions include major invasive surgical procedures that often require extended periods of time under anesthesia involving high risk to the patient. Such procedures thus require that the patient be in generally good physical condition in order to be a candidate for such procedures.
Various alternative and less invasive procedures have been used to treat cerebral aneurysms without resorting to major surgery. Some such procedures involve the delivery of embolic or filling materials into an aneurysm. The delivery of such vaso-occlusion devices or materials may be used to promote hemostasis or fill an aneurysm cavity entirely. Vaso-occlusion devices may be placed within the vasculature of the human body, typically via a catheter, either to block the flow of blood through a vessel with an aneurysm through the formation of an embolus or to form such an embolus within an aneurysm stemming from the vessel. A variety of implantable, coil-type vaso-occlusion devices are known. The coils of such devices may themselves be formed into a secondary coil shape, or any of a variety of more complex secondary shapes. Vaso-occlusive coils are commonly used to treat cerebral aneurysms but suffer from several limitations including poor packing density, compaction due to hydrodynamic pressure from blood flow, poor stability in wide-necked aneurysms and complexity and difficulty in the deployment thereof as most aneurysm treatments with this approach require the deployment of multiple coils.
Another approach to treating aneurysms without the need for invasive surgery involves the placement of sleeves or stents into the vessel and across the region where the aneurysm occurs. Such devices maintain blood flow through the vessel while reducing blood pressure applied to the interior of the aneurysm. Certain types of stents are expanded to the proper size by inflating a balloon catheter, referred to as balloon expandable stents, while other stents are designed to elastically expand in a self-expanding manner. Some stents are covered typically with a sleeve of polymeric material called a graft to form a stent-graft. Stents and stent-grafts are generally delivered to a preselected position adjacent a vascular defect through a delivery catheter. In the treatment of cerebral aneurysms, covered stents or stent-grafts have seen very limited use due to the likelihood of inadvertent occlusion of small perforator vessels that may be near the vascular defect being treated.
In addition, current uncovered stents are generally not sufficient as a stand-alone treatment. In order for stents to fit through the microcatheters used in small cerebral blood vessels, their density is usually reduced such that when expanded there is only a small amount of stent structure bridging the aneurysm neck. Thus, they do not block enough flow to cause clotting of the blood in the aneurysm and are thus generally used in combination with vaso-occlusive devices, such as the coils discussed above, to achieve aneurysm occlusion.
A number of aneurysm neck bridging devices with defect spanning portions or regions have been attempted; however, none of these devices has had a significant measure of clinical success or usage. A major limitation in their adoption and clinical usefulness is the inability to position the defect spanning portion to assure coverage of the neck. Existing stent delivery systems that are neurovascular compatible (i.e., deliverable through a microcatheter and highly flexible) do not have the necessary rotational positioning capability. Another limitation of many aneurysm bridging devices described in the prior art is the poor flexibility. Cerebral blood vessels are tortuous and a high degree of flexibility is required for effective delivery to most aneurysm locations in the brain.
What has been needed are devices and methods for delivery and use in small and tortuous blood vessels that can substantially block the flow of blood into an aneurysm, such as a cerebral aneurysm. In addition, what has been needed are methods and devices suitable for blocking blood flow in cerebral aneurysms over an extended period of time without a significant risk of deformation, compaction or dislocation.
In one embodiment of the invention, a device for removal of thrombus from a blood vessel is described. The device includes an expandable cylindrical structure having a proximal end and a distal end, and being formed from a plurality of wires, wherein adjacent wires are engaged to each other by a plurality of twists. The plurality of wires is secured together at the distal end and the proximal end of the cylindrical structure. The cylindrical structure has a radially constrained state and an expanded relaxed state. The device also includes a self-expanding resilient permeable shell having a proximal end, a distal end, and a longitudinal axis. The self-expanding resilient permeable shell includes a plurality of elongate resilient filaments having a braided structure with a plurality of openings, wherein the plurality of filaments is secured at proximal and distal ends. The self-expanding permeable shell has a radially constrained elongated state and an expanded relaxed state with a globular, axially shortened configuration relative to the radially constrained state. The self-expanding permeable shell is enclosed within the expandable cylindrical structure and positioned at the distal end of the expandable cylindrical structure.
In another embodiment of the invention, a method for removing a thrombus having a proximal and distal end from a blood vessel is described. A thrombus removal device is obtained. The thrombus removal device includes an expandable cylindrical structure having a proximal end, a middle portion, and a distal end. The expandable cylindrical structure is formed from a plurality of wires, wherein adjacent wires are engaged to each other by a plurality of twists, the plurality of wires secured together at distal ends and secured together at proximal ends. The cylindrical structure has a radially constrained state and an expanded relaxed state. The thrombus removal device also includes a self-expanding resilient permeable shell having a proximal end, a distal end, and a longitudinal axis. The self-expanding resilient permeable shell includes a plurality of elongate resilient filaments having a braided structure with a plurality of openings, wherein the plurality of filaments is secured at proximal and distal ends. The self-expanding permeable shell has a radially constrained elongated state and an expanded relaxed state with a globular, axially shortened configuration relative to the radially constrained state. The self-expanding permeable shell is enclosed within the expandable cylindrical structure and positioned at the distal end of the expandable cylindrical structure. The thrombus removal device is slideably positioned within a microcatheter and the microcatheter is inserted into the patient, the expandable cylindrical structure and self-expanding resilient permeable shell both being in the radially constrained state within the microcatheter. The distal end of the microcatheter is positioned adjacent a distal end of the thrombus. The thrombus removal device is deployed from the microcatheter by relative displacement of the thrombus removal device and the microcatheter. Upon deployment, the proximal end of the self-expanding resilient permeable shell located within the expandable cylindrical structure is located distal of the thrombus and the middle portion of the expandable cylindrical structure overlaps the proximal and distal ends of the thrombus, wherein the self-expanding resilient permeable shell and the expandable cylindrical structure moves toward their expanded states once the thrombus removal device is advanced out of the microcatheter. The expandable expanded cylindrical structure with the self-expanding resilient permeable shell at the distal end of the cylindrical structure is then moved in a proximal direction, thereby detaching the thrombus or thrombi from the endoluminal surface of the vessel and capturing the thrombus in the expandable cylindrical structure. The thrombus removal device and the captured thrombus or thrombi are then removed from the blood vessel.
The thrombus removal device and the microcatheter may be removed together from the blood vessel. Alternatively, the thrombus removal device may be removed from the microcatheter and the microcatheter may be left in place in the blood vessel. The thrombus removal device and the microcatheter may be removed together from the patient. Alternatively, the thrombus removal device may be removed from the microcatheter and the microcatheter may be left in place in the patient. The self-expanding permeable shell may have a braid density sufficiently high to maintain the thrombus within the cylindrical structure and also allow blood to flow through the self-expanding permeable shell.
In another embodiment of the invention, a device for treatment of an aneurysm is described. The device includes a distal self-expanding resilient permeable shell having a proximal end, a distal end, and a longitudinal axis. The distal permeable shell includes a plurality of elongate resilient filaments having a braided structure with a plurality of openings formed between the braided filaments. The plurality of filaments is gathered at least at the proximal end thereof. The distal permeable shell has a radially constrained elongated state configured for delivery within a microcatheter and an expanded state with an axially shortened configuration relative to the radially constrained state, wherein the expanded state of the distal permeable shell has a convex shape at the distal end of the distal permeable shell. The device also includes a proximal self-expanding resilient permeable shell having a proximal end, a distal end, and a longitudinal axis. The proximal permeable shell includes a plurality of elongate resilient filaments having a braided structure with a plurality of openings formed between the braided filaments. The plurality of filaments is gathered at least at the proximal end thereof. The proximal permeable shell has a radially constrained elongated state configured for delivery within a microcatheter and an expanded state with an axially shortened configuration relative to the radially constrained state, wherein the expanded state of the proximal permeable shell has a generally convex shape at the proximal end of the proximal permeable shell. The device also includes an elongate support member having a proximal end and a distal end. The elongate support member is positioned between the distal and proximal permeable shells. The expanded states of the distal and proximal permeable shells define a toroidal cavity through which the elongate support member extends.
The average size of the plurality of openings in the distal permeable shell may be larger than an average size of the plurality of openings in the proximal permeable shell. The average size of the plurality of openings in the distal permeable shell may be about 300 μm to about 900 μm, alternatively about 300 μm to about 700 μm, alternatively 300 μm to about 500 μm. The average size of the plurality of openings in the proximal permeable shell may be about 50 μm to about 200 μm, alternatively about 100 μm to about 200 μm, or alternatively about 50 μm to about 150 μm. The braided structure of the distal permeable shell may have a first braid density and the braided structure of the proximal permeable shell may have a second braid density. The first braid density may be greater than the second braid density. The first braid density may be between about 0.10 and 0.20, or alternatively between about 0.10 and 0.15. The second braid density may be between about 0.15 and 0.40, alternatively between about 0.17 and 0.30.
The elongate support member may be rigid or it may be a coil. If the elongate support member is rigid, it may be formed from a hypo tube. If the elongate support member is a coil, it may be an extension spring. At rest, the extension spring is not compressible to a smaller length. The elongate support member may have a length between about 2 mm and about 10 mm, alternatively between about 3 mm and about 8 mm, or alternatively between about 3.5 mm and about 5.5 mm. The extension spring may have a length between about 2 mm and about 10 mm, alternatively between about 3 mm and about 8 mm, and alternatively between about 3.5 mm and about 5.5 mm. The rigid support member may have a length between about 2 mm and about 10 mm, alternatively between about 3 mm and about 8 mm, or alternatively between about 3.5 mm and about 5.5 mm.
The plurality of filaments that make up the distal and proximal permeable shells may include nitinol wires, drawn filled tubes, and mixtures thereof. The plurality of filaments of the distal permeable shell may be gathered at the distal end of the distal permeable shell. Moreover, each of the plurality of filaments of the distal permeable shell has a first end and a second end. The first and second ends of the plurality of filaments of the distal permeable shell may be gathered at the proximal end of the distal permeable shell.
The expanded shape of the distal permeable shell may contact the expanded shape of the proximal permeable shell. The expanded shape of the distal permeable shell and the expanded shape of the proximal permeable shell may also form a substantially globular shape.
In another embodiment of the invention, a method for treating a cerebral aneurysm is described. The method includes the step of providing an implant having a distal self-expanding resilient permeable shell, a proximal self-expanding resilient permeable shell, and an elongate support member positioned between the distal and proximal permeable shells. The distal self-expanding resilient permeable shell has a proximal end, a distal end, and a longitudinal axis, and includes a plurality of elongate resilient filaments having a braided structure with a plurality of openings formed between the braided filaments. The plurality of filaments are gathered at least at the proximal end thereof, wherein the distal permeable shell has a radially constrained elongated state configured for delivery within a microcatheter and an expanded state with an axially shortened configuration relative to the radially constrained state, wherein the expanded state of the distal permeable shell has a convex shape at the distal end of the distal permeable shell.
In one embodiment of the invention, a device for treatment of an aneurysm within a patient's vasculature is described. The device includes a self-expanding resilient permeable shell having a proximal end, a distal end, and a longitudinal axis. The shell is made of a plurality of elongate resilient filaments having a braided structure, wherein the plurality of filaments are secured at least at one of the proximal end or the distal end thereof. The permeable shell has a plurality of openings formed between the braided filaments. The device also includes a metallic coil formed from a wire having a first diameter. The metallic coil is secured at the distal end of the self-expanding resilient permeable shell. The permeable shell has a radially constrained elongated state configured for delivery within a microcatheter and has an expanded state with a globular, axially shortened configuration relative to the radially constrained state. The metallic coil has a linear, straightened shape configured for delivery within a microcatheter and an expanded state having at least one loop having a secondary diameter.
The metallic coil may be configured to place a bias on the permeable shell when the permeable shell is in the expanded state within an aneurysm. When at least partially compressed in an axial direction, the metallic coil can apply an axial bias of at least 0.27 grams, alternatively at least 2.67 grams, alternatively at least 16.6 grams, alternatively between about 0.27 grams and about 40 grams, alternatively between about 2.67 grams and about 30 grams, alternatively between about 16.6 grams and about 20 grams.
In another embodiment of the invention, methods for treating a cerebral aneurysm are described. An implant structure is provided. The implant structure includes a self-expanding resilient permeable shell having a proximal end, a distal end, and a longitudinal axis. The shell includes a plurality of elongate resilient filaments having a braided structure, wherein the plurality of filaments are secured at least at one of the proximal end or the distal end thereof. The implant structure also includes a metallic coil formed from a wire having a first diameter, wherein the metallic coil is secured at the distal end of the self-expanding resilient permeable shell. The permeable shell has a plurality of openings formed between the braided filaments. The device also includes a metallic coil formed from a wire having a first diameter. The metallic coil is secured at the distal end of the self-expanding resilient permeable shell. The permeable shell has a radially constrained elongated state configured for delivery within a microcatheter and has an expanded state with a globular, axially shortened configuration relative to the radially constrained state. The metallic coil has a linear, straightened shape configured for delivery within a microcatheter and an expanded state having at least one loop having a secondary diameter. The implant is advanced within a microcatheter to a region near the cerebral aneurysm. The implant is deployed within the cerebral aneurysm such that the metallic coil is positioned near a dome of the cerebral aneurysm and assumes the expanded state, and the permeable shell assumes the expanded deployed state within the cerebral aneurysm. The microcatheter is then withdrawn from the region near the cerebral aneurysm after the implant is deployed.
Once deployed in the cerebral aneurysm, the metallic coil may push the permeable shell against an opening of the cerebral aneurysm. The metallic coil may track around the diameter of the cerebral aneurysm. The secondary diameter of the metallic coil may approximately equal a diameter of the permeable shell. When at least partially compressed, the metallic coil can apply an axial bias of at least 0.27 grams, alternatively at least 2.67 grams, alternatively at least 16.6 grams, alternatively between about 0.27 grams and about 40 grams, alternatively between about 2.67 grams and about 30 grams, alternatively between about 16.6 grams and about 20 grams.
In another embodiment of the invention, a device for treatment of an aneurysm within a patient's vasculature is described. The device includes a self-expanding resilient permeable shell having a proximal end, a distal end, and a longitudinal axis. The shell is made of a plurality of elongate resilient filaments having a braided structure, wherein the plurality of filaments are secured at least at one of the proximal end or the distal end thereof. The permeable shell has a plurality of openings formed between the braided filaments. The device also includes a force biasing member secured at the distal end of the self-expanding resilient permeable shell. The permeable shell has a radially constrained elongated state configured for delivery within a microcatheter and has an expanded state with a globular, axially shortened configuration relative to the radially constrained state. The force biasing member has a linear, straightened shape configured for delivery within a microcatheter and an expanded state after delivery from the microcatheter.
The force biasing member may be configured to place a bias on the permeable shell when the permeable shell is in the expanded state within an aneurysm. When at least partially compressed in an axial direction, the metallic coil can apply an axial bias of at least 0.27 grams, alternatively at least 2.67 grams, alternatively at least 16.6 grams, alternatively between about 0.27 grams and about 40 grams, alternatively between about 2.67 grams and about 30 grams, alternatively between about 16.6 grams and about 20 grams. The force biasing member may be configured to conform to a three-dimensional framing shape. The force biasing member may be made from wire comprising platinum.
