Devices for treating paravalvular leakage and methods use thereof

Information

  • Patent Grant
  • 10925610
  • Patent Number
    10,925,610
  • Date Filed
    Wednesday, January 16, 2019
    5 years ago
  • Date Issued
    Tuesday, February 23, 2021
    3 years ago
Abstract
An aspect of the present teachings includes a method of percutaneously treating a paravalvular leakage. In a preferred embodiment, the method includes providing an anchor having an elongate anchor member and a tensioning member, positioning the anchor through a paravalvular leakage, deploying the anchor wherein at least a part of the distal portion of the elongate anchor member is on one side of the paravalvular leakage, and applying tension to the tensioning member so that at least a part of the distal portion of the elongate anchor member transitions from the elongate configuration to the shortened configuration. Another aspect of the present teachings includes a device that can be used in a method of percutaneously treating a paravalvular leakage.
Description
BACKGROUND

Paravalvular leakage is a complication associated with the implantation of a prosthetic valve. It may occur both in traditional surgical or minimally invasive transcatheter approaches. FIG. 1 illustrates an artificial valve 1600 that may include, for example, a multi-leaflet structure 1602 and that may be implemented in an appropriate manner as will be appreciated by those of ordinary skill in the art. Additionally, a small opening or space 1604 between the heart 1606 and the valve 1600 is shown as may occur in some instances of valve replacement. This opening or space 1604 results in undesired leaking during pumping of the heart and is termed a valvular or paravalvular leak.


Accordingly, devices and methods are needed for correcting paravalvular leakage after implantation of a stented prosthetic valve.


BRIEF SUMMARY OF THE INVENTION

One aspect of the present teachings includes an anchor for treating a paravalvular leakage. In various embodiments, the anchor includes at least one elongate anchor member. In some embodiments, the anchor includes one elongate anchor member. In some embodiments, the anchor includes two elongate anchor members. In yet other embodiments, the anchor includes three or more elongate anchor members. In certain embodiments, the two, three, or more elongate anchor members are made of a same material. In certain other embodiments, the two, three, or more elongate anchor members are made of different materials.


In some embodiments, the anchor has an elongate configuration where the elongate anchor member is relaxed and extended. In some embodiments, the anchor has a shortened configuration when the elongate anchor member(s) is folded or otherwise shortened. In certain embodiments, the anchor is in its shortened configuration when deployed and/or secured.


According to various embodiments of the present teachings, the elongate anchor member is made of a flexible material. In some embodiments, the flexible material is a surgical grade fabric. The elongate anchor member may also take various forms such as woven or nonwoven fabrics, polymers, metals, other suitable materials, or combinations thereof. For example, the surgical grade fabric used in various embodiments of the present teachings can be constructed from a polyester, such as Dacron®, RTM, PTFE, UHMPE, HDPE, polypropylene, polysulfone, or other biocompatible plastic.


In various embodiments, the elongate anchor member causes a tissue response, for example, tissue growth. In some embodiments, the surface finish of the anchor member is textured to induce tissue response and tissue in-growth for improved stabilization. In other embodiments, the anchor member comprises porous materials to promote tissue in-growth.


In various embodiments, one or more of the edges and/or other portions of the anchor member are modified, for example, to prevent from fraying. In some embodiments, one or more of the edges or other portions of the anchor member are coated with a material that locks the fibers in place. Other methods can also be used to lock the fibers at one or more edges of the anchor member in place.


In various embodiments, the anchor includes at least one tensioning member. In some embodiments, the tensioning member causes both ends of the elongate anchor member to move towards each other. This motion can create a shortened distal portion and/or a shortened proximal portion. In certain embodiments, doing so secures the paravalvular leakage between the distal and the proximal portions of the elongate anchor member.


In embodiments where an anchor of the present teachings includes two elongate anchor members, the tensioning member causes at least one of the two elongate anchor members to move towards the other elongate anchor member. In certain embodiments, the tensioning member causes both of the elongate anchor members to move towards each other. In embodiments where an anchor of the present teachings includes three or more elongate anchor members, the tensioning member causes at least one of the three or more elongate anchor members to move towards another elongate anchor member. In certain embodiments, the tensioning member causes all of the three or more elongate anchor members to move towards one another. This motion can create shorten elongate anchor members. In certain other embodiments, doing so secures the paravalvular leakage between two of the elongate anchor members.


According to various embodiments of the present teachings, the tensioning member is in the form of a suture, as defined herein. It will be appreciated that the tensioning member may take forms other than a suture, such as any other small-diameter members having a suitable tensile strength for the intended anchoring use.


In various embodiments, one or both of the tensioning member and the elongate anchor member are made of a resorbable polymer. In some embodiments, such a resorbable polymer is polyactic acid, polyglycolic acid, polycaprolactone, or a combination thereof. Other resorbable polymers that are known to those skilled in the art can also be used without undue experimentation and thus are within the scope of the present teachings. In various embodiments, the material that is used to make the anchor, i.e., the elongate anchor member(s), the tensioning member, or both, is multilayered. In some embodiments, the material includes a coating of resorbable polymer. In other some embodiments, the materials includes a semipermeable polymer that optionally is impregnated with one or more of the compounds discussed herein. In certain embodiments, the one or more compounds is released in a controlled manner.