The force biasing member may also have a generally circular shape. The plurality of filaments forming the permeable shell may be secured at the distal end. A distal region of at least some of the plurality of filaments extend beyond the distal end of the permeable shell and form an extension having a generally circular shape, which may be the force biasing member. The plurality of filaments may be secured by a cylindrical hub having a proximal and distal end, and the extension may extend from the distal end of the cylindrical hub. The distal regions of filaments forming the extension may be straight or braided or partially braided, or the braid may be partially undone or unraveled.
In another embodiment of the invention, methods for treating a cerebral aneurysm are described. An implant structure is provided. The implant structure includes a self-expanding resilient permeable shell having a proximal end, a distal end, and a longitudinal axis. The shell includes a plurality of elongate resilient filaments having a braided structure, wherein the plurality of filaments are secured at least at one of the proximal end or the distal end thereof. The device also includes a force biasing member secured at the distal end of the self-expanding resilient permeable shell. The permeable shell has a plurality of openings formed between the braided filaments. The permeable shell has a radially constrained elongated state configured for delivery within a microcatheter and has an expanded state with a globular, axially shortened configuration relative to the radially constrained state. The force biasing member has a linear, straightened shape configured for delivery within a microcatheter and an expanded state after delivery from the microcatheter. The implant is advanced within a microcatheter to a region near the cerebral aneurysm. The implant is deployed within the cerebral aneurysm such that the force biasing member is positioned near a dome of the cerebral aneurysm and assumes the expanded state, and the permeable shell assumes the expanded deployed state within the cerebral aneurysm. The microcatheter is then withdrawn from the region near the cerebral aneurysm after the implant is deployed.
Once deployed in the cerebral aneurysm, the force biasing member may push the permeable shell against an opening of the cerebral aneurysm. When at least partially compressed in an axial direction, the metallic coil can apply an axial bias of at least 0.27 grams, alternatively at least 2.67 grams, alternatively at least 16.6 grams, alternatively between about 0.27 grams and about 40 grams, alternatively between about 2.67 grams and about 30 grams, alternatively between about 16.6 grams and about 20 grams. The force biasing member may be configured to conform to a three-dimensional framing shape. The force biasing member may be made from wire comprising platinum.
In another embodiment, a device for treatment of an aneurysm within a patient's vasculature is described. The device includes a self-expanding resilient permeable shell having a proximal end, a distal end, and a longitudinal axis. The shell includes a plurality of elongate resilient filaments having a braided structure. The plurality of filaments are secured at the distal end of the permeable shell. Distal regions of at least some of the plurality of filaments extend beyond the distal end of the permeability shell and form an extension having a generally circular shape when expanded. The plurality of filaments may be secured by a cylindrical hub having a proximal and distal end, and the extension may extend from the distal end of the cylindrical hub. The distal regions of filaments forming the extension may be straight or braided or partially braided, or the braid may be partially undone or unraveled.
In another embodiment of the invention, methods for treating a cerebral aneurysm are described. An implant structure is provided. The implant structure includes a self-expanding resilient permeable shell having a proximal end, a distal end, and a longitudinal axis. The shell includes a plurality of elongate resilient filaments having a braided structure. The plurality of filaments are secured at the distal end of the permeable shell. Distal regions of at least some of the plurality of filaments extend beyond the distal end of the permeability shell and form an extension having a generally circular shape when expanded. The implant is advanced within a microcatheter to a region near the cerebral aneurysm. The implant is deployed within the cerebral aneurysm such that the extension is positioned near a dome of the cerebral aneurysm and assumes the generally circular expanded state, and the permeable shell assumes the expanded deployed state within the cerebral aneurysm. The microcatheter is then withdrawn from the region near the cerebral aneurysm after the implant is deployed. The plurality of filaments may be secured by a cylindrical hub having a proximal and distal end, and the extension may extend from the distal end of the cylindrical hub. The distal regions of filaments forming the extension may be straight or braided or partially braided, or the braid may be partially undone or unraveled.
Discussed herein are devices and methods for the treatment of vascular defects that are suitable for minimally invasive deployment within a patient's vasculature, and particularly, within the cerebral vasculature of a patient. For such embodiments to be safely and effectively delivered to a desired treatment site and effectively deployed, some device embodiments may be configured for collapse to a low profile constrained state with a transverse dimension suitable for delivery through an inner lumen of a microcatheter and deployment from a distal end thereof. Embodiments of these devices may also maintain a clinically effective configuration with sufficient mechanical integrity once deployed so as to withstand dynamic forces within a patient's vasculature over time that may otherwise result in compaction of a deployed device. It may also be desirable for some device embodiments to acutely occlude a vascular defect of a patient during the course of a procedure in order to provide more immediate feedback regarding success of the treatment to a treating physician. Unless otherwise stated, one or more of the features, dimensions, or materials of the various embodiments may be used in other similar embodiments discussed herein.
Some embodiments are particularly useful for the treatment of cerebral aneurysms by reconstructing a vascular wall so as to wholly or partially isolate a vascular defect from a patient's blood flow. Some embodiments may be configured to be deployed within a vascular defect to facilitate reconstruction, bridging of a vessel wall or both in order to treat the vascular defect. For some of these embodiments, a permeable shell of the device may be configured to anchor or fix the permeable shell in a clinically beneficial position. For some embodiments, the device may be disposed in whole or in part within the vascular defect in order to anchor or fix the device with respect to the vascular structure or defect. The permeable shell may be configured to span an opening, neck or other portion of a vascular defect in order to isolate the vascular defect, or a portion thereof, from the patient's nominal vascular system in order allow the defect to heal or to otherwise minimize the risk of the defect to the patient's health.
For some or all of the embodiments of devices for treatment of a patient's vasculature discussed herein, the permeable shell or layer, or permeable shells or layers, of the device or devices may be configured to allow some initial perfusion of blood through the permeable shell or layer. The porosity of the permeable shell may be configured to sufficiently isolate the vascular defect so as to promote healing and isolation of the defect, but allow sufficient initial flow through the permeable shell so as to reduce or otherwise minimize the mechanical force exerted on the membrane the dynamic flow of blood or other fluids within the vasculature against the device. For some embodiments of devices for treatment of a patient's vasculature, only a portion of the permeable shell that spans the opening or neck of the vascular defect, sometimes referred to as a defect spanning portion, need be permeable and/or conducive to thrombus formation in a patient's bloodstream. For such embodiments, that portion of the device that does not span an opening or neck of the vascular defect may be substantially non-permeable or completely permeable with a pore or opening configuration that is too large to effectively promote thrombus formation. In addition, a portion of the permeable shell that is initially permeable or semi-permeable to blood flow may become substantially non-permeable or completely non-permeable due to thrombus formation on the filaments of the device. In some cases, thrombus formation on filaments of the permeable shell or any other portion of the device may serve to decrease the pore size between the filaments or close off the pores of the permeable shell completely.
In general, it may be desirable in some cases to use a hollow, thin walled device with a permeable shell of resilient material that may be constrained to a low profile for delivery within a patient. Such a device may also be configured to expand radially outward upon removal of the constraint such that the shell of the device assumes a larger volume and fills or otherwise occludes a vascular defect within which it is deployed. The outward radial expansion of the shell may serve to engage some or all of an inner surface of the vascular defect whereby mechanical friction between an outer surface of the permeable shell of the device and the inside surface of the vascular defect effectively anchors the device within the vascular defect. Some embodiments of such a device may also be partially or wholly mechanically captured within a cavity of a vascular defect, particularly where the defect has a narrow neck portion with a larger interior volume. In order to achieve a low profile and volume for delivery and be capable of a high ratio of expansion by volume, some device embodiments include a matrix of woven or braided filaments that are coupled together by the interwoven structure so as to form a self-expanding permeable shell having a pore or opening pattern between couplings or intersections of the filaments that is substantially regularly spaced and stable, while still allowing for conformity and volumetric constraint.
As used herein, the terms woven and braided are used interchangeably to mean any form of interlacing of filaments to form a mesh structure. In the textile and other industries, these terms may have different or more specific meanings depending on the product or application such as whether an article is made in a sheet or cylindrical form. For purposes of the present disclosure, these terms are used interchangeably.
For some embodiments, three factors may be critical for a woven or braided wire occlusion device for treatment of a patient's vasculature that can achieve a desired clinical outcome in the endovascular treatment of cerebral aneurysms. We have found that for effective use in some applications, it may be desirable for the implant device to have sufficient radial stiffness for stability, limited pore size for near-complete acute (intra-procedural) occlusion, and a collapsed profile that is small enough to allow insertion through an inner lumen of a microcatheter. A device with a radial stiffness below a certain threshold may be unstable and may be at higher risk of undesired movement and embolization of the wrong region of the vasculature in some cases. Larger pores between filament intersections in a braided or woven structure may not generate thrombus and occlude a vascular defect in an acute setting and thus may not give a treating physician or health professional such clinical feedback that the flow disruption will lead to a complete and lasting occlusion of the vascular defect being treated. Delivery of a device for treatment of a patient's vasculature through a standard microcatheter may be highly desirable to allow access through the tortuous cerebral vasculature in the manner that a treating physician is accustomed.
For some embodiments, it may be desirable to use filaments having two or more different diameters or transverse dimensions to form a permeable shell in order to produce a desired configuration as discussed in more detail below. The radial stiffness of a two-filament (two different diameters) woven device may be expressed as a function of the number of filaments and their diameters, as follows:
Sradial=(1.2×106 lbf/D4)(Nldl4+Nsds4)
Using this expression, the radial stiffness Sradial may be between about 0.014 and about 0.284 lbf force for some embodiments of particular clinical value. In some embodiments, the radial stiffness Sradial may be between about 0.015 and about 0.065 lbf. In some embodiments, the radial stiffness Sradial may be measured at a deformation of about 50%.
The maximum pore size in a portion of a device that spans a neck or opening of a vascular defect desirable for some useful embodiments of a woven wire device for treatment of a patient's vasculature may be expressed as a function of the total number of all filaments, filament diameter and the device diameter. The difference between filament sizes where two or more filament diameters or transverse dimensions are used may be ignored in some cases for devices where the filament size(s) are very small compared to the device dimensions. For a two-filament device, i.e., a device made from filaments of two different sizes, the smallest filament diameter may be used for the calculation. Thus, the maximum pore size for such embodiments may be expressed as follows:
Pmax=(1.7/NT)(πD−(NTdw/2))
Using this expression, the maximum pore size, Pmax, of a portion of a device that spans an opening of a vascular defect or neck, or any other suitable portion of a device, may be less than about 0.016 inches or about 400 microns for some embodiments. In some embodiments the maximum pore size for a defect spanning portion or any other suitable portion of a device may be less than about 0.012 inches or about 300 microns. In some embodiments, the maximum pore size for a defect spanning portion or any other suitable portion of a device may be less than about 0.008 inches or about 200 microns.
The collapsed profile of a two-filament (profile having two different filament diameters) woven filament device may be expressed as the function:
Pc=1.48((Nldl2+Nsds2))1/2
Using this expression, the collapsed profile Pc may be less than about 1.0 mm for some embodiments of particular clinical value. In some embodiments of particular clinical value, the device may be constructed so as to have all three factors (Sradial, Pmax and Pc) above within the ranges discussed above; Sradial between about 0.014 lbf and about 0.284 lbf, or between about 0.015 lbf and about 0.065 lbf, Pmax less than about 300 microns and Pc less than about 1.0 mm, simultaneously. In some such embodiments, the device may be made to include about 70 filaments to about 300 filaments. In some cases, the filaments may have an outer transverse dimension or diameter of about 0.0004 inches to about 0.002 inches. In some cases the filaments may have an outer transverse dimension or diameter of about 0.0005 inches to about 0.0015 inches. In some cases the filaments may have an outer transverse dimension or diameter of about 0.00075 inches to about 0.00125 inches.
As has been discussed, some embodiments of devices for treatment of a patient's vasculature call for sizing the device which approximates (or with some over-sizing) the vascular site dimensions to fill the vascular site. One might assume that scaling of a device to larger dimensions and using larger filaments would suffice for such larger embodiments of a device. However, for the treatment of brain aneurysms, the diameter or profile of the radially collapsed device is limited by the catheter sizes that can be effectively navigated within the small, tortuous vessels of the brain. Further, as a device is made larger with a given or fixed number of resilient filaments having a given size or thickness, the pores or openings between junctions of the filaments become correspondingly larger. In addition, for a given filament size the flexural modulus or stiffness of the filaments and thus the structure decrease with increasing device dimension. Flexural modulus may be defined as the ratio of stress to strain. Thus, a device may be considered to have a high flexural modulus or be stiff if the strain (deflection) is low under a given force. A stiff device may also be said to have low compliance.
To properly configure larger size devices for treatment of a patient's vasculature, it may be useful to model the force on a device when the device is deployed into a vascular site or defect, such as a blood vessel or aneurysm, that has a diameter or transverse dimension that is smaller than a nominal diameter or transverse dimension of the device in a relaxed unconstrained state. As discussed, it may be advisable to “over-size” the device in some cases so that there is a residual force between an outside surface of the device and an inside surface of the vascular wall. The inward radial force on a device 10 that results from over-sizing is illustrated schematically in
Deflection of Beam=5FL4/384EI
Thus, as the size of the device increases and L increases, the compliance increases substantially. Accordingly, an outward radial force exerted by an outside surface of the filaments 14 of the device 10 against a constraining force when inserted into a vascular site such as blood vessel or aneurysm is lower for a given amount of device compression or over-sizing. This force may be important in some applications to assure device stability and to reduce the risk of migration of the device and potential distal embolization.
In some embodiments, a combination of small and large filament sizes may be utilized to make a device with a desired radial compliance and yet have a collapsed profile that is configured to fit through an inner lumen of commonly used microcatheters. A device fabricated with even a small number of relatively large filaments 14 can provide reduced radial compliance (or increased stiffness) compared to a device made with all small filaments. Even a relatively small number of larger filaments may provide a substantial increase in bending stiffness due to change in the moment of Inertia that results from an increase in diameter without increasing the total cross sectional area of the filaments. The moment of inertia (I) of a round wire or filament may be defined by the equation:
I=πd4/64
Since the moment of inertia is a function of filament diameter to the fourth power, a small change in the diameter greatly increases the moment of inertia. Thus, a small change in filament size can have substantial impact on the deflection at a given load and thus the compliance of the device.
Thus, the stiffness can be increased by a significant amount without a large increase in the cross sectional area of a collapsed profile of the device 10. This may be particularly important as device embodiments are made larger to treat large aneurysms. While large cerebral aneurysms may be relatively rare, they present an important therapeutic challenge as some embolic devices currently available to physicians have relatively poor results compared to smaller aneurysms.