In various embodiments, the anchor, including the elongate anchor member(s), the tensioning member, or both, includes one or more compounds that address issues associated with the product performance. For example, one or more compounds can be embedded in the anchor member. In certain embodiments, the one or more compounds are released over time after implantation. These compounds can reduce calcification, protein deposition, thrombus formation, or a combination of some or all of these conditions. The one or more compounds can also be used to stimulate a biological response, for example, to induce tissue in-growth. In some embodiments, the compound is an anti-inflammatory agent. In some embodiments, the compound reduces tissue proliferation adjacent to the device. One with ordinary skill in the art would understand that numerous agents are available for the above applications and can select such an agent without undue experimentation for each of the applications. As such, anchors having one or more of the numerous agents are within the scope of the present teachings.


In various embodiments, the tensioning member extends through openings along the elongate anchor member as described herein such that tightening the tensioning member will cause the elongate anchor member to fold. Although certain examples of anchor deployment are described herein, one with ordinary skill in the art would appreciate that deployment of the anchor may take on various forms due to the flexible nature of the anchor member, especially when a highly flexible fabric or other materials is used. For example, a fabric material or other similarly flexible materials may be folded or otherwise deformed during a deployment to a leakage site.


Another aspect of the present teachings includes methods of treating a paravalvular leakage. In various embodiments, the method includes providing an anchor as described herein, positioning the anchor through a paravalvular leakage, deploying the anchor where at least a part of the distal portion of the elongate anchor member is on one side of the paravalvular leakage. In various embodiments, the method includes applying tension to the tensioning member so that at least a part of the distal portion of the elongate anchor member transitions from the elongate configuration to the shortened configuration. In various embodiments, the method includes deploying the anchor wherein at least a part of the proximal portion of the elongate anchor member is on the other side of the paravalvular leakage. In various embodiments, the method includes applying tension to the tensioning member so that at least a part of the proximal portion of the elongate anchor member transitions from the elongate configuration to the shortened configuration.


In various embodiments, the method includes providing an anchor as described herein, positioning the anchor through a paravalvular leakage, deploying the anchor where at least a part of a first elongate anchor member is on one side of the paravalvular leakage. In various embodiments, the method includes applying tension to the tensioning member so that at least a part of the first elongate anchor member transitions from the elongate configuration to the shortened configuration. In various embodiments, the method includes deploying the anchor wherein at least a part of a second elongate anchor member is on the other side of the paravalvular leakage. In various embodiments, the method includes applying tension to the tensioning member so that at least a part of the second elongate anchor member transitions from the elongate configuration to the shortened configuration. And in these embodiments, the anchor used in repairing a paravalvular leakage can include two or more elongate anchor members and a tensioning member can pass through one, two, or more of the elongate anchor members.


In various embodiments, anchors of the present teachings is used percutaneously. For example, the anchors are delivered percutaneously. In other embodiments, anchors of the present teachings are used in minimally invasive surgeries. In yet other embodiments, anchors of the present teachings are used in open-heart surgeries.


In various embodiments, the method includes introducing a catheter approximately at the paravalvular leakage site. In some embodiments, the method includes withdrawing the catheter to deploy the anchor where at least a part of the distal portion of the elongate anchor member is on one side of the paravalvular leakage. In some embodiments, the method includes withdrawing the catheter to deploy the anchor wherein at least a part of the proximal portion of the elongate anchor member is on the other side of the paravalvular leakage. In some embodiments, the method includes withdrawing the catheter to deploy the anchor where at least a part of a first elongate anchor member is on one side of the paravalvular leakage. In some embodiments, the method includes withdrawing the catheter to deploy the anchor wherein at least a part of a second elongate anchor member is on the other side of the paravalvular leakage.


In various embodiments, a clinician deploys a plurality of anchors in a paravalvular leakage, when necessary and practical.


In various embodiments, upon deployment, at least half number of the folds is distal to the paravalvular leakage and the rest of the folds are proximal to the paravalvular leakage. In other embodiments, upon deployment, less than half of the folds are distal to the paravalvular leakage and the rest of the folds are proximal to the paravalvular leakage. In yet other embodiments, upon deployment, more than half of the folds are distal to the paravalvular leakage and the rest of the folds are proximal to the paravalvular leakage.


In various embodiments, upon deployment, at least some of the folds is distal to the paravalvular leakage. In various embodiments, upon deployment, at least some of the folds are proximal to the paravalvular leakage. In other embodiments, upon deployment, less than half of the folds are distal to the paravalvular leakage. In other embodiments, upon deployment, less than half of the folds are proximal to the paravalvular leakage. In yet other embodiments, upon deployment, more than half of the folds are distal to the paravalvular leakage. In yet other embodiments, upon deployment, more than half of the folds are proximal to the paravalvular leakage.