As such, some embodiments of devices for treatment of a patient's vasculature may be formed using a combination of filaments 14 with a number of different diameters such as 2, 3, 4, 5 or more different diameters or transverse dimensions. In device embodiments where filaments with two different diameters are used, some larger filament embodiments may have a transverse dimension of about 0.001 inches to about 0.004 inches and some small filament embodiments may have a transverse dimension or diameter of about 0.0004 inches and about 0.0015 inches, more specifically, about 0.0004 inches to about 0.001 inches. Some structures may use filaments having a transverse dimension of up to about 0.001 inches. The ratio of the number of large filaments to the number of small filaments may be between about 2 and 12 and may also be between about 4 and 8. In some embodiments, the difference in diameter or transverse dimension between the larger and smaller filaments may be less than about 0.004 inches, more specifically, less than about 0.0035 inches, and even more specifically, less than about 0.002 inches. As discussed generally above, it may not always be necessary for all wires or filaments to meet the parameters for the various relationships discussed herein. This may be particularly true where relatively large numbers of filaments are being used for a distinct structure. In some cases, a filamentary structure may meet the relationship constraints discussed herein where the predominance of filaments of a permeable shell or inner structure meet a size constraint.
As discussed above, device embodiments 10 for treatment of a patient's vasculature may include a plurality of wires, fibers, threads, tubes or other filamentary elements that form a structure that serves as a permeable shell. For some embodiments, a globular shape may be formed from such filaments by connecting or securing the ends of a tubular braided structure. For such embodiments, the density of a braided or woven structure may inherently increase at or near the ends where the wires or filaments 14 are brought together and decrease at or near a middle portion 30 disposed between a proximal end 32 and distal end 34 of the permeable shell 40.
For some embodiments, an end or any other suitable portion of a permeable shell 40 may be positioned in an opening or neck of a vascular defect such as an aneurysm for treatment. As such, a braided or woven filamentary device with a permeable shell may not require the addition of a separate defect spanning structure having properties different from that of a nominal portion of the permeable shell to achieve hemostasis and occlusion of the vascular defect. Such a filamentary device may be fabricated by braiding, weaving or other suitable filament fabrication techniques. Such device embodiments may be shape set into a variety of three dimensional shapes such as discussed herein.
Referring to
As shown in
As such, once the device 10 is deployed, any blood flowing through the permeable shell may be slowed to a velocity below the thrombotic threshold velocity and thrombus will begin to form on and around the openings in the permeable shell 40. Ultimately, this process may be configured to produce acute occlusion of the vascular defect within which the device 10 is deployed. For some embodiments, at least the distal end of the permeable shell 40 may have a reverse bend in an everted configuration such that the secured distal ends 62 of the filaments 14 are withdrawn axially within the nominal permeable shell structure or contour in the expanded state. For some embodiments, the proximal end of the permeable shell further includes a reverse bend in an everted configuration such that the secured proximal ends 60 of the filaments 14 are withdrawn axially within the nominal permeable shell structure 40 in the expanded state. As used herein, the term everted may include a structure that is everted, partially everted and/or recessed with a reverse bend as shown in the device embodiment of
The elongate resilient filaments 14 of the permeable shell 40 may be secured relative to each other at proximal ends 60 and distal ends 62 thereof by one or more methods including welding, soldering, adhesive bonding, epoxy bonding or the like. In addition to the ends of the filaments being secured together, a distal hub 66 may also be secured to the distal ends 62 of the thin filaments 14 of the permeable shell 40 and a proximal hub 68 secured to the proximal ends 60 of the thin filaments 14 of the permeable shell 40. The proximal hub 68 may include a cylindrical member that extends proximally beyond the proximal ends 60 of the thin filaments so as to form a cavity 70 within a proximal portion of the proximal hub 68. The proximal cavity 70 may be used for holding adhesives such as epoxy, solder or any other suitable bonding agent for securing an elongate detachment tether 72 that may in turn be detachably secured to a delivery apparatus such as is shown in
For some embodiments, the elongate resilient filaments 14 of the permeable shell 40 may have a transverse cross section that is substantially round in shape and be made from a superelastic material that may also be a shape memory metal. The shape memory metal of the filaments of the permeable shell 40 may be heat set in the globular configuration of the relaxed expanded state as shown in
The device 10 may have an everted filamentary structure with a permeable shell 40 having a proximal end 32 and a distal end 34 in an expanded relaxed state. The permeable shell 40 has a substantially enclosed configuration for the embodiments shown. Some or all of the permeable shell 40 of the device 10 may be configured to substantially block or impede fluid flow or pressure into a vascular defect or otherwise isolate the vascular defect over some period of time after the device is deployed in an expanded state. The permeable shell 40 and device 10 generally also has a low profile, radially constrained state, as shown in
Proximal ends 60 of at least some of the filaments 14 of the permeable shell 40 may be secured to the proximal hub 68 and distal ends 62 of at least some of the filaments 14 of the permeable shell 40 are secured to the distal hub 66, with the proximal hub 68 and distal hub 66 being disposed substantially concentric to the longitudinal axis 46 as shown in
Some device embodiments 10 having a braided or woven filamentary structure may be formed using about 10 filaments to about 300 filaments 14, more specifically, about 10 filaments to about 100 filaments 14, and even more specifically, about 60 filaments to about 80 filaments 14. Some embodiments of a permeable shell 40 may include about 70 filaments to about 300 filaments extending from the proximal end 32 to the distal end 34, more specifically, about 100 filaments to about 200 filaments extending from the proximal end 32 to the distal end 34. For some embodiments, the filaments 14 may have a transverse dimension or diameter of about 0.0008 inches to about 0.004 inches. The elongate resilient filaments 14 in some cases may have an outer transverse dimension or diameter of about 0.0005 inch to about 0.005 inch, more specifically, about 0.001 inch to about 0.003 inch, and in some cases about 0.0004 inches to about 0.002 inches. For some device embodiments 10 that include filaments 14 of different sizes, the large filaments 48 of the permeable shell 40 may have a transverse dimension or diameter that is about 0.001 inches to about 0.004 inches and the small filaments 50 may have a transverse dimension or diameter of about 0.0004 inches to about 0.0015 inches, more specifically, about 0.0004 inches to about 0.001 inches. In addition, a difference in transverse dimension or diameter between the small filaments 50 and the large filaments 48 may be less than about 0.004 inches, more specifically, less than about 0.0035 inches, and even more specifically, less than about 0.002 inches. For embodiments of permeable shells 40 that include filaments 14 of different sizes, the number of small filaments 50 of the permeable shell 40 relative to the number of large filaments 48 of the permeable shell 40 may be about 2 to 1 to about 15 to 1, more specifically, about 2 to 1 to about 12 to 1, and even more specifically, about 4 to 1 to about 8 to 1.
The expanded relaxed state of the permeable shell 40, as shown in
For some embodiments, the permeable shell 40 may have a first transverse dimension in a collapsed radially constrained state of about 0.2 mm to about 2 mm and a second transverse dimension in a relaxed expanded state of about 4 mm to about 30 mm. For some embodiments, the second transverse dimension of the permeable shell 40 in an expanded state may be about 2 times to about 150 times the first transverse dimension, more specifically, about 10 times to about 25 times the first or constrained transverse dimension. A longitudinal spacing between the proximal end 32 and distal end 34 of the permeable shell 40 in the relaxed expanded state may be about 25% percent to about 75% percent of the spacing between the proximal end 32 and distal end 34 in the constrained cylindrical state. For some embodiments, a major transverse dimension of the permeable shell 40 in a relaxed expanded state may be about 4 mm to about 30 mm, more specifically, about 9 mm to about 15 mm, and even more specifically, about 4 mm to about 8 mm.
An arced portion of the filaments 14 of the permeable shell 40 may have a sinusoidal-like shape with a first or outer radius 88 and a second or inner radius 90 near the ends of the permeable shell 40 as shown in
The first radius 88 and second radius 90 of the permeable shell 40 may be between about 0.12 mm to about 3 mm for some embodiments. For some embodiments, the distance between the proximal end 32 and distal end 34 may be more than about 60% of the overall length of the expanded permeable shell 40. Thus, the largest longitudinal distance between the inner surfaces may be about 60% to about 90% of the longitudinal length of the outer surfaces or the overall length of device 10. A gap between the hubs 66 and 68 at the proximal end 32 and distal end 34 may allow for the distal hub 66 to flex downward toward the proximal hub 68 when the device 10 meets resistance at the distal end and thus provides longitudinal conformance. The filaments 14 may be shaped such that there are no portions that are without curvature over a distance of more than about 2 mm. Thus, for some embodiments, each filament 14 may have a substantially continuous curvature. This substantially continuous curvature may provide smooth deployment and may reduce the risk of vessel perforation. The distal end 34 may be retracted or everted to a greater extent than the proximal end 32 such that the distal end portion of the permeable shell 40 may be more radially conformal than the proximal end portion. Conformability of a distal end portion may provide better device conformance to irregular shaped aneurysms or other vascular defects. A convex surface of the device may flex inward forming a concave surface to conform to curvature of a vascular site.
The pore size defined by the largest circular shapes 100 that may be disposed within openings 64 of the braided structure of the permeable shell 40 without displacing or distorting the filaments 14 surrounding the opening 64 may range in size from about 0.005 inches to about 0.01 inches, more specifically, about 0.006 inches to about 0.009 inches, even more specifically, about 0.007 inches to about 0.008 inches for some embodiments. In addition, at least some of the openings 64 formed between adjacent filaments 14 of the permeable shell 40 of the device 10 may be configured to allow blood flow through the openings 64 only at a velocity below a thrombotic threshold velocity. For some embodiments, the largest openings 64 in the permeable shell structure 40 may be configured to allow blood flow through the openings 64 only at a velocity below a thrombotic threshold velocity. As discussed above, the pore size may be less than about 0.016 inches, more specifically, less than about 0.012 inches for some embodiments. For some embodiments, the openings 64 formed between adjacent filaments 14 may be about 0.005 inches to about 0.04 inches.
Referring to
A heater coil 124 electrically coupled to a first conductor 126 and a second conductor 128 is disposed over a distal most portion of the tether 72. The heater coil 124 may also be covered with a length of polymer tubing 130 disposed over the heater coil 124 distal of the heat shrink tubing 122 that serves to act as a heat shield and minimizes the leakage of heat from the heater coil 124 into the environment, such as the patient's blood stream, around the delivery apparatus 110. Once the heat shrink tubing 122 and insulating polymer tubing 130 have been secured to the distal section 118 of the apparatus 110, the proximal portion of the tether 72 disposed proximal of the heat shrink tubing 122 may be trimmed as shown in
The heater coil 124 may be configured to receive electric current supplied through the first conductor 126 and second conductor 128 from an electrical energy source 142 coupled to the first contact 138 and second contact 140 at the proximal section 136 of the apparatus 110. The electrical current passed through the heater coil 124 heats the heater coil to a temperature above the melting point of the tether material 72 so as to melt the tether 72 and sever it upon deployment of the device 10.
Embodiments of the delivery apparatus 110 may generally have a length greater than the overall length of a microcatheter 61 to be used for the delivery system 112. This relationship allows the delivery apparatus 110 to extend, along with the device 10 secured to the distal end thereof, from the distal port of the inner lumen 120 of the microcatheter 61 while having sufficient length extending from a proximal end 150 of the microcatheter 61, shown in
Other delivery and positioning system embodiments may provide for the ability to rotate a device for treatment of a patient's vasculature in-vivo without translating torque along the entire length of the delivery apparatus. Some embodiments for delivery and positioning of devices 10 are described in co-owned International PCT Patent Application No. PCT/US2008/065694. The delivery and positioning apparatus may include a distal rotating member that allows rotational positioning of the device. The delivery and positioning apparatus may include a distal rotating member that rotates an implant in-vivo without the transmission of torque along the entire length of the apparatus. Optionally, delivery system may also rotate the implant without the transmission of torque in the intermediate portion between the proximal end and the distal rotatable end. The delivery and positioning apparatus may be releasably secured to any suitable portion of the device for treatment of a patient's vasculature.
Device embodiments discussed herein may be releasable from any suitable flexible, elongate delivery apparatus or actuator such as a guidewire or guidewire-like structure. The release of device embodiments from such a delivery apparatus may be activated by a thermal mechanism, as discussed above, electrolytic mechanism, hydraulic mechanism, shape memory material mechanism, or any other mechanism known in the art of endovascular implant deployment.
Embodiments for deployment and release of therapeutic devices, such as deployment of embolic devices or stents within the vasculature of a patient, may include connecting such a device via a releasable connection to a distal portion of a pusher or other delivery apparatus member. The therapeutic device 10 may be detachably mounted to the distal portion of the apparatus by a filamentary tether 72, string, thread, wire, suture, fiber, or the like, which may be referred to above as the tether. The tether 72 may be in the form of a monofilament, rod, ribbon, hollow tube, or the like. Some embodiments of the tether may have a diameter or maximum thickness of between about 0.05 mm and 0.2 mm. The tether 72 may be configured to be able to withstand a maximum tensile load of between about 0.5 kg and 5 kg. For some embodiments, due to the mass of the device 10 being deployed which may be substantially greater than some embolic devices, some known detachment devices may lack sufficient tensile strength to be used for some embodiments discussed herein. As such, it may be desirable to use small very high strength fibers for some tether embodiments having a “load at break” greater than about 15 Newtons. For some embodiments, a tether made from a material known as Dyneema Purity® available from Royal DSM, Heerlen, Netherlands may be used.
The tether 72 may be severed by the input of energy such as electric current to a heating element causing release of the therapeutic device. For some embodiments, the heating element may be a coil of wire with high electrical resistivity such as a platinum-tungsten alloy. The tether member may pass through or be positioned adjacent the heater element. The heater may be contained substantially within the distal portion of the delivery apparatus to provide thermal insulation to reduce the potential for thermal damage to the surrounding tissues during detachment. In another embodiment, current may pass through the tether that also acts as a heating element.
Many materials may be used to make tether embodiments 72 including polymers, metals and composites thereof. One class of materials that may be useful for tethers includes polymers such as polyolefin, polyolefin elastomer such as polyethylene, polyester (PET), polyamide (Nylon), polyurethane, polypropylene, block copolymer such as PEBAX® or Hytrel®, and ethylene vinyl alcohol (EVA); or rubbery materials such as silicone, latex, and Kraton. In some cases, the polymer may also be cross-linked with radiation to manipulate its tensile strength and melt temperature. Another class of materials that may be used for tether embodiment may include metals such as nickel titanium alloy (Nitinol), gold, platinum, tantalum and steel. Other materials that may be useful for tether construction includes wholly aromatic polyester polymers which are liquid crystal polymers (LCP) that may provide high performance properties and are highly inert. A commercially available LCP polymer is Vectran®, which is produced by Kuraray Co. (Tokyo, Japan). The selection of the material may depend on the melting or softening temperature, the power used for detachment, and the body treatment site. The tether may be joined to the implant and/or the pusher by crimping, welding, knot tying, soldering, adhesive bonding, or other means known in the art.
It should be noted also that many variations of filament and proximal hub construction such as is detailed above with regard to
For some embodiments, the permeable shell 40 or portions thereof may be porous and may be highly permeable to liquids. In contrast to most vascular prosthesis fabrics or grafts which typically have a water permeability below 2,000 ml/min/cm2 when measured at a pressure of 120 mmHg, the permeable shell 40 of some embodiments discussed herein may have a water permeability greater than about 2,000 ml/min/cm2, in some cases greater than about 2,500 ml/min/cm2. For some embodiments, water permeability of the permeable shell 40 or portions thereof may be between about 2,000 and 10,000 ml/mi/cm2, more specifically, about 2,000 ml/min/cm2 to about 15,000 ml/min/cm2, when measured at a pressure of 120 mmHg.
Device embodiments and components thereof may include metals, polymers, biologic materials and composites thereof. Suitable metals include zirconium-based alloys, cobalt-chrome alloys, nickel-titanium alloys, platinum, tantalum, stainless steel, titanium, gold, and tungsten. Potentially suitable polymers include but are not limited to acrylics, silk, silicones, polyvinyl alcohol, polypropylene, polyvinyl alcohol, polyesters (e.g., polyethylene terephthalate or PET), PolyEtherEther Ketone (PEEK), polytetrafluoroethylene (PTFE), polycarbonate urethane (PCU) and polyurethane (PU). Device embodiments may include a material that degrades or is absorbed or eroded by the body. A bioresorbable (e.g., breaks down and is absorbed by a cell, tissue, or other mechanism within the body) or bioabsorbable (similar to bioresorbable) material may be used. Alternatively, a bioerodable (e.g., erodes or degrades over time by contact with surrounding tissue fluids, through cellular activity or other physiological degradation mechanisms), biodegradable (e.g., degrades over time by enzymatic or hydrolytic action, or other mechanism in the body), or dissolvable material may be employed. Each of these terms is interpreted to be interchangeable. Potentially suitable bioabsorbable materials include polylactic acid (PLA), poly(alpha-hydroxy acid) such as poly-L-lactide (PLLA), poly-D-lactide (PDLA), polyglycolide (PGA), polydioxanone, polycaprolactone, polygluconate, polylactic acid-polyethylene oxide copolymers, modified cellulose, collagen, poly(hydroxybutyrate), polyanhydride, polyphosphoester, poly(amino acids), or related copolymer materials. An absorbable composite fiber may be made by combining a reinforcement fiber made from a copolymer of about 18% glycolic acid and about 82% lactic acid with a matrix material consisting of a blend of the above copolymer with about 20% polycaprolactone (PCL).
In any of the suitable device embodiments 10 discussed herein, the permeable shell structure 40, or any other suitable permeable shell structure discussed herein, may include one or more fixation elements or surfaces to facilitate fixation of the device within a blood vessel or other vascular site. The fixation elements may comprise hooks, barbs, protrusions, pores, micro-features, texturing, bioadhesives or combinations thereof. Embodiments of the support structure may be fabricated from a tube of metal where portions are removed. The removal of material may be done by laser, electrical discharge machining (EDM), photochemical etching and traditional machining techniques. In any of the described embodiments, the support structure may be constructed with a plurality of wires, cut or etched from a sheet of a material, cut or etched from a tube or a combination thereof as in the art of vascular stent fabrication.
Permeable shell embodiments 40 may be formed at least in part of wire, ribbon, or other filamentary elements 14. These filamentary elements 14 may have circular, elliptical, ovoid, square, rectangular, or triangular cross-sections. Permeable shell embodiments 40 may also be formed using conventional machining, laser cutting, electrical discharge machining (EDM) or photochemical machining (PCM). If made of a metal, it may be formed from either metallic tubes or sheet material. Permeable shell embodiments 40 may be heat formed to maintain their shape. In some embodiments, this may be done at a temperature of around 500° C.
Device embodiments 10 discussed herein may be delivered and deployed from a delivery and positioning system 112 that includes a microcatheter 61, such as the type of microcatheter 61 that is known in the art of neurovascular navigation and therapy. Device embodiments for treatment of a patient's vasculature 10 may be elastically collapsed and restrained by a tube or other radial restraint, such as an inner lumen 120 of a microcatheter 61, for delivery and deployment. The microcatheter 61 may generally be inserted through a small incision 152 accessing a peripheral blood vessel such as the femoral artery or brachial artery. The microcatheter 61 may be delivered or otherwise navigated to a desired treatment site 154 from a position outside the patient's body 156 over a guidewire 159 under fluoroscopy or by other suitable guiding methods. The guidewire 159 may be removed during such a procedure to allow insertion of the device 10 secured to a delivery apparatus 110 of the delivery system 112 through the inner lumen 120 of a microcatheter 61 in some cases.
Access to a variety of blood vessels of a patient may be established, including arteries such as the femoral artery 166, radial artery 164, and the like in order to achieve percutaneous access to a vascular defect 160. In general, the patient 158 may be prepared for surgery and the access artery is exposed via a small surgical incision 152 and access to the lumen is gained using the Seldinger technique where an introducing needle is used to place a wire over which a dilator or series of dilators dilates a vessel allowing an introducer sheath 162 to be inserted into the vessel. This would allow the device to be used percutaneously. With an introducer sheath 162 in place, a guiding catheter 168 is then used to provide a safe passageway from the entry site to a region near the target site 154 to be treated. For example, in treating a site in the human brain, a guiding catheter 168 would be chosen which would extend from the entry site 152 at the femoral artery up through the large arteries extending around the heart through the aortic arch, and downstream through one of the arteries extending from the upper side of the aorta such as the carotid artery 170. Typically, a guidewire 159 and neurovascular microcatheter 61 are then placed through the guiding catheter 168 and advanced through the patient's vasculature, until a distal end 151 of the microcatheter 61 is disposed adjacent or within the target vascular defect 160, such as an aneurysm. Exemplary guidewires 159 for neurovascular use include the Synchro2® made by Boston Scientific and the Glidewire® Gold Neuro made by MicroVention Terumo. Typical guidewire sizes may include 0.014 inches and 0.018 inches. Once the distal end 151 of the catheter 61 is positioned at the site, often by locating its distal end through the use of radiopaque marker material and fluoroscopy, the catheter is cleared. For example, if a guidewire 159 has been used to position the microcatheter 61, it is withdrawn from the catheter 61 and then the implant delivery apparatus 110 is advanced through the microcatheter 61.
Delivery and deployment of device embodiments 10 discussed herein may be carried out by first compressing the device 10, or any other suitable device for treatment of a patient's vasculature discussed herein, to a radially constrained and longitudinally flexible state as shown in
Once disposed within the vascular defect 160, the device 10 may then be allowed to assume an expanded relaxed or partially relaxed state with the permeable shell 40 of the device spanning or partially spanning a portion of the vascular defect 160 or the entire vascular defect 160. The device 10 may also be activated by the application of an energy source to assume an expanded deployed configuration once ejected from the distal section of the microcatheter 61 for some embodiments. Once the device 10 is deployed at a desired treatment site 154, the microcatheter 61 may then be withdrawn.
Some embodiments of devices for the treatment of a patient's vasculature 10 discussed herein may be directed to the treatment of specific types of defects of a patient's vasculature. For example, referring to
Prior to delivery and deployment of a device for treatment of a patient's vasculature 10, it may be desirable for the treating physician to choose an appropriately sized device 10 to optimize the treatment results. Some embodiments of treatment may include estimating a volume of a vascular site or defect 160 to be treated and selecting a device 10 with a volume that is substantially the same volume or slightly over-sized relative to the volume of the vascular site or defect 160. The volume of the vascular defect 160 to be occluded may be determined using three-dimensional angiography or other similar imaging techniques along with software that calculates the volume of a selected region. The amount of over-sizing may be between about 2% and 15% of the measured volume. In some embodiments, such as a very irregular shaped aneurysm, it may be desirable to under-size the volume of the device 10. Small lobes or “daughter aneurysms” may be excluded from the volume, defining a truncated volume that may be only partially filled by the device without affecting the outcome. Such a method embodiment may also include implanting or deploying the device 10 so that the vascular defect 160 is substantially filled volumetrically by a combination of device and blood contained therein. The device 10 may be configured to be sufficiently conformal to adapt to irregular shaped vascular defects 160 so that at least about 75%, in some cases about 80%, of the vascular defect volume is occluded by a combination of device 10 and blood contained therein.
In particular, for some treatment embodiments, it may be desirable to choose a device 10 that is properly oversized in a transverse dimension so as to achieve a desired conformance, radial force and fit after deployment of the device 10.
In
Once a properly sized device 10 has been selected, the delivery and deployment process may then proceed. It should also be noted also that the properties of the device embodiments 10 and delivery system embodiments 112 discussed herein generally allow for retraction of a device 10 after initial deployment into a defect 160, but before detachment of the device 10. Therefore, it may also be possible and desirable to withdraw or retrieve an initially deployed device 10 after the fit within the defect 160 has been evaluated in favor of a differently sized device 10. An example of a terminal aneurysm 160 is shown in
Detachment of the device 10 from the delivery apparatus 110 may be controlled by a control switch 188 disposed at a proximal end of the delivery system 112, which may also be coupled to an energy source 142, which severs the tether 72 that secures the proximal hub 68 of the device 10 to the delivery apparatus 110. While disposed within the microcatheter 61 or other suitable delivery system 112, as shown in
The device 10 may be inserted through the microcatheter 61 such that the catheter lumen 120 restrains radial expansion of the device 10 during delivery. Once the distal tip or deployment port of the delivery system 112 is positioned in a desirable location adjacent or within a vascular defect 160, the device 10 may be deployed out the distal end of the catheter 61 thus allowing the device to begin to radially expand as shown in
Upon full deployment, radial expansion of the device 10 may serve to secure the device 10 within the vascular defect 160 and also deploy the permeable shell 40 across at least a portion of an opening 190 (e.g., aneurysm neck) so as to at least partially isolate the vascular defect 160 from flow, pressure or both of the patient's vasculature adjacent the vascular defect 160 as shown in
For some embodiments, once deployed, the permeable shell 40 may substantially slow flow of fluids and impede flow into the vascular site and thus reduce pressure within the vascular defect 160. For some embodiments, the device 10 may be implanted substantially within the vascular defect 160, however, in some embodiments, a portion of the device 10 may extend into the defect opening or neck 190 or into branch vessels.
Once the device 10 has been deployed in the vascular defect, the isolation of the defect, slowing of flow, reduce pressure or any combination of these effects may case thrombus formation within an interior volume of the device 10, outside the device 10 or on the device itself or some component thereof. In some cases, device embodiments for treatment of a patient's vasculature 10 may generally be fabricated by braiding a substantially tubular braided structure with filamentary elements 14, forming the braided tubular structure into a desired shape, and heat setting the braided formed filaments into the desired shape. Once so formed, the ends of the elongate resilient filaments 14 may then be secured together relative to each other by any of the methods discussed above and proximal and distal hubs 66 and 68 added.
Such a braiding process may be carried out by automated machine fabrication or may also be performed by hand. An embodiment of a process for braiding a tubular braided structure by a manual process is shown in
The central ball mandrel 212 may be configured to have any desired shape so as to produce a shape set tubular braided member 208 that forms a permeable shell 40 having a desired shape and size such as the globular configuration of the device 10 of
In order to hold the braided tubular member 208 into a desired shape, including the recessed ends thereof, the end forming mandrels 214 are configured to be pushed against and into recessed ends 238 of the internal tube mandrel 232 such that the inside surface of the braided tubular member 208 is held against the outer contour of the internal tube mandrel 232 and fixed in place at the ends of the tube mandrel 232.
Between the ends of the tube mandrel 232, the braided tubular member 208 radially expands outwardly until it touches and is radially constrained by an inside surface of an external tube mandrel 234. The combination of axial restraint and securement of the braided tubular member 208 at the ends of the internal tube mandrel 232 in conjunction with the inward radial restraint on an outside surface of the braided tubular member 208 disposed between the proximal and distal ends thereof, may be configured to produce a desired globular configuration suitable for the permeable shell 40 of the device 10.
Once again, this entire fixture 230 with the inside surface of the ends of the braided tubular structure 208 held against the outside surface of the ends of the internal tube mandrel 232 and an outside surface of the braided tubular member 208 radially constrained by an inside surface 233 of the external tube member 234, may then be subjected to an appropriate heat treatment. The heat treatment may be configured such that the resilient filaments 14 of the braided tubular member 208 assume or are otherwise shape-set to the globular contour of the filaments 14 generated by the fixture 230. In some embodiments, the filamentary elements 14 of the permeable shell 40 may be held by a fixture configured to hold the braided tubular member 208 in a desired shape and heated to about 475-525 degrees C. for about 5-10 minutes to shape-set the structure. The internal tube mandrel 232 and inside surface 233 of the external tube member 234 may be so configured to have any desired shape so as to produce a shape set tubular braided member 208 that forms a permeable shell 40 having a desired shape and size such as the globular configuration of the device of
For some embodiments, material may be attached to filaments 14 of the permeable shell 40 of a device 10 such that it substantially reduces the size of the fenestrations, cells or pores 64 between filaments 14 and thus reduces the porosity in that area. For example, coating embodiments may be disposed on portions of the filaments 14 to create small fenestrations or cells and thus higher density of the permeable shell 40. Active materials such as a responsive hydrogel may be attached or otherwise incorporated into permeable shell 40 of some embodiments such that it swells upon contact with liquids over time to reduce the porosity of the permeable shell 40.
Device embodiment 10 and any other suitable device embodiment discussed herein may be coated with various polymers to enhance its performance, fixation and/or biocompatibility. In addition, device embodiments 10 may be made of various biomaterials known in the art of implant devices including but not limited to polymers, metals, biological materials and composites thereof. Device embodiments discussed herein may include cells and/or other biologic material to promote healing. Device embodiments discussed herein may also be constructed to provide the elution or delivery of one or more beneficial drugs, other bioactive substances or both into the blood or the surrounding tissue.
In some cases, permeable shell embodiments 40 of devices for treatment of a patient's vasculature 10 may include multiple layers. A first or outer layer may be constructed from a material with low bioactivity and hemocompatibility so as to minimize platelet aggregation or attachment and thus the propensity to form clot and thrombus. Optionally, an outer layer may be coated or incorporate an antithrombogenic agent such as heparin or other antithrombogenic agents described herein or known in the art. One or more inner layers disposed towards the vascular defect in a deployed state relative to the first layer may be constructed of materials that have greater bioactivity and/or promote clotting and thus enhance the formation of an occlusive mass of clot and device within the vascular defect. Some materials that have been shown to have bioactivity and/or promote clotting include silk, polylactic acid (PLA), polyglycolic acid (PGA), collagen, alginate, fibrin, fibrinogen, fibronectin, Methylcellulose, gelatin, Small Intestinal Submucosa (SIS), poly-N-acetylglucosamine and copolymers or composites thereof.