In various embodiments, upon deployment, at least one of the folds is in the paravalvular leakage. In some embodiments, upon deployment, at least some of the folds are distal to the paravalvular leakage and at least one of the folds is in the paravalvular leakage. In some embodiments, at least some of the folds are proximal to the paravalvular leakage and at least one of the folds is in the paravalvular leakage. In certain embodiments, upon deployment, at least some of the folds are distal to the paravalvular leakage, at least one of the folds is in the paravalvular leakage, and at least some of the folds are proximal to the paravalvular leakage.


In various embodiments, upon deployment, at least a part of a first anchor member is distal to the paravalvular leakage. In various embodiments, upon deployment, at least a part of a second anchor member is proximal to the paravalvular leakage. In various embodiments, upon deployment, at least a part of an anchor member is in the paravalvular leakage. In some embodiments, upon deployment, at least a part of a first anchor member is distal to the paravalvular leakage and at least a part of a second anchor member is proximal to the paravalvular leakage. In certain embodiments, upon deployment, at least a part of a first anchor member is distal to the paravalvular leakage, at least a part of a second anchor member is proximal to the paravalvular leakage, and at least a part of a third anchor member is in the paravalvular leakage.


In various embodiments, the elongate anchor member also includes a marker. The marker can be in the form of threads, beads, or other forms. Without limiting the scope of the present teachings, the marker allows the anchor member to be visualized by using a radiographic imaging equipment using x-ray, magnetic resonance, ultrasound, fluoroscopic, or other visualization techniques. In some embodiments, markers are attached to the anchor member. For example, the markers can be wrapped, laminated, and/or bonded through a welding process. An adhesive such as cyanoacrylate or other adhesives known to those skilled in the art can also be used to attach a marker to the anchor member.


In some embodiments, the marker is a radiopaque marker. In certain embodiments, the radiopaque marker is made of titanium, tungsten, platinum, irridium, gold, an alloy of any of these materials, or a composite having any of the above materials. Other materials that are known to those skilled in the art can also be used.


In some embodiments, the marker is a paramagnetic marker. In certain embodiments, the paramagnetic marker is made of a material containing gadolinium, iron, platinum, manganese, cobalt, fluorine, or other paramagnetic materials. In yet other embodiments, the markers each comprises other MR visible materials that are known to those skilled in the arts.


In some embodiments, the marker is an echogenic marker. In certain embodiments, the echogenic marker is made of a material that is capable of reflecting increased ultrasound waves. Some echogenic materials are described herein elsewhere.


In various embodiments, the marker protrudes out of or is flush with the anchor. In various embodiments, the markers are arranged on the implant in a pattern.


In various embodiments, the anchor or a component thereof is treated so that the anchor or a part thereof is visible under a visualization technique. In some embodiments, the visualization technique is based on ultrasound. For example, the visualization technique is echocardiography. In some embodiments, an elongate anchor member of the present teachings is treated so that it is visible in a visualization technique. In certain embodiments, a part of the elongate anchor member is treated so that it is visible in a visualization technique. In some embodiments, a marker of the present teachings is treated so that it is visible in a visualization technique. In some embodiments, the treatment is performed on a surface of an anchor or a component thereof. In certain embodiments, a surface of at least a part of the elongate anchor member is treated so that the elongate anchor member is visible in a visualization technique. In certain embodiments, a surface of at least a part of the marker is treated so that the marker is visible in a visualization technique.


In various embodiments, the treatment is performed with an echogenic material. For example, the material can contain fluorine element. In some embodiments, the material includes a perfluoro compound. In certain embodiments, the material includes perflutren. In certain embodiments, the material includes perflexane. In certain embodiments, the material includes sulfur hexafluoride. In other embodiments, the material includes another echogenic material known to persons with ordinary skill in the art.


In various embodiments, the method includes locating a paravalvular leakage. For example, a paravalvular leakage can be detected and/or located by using echocardiography, computed tomography (CT), or cardiac magnetic resonance. In some embodiments, the method includes locating a paravalvular leakage by using echocardiography.


Yet another aspect of the present teachings includes a device used to treat a paravalvular leakage. In various embodiments, the device includes a catheter and an anchor as described herein. In some embodiments, the catheter includes a distal end and a lumen having an opening at the distal end. In some embodiments, the anchor is provided at least partially in the lumen.





BRIEF DESCRIPTION OF DRAWINGS

Without wishing to narrow the scope of the enclosed claims, the present teachings may best be understood by reference to the following description taken in conjunction with the accompanying drawings in which:



FIG. 1 shows an artificial valve implanted into a heart having a paravalvular leakage,



FIG. 2 is a perspective view of an exemplary anchor in accordance with the present teachings,



FIG. 3A is a side view of an anchor positioned in a paravalvular leakage in accordance with some embodiments of the present teachings,



FIG. 3B is a side view similar to FIG. 3A, but illustrating the distal portion of the exemplary anchor being moved toward the paravalvular leakage,



FIG. 3C is a side view similar to FIG. 3B, but showing the distal portion of the exemplary anchor fully compressed and engaged against the paravalvular leakage,



FIG. 3D is a side view similar to FIG. 3C but illustrating the proximal portion of the exemplary anchor being moved toward the paravalvular leakage,