Bioactive agents suitable for use in the embodiments discussed herein may include those having a specific action within the body as well as those having nonspecific actions. Specific action agents are typically proteinaceous, including thrombogenic types and/or forms of collagen, thrombin and fibrogen (each of which may provide an optimal combination of activity and cost), as well as elastin and von Willebrand factor (which may tend to be less active and/or expensive agents), and active portions and domains of each of these agents. Thrombogenic proteins typically act by means of a specific interaction with either platelets or enzymes that participate in a cascade of events leading eventually to clot formation. Agents having nonspecific thrombogenic action are generally positively charged molecules, e.g., polymeric molecules such as chitosan, polylysine, poly(ethylenimine) or acrylics polymerized from acrylimide or methacrylamide which incorporate positively-charged groups in the form of primary, secondary, or tertiary amines or quaternary salts, or non-polymeric agents such as (tridodecylmethylammonium chloride). Positively charged hemostatic agents promote clot formation by a non-specific mechanism, which includes the physical adsorption of platelets via ionic interactions between the negative charges on the surfaces of the platelets and the positive charges of the agents themselves.
Device embodiment 10 and any other suitable device embodiment discussed herein may include a surface treatment or coating on a portion, side or all surfaces that promotes or inhibits thrombosis, clotting, healing or other embolization performance measure. The surface treatment or coating may be a synthetic, biologic or combination thereof. For some embodiments, at least a portion of an inner surface of the permeable shell 40 may have a surface treatment or coating made of a biodegradable or bioresorbable material such as a polylactide, polyglycolide or a copolymer thereof. Another surface treatment or coating material that may enhance the embolization performance of a device includes a polysaccharide such as an alginate based material. Some coating embodiments may include extracellular matrix proteins such as ECM proteins. One example of such a coating may be Finale™ Prohealing coating which is commercially available from Surmodics Inc., Eden Prairie, Minn. Another exemplary coating may be Polyzene-F, which is commercially available from CeloNovo BioSciences, Inc., Newnan, Ga. In some embodiments, the coatings may be applied with a thickness that is less than about 25% of a transverse dimension of the filaments 14.
Antiplatelet agents may include aspirin, glycoprotein IIb/IIIa receptor inhibitors (including, abciximab, eptifibatide, tirofiban, lamifiban, fradafiban, cromafiban, toxifiban, XV454, lefradafiban, klerval, lotrafiban, orbofiban, and xemilofiban), dipyridamole, apo-dipyridamole, persantine, prostacyclin, ticlopidine, clopidogrel, cromafiban, cilostazol, and nitric oxide. To deliver nitric oxide, device embodiments may include a polymer that releases nitric oxide. Device embodiments 10 may also deliver or include an anticoagulant such as heparin, low molecular weight heparin, hirudin, warfarin, bivalirudin, hirudin, argatroban, forskolin, ximelagatran, vapiprost, prostacyclin and prostacyclin analogues, dextran, synthetic antithrombin, Vasoflux, argatroban, efegatran, tick anticoagulant peptide, Ppack, HMG-CoA reductase inhibitors, and thromboxane A2 receptor inhibitors.
In some embodiments, the permeable shell 40 of a device 10 may be coated with a composition that may include nanoscale structured materials or precursors thereof (e.g., self-assembling peptides). The peptides may have with alternating hydrophilic and hydrophobic monomers that allow them to self-assemble under physiological conditions. The composition may comprise a sequence of amino acid residues. In some embodiments, the permeable shell may include a thin metallic film material. The thin film metal may be fabricated by sputter deposition and may be formed in multiple layers. The thin film may be a nickel-titanium alloy also known as nitinol.
In some instances, saccular aneurysms may have a generally circular flow dynamic of blood as indicated by arrows 250 shown in
As discussed above with regard to the deployment method embodiment shown in
In any of the device embodiments discussed or incorporated herein for treatment of a patient's vascular defect or aneurysm, the device may comprise one or more composite filaments. A composite filament (e.g., wires) may be defined as a filament that comprises a plurality of materials in either a mixture or alloy or in a composite structure where two materials are physically combined into one. The addition of at least some composite wires into the device may provide improved visibility of the device under external imaging such as x-ray, fluoroscopy, magnetic resonance imaging and the like. In some embodiments, composite wires may provide improved mechanical characteristics.
For some composite filament embodiments, the composite filaments may be disposed in a coaxial arrangement with one material substantially inside the other as shown in
In some cases, the specific construction of a drawn filled tube wire or filament may be important in order to maintain desired performance characteristics of a device for treatment of a vascular defect. More specifically, it may be important to balance the stiffness, elasticity and radiopacity of the composition. In particular, for drawn filled tube filament embodiments that include an internal wire 332 of ductile radiopaque material such as platinum and an outer tube 336 of an elastic or superelastic material such as NiTi, it can be necessary to carefully balance the ratio of the percent cross sectional area of the internal wire with regard to the overall cross sectional area of the filament. Such a ratio may be referred to as a fill ratio. If an embodiment includes too little radiopaque or highly radiopaque internal tube material relative to the external tube material, there may not be sufficient radiopacity and visibility. On the other hand, if an embodiment includes too much internal wire material with respect to the elastic external tube, the mechanical properties of the ductile radiopaque material may overwhelm the elastic properties of the outer tube material and the filaments may be prone to taking a set after compression etc. resulting in permanent deformation. For some embodiments, a desired composite or drawn filled tube wire may be constructed with a fill ratio of cross sectional area of internal fill wire to cross sectional area of the entire composite filament of between about 10% and about 50%, more specifically between about 20% and about 40%, and even more specifically, between about 25% and about 35%.
In some embodiments, the number of composite wires may be between about 40 and 190, and between about 50 and 190 in other embodiments, and between about 70 and 150 in other embodiments. In some embodiments, the devices for treatment of a patient's vasculature may have at least about 25% composite wires relative to the total number of wires and in some embodiments such devices may have at least about 40% composite wires relative to a total number of wires in the device. For example, a first subset of elongate resilient filaments may comprise filaments, each having a composite of highly radiopaque material and a high strength material, and a second subset of elongate resilient filaments may consist essentially of a high strength material. For example, the highly radiopaque material may comprise platinum, platinum alloy such as 90% platinum/10% iridium, or gold or tantalum. The high strength material may comprise NiTi. While composite wires may provide enhanced visualization and/or mechanical characteristics, they may in some configurations have reduced tensile strength in comparison to NiTi wires of a similar diameter. In other configurations, depending on their diameter, the composite wires may increase the collapsed profile of the devices. Therefore, it may be beneficial to minimize the number. Lower percentages of composite wires may not be sufficiently visible with current imaging equipment particularly in neurovascular applications where the imaging is done through the skull. In addition, too many composite wires (or composite wires with extremely high fill ratios) may result in devices with excessive artifact on CT or MRI imaging. The described ratios and amounts of highly radiopaque material provide a unique situation for neurovascular implants where the periphery of the device is just visible under transcranial fluoroscopy but the device imaged area is not completely obliterated (i.e., due to artifact) as it is with conventional embolic coils that are made substantially out of platinum or platinum alloys.
One manner of achieving the desired degree of radiopacity is by selecting a particular combination of fill ratio of the composite wires and the percent of composite wires in relation to the total number of wires. Devices according to embodiments having a single layer braided (woven) structure were constructed. For example, an embodiment of a braided structure comprising 72 composite Platinum/NiTi drawn filled tube wires having a 0.00075″ diameter and a platinum fill ratio of 30% and 72 NiTi wires having a 0.00075″ diameter was constructed. The total percent of platinum (by total % cross sectional area) in the braided structure was about 15%. Another embodiment of a braided structure comprising 108 composite Platinum/NiTi drawn filled tube wires having a 0.001″ diameter and a platinum fill ratio of 30% and 72 NiTi wires having a 0.00075″ diameter was constructed. The total percent of platinum in the braided structure was about 22%. Still another embodiment of a braided structure comprising 72 composite Platinum/NiTi drawn filled tube wires having a 0.00125″ diameter and a platinum fill ratio of 30% and 108 NiTi wires having a 0.00075″ diameter was constructed. The total percent of platinum in the braided structure was about 19.5%. Yet another embodiment of a braided structure comprising 108 composite Platinum/NiTi drawn filled tube wires having a 0.00125″ diameter and a platinum fill ratio of 30% and 108 NiTi wires having a 0.00075″ diameter was constructed. The total percent of platinum in the braided structure was about 22%. Devices constructed according to each of these embodiments were each implanted into living bodies and imaged using fluoroscopy. In each case, the periphery of the device was visible under transcranial fluoroscopy but the device imaged area was not completely obliterated (i.e., due to artifact).
In some embodiments the total cross sectional area of the highly radiopaque material is between about 11% and about 30% of the total cross sectional area of the plurality of elongate elements. In some embodiments the total cross sectional area of the highly radiopaque material is between about 15% and about 30% of the total cross sectional area of the plurality of elongate elements. In some embodiments the total cross sectional area of the highly radiopaque material is between about 15% and about 22% of the total cross sectional area of the plurality of elongate elements. In some embodiments the total cross sectional area of the highly radiopaque material is between about 19% and about 30% of the total cross sectional area of the plurality of elongate elements. In some embodiments the total cross sectional area of the highly radiopaque material is between about 11% and about 18.5% of the total cross sectional area of the plurality of elongate elements.
Because the radiopacity of the composite filaments comprising a highly radiopaque material can allow sufficient device visualization (e.g., on fluoroscopy), it may be desired to make one or more of the hubs from less radiopaque or non-radiopaque materials. In some embodiments, platinum, platinum alloy (e.g., 90% Platinum/10% Iridium), may not be desired, if their radiopacity would overpower the radiopacity of the composite filaments, and thus, make their delineation difficult. The use of less radiopaque or non-radiopaque materials to make the hubs may thus be desired in these embodiments, but can also be used on the hubs of other embodiments. One or more titanium or titanium alloy hubs or NiTi hubs may be used in place of highly radiopaque hubs. The use of titanium, titanium alloy, or NiTi hubs may also aid in welding to NiTi filaments, as their melt temperatures are more closely matched than if, for example, platinum, platinum alloy, or gold hubs were being used. The result can be a joint between the filaments and the hub that has a higher tensile breakage force. Joints of this variety were constructed and demonstrated an approximately 48% improvement in tensile force.
The potential utility of the coil portion 1704 is multifold. First, the coil portion 1704, being the initial portion of the combination mesh and coil device 1700 that is delivered to the vascular defect, can atraumatically track around the diameter of the vascular defect, and aid the engagement of the combination mesh and coil device 1700 within the vascular defect. The secondary diameter 1725 of one or more loops 1714 may be chosen to approximate the diameter 1621 of the mesh portion 1702, or in some cases be slightly larger, so that the coil portion 1704 may form a three-dimensional frame around the vascular defect, with the mesh portion 1702 being expanded within this three-dimensional frame. The reduced secondary diameter 1727 may be chosen to be 50% to 85% of the secondary diameter 1725, and serves to keep the coil portion 1704 within the vascular defect, and out of, for example, the parent vessel, as the coil portion 1704 is first being inserted within the vascular defect. An additional use of the coil portion 1704 is to serve as a biasing member for pushing the expanded mesh portion 1702 against the opening of the vascular defect (such as the neck of an aneurysm). This can allow a smaller diameter mesh portion 1702 to effectively disrupt flow inside a larger diameter vascular defect, without having to volumetrically fill the entire vascular defect. These uses will be illustrated in more detail in the following figures.
Turning to
Turning to
The loading of a castellated mandrel assembly 1038 for the process of constructing an embodiment of a mesh device is illustrated in
An alternative filament loading method is illustrated in
The forming of a mesh device having an open distal end is illustrated in
In some embodiments the proximal lobe 1802 may be constructed from between about 108 and about 180 filaments 1814. In some embodiments, the proximal lobe 1802 may be constructed from between about 54 and about 90 nitinol filaments and between about 54 and about 90 drawn filled tube (DFT) filaments. In some embodiments, the DFT filaments may comprise an outer, high-strength material such as nitinol, and an inner core of a highly radiopaque material, such as platinum, platinum alloy such as 90% platinum/10% iridium, or gold or tantalum. In some embodiments, the DFT filaments may comprises a cross-sectional fill area ratio of between about 10% and about 50% of the highly radiopaque material. In some embodiments, the DFT filaments may comprises a cross-sectional fill area ratio of between about 20% and about 40% of the highly radiopaque material. In some embodiments, the DFT filaments may comprises a cross-sectional fill area ratio of between about 25% and about 35% of the highly radiopaque material. In some embodiments, the proximal lobe 1802 may comprises nitinol filaments having a transverse dimension or diameter of between about 0.0004″ and about 0.0006″, and DFT filaments having a transverse dimension of between about 0.0006″ and about 0.0009″. In some embodiments, the proximal lobe 1802 may comprise about 72 nitinol filaments having a transverse dimension of about 0.0005″ and about 72 DFT filaments having a transverse dimension of about 0.00075″.
In some embodiments the center lobe 1804 may be constructed from between about 36 and about 54 filaments 1816. In some embodiments, the center lobe 1804 may be constructed from DFT filaments. In some embodiments, the center lobe 1804 may be constructed from nitinol filaments. In some embodiments, the center lobe 1804 may be constructed from a mixture of nitinol and DFT filaments. In some embodiments, the center lobe 1804 may comprise filaments having a transverse dimension of between about 0.0009″ and about 0.0014″. In some embodiments, the center lobe 1804 may comprise filaments having a transverse dimension of between about 0.001″ and about 0.00125″.
In some embodiments the distal lobe 1806 may be constructed from between about 108 and about 180 filaments 1818. In some embodiments, the distal lobe 1806 may be constructed from between about 54 and about 90 nitinol filaments and between about 54 and about 90 DFT filaments. In some embodiments, the DFT filaments may comprise an outer, high-strength material such as nitinol, and an inner core of a highly radiopaque material, such as platinum, platinum alloy such as 90% platinum/10% iridium, or gold or tantalum. In some embodiments, the DFT filaments may comprises a cross-sectional fill area ratio of between about 10% and about 50% of the highly radiopaque material. In some embodiments, the DFT filaments may comprises a cross-sectional fill area ratio of between about 20% and about 40% of the highly radiopaque material. In some embodiments, the DFT filaments may comprises a cross-sectional fill area ratio of between about 25% and about 35% of the highly radiopaque material. In some embodiments, the distal lobe 1806 may comprises nitinol filaments having a transverse dimension or diameter of between about 0.0004″ and about 0.0006″, and DFT filaments having a transverse dimension of between about 0.0006″ and about 0.0009″. In some embodiments, the distal lobe 1806 may comprise about 72 nitinol filaments having a transverse dimension of about 0.0005″ and about 72 DFT filaments having a transverse dimension of about 0.00075″. In some embodiments, the distal lobe 1806 may have an additional distal hub (and thus not be made with the castellated mandrel). In these embodiments, the additional distal hub may be radiolucent, and thus allow visualization on x-ray or fluoroscopy. In these embodiments, the filaments may be mostly or all nitinol.
In some embodiments, the multi-lobe mesh device 1800 may be constructed so that the proximal lobe 1802 has an expanded state having a first diameter D1, the center lobe 1804 has an expanded state having a second diameter D2, and the distal lobe 1806 has an expanded state having a third diameter D3. In some embodiments, the three diameters D1, D2, D3 may be approximately equal to each other. In some embodiments, first diameter D1 and the second diameter D3 may be less than the second diameter D2 in order to allow the multi-lobe mesh device 1800 to conform to the shape of a vascular defect 160, such as an aneurysm. Turning to
The distal lobe 2144 may have a generally convex shape at its distal end. The proximal lobe 2142 may have a generally convex shape at its proximal end. The support member 2150 is positioned between the distal and proximal lobes 2144, 2142. The expanded states of the distal and proximal lobes 2144, 2142 define a toroidal cavity 2151 through which the support member 2150 extends.
In some embodiments, the support member 2150 may comprise a substantially rigid cylindrical member. In some embodiments, the support member 2150 may comprises a hypo tube. Rigidity in the support member 2150 may aid in maintaining a longitudinal axis 2156 of the proximal lobe 2142 and a longitudinal axis 2158 of the distal lobe 2144 at a generally fixed angle to each other, when the proximal lobe 2142 and the distal lobe 2144 are each in their expanded configurations. Rigidity in the support member 2150 may aid in maintaining the longitudinal axis 2156 of the proximal lobe 2142 and the longitudinal axis 2158 of the distal lobe 2144 substantially parallel to each other, when the proximal lobe 2142 and the distal lobe 2144 are each in their expanded configurations. Rigidity in the support member 2150 may aid in maintaining the longitudinal axis 2156 of the proximal lobe 2142 and the longitudinal axis 2158 of the distal lobe 2144 substantially collinear with each other, when the proximal lobe 2142 and the distal lobe 2144 are each in their expanded configurations. Maintenance of alignment between the proximal lobe 2142 and the distal lobe 2144 can aid “fit” of the multi-lobe mesh device 2140 within an aneurysm. In some embodiments it can aid fit within an aneurysm having a generally symmetric shape.
In some embodiments, the distal lobe 2144 may have an additional distal hub (and thus not be made with the castellated mandrel). In these embodiments, the additional distal hub may be radiolucent, and thus allow visualization on x-ray or fluoroscopy. In these embodiments, the filaments may be mostly or all nitinol. The resistance to force that the support member 2150 provides may limit the effects of “clot compression” as described herein. In embodiment of
Turning to
In
As illustrated in
BDM=(AM−AO)/AM
In an embodiment of a braided tubular member having a fixed diameter, fixed circumference, and a fixed number of filaments, the number of diamond-shaped modules 1008 fitting within the fixed circumference will not change, regardless of how sparsely or densely the braid is formed. Therefore, the module width 1084 will remain the same dimension, regardless of how sparsely or densely the braid is formed. However, the module length 1086 will be shorter as the braid is formed more densely, and the module length 1086 will be longer as the braid is formed more sparsely. During braiding, to accommodate this change in the module length 1086 without a change in module width 1084, filament 1015 and filament 1017 will slide over one another at crossing 1025 and filament 1013 and filament 1019 will slide over one another at crossing 1029 while angle 1082 and the angle across from angle 1082 change. In conjunction with this, filament 1013 and filament 1015 will swivel in relation to one another at crossing 1023 and filament 1017 and filament 1019 will swivel in relation to one another at crossing 1027 while angle 1078 and the angle across from angle 1078 change. For example, as the braid is wound more densely, angle 1082 and the angle across from angle 1082 will both increase while angle 1078 and the angle across from angle 1078 both decrease. Moreover, as the braid is wound more sparsely, angle 1082 and the angle across from angle 1082 will both decrease while angle 1078 and the angle across from angle 1078 both increase. It should be noted that angle 1082 in braiding nomenclature would be two times the “braid angle”.
The increase or decrease in module length 1086 with braiding “density” change, coupled with the constant module width 1084, means that the number of modules in a certain circumferential “row” will not change with a change in angles 1078, 1082, but the number of modules in a certain axial “column” will change. To calculate the cylindrical braid density (BDC), one must sum both the numerators and denominators of all of the modular braid densities within the cylindrical area having k modules, and then take the ratio:
BDC=Σ(AMk−AOk)/Σ(AMk)
In the case that there is some variance in the modular braid densities (BDM) over a specific portion of a braided tubular member, or a mesh device made from a braided tubular member, the cylindrical braid density (BDC) may be calculated. A first example of varying modular braid densities (BDM) is in a transition portion 1003, where modular braid densities (BDM) increase or decrease along the longitudinal axis ZL. A second example of varying modular braid densities (BDM) is in a mesh device having a spherical or globular shape, where the modular braid densities (BDM) decrease towards the outer radius of the mesh device and increase towards the center or longitudinal axis ZL of the mesh device. It is assumed that the key braid density (BD) in a braid portion that is located near the maximum flow into a vascular defect, such as an aneurysm, is the braid density (BD) at the most expanded diameter. The braid density (BD) inherently becomes greater towards the central axis of the mesh device, because the effective diameter (and thus circumference) decreases, thus leaving less space for the same number of filaments 1005, and thus decreasing the module width 1084 of each module.
In several embodiments of mesh devices, the mesh device is formed from a braided tubular member having at least two distinct braided portions 1002, 1004, so that the mesh device itself may have at least two distinct braided portions. One of the main purposes of having at least two braided portions, is that a more sparsely braided portion may be mechanically easier to diametrically constrain for delivery within the small lumen of a microcatheter 61 and provide a more flexible device for delivering through a tortuous path, while a more densely braided portion may be more effective in disrupting blood flow, for example, when the more densely braided portion is placed at the neck or opening of an aneurysm or other vascular defect. As the second braided portion 1004 is braided more densely (i.e., with increased angle 1082 and decreased angle 1078), the resistance to flow through the diamond-shaped opening 1011 increases. The flow through a diamond-shaped opening 1011 can be characterized by the hydraulic diameter (DH) 1033, a theoretical circular diameter which represents the same flow characteristics as the diamond-shaped opening 1011. Hydraulic diameter (DH) is typically used to represent flow through various non-circular lumens or openings, like the diamond-shape opening 1011. This is because non-circular openings may have low flow zones, like the low flow zone 1088 in the diamond-shaped opening 1011. The formula for hydraulic diameter (DH) is:
DH=(4×AO)/PO
The cylindrical engagement structure 2408 has a distal end 2415 and a proximal end 2416, and is formed from several wires 2412, in some embodiments, about 10 to about 18 wires, or about 12 wires. In some embodiments, the cylindrical engagement structure 2408 is formed from nitinol wire. In other embodiments the cylindrical engagement structure 2408 is formed from Cobalt-Chromium alloys or stainless steel. In some embodiments, the transverse dimension or diameter of the wire is between about 0.0008″ and 0.0035″, or about 0.001″ to about 0.003″, or about 0.002″. In some embodiments, the wires 2412 may be formed into the cylindrical engagement structure 2408 by hand or by use of and automated or partially-automated braiding apparatus and process, such as the braiding apparatus and process described in the commonly assigned U.S. Pat. No. 8,261,648, “Braiding Mechanism and Methods of Use” by Marchand et al., which is herein incorporated by reference in its entirety for all purposes. The wires 2412 are secured at the distal end 2415 of the cylindrical engagement structure 2408 by a distal hub 2414 and are secured at the proximal end 2416 by a proximal band 2418. Turning to
Because the wires 2412 are held together at the twists 2420, the cylindrical engagement structure 2408 is durable and maintains its expanded shape as it engages with thrombus, meets the blood vessel wall, and is pulled through the blood vessel. The trapping structure 2410 may comprise a braided mesh structure comprising filaments 2424 that are secured at their ends by the distal hub 2414 and a proximal hub 2426. The braided mesh structure 2422 has a radially constrained configuration for delivery through a microcatheter. In some embodiments, the trapping structure 2410 may be located entirely within the cylindrical engagement structure 2408. In some embodiments, the transverse dimension or diameter of the filaments 2424 is between about 0.0005″ and 0.002″ or about 0.00075″ to about 0.0015″, or about 0.001″. Both the cylindrical engagement structure 2408 and the trapping structure 2410 may be heat formed to maintain their shape. In some embodiments, this may be done at a temperature of around 500° C. In some embodiments, the cylindrical engagement structure 2408 and the trapping structure may each be heat formed separately from one another. In some embodiments, the cylindrical engagement structure 2408 and the trapping structure 2410 may be heat formed together.
The braided mesh structure 2422 of the trapping structure 2410 has an expanded configuration (as seen in
Although the foregoing invention has, for the purposes of clarity and understanding, been described in some detail by way of illustration and example, it will be obvious that certain changes and modifications may be practiced which will still fall within the scope of the appended claims.
This application is a continuation of U.S. application Ser. No. 15/404,492, filed Jan. 12, 2016, which is a continuation of U.S. application Ser. No. 14,684,212, filed Apr. 10, 2015, now issued as U.S. Pat. No. 9,629,635, which claims priority to U.S. Provisional Application Ser. No. 61/979,416, filed Apr. 14, 2014, and U.S. Provisional Application Ser. No. 62/093,313, filed Dec. 17, 2014, all of which are herein incorporated by reference in their entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3874388 | King et al. | Apr 1975 | A |
4282875 | Serbinenko | Aug 1981 | A |
4346712 | Handa et al. | Aug 1982 | A |
4402319 | Handa et al. | Sep 1983 | A |
4425908 | Simon | Jan 1984 | A |
4619246 | Molgaard-Nielsen | Oct 1986 | A |
4675361 | Ward | Jun 1987 | A |
4729278 | Graeff | Mar 1988 | A |
4998539 | Delsanti | Mar 1991 | A |
5061275 | Wallsten et al. | Oct 1991 | A |
5071407 | Termin et al. | Dec 1991 | A |
5108407 | Geremia et al. | Apr 1992 | A |
5122136 | Gluglielmi et al. | Jun 1992 | A |
5154705 | Fleischhacker et al. | Oct 1992 | A |
5158545 | Trudell et al. | Oct 1992 | A |
5165421 | Fleischhacker et al. | Nov 1992 | A |
5263963 | Garrison | Nov 1993 | A |
5334210 | Gianturco | Aug 1994 | A |
5378239 | Termin | Jan 1995 | A |
5536247 | Thornton | Jul 1996 | A |
5562725 | Schmitt et al. | Oct 1996 | A |
5569245 | Gluglielmi et al. | Oct 1996 | A |
5578074 | Mirigian | Nov 1996 | A |
5591222 | Susawa et al. | Jan 1997 | A |
5601595 | Smith | Feb 1997 | A |
5630840 | Mayer | May 1997 | A |
D380266 | Boatman et al. | Jun 1997 | S |
5645559 | Hachtman et al. | Jul 1997 | A |
5725552 | Kotula | Mar 1998 | A |
5725570 | Heath | Mar 1998 | A |
5733294 | Forber | Mar 1998 | A |
5749883 | Halpern | May 1998 | A |
5759161 | Ogawa | Jun 1998 | A |
5766219 | Horton | Jun 1998 | A |
5846261 | Kotula et al. | Dec 1998 | A |
5873907 | Frantzen | Feb 1999 | A |
5907893 | Zadno-Azizi | Jun 1999 | A |
5916235 | Guglielmi | Jun 1999 | A |
5925060 | Forber | Jul 1999 | A |
5927345 | Samson | Jul 1999 | A |
5928260 | Chin et al. | Jul 1999 | A |
5935148 | Villar et al. | Aug 1999 | A |
5944733 | Engelson | Aug 1999 | A |
5944738 | Amplatz | Aug 1999 | A |
5951599 | McCrory | Sep 1999 | A |
5964797 | Ho | Oct 1999 | A |
5980554 | Lenker et al. | Nov 1999 | A |
5984929 | Bashiri et al. | Nov 1999 | A |
5989242 | Saadat et al. | Nov 1999 | A |
6033423 | Ken et al. | Mar 2000 | A |
6063070 | Eder | May 2000 | A |
6063104 | Villar et al. | May 2000 | A |
6086577 | Ken et al. | Jul 2000 | A |
6093199 | Brown et al. | Jul 2000 | A |
6123715 | Amplatz | Sep 2000 | A |
6139564 | Teoh et al. | Oct 2000 | A |
6142975 | Jalisi et al. | Nov 2000 | A |
6152144 | Lesh et al. | Nov 2000 | A |
6156061 | Wallace et al. | Dec 2000 | A |