FIG. 3E illustrates the proximal and distal portions of the exemplary anchor fully compressed against opposite sides of the paravalvular leakage,



FIG. 3F is an enlarged cross sectional view of an exemplary anchor fully deployed and fastened with a paravalvular leakage between proximal and distal anchor portions,



FIG. 3G is a side view of an anchor positioned in a paravalvular leakage in accordance with some embodiments of the present teachings,



FIG. 3H is a side view similar to FIG. 3A, but illustrating the distal portion of the exemplary anchor being moved toward the paravalvular leakage,



FIG. 3I is a side view similar to FIG. 3B, but showing the distal portion of the exemplary anchor fully compressed and engaged against the paravalvular leakage,



FIG. 3J is a side view similar to FIG. 3C but illustrating the proximal portion of the exemplary anchor being moved toward the paravalvular leakage,



FIG. 3K is a side view similar to FIG. 3C but illustrating the proximal portion of the exemplary anchor being moved toward the paravalvular leakage,



FIG. 3L is an enlarged cross sectional view of an exemplary anchor fully deployed and fastened with a paravalvular leakage between proximal and distal anchor portions,



FIG. 4 is a side elevation view of an exemplary anchor in accordance with some embodiments of the present teachings,



FIGS. 5A-5D are respective side views illustrating a sequence of steps used for securing the anchor to a paravalvular leakage in accordance with some embodiments of the present teachings,



FIG. 5E is a view similar to FIG. 5D, but illustrating an alternative tip and tensioning member arrangement in accordance with some embodiments of the present teachings,



FIG. 6A is a front view of the elongate anchor member of an anchor in accordance with some embodiments of the present teachings,



FIG. 6B is a front elevation view similar to FIG. 6A, but illustrating radiopaque markers in accordance with some embodiments of the present teachings,



FIG. 6C is a front elevation view of an alternative elongate anchor member having a varying width along its length in accordance with some embodiments of the present teachings,



FIG. 6D is a side elevation view of another alternative elongate anchor member utilizing more rigid fold sections separated by living hinges in accordance with some embodiments of the present teachings,



FIG. 7A is a perspective view of an anchor in accordance with some embodiments of the present teachings,



FIG. 7B is a perspective view of an anchor in accordance with some embodiments of the present teachings,



FIG. 7C is a perspective view of an anchor in accordance with some embodiments of the present teachings,



FIG. 8 is a perspective view of an anchor in accordance with some embodiments of the present teachings,



FIG. 9 is a perspective view of an anchor in accordance with some embodiments of the present teachings,



FIG. 10A is a perspective view of an anchor in accordance with some embodiments of the present teachings,



FIG. 10B is a side elevation view of the anchor in FIG. 10A,



FIG. 11 is a perspective view of an exemplary anchor deployed across a paravalvular leakage in accordance with the present teachings,



FIG. 12A is a perspective view of an anchor in accordance with some embodiments of the present teachings,



FIG. 12B is a cross-sectional view of an anchor deployed across a paravalvular leakage in accordance with some embodiments of the present teachings,



FIG. 12C is a side elevation view of the anchor of FIGS. 12A-12B, and



FIG. 12D is top plan view of the anchor of FIGS. 12A-12B.





DETAILED DESCRIPTION

Certain specific details are set forth in the following description and Figures to provide an understanding of various embodiments of the present teachings. Those of ordinary skill in the relevant art will understand that various features of the present teachings may be used alone or in numerous combinations depending on the needs and preferences of the user. Those skilled in the art can also practice other embodiments of the present teachings without one or more of the details described below. Thus, it is not the intention of the present teachings to restrict or in any way limit the scope of the appended claims to such details. While various processes are described with reference to steps and sequences in the following disclosure, the steps and sequences of steps should not be taken as required to practice all embodiments of the present teachings.


As used herein, the term “proximal” means closest to the operator (less into the body) and “distal” means furthest from the operator (further into the body). In positioning a medical device from a downstream access point, distal is more upstream and proximal is more downstream.


As used herein, the term “tensioning member” means a member which can take forms of a suture, cable, wire, or any other small diameter, flexible, semi-rigid or rigid material having a suitable tensile strength for the intended use. In addition, as used herein, the term “wire” can be a strand, a cord, a fiber, a yarn, a filament, a cable, a thread, or the like, and these terms may be used interchangeably.


The term “suture” used herein can be a strand, a wire, a cord, a fiber, a yarn, a filament, a cable, a thread, or the like, and these terms may be used interchangeably.


Unless otherwise specified, all numbers expressing quantities, measurements, and other properties or parameters used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless otherwise indicated, it should be understood that the numerical parameters set forth in the following specification and attached claims are approximations. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, numerical parameters should be read in light of the number of reported significant digits and the application of ordinary rounding techniques.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this present teachings belong. Methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present teachings. In case of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.


It will be appreciated that like reference numerals are used herein to refer to like elements in all embodiments and reference numerals with prime marks (′) or double prime marks (″) refer to like elements that have been modified in a manner as described herein or otherwise shown in the associated Figure.


Referring first to FIG. 2, an anchor 10 constructed in accordance with some embodiments of the present teachings generally includes a tensioning member 12, such as a suture, extending through spaced apart points along an elongate anchor member 14 of flexible material, such as a surgical grade fabric. It will be appreciated that the tensioning member 12 may take other forms other than suture material, such as cable or any other small diameter member having a high enough tensile strength for the intended use. The elongate anchor member 14 may also take various forms such as woven or nonwoven fabrics, polymers, metals, or other suitable materials or combinations of materials. One or more separate pledgets or other securement members (not shown) may be used in conjunction with the elongate anchor member 14 for added securement and/or concealing the elongate anchor member 14 and, for example, thereby inhibiting blood clotting within or adjacent to the folds that will be formed in the elongate anchor member 14.


A woven or nonwoven material may contain additional materials, such as threads, beads or other elements that cause at least portions of the elongate anchor member 14 to be radiopaque. Currently, a surgical grade fabric constructed from polyester, such as Dacron®, is contemplated for use in constructing the elongate anchor member 14. One of many possible alternative materials for use in constructing the elongate anchor member 14 is polytetrafluoroethylene (PTFE). Anchor 10 may be partly or wholly formed from materials that are absorbed into the patient's tissue over time, depending on the intended use. The edges and/or other portions of the elongate anchor member 14 may be suitably modified to prevent fraying, such as by being coated with a material that locks the fibers in place, or otherwise modified in a manner that locks the fibers at least at the edges of the elongate anchor member 14 in place.


The suture 12 may extend from a proximal portion 14a of the elongate anchor member 14 to a distal end portion 14b and then loop back through spaced apart points of the elongate anchor member 14 to the proximal portion 14a where a knot 16 or other stop member is located. As will become apparent, the suture 12 extends through spaced apart locations along the elongate anchor member 14 such that tensioning of the suture 12 or other tensioning member will cause the elongate anchor member 14 to form folded portions 14c when the tensioning member 12 is placed under tension or pulled. Thus, the elongate anchor member 14 is activated in this manner between essentially an elongate configuration, such as shown in FIG. 2, and a shortened configuration, such as a folded or otherwise shortened configuration having an expanded width in at least one dimension as compared to the elongate configuration. It will be appreciated that the deployment orientation may take on various forms due to the flexible nature of the elongate anchor member 14, especially when using a highly flexible fabric or other material. For example, a fabric material or other similarly flexible materials may be folded or otherwise deformed for carrying purposes within a catheter and/or during deployment to a paravalvular leakage site and then suitably activated at the leakage site.


More specifically referring to FIGS. 3A-3E, the elongate anchor member 14 and attached suture 12 are initially inserted through a paravalvular leakage site 20 as generally shown in FIG. 3A. One end or portion 12a of the suture 12 is then pulled and thereby placed under tension. It will be appreciated that, for catheter-based procedures, suture portion 12a may extend to a location outside the patient's body for pulling or tensioning, or it may be grasped by a suitable mechanism within the catheter and pulled or tensioned. Pulling suture portion 12a may initially draw the distal portion 14b of the elongate anchor member 14 toward the paravalvular leakage site 20 as shown in FIG. 3B. Once the distal portion 14b is compressed against the leakage site 20, the proximal portion 14a begins to be drawn and compressed against a proximal side of the paravalvular leakage site 20 as shown in FIGS. 3C-3E. This occurs because end 12a of the suture 12 is being pulled downwardly (as viewed for purposes of discussion in FIGS. 3C-3E) and, since the suture 12 is looped in a reverse direction through distal end portion 14b of the elongate anchor member 14, the knot 16 at the end of the suture 12 moves upwardly and brings the proximal portion 14a of the elongate anchor member 14 with it. In this manner, the proximal portion 14a of the elongate anchor member 14 is being folded and drawn along the suture 12 toward the paravalvular leakage 20 and then firmly compressed against the proximal side of the paravalvular leakage 20 as shown in FIG. 3E. As further shown in FIG. 3F, a suitable locker element, such as a crimp member 22, a knot or other element may be used to maintain the suture 12 and elongate anchor member 14 in the positions shown in FIG. 3F securely anchoring the proximal and distal portions 14a, 14b of the elongate anchor member 14 folded against opposite sides of the paravalvular leakage 20.


Anchors having two or more elongate anchor members can also be used to repair a paravalvular leakage. Thus, as shown in FIG. 3G, in various embodiments, an anchor includes a distal elongate anchor member 14b′, a proximal elongate anchor member 14a′, and a tensioning member 12 slideably connecting the distal elongate anchor member 14b′ and the proximal elongate anchor member 14a′. In some embodiments, one end of the tensioning member passes through the proximal elongate anchor member 14a′ and the distal elongate anchor member 14b′, loops back, passes through the distal elongate anchor member 14b′ and the proximal elongate anchor member 14a′, and forms a knot 16 around the tensioning member 12. In certain embodiments, the other end, or the proximal end 12a′, of the tensioning member extends through a delivery catheter and exists outside of the body. The passing through an elongate anchor member can be achieved by passing through one or two holes in the elongate anchor member or threading through the elongate anchor member itself.