6159206 | Ogawa | Dec 2000 | A |
6168615 | Ken et al. | Jan 2001 | B1 |
6168618 | Frantzen | Jan 2001 | B1 |
6168622 | Mazzocchi | Jan 2001 | B1 |
6190402 | Horton et al. | Feb 2001 | B1 |
6193708 | Ken et al. | Feb 2001 | B1 |
6203779 | Ricci et al. | Mar 2001 | B1 |
6221086 | Forber | Apr 2001 | B1 |
6277126 | Barry et al. | Aug 2001 | B1 |
6290721 | Heath | Sep 2001 | B1 |
6315709 | Garibaldi et al. | Nov 2001 | B1 |
6325815 | Kusleika | Dec 2001 | B1 |
6342068 | Thompson | Jan 2002 | B1 |
6344048 | Chin et al. | Feb 2002 | B1 |
6346117 | Greenhalgh | Feb 2002 | B1 |
6350270 | Roue | Feb 2002 | B1 |
6368338 | Konya | Apr 2002 | B1 |
6368339 | Amplatz | Apr 2002 | B1 |
6375668 | Gifford | Apr 2002 | B1 |
6375670 | Greenhalgh | Apr 2002 | B1 |
6383174 | Eder | May 2002 | B1 |
6391037 | Greenhalgh | May 2002 | B1 |
6425914 | Wallace et al. | Jul 2002 | B1 |
6428558 | Jones et al. | Aug 2002 | B1 |
6447531 | Amplatz | Sep 2002 | B1 |
6454780 | Wallace | Sep 2002 | B1 |
6461370 | Gray et al. | Oct 2002 | B1 |
6463317 | Kucharczyk | Oct 2002 | B1 |
6468266 | Bashiri et al. | Oct 2002 | B1 |
6478773 | Gandhi et al. | Nov 2002 | B1 |
6500149 | Gandhi et al. | Dec 2002 | B2 |
6506204 | Mazzocchi | Jan 2003 | B2 |
6511468 | Cragg et al. | Jan 2003 | B1 |
6551303 | Van Tassel et al. | Apr 2003 | B1 |
6579303 | Amplatz | Jun 2003 | B2 |
6585748 | Jeffree | Jul 2003 | B1 |
6589256 | Forber | Jul 2003 | B2 |
6589265 | Palmer et al. | Jul 2003 | B1 |
6599308 | Amplatz | Jul 2003 | B2 |
6605102 | Mazzocchi et al. | Aug 2003 | B1 |
6605111 | Bose et al. | Aug 2003 | B2 |
6607539 | Hayashi et al. | Aug 2003 | B1 |
6613074 | Mitelberg | Sep 2003 | B1 |
6632241 | Hancock | Oct 2003 | B1 |
6635068 | Dubrul et al. | Oct 2003 | B1 |
6638257 | Amplatz | Oct 2003 | B2 |
6652556 | Van Tassel et al. | Nov 2003 | B1 |
6666882 | Bose et al. | Dec 2003 | B1 |
6669721 | Bose et al. | Dec 2003 | B1 |
6682546 | Amplatz | Jan 2004 | B2 |
6689150 | Van Tassel | Feb 2004 | B1 |
6689486 | Ho et al. | Feb 2004 | B2 |
6719778 | Van Tassel et al. | Apr 2004 | B1 |
6730119 | Smalling | May 2004 | B1 |
6743236 | Barry et al. | Jun 2004 | B2 |
6743251 | Eder | Jun 2004 | B1 |
6746468 | Sepetka et al. | Jun 2004 | B1 |
6746890 | Gupta et al. | Jun 2004 | B2 |
6752826 | Holloway et al. | Jun 2004 | B2 |
6780196 | Chin et al. | Aug 2004 | B2 |
6811560 | Jones et al. | Nov 2004 | B2 |
6818006 | Douk et al. | Nov 2004 | B2 |
6855153 | Saadat | Feb 2005 | B2 |
6855154 | Abdel-Gawwad | Feb 2005 | B2 |
6878384 | Cruise et al. | Apr 2005 | B2 |
6936055 | Ken et al. | Aug 2005 | B1 |
6940209 | Henderson | Sep 2005 | B2 |
6953472 | Palmer et al. | Oct 2005 | B2 |
6953473 | Porter | Oct 2005 | B2 |
6966892 | Gandhi et al. | Nov 2005 | B2 |
6994092 | van der Burg et al. | Feb 2006 | B2 |
7001409 | Amplatz | Feb 2006 | B2 |
7004962 | Stinson | Feb 2006 | B2 |
7011671 | Welch | Mar 2006 | B2 |
7044958 | Douk et al. | May 2006 | B2 |
7052513 | Thompson | May 2006 | B2 |
7083632 | Avellanet et al. | Aug 2006 | B2 |
7101390 | Nelson | Sep 2006 | B2 |
7122043 | Greenhalgh et al. | Oct 2006 | B2 |
7128736 | Abrams et al. | Oct 2006 | B1 |
7179276 | Barry et al. | Feb 2007 | B2 |
7182774 | Barry et al. | Feb 2007 | B2 |
7195636 | Avellanet et al. | Mar 2007 | B2 |
7198613 | Gandhi et al. | Apr 2007 | B2 |
7201918 | Cruise | Apr 2007 | B2 |
7229454 | Tran | Jun 2007 | B2 |
7229461 | Chin et al. | Jul 2007 | B2 |
7275471 | Nishri et al. | Oct 2007 | B2 |
7326225 | Ferrera et al. | Feb 2008 | B2 |
7329279 | Haug et al. | Feb 2008 | B2 |
7331980 | Dubrul | Feb 2008 | B2 |
7410482 | Murphy | Aug 2008 | B2 |
7419503 | Pulnev et al. | Sep 2008 | B2 |
7490396 | Bradley | Feb 2009 | B2 |
7524319 | Dubrul | Apr 2009 | B2 |
7569066 | Gerberding | Aug 2009 | B2 |
7573382 | Choubey et al. | Aug 2009 | B2 |
7575582 | Gandhi et al. | Aug 2009 | B2 |
7578826 | Gandhi et al. | Aug 2009 | B2 |
7597704 | Frazier et al. | Oct 2009 | B2 |
7648532 | Greenhalgh et al. | Jan 2010 | B2 |
7695488 | Berenstein | Apr 2010 | B2 |
7722637 | Barry et al. | May 2010 | B2 |
7745732 | Michael et al. | Jun 2010 | B2 |
7806919 | Bloom et al. | Oct 2010 | B2 |
7862577 | Gray et al. | Jan 2011 | B2 |
7942925 | Yodaf | May 2011 | B2 |
7967747 | Eidenschink | Jun 2011 | B2 |
7989703 | Schaffer | Aug 2011 | B2 |
RE42758 | Ken | Sep 2011 | E |
8043326 | Hancock | Oct 2011 | B2 |
8043329 | Khairkhahan | Oct 2011 | B2 |
8066757 | Ferrera et al. | Nov 2011 | B2 |
8142456 | Rosqueta et al. | Mar 2012 | B2 |
8182506 | Fitz et al. | May 2012 | B2 |
8192480 | Tieu et al. | Jun 2012 | B2 |
8313505 | Amplatz et al. | Nov 2012 | B2 |
8323309 | Khairkhahan | Dec 2012 | B2 |
8398670 | Amplatz | Mar 2013 | B2 |
8430012 | Marchand | Apr 2013 | B1 |
8506619 | Ortiz et al. | Aug 2013 | B2 |
8551132 | Eskridge et al. | Oct 2013 | B2 |
8597320 | Sepetka | Dec 2013 | B2 |
8597323 | Plaza et al. | Dec 2013 | B1 |
8690907 | Janardhan et al. | Apr 2014 | B1 |
8715338 | Frid | May 2014 | B2 |
8728117 | Janardhan et al. | May 2014 | B1 |
8758395 | Kleshinski et al. | Jun 2014 | B2 |
8840735 | Schaffer | Sep 2014 | B2 |
8845679 | Janardhan et al. | Sep 2014 | B1 |
8926681 | Levy | Jan 2015 | B2 |
9039726 | Becking | May 2015 | B2 |
9078658 | Hewitt et al. | Jul 2015 | B2 |
9198668 | Theobald et al. | Dec 2015 | B2 |
9198670 | Hewitt et al. | Dec 2015 | B2 |
9259337 | Cox et al. | Feb 2016 | B2 |
9272323 | Schaffer | Mar 2016 | B2 |
9295473 | Hewitt et al. | Mar 2016 | B2 |
9492174 | Hewitt et al. | Nov 2016 | B2 |
9504588 | Sadisivan et al. | Nov 2016 | B2 |
9855051 | Aboytes | Jan 2018 | B2 |
10004511 | Molaei | Jun 2018 | B2 |
20010031981 | Evans et al. | Oct 2001 | A1 |
20020065552 | Jayaraman et al. | May 2002 | A1 |
20020103542 | Bilbo | Aug 2002 | A1 |
20020143349 | Gifford, III et al. | Oct 2002 | A1 |
20020143361 | Douk et al. | Oct 2002 | A1 |
20020156499 | Konya et al. | Oct 2002 | A1 |
20020169473 | Sepetka et al. | Nov 2002 | A1 |
20020183787 | Wahr et al. | Dec 2002 | A1 |
20020187288 | Lim et al. | Dec 2002 | A1 |
20030012816 | West et al. | Jan 2003 | A1 |
20030028209 | Teoh et al. | Feb 2003 | A1 |
20030171739 | Murphy et al. | Sep 2003 | A1 |
20030171774 | Freudenthal et al. | Sep 2003 | A1 |
20030181942 | Sutton et al. | Sep 2003 | A1 |
20030187473 | Berenstein et al. | Oct 2003 | A1 |
20030199913 | Dubrul et al. | Oct 2003 | A1 |
20040059370 | Green, Jr. et al. | Mar 2004 | A1 |
20040098027 | Tech et al. | May 2004 | A1 |
20040111147 | Rabkin et al. | Jun 2004 | A1 |
20040122367 | Sculati et al. | Jun 2004 | A1 |
20040143239 | Zhou et al. | Jul 2004 | A1 |
20040158311 | Berhow | Aug 2004 | A1 |
20040172053 | Barry et al. | Sep 2004 | A1 |
20040186562 | Cox | Sep 2004 | A1 |
20040193206 | Gerberding et al. | Sep 2004 | A1 |
20040193208 | Talpade et al. | Sep 2004 | A1 |
20040220563 | Eder | Nov 2004 | A1 |
20040260333 | Dubrul et al. | Dec 2004 | A1 |
20050021075 | Bonnette et al. | Jan 2005 | A1 |
20050033408 | Jones et al. | Feb 2005 | A1 |
20050053782 | Sen et al. | Mar 2005 | A1 |
20050096728 | Ramer | May 2005 | A1 |
20050112349 | Laurencin et al. | May 2005 | A1 |
20050113868 | Devellian et al. | May 2005 | A1 |
20050119684 | Gutterman et al. | Jun 2005 | A1 |
20050133046 | Becker et al. | Jun 2005 | A1 |
20050149173 | Hunter et al. | Jul 2005 | A1 |
20050216052 | Mazzocchi et al. | Sep 2005 | A1 |
20050222489 | Rahdert et al. | Oct 2005 | A1 |
20050228422 | Machold et al. | Oct 2005 | A1 |
20050228434 | Amplatz et al. | Oct 2005 | A1 |
20050267516 | Soleimani et al. | Dec 2005 | A1 |
20050277978 | Greenhalgh | Dec 2005 | A1 |
20060009798 | Callister et al. | Jan 2006 | A1 |
20060009799 | Kleshinski et al. | Jan 2006 | A1 |
20060009800 | Christianson et al. | Jan 2006 | A1 |
20060052815 | Fitz et al. | Mar 2006 | A1 |
20060052816 | Bates et al. | Mar 2006 | A1 |
20060064151 | Guterman et al. | Mar 2006 | A1 |
20060083721 | Cohen et al. | Apr 2006 | A1 |
20060116708 | Ogawa et al. | Jun 2006 | A1 |
20060135947 | Soltesz et al. | Jun 2006 | A1 |
20060155323 | Porter et al. | Jul 2006 | A1 |
20060178694 | Greenhalgh et al. | Aug 2006 | A1 |
20060200192 | Fitz et al. | Sep 2006 | A1 |
20060200234 | Hines | Sep 2006 | A1 |
20060212055 | Karabey et al. | Sep 2006 | A1 |
20060217799 | Mailander et al. | Sep 2006 | A1 |
20060235464 | Avellanet et al. | Oct 2006 | A1 |
20060247680 | Amplatz et al. | Nov 2006 | A1 |
20060252984 | Rahdert et al. | Nov 2006 | A1 |
20060253149 | Gandhi et al. | Nov 2006 | A1 |
20060271086 | Ramzipoor et al. | Nov 2006 | A1 |
20070021816 | Rudin | Jan 2007 | A1 |
20070031584 | Roth | Feb 2007 | A1 |
20070061006 | Desatnik et al. | Mar 2007 | A1 |
20070088387 | Eskridge et al. | Apr 2007 | A1 |
20070100419 | Licata et al. | May 2007 | A1 |
20070106323 | Barry et al. | May 2007 | A1 |
20070112380 | Figulla et al. | May 2007 | A1 |
20070142906 | Figulla et al. | Jun 2007 | A1 |
20070144124 | Schewe et al. | Jun 2007 | A1 |
20070167911 | Gandhi et al. | Jul 2007 | A1 |
20070167980 | Figulla et al. | Jul 2007 | A1 |
20070173928 | Morsi | Jul 2007 | A1 |
20070203062 | Ellis-Behnke et al. | Aug 2007 | A1 |
20070208373 | Zaver et al. | Sep 2007 | A1 |
20070208376 | Meng | Sep 2007 | A1 |
20070225760 | Moszner et al. | Sep 2007 | A1 |
20070233186 | Meng | Oct 2007 | A1 |
20070255388 | Rudakov et al. | Nov 2007 | A1 |
20070265656 | Amplatz et al. | Nov 2007 | A1 |
20070288083 | Hines | Dec 2007 | A1 |
20080033341 | Grad | Feb 2008 | A1 |
20080033366 | Matson | Feb 2008 | A1 |
20080033475 | Meng | Feb 2008 | A1 |
20080033478 | Meng | Feb 2008 | A1 |
20080119886 | Greenhalgh et al. | May 2008 | A1 |
20080195139 | Donald et al. | Aug 2008 | A1 |
20080200945 | Amplatz et al. | Aug 2008 | A1 |
20080221600 | Dieck et al. | Sep 2008 | A1 |
20080228215 | Strauss et al. | Sep 2008 | A1 |
20090025820 | Adams | Jan 2009 | A1 |
20090062812 | Fitz et al. | Mar 2009 | A1 |
20090062834 | Moftakhar | Mar 2009 | A1 |
20090062841 | Amplatz et al. | Mar 2009 | A1 |
20090082803 | Adams et al. | Mar 2009 | A1 |
20090099647 | Glimsdale et al. | Apr 2009 | A1 |
20090112305 | Goldmann et al. | Apr 2009 | A1 |
20090132024 | Berkhoff | May 2009 | A1 |
20090163780 | Tieu | Jun 2009 | A1 |
20090227976 | Calabria | Sep 2009 | A1 |
20090275974 | Marchand | Nov 2009 | A1 |
20090287291 | Becking et al. | Nov 2009 | A1 |
20090287294 | Rosqueta et al. | Nov 2009 | A1 |
20090318948 | Linder et al. | Dec 2009 | A1 |
20100023048 | Mach | Jan 2010 | A1 |
20100023105 | Levy et al. | Jan 2010 | A1 |
20100069948 | Veznedaroglu et al. | Mar 2010 | A1 |
20100094409 | Barker et al. | Apr 2010 | A1 |
20100106235 | Kariniemi et al. | Apr 2010 | A1 |
20110022149 | Cox | Jan 2011 | A1 |
20110029008 | Gesswein | Feb 2011 | A1 |
20110046658 | Connor et al. | Feb 2011 | A1 |
20110046719 | Frid | Feb 2011 | A1 |
20110054515 | Bridgeman | Mar 2011 | A1 |
20110082493 | Samson et al. | Apr 2011 | A1 |
20110152823 | Mohiuddin et al. | Jun 2011 | A1 |
20110152993 | Marchand | Jun 2011 | A1 |
20110202085 | Loganathan et al. | Aug 2011 | A1 |
20110208227 | Becking | Aug 2011 | A1 |
20110208233 | McGuckin | Aug 2011 | A1 |
20110224776 | Sepekta et al. | Sep 2011 | A1 |
20110295298 | Moszner | Dec 2011 | A1 |
20110319926 | Becking | Dec 2011 | A1 |
20120065667 | Javois | Mar 2012 | A1 |
20120143237 | Cam | Jun 2012 | A1 |
20120165919 | Cox | Jun 2012 | A1 |
20120197283 | Marchand et al. | Aug 2012 | A1 |
20120271337 | Figulla et al. | Oct 2012 | A1 |
20120283768 | Cox | Nov 2012 | A1 |
20120296362 | Cam et al. | Nov 2012 | A1 |
20130066357 | Aboytes et al. | Mar 2013 | A1 |
20130116722 | Aboytes et al. | May 2013 | A1 |
20130123830 | Becking et al. | May 2013 | A1 |
20130211495 | Halden et al. | Aug 2013 | A1 |
20130245667 | Marchand et al. | Sep 2013 | A1 |
20130274862 | Cox et al. | Oct 2013 | A1 |
20130274863 | Cox et al. | Oct 2013 | A1 |
20130274866 | Cox et al. | Oct 2013 | A1 |
20130274868 | Cox et al. | Oct 2013 | A1 |
20140005713 | Bowman et al. | Jan 2014 | A1 |
20140005714 | Quick et al. | Jan 2014 | A1 |
20140018841 | Peiffer et al. | Jan 2014 | A1 |
20140052233 | Cox et al. | Feb 2014 | A1 |
20140074151 | Tischler et al. | Mar 2014 | A1 |
20140135734 | Dakin et al. | May 2014 | A1 |
20140135817 | Tischler et al. | May 2014 | A1 |
20150182674 | Schaffer | Jul 2015 | A1 |