Thus, the method of repairing a paravalvular leakage, in some embodiments, includes, as shown in FIG. 3G, inserting the distal elongate anchor member 14b′ and attached tensioning member 12 through a paravalvular leakage 20. In some embodiments, the method includes pulling the proximal end 12a of the tensioning member 12. The pulling of the tensioning member, in some embodiments, folds at least a portion of the distal elongate anchor member 14b′ and/or draws the distal elongate anchor member towards the paravalvular leakage site 20, as shown FIG. 3H. In some embodiments, the method includes continuing pulling the proximal end 12a of the tensioning member 12 to compress the distal elongate anchor member 14b′ against the paravalvular leakage 20, as shown in FIG. 3I. In some embodiments, the method includes folding at least a portion of the proximal elongate anchor member 14a′ and drawing the proximal elongate anchor member 14a′ towards the paravalvular leakage site 20, as shown in FIG. 3J. The folding of at least a portion of the proximal elongate anchor member 14a′ and/or the drawing of the proximal elongate anchor member 14a′, in certain embodiments, are achieved sequentially or simultaneously by continuing pulling the proximal end 12a of the tensioning member 12. As the distal elongate anchor member 14b′ and the proximal elongate anchor member 14a′ are compressed against the paravalvular leakage 20, in some embodiments, the method includes using a suitable locker element 22 to maintain the anchor 10 in the deployed configuration, as shown in FIG. 3L.



FIG. 4 is a side elevation view of an anchor 70 according to some embodiments of the present teachings. This anchor includes a distal tip 76. In addition, this anchor includes a proximal radiopaque band 90 and a distal radiopaque band 92. Both the radiopaque bands can be attached to the suture 72, as shown in FIG. 4, or otherwise secured to the suture 72, at the proximal end portion of the anchor member 74 and to either the interior or exterior of the distal tip 76, respectively, or any other part of the anchor 70. Without wishing to be bound by any particular theory, under a fluoroscope, these bands or other markers 90 and 92 will indicate to the clinician that the anchor 70 has been deployed, activated, fully compressed, and/or fastened, as necessary during the procedure.


The tip 76 itself may alternatively be formed from a radiopaque material. In this embodiment, the knot 94 formed in the suture 72 or other tensioning member is a slip knot through which another portion of the suture 72 slides during activation of the anchor 70. It will be appreciated that this slip knot 94 may be replaced by another element which serves substantially or approximately the same purpose but takes the form, for example, of a small tubular element or other feature similar in function to a slip knot.


In various embodiments, the elongate anchor member 74 may be about 40 mm long by about 3 mm wide. This may be desirable to achieve a lower profile. These embodiments may lead to more versatile applications, lower incidents of blood clotting, easier use, etc. Of course, any other desired dimensions and shapes may be used, depending on application needs.


As further shown in FIGS. 4 and 6A, the tensioning member or suture 72 can advantageously extend through respective fold portions 74c of the elongate anchor member 74 in essentially an hourglass configuration. Specifically, adjacent portions of the suture 72 located near the proximal and distal end portions 74a, 74b of the anchor member 74 are spaced farther apart than the adjacent portions of the suture 72 in the middle of the anchor member 74.


As further shown in FIG. 6B, radiopaque markers, such as distinct areas of dots 95, may be used for enabling the clinician to visualize the folds of the elongate anchor member 74 during deployment and securement of the elongate anchor member 74. These dots or other radiopaque markers may be printed on the anchor member 74. For example, dots 95 or other markers may be formed with a platinum powder base ink or other suitable material that is radiopaque and biologically compatible. This radiopaque material may also add stiffness to the fold sections 74c thereby helping to maintain the fold sections 74c flat and increasing retention force on the paravalvular leakage. Meanwhile, the fold lines 74d between fold sections 74c can remain highly flexible to create tight radius fold lines.


As further shown in FIG. 6A, each of the holes 96 that the tensioning member or suture 72 is received through may be marked by circles 98 surrounding each hole 96 or other markers for visualizing purposes during assembly of the tensioning member or suture 72 with the elongate anchor member 74. Optionally, holes 96 may be eliminated and the suture 72 may be threaded with a needle through the anchor member 74. One could also, for example, choose different sets of holes 96 along anchor member 74 for receiving the tensioning member or suture 72 thereby changing the width of the folds and/or number of folds and/or shape of the folds depending on the application needs or desires of the clinician.


The tensioning member or suture 72 may be threaded or otherwise attached along the anchor member 74 in any number of manners including, for example, x-patterns or other crossing patterns, zig-zag patterns, etc. that may alter the folded or otherwise shortened or compressed footprint of the anchor into various beneficial shapes, such as flower shapes, circular shapes or other rounded shapes, ball shapes or other configurations. Modifications of the manner in which the tensioning member or suture 72 is threaded or otherwise attached along the length of anchor member 74 may result in higher or lower tensioning force being required to compress the anchor and/or higher or lower friction holding force that may help maintain the anchor in the compressed or shortened configuration.


The width of the elongate anchor member 74′ may be varied along its length, such as by tapering, stepping, or forming an hourglass shape or shapes along the length of the anchor member 14. For example, as illustrated in FIG. 6C, having proximal and distal end portions 75, 77 of wider dimension than an intermediate or middle portion or portions 79 along the length of anchor member 74′ will allow these wider portions 75, 77 may cover over the more intermediate folded portions 79 and prevent unnecessary contact with adjacent tissue during use.


The elongate anchor member 74 may have variable stiffness including, for example, a relatively rigid perimeter or relatively rigid edges 74e, 74f (FIG. 6A) or intermittent relatively rigid sections 74c″ separated by flexible sections such as living hinges 74d″ (FIG. 6D) that may aid in folding and securing the elongate anchor member 74″ into a folded condition.



FIGS. 5A-5D illustrate a series of steps for deploying and securely fastening the anchor 70 to a paravalvular leakage site 100 according to some embodiments of the present teachings. Generally, as shown in FIG. 5A, the combination of the elongate anchor member 74 and tensioning member or suture 72 is deployed through the paravalvular leakage site 100. One end or portion 72a of the suture 72 that extends through the slip knot 94 is then pulled. This causes the distal portion 74b of the elongate anchor member 74 to fold and compress against the distal side of the paravalvular leakage 100. As shown in FIG. 5B, further pulling the tensioning member 72 causes the slip knot 94 to ride upwardly or distally along the suture 72 and against a proximal portion 74a of the elongate anchor member 74, thereby folding and compressing the proximal portion 74a against the proximal side of the paravalvular leakage 100 as shown in FIG. 5C. As shown in FIG. 5D, a suitable crimp or locking element 102 may be used to securely lock the slip knot 94 in place relative to the suture or tensioning member segment which extends therethrough. This will lock the entire anchor 70 in place with the respective proximal and distal folded anchor member portions 74a, 74b securely retaining the paravalvular leakage 100 therebetween. FIG. 5D shows the tip 76 acting as a retainer on top of the distal end portion 74b to assist in holding the distal end portion 74b in place.



FIG. 5E shows an alternative in which the tensioning member is threaded through at least one hole 76a more centrally located in the tip. Yet another alternative would be to thread the tensioning member through two centrally located holes instead of through the proximal end of the tip 76 and one centrally located hole 76a as shown in FIG. 5E. These alternatives allow the tip 76 to act more like a “T”-bar with forces acting in a more perpendicular or normal manner relative to the distal end portion 74b of the anchor member 74.



FIG. 7A illustrates an exemplary anchor of the present teachings. In various embodiments, the elongate anchor member has a rectangle profile as illustrated in FIG. 7A. In other embodiments, the elongate anchor member has an hour glass profile as illustrated in FIG. 7B. One skilled in the art would understand that the elongate anchor member can have other profiles, and accordingly, the embodiments discussed herein are not limiting to the scope of the present teachings.


Referring to FIG. 7A, an anchor 200 constructed in accordance with some embodiments of the present teachings generally includes a tensioning member 201 extending from a proximal end portion 212 of an elongate anchor member 210 to a distal end portion 214. In some embodiments, the tensioning member 201 loops back and extends from the distal end 214 to the proximal end portion 212. In some embodiments, the tensioning member 201 passes through a plurality of openings along the elongate anchor member 210. In some embodiments, one end of the tensioning member 201, after it extends from the proximal end to the distal end and loops back to the proximal end of the anchor member 210, forms a knot 220 around the other end portion of the tensioning member 201. In some embodiments, the knot 220 slides along the other end portion of the tensioning member 201 in such way that it pulls the free end of the tensioning member 201 proximally, causing the knot 220 moving distally and shortening the longitudinal length of the anchor member 210. By doing so in these embodiments, the elongate anchor member 210 is folded and the ends of the anchor member 210 are drawn toward each other. In certain embodiments, the elongate anchor member 210 also can include at least one pre-set folding line (not shown) which allows the elongate anchor member 210 to be fold at the pre-set folding line.


In various embodiments, an anchor, such as that referred to as anchor 200, shortens at one of the proximal and distal ends. For example, when the tensioning member 201 is pulled, at least a part of the distal portion 214 folds first while the proximal end 212 substantially maintains its elongated configuration. In some embodiments, this occurs when the distal portion 214 is deployed. In certain embodiments, this occurs when the distal portion 214 is deployed and the proximal portion 212 is not deployed, for example, because the proximal portion 212 is restrained in a delivery catheter (not shown). In other embodiments, when the tensioning member 201 is pulled, at least a part of the proximal portion 212 folds first while the distal portion 214 substantially maintains its elongated configuration. It will be appreciated by a person with ordinary skill in the art that an anchor of the present teachings may also be folded in a sequential manner under other circumstances.


As seen in FIG. 7A, in various embodiments, the elongate anchor member has two sets of openings 225, 226 (first openings 225 and second openings 226). In some embodiments, the tensioning member 201 extends from the proximal end portion 212 of the anchor member 210 to the distal end portion 214 of the anchor member 210 through the first set of openings 225. Upon reaching the distal end of the elongate anchor member 210, in some embodiments, the tensioning member 201 loops back and further extends from the distal end portion of the anchor member 210 to the proximal end of the anchor member through the second set of openings 226.