20160030052 | Cragg et al. | Feb 2016 | A1 |
20160192941 | Hewitt et al. | Jul 2016 | A1 |
20160262769 | Cragg et al. | Sep 2016 | A1 |
20160324528 | Hebert et al. | Nov 2016 | A1 |
20160335757 | Florent et al. | Nov 2016 | A1 |
20170245862 | Cox et al. | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
2009242528 | Mar 2016 | AU |
2722037 | Oct 2009 | CA |
106974691 | Jul 2017 | CN |
0706876 | Jul 2000 | EP |
0808138 | May 2005 | EP |
1576929 | Sep 2005 | EP |
1844717 | Oct 2007 | EP |
1923019 | May 2008 | EP |
2055263 | Jun 2009 | EP |
2258275 | Dec 2011 | EP |
2157937 | Mar 2017 | EP |
2333169 | Jun 1997 | FR |
52141092 | Nov 1977 | JP |
H4-47415 | Apr 1992 | JP |
WO 9530384 | Nov 1995 | WO |
WO 9530384 | Nov 1995 | WO |
WO 199601591 | Jan 1996 | WO |
WO 199726939 | Jul 1997 | WO |
WO 199903404 | Jan 1999 | WO |
WO 199905977 | Feb 1999 | WO |
WO 199962432 | Dec 1999 | WO |
WO 0145571 | Jun 2001 | WO |
WO 200193782 | Dec 2001 | WO |
WO 200200139 | Jan 2002 | WO |
WO 2003011151 | Feb 2003 | WO |
WO 2003032818 | Apr 2003 | WO |
WO 2003063732 | Aug 2003 | WO |
WO 2004047649 | Jun 2004 | WO |
WO 2004093742 | Nov 2004 | WO |
WO 2005117718 | Dec 2005 | WO |
WO 2006026744 | Mar 2006 | WO |
WO 2006055683 | May 2006 | WO |
WO 2007096183 | Aug 2007 | WO |
WO 2008151204 | Dec 2008 | WO |
WO 2009036219 | Mar 2009 | WO |
WO 2009121006 | Oct 2009 | WO |
WO 2009126747 | Oct 2009 | WO |
WO 2009132045 | Oct 2009 | WO |
WO 2009134337 | Nov 2009 | WO |
WO 2009135166 | Nov 2009 | WO |
WO 2010134914 | Nov 2010 | WO |
WO 2011057002 | May 2011 | WO |
WO 2013102848 | Jul 2013 | WO |
WO 2013102848 | Jul 2013 | WO |
WO 2014087245 | Jun 2014 | WO |
WO 2014169261 | Oct 2014 | WO |
WO 2015171268 | Nov 2015 | WO |
WO 2015192019 | Dec 2015 | WO |
Entry |
---|
A Complete Microcatheter Portfolio; A Broad Selection of Microcatheters. Boston Scientific Brochure 2007. |
Allen et al., “Micromachine Wedge Stepping Motor,” pp. 1-6, Nov. 12-20, 1998 ASME International Mechanical Engineering Congress, Anaheim, CA. |
Altes et al., “Creation of Saccular Aneurysms in the Rabbit: A model Suitable for Testing Endovascular Devices,” American Roentgen Ray Society, Feb. 2000. |
Ansari et al., “Thrombosis of a Fusiform Intracranial Aneurysm Induced by Overlapping Neuroform Stents: Case Report,” Neurosurgery, E950-E951 vol. 60, No. 5, May 2007. |
Atritech Press Release, Minneapolis, Jun. 18, 2007 “Atritech Announces Intellectual Property Acquisition, Transaction Establishes Company as leader in Left Atrial Appendage Market.” |
Caroff, J. et al., “Woven Endobridge (WEB) Device for endovascular treatment of ruptured intracranial wide-neck aneurysms: a single-center experience,” Neuroradiology, 56(9):755-761 (Sep. 2014). |
Caroff, J. et al., “Role of C-Arm VasoCT in the Use of Endovascular WEB Flow Disruption in Intracranial Aneurysm Treatment,” AJNR Am. J. Neuroradiol. 35(7):1353-1357 (Jul. 2014). |
Colla, R. et al., “Treatment of Wide-Neck Basilar Tip Aneurysms Using the Web II Device,” The Neuroradiology Journal 26(6):669-677 (Dec. 2013). |
De Backer, O. et al., “Percutaneous left atrial appendage occlusion for stroke prevention in atrial fibrillation: an update,” Open Heart, 4:1-14 (2013). |
Ding, Y.H. et al., “The Woven EndoBridge: A New Aneurysm Occlusion Device,” AJNR Am. J. Neruradiol. 32:607-611 (Mar. 2011). |
Duerig, T.W., “The Use of Superelasticity in Modern Medicine,” MRS Bulletin, pp. 101-104 (Feb. 2002). |
Fiorella, D. et al., “Interobserver variability in the assessment of aneurysm occlusion with the WEB aneurysm embolization system,” J. NeuroIntervent. Surg. Jul. 1, 2014, pii: neurintsurg-2014-011251. doi: 10.1136/neurintsurg-2014-011251 [Epub ahead of print]. |
Fort Wayne Metals HHS Tube brochure, p. 28-29 (2009), Fort Wayne, Indiana, www.oldsite.fwmetals.com. |
Grabenwoger et al., “Endothelialization of Biosynthetic vascular Prosthesis After Laser Perforation,” Ann Thorac Surg, 66:S110-S114 (1998). |
Guider Softip XF Guide Catheters Brochure, Boston Scientific Corporation 2004. |
Gupta et al., “Nitinol Thin Film Three Dimensional Devices—Fabrication and Applications,” From: SMST-2003: Proceedings of the International Conference on Shape Memory and Superelastic Technologies Published: 2004. |
Hill et al., “Initial Results of the AMPLATZER® Vascular Plug in the treatment of Congenital Heart Disease,” Technology and Services, Business Briefing: US Cardiology, pp. 1-3 (2004). |
Jeffree et al., “The Porus, Guidewire-Directed, Detachable Aneurysm Liner: A New Concept in the Endovascular Treatment of Intracranial Aneurysms,” AJNR Am J Neuradiol 20:774-779 (May 1999). |
Kallmes et al., “A New Endoluminal, Flow-Disrupting Device for Treatment of Saccular Eneurysms,” Stroke, Journal of the American Heart Association 38:1-7 (2007). |
Klisch, J. et al., “The Woven EndoBridge Cerebral Aneurysm Embolization Device (WEB II): initial clinical experience,” Neuroradiology 53:599-607 (2011). |
Kónya, A. et al., “Preliminary Results with a New Vascular Basket Occluder in Swine,” JVIR, 10(8):1043-1049 (1999). |
Kwon et al., “Preliminary Results of the Luna Aneurysm Embolization System in a Rabbit Model: A New Intrasaccular Aneurysm Occlusion Device,” AJNR Am J Neuroradiol, 32:602-606 (Mar. 2011). |
Lendlein, A. et al., “Shape-Memory Polymers,” Angew. Chem. Int. Ed., 41:2034-2057 (2002). |
Lendlein, A. et al., “Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications,” Science 296:1673-1676 (May 31, 2002). |
Lieber, B.B. et al., “The Role of Blood Impulse in Cerebral Aneurysm Coil Compaction: Effect of Aneurysm Neck Size,” IMECE2003-43099, Proceedings of IMECE '03, 2003 ASME International Mechanical Engineering Congress, Washington, D.C. (Nov. 15-21, 2003). |
Liu, C. et al., “Review of progress in shape-memory polymers,” J. Mater. Chem. 17:1543-1558 (2007). |
Lubicz, B. et al., “WEB Device for Endovascular Treatment of Wide-Neck Bifurcation Aneurysms,” AJNR Am. J. Neuroradiol. 34(6):1209-1214 (Jun.-Jul. 2013). |
Lubicz, B. et al., “WEB-DL Endovascular Treatment of Wide-Neck Bifurcation Aneurysms: Short- and Midterm Results in a European Study,” AJNR Am. J. Neuroradiol. 35(3):432-438 (Mar. 2014). doi: 10.3174/ajnr.A3869. Epub Jan. 23, 2014. |
Major, S. et al., “Life of Nitinol Drawn Filed Wires with Ag or Au Core for Medical Application,” International Journal of Mechanics 2(7):73-80 (2013). |
Matinlinna et al., “An Introduction to Silanes and Their Clinical Applications in Dentistry,” The International Journal of Prosthodontics, 17(2):155-164 (2004). |
Mine et al., “Intrasaccular flow-diversion for treatment of intracranial aneurysms: the Woven EndoBridge,” Expert Rev. Med. Devices11(3): 315-325 (May 2014). doi: 10.1586/17434440.2014.907741. Epub Apr. 2, 2014. |
Nakayama et al., “Development of Microporous Covered Stents: Geometrical Design of the Luminal Surface,” The International Journal of Artificial Organs, 28(6):600-608 (2005). |
Nemat-Nasser, S. et al., “Superelastic and cyclic response of NiTi SMA at various strain rates and temperatures,” Mechanics of Materials 38:463-474 (2006). |
Nishi et al., “Embolization of experimental aneurysms using a heparin-loaded stent graft with micropores,” Cardiovascular Radiation Medicine 4:29-33 (2003). |
Nishi et al., “Occlusion of Experimental Aneurysms with Heparin-Loaded, Microporous Stent Grafts,” Neurosurgery 53(6):1397-1405 (Dec. 2003). |
Papagiannaki, C. et al., “WEB Intrasaccular Flow Disruptor—Prospective, Multicenter Experience in 83 Patients with 85 Aneurysms,” AJNR Am. J. Neuroradiol. 35(11):2106-2111 (Nov.-Dec. 2014). 35(11):2106-11. doi: 10.3174/ajnr.A4028. Epub Jul. 3, 2014. |
Park, J. et al., “Percutaneous Left Atrial Appendage Transcatheter Occlusion (PLAATO) for Stroke Prevention in Atrial Fibrillation: 2-Year Outcome,” J Invasive. Cardiol., 21(9):446-450 (2009). |
Pelton, A.R. et al., “Optimisation of processing and properties of medical grade Nitinol wire,” Min. Invas. Ther. & Allied Technol. 9(1):107-118 (2000). |
Pham, Q. et al., “Electrospinning of Polymeric Nanofibers for Tissue Engineering Applications: A Review,” Tissue Engr 12(5):1197-1211 (1996). |
Pierot, L. et al., “Intrasaccular Flow-Disruption Treatment of Intracranial Aneurysms: Preliminary Results of a Multicenter Clinical Study,” AJNR Am J Neuroradiol. 33(7):1232-1238 (Aug. 2012). doi: 10.3174/ajnr.A3191. Epub Jun. 7, 2012. |
Pierot, L. et al., “Endovascular WEB Flow Disruption in Middle Cerebral Artery Aneurysms: Preliminary Feasibility, Clinical, and Anatomical Results in a Multicenter Study,” Neurosurgery 73(1):27-35 (Jul. 2013). |
Pierot, L. et al., “Role, safety, and efficacy of WEB flow disruption: a review,” EJMINT Invited Review, 2014: 1419000139 (May 8, 2014). |
Peirot, L. et al., “WEB Treatment of Intracranial Aneurysms: Feasiblity, Complications, and 1-Month Safety Results with the Web DL and WEB SL/SLS in the French Observatory,” AJNR Am J Neuroradiol. Feb. 5, 2015 [Epub ehead ofprint]. |
Romero, J. et al., “Left Atrial Appendage Closure Devices,” Clinical Medicine Insights: Cardiology, 8:45-52 (2014). |
Rottiers, W. et al., “Shape Memory Materials and their applications,” in Korolev's readings: conference proceedings, pp. 250-250 (2011). |
Salamat et al., “Experimental Evaluation of a New Transcatheter Vascular Embolization Device in the Swine Model,” J Vasc Interv Radiol, 12:301-311 (2002). |
Schaffer, J.E. et al., “Engineering Characteristics of Drawn Filled Nitinol Tube,” SMST-2003: Proceedings of the International Conference on Shape Memory and Superelastic Technologies (ASM International), pp. 109-118 (2004). |
Schmitz-Rode, T. et al., “Self-expandable spindle for transcatheter vascular occlusion: in vivo experiments. Work in progress.” Radiology 188:95-100 (Jul. 1993). |
Simgen, A. et al., “Evaluation of a newly designed flow diverter for the treatment of intracranial aneurysms in an elastase-induced aneurysm model, in New Zealand white rabbits,” Neuroradiology 56:129-137 (2014). |
Spelle, L. et al., “Letter to the Editor,” Neuroradiol J. Jun. 2014; 27(3):369. doi: 10.15274/NRJ-2014-10048. Epub Jun. 17, 2014. |
Stoeckel, D. et al., “Self-expanding nitinol stents: material and design considerations,” Eur. Radiol. 14:292-301 (2004). |
Turk, A. et al., “Evaluation of the TriSpan Neck Bridge Device for the Treatment of Wide-Necked Aneurysms: An Experimental Study in Canines, Editorial Comment: An Experimental Study in Canines,” Stroke 32:492-497 (Feb. 2001). |
Wallner, A.K. et al., “Coiling after Treatment with the Woven EndoBridge Cerebral Aneurysm Embolization Device,” Interventional Neuroradiology 18:208-212 (2012). |
Yeow, W.L. et al., Device- and LAA-Specific Characteristics for Successful LAA Closures: Tips and Tricks, Intervent. Cardiol. Clin., 3:239-254 (2014). |
Zimmermann et al., “Patent Foramen Oval Closure With the SeptRx Device, Initial Experience with the First “In-Tunnel” Device,” JACC Cardiovascular Interventions vol. 3, No. 9., 2010. |
International Search Report and Written Opinion dated Oct. 31, 2008 for International Application No. PCT/US2008/065694. |
International Search Report and Written Opinion dated Nov. 26, 2009 for International Application No. PCT/US2009/042592. |
International Search Report and Written Opinion dated Jul. 28, 2011 for International Application No. PCT/US2010/055494. |
International Search Report and Written Opinion dated Jul. 21, 2015 for International Application No. PCT/US2015/025609. |
International Search Report and Written Opinion dated Jan. 11, 2016 for International Application No. PCT/US2015/025613. |
Extended European Search Report dated Apr. 24, 2014, in EP Appl No. EP 08770070 filed Jun. 3, 2008. |
Extended European Search Report dated Jul. 30, 2014, in EP Appl No. EP 10829110 filed Nov. 4, 2010. |
EP, 15789225.8 Extended Search Report, dated Dec. 13, 2017. |
EP, 15789225.8 Examination Report, dated Aug. 14, 2020. |
JP, 2016-562549 Official Action, dated Mar. 8, 2019. |
Number | Date | Country | |
---|---|---|---|
20190223881 A1 | Jul 2019 | US |
Number | Date | Country | |
---|---|---|---|
62093313 | Dec 2014 | US | |
61979416 | Apr 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15404492 | Jan 2017 | US |
Child | 16373476 | US | |
Parent | 14684212 | Apr 2015 | US |
Child | 15404492 | US |