In certain embodiments, as shown in FIG. 7A, the tensioning member 201 extends from the proximal end of the anchor member 210 distally, travels from one side of the anchor member 210 to another side by passing through the first opening 225 closest to the proximal end of the anchor member 210 in the first set of openings 225; the tensioning member 201 further extends distally, passes through the next opening 225 distal to the first opening 225 in the first set of openings 225. The tensioning member extends further distally repeating above steps until it passes through the last opening 225 in the first set of openings 225 and reaches the distal end of the anchor member 210. In one embodiment of the present teachings, there are ten openings 225 in the first set of openings 225. Anchor members 210 having between four and twelve openings 225 in the first set of openings can be made and used by one with ordinary skill in the art without undue experimentation.


In various embodiments of the present teachings, upon reaching the distal end of the anchor member 210, the tensioning member 201 loops back, extends proximally, travels from one side of the anchor member 210 to another side by passing through the first opening 226 closest to the distal end of the anchor member 210 in the second set of openings 226. The tensioning member 201 further extends proximally, travels to the first side of the anchor member 210 by passing through the next opening 226 proximal to the first opening 226 in the second set of openings 226. The tensioning member 201 extends further proximally repeating the above steps until it passes through the last opening 226 in the second set of openings 226 and reaches the proximal end of the anchor member 210. In some embodiments of the present teachings, there are ten openings 226 in the second set of openings 226. Elongate anchor members 210 having between four and twelve openings 226 in this set can be made and used by one with ordinary skill in the art without undue experimentation.


In various embodiments of the present teachings, as illustrated in FIG. 7A, the tensioning member 201 extends from one side of the anchor member 210 distally, loops back, and ends on the same side of the anchor member 210. In other embodiments, the tensioning member 201 extends from one side of the anchor member 210 distally, loops back, and ends on a different side of the anchor member 210.


In various embodiments of the present teachings, the number of openings 225 in the first set and the number of openings 226 in the second set are the same as illustrated in FIG. 7A. In other embodiments, the number of openings 225 in the first set and the number of openings 226 in the second set are different.


In some embodiments, the first and second sets of openings 225, 226 are different as illustrated in FIG. 7A. In other embodiments, the first and second sets of openings 225, 226 share at least one opening as illustrated in FIG. 7C. This common opening is identified with reference character 227 in FIG. 7C.


As mentioned above, the anchor member 210 can have an hour glass profile as illustrated in FIG. 7B. In this embodiment, the anchor member 210 has a pair of sections 229 of increased width (with one being located at the proximal end portion 212 and one at the distal end portion 214).


According to various embodiments of the present teachings, at least one opening 225 in the first set of openings 225 has a corresponding opening 226 in the second set of openings 226 and together they form a pair of openings on the anchor members 210. In some embodiments, at least one pair of openings 225, 226 form a line perpendicular to the longitudinal axis of the anchor member 210. In other embodiments, at least one pair of the openings 225, 226 forms a line parallel to the longitudinal axis of the anchor member 210. In yet other embodiments, at least one pair of the openings 225, 226 form a line that forms an angle with the longitudinal axis of the anchor member 210. In some embodiments, lines formed by all of the pairs of openings 225, 226 are in the same orientation with one another. For example, they can be parallel to one another and/or perpendicular to the longitudinal axis of the anchor member 210 as illustrated in FIG. 7A. In another embodiment, they can all be parallel to the longitudinal axis of the anchor member 210. In yet other embodiments, the lines formed by all the pairs of openings 225, 226 can have random directions.


In various embodiments, the two openings 225, 226 in a pair are 2-3 mm apart from each other. In some embodiments, the distance between two opening 225, 226 is the same in each pair. In some embodiments, the distance between two openings 225, 226 is different from one pair to another.


In various embodiments, the distance between two adjacent openings 225, 225 (or 226, 226) in the same set, defined by the distance from one opening to the next closest one in the same set of openings (either 225 or 226), is about 5-12 mm. In some embodiments, the distances between each adjacent openings 225, 225 (or 226, 226) is the same as each other. In some embodiments, the distances between each adjacent openings is different from each other.


In various embodiments, at least one pair of the openings 225, 226 are at the lateral center of the anchor member. In some embodiments, all the pairs of openings 225, 226 are at the lateral center of the anchor member. In some embodiments, at least one pair of the openings 225, 226 is biased toward one side of the anchor member 210. In some embodiments, all the pairs of openings 225, 226 are biased toward the same side of the anchor member. In some embodiments, each of the pairs of openings is biased toward different sides of the anchor member 210.


In various embodiments, all the openings 225, 226 in at least one set of openings, or in both the sets of openings, form a straight line. In various embodiments, all the openings in at least one set of the openings, or in both the sets of openings, form a curved line.



FIG. 8 illustrates an exemplary elongate profile of an exemplary anchor 300 that includes an elongate anchor member 310 and wherein the openings 225 in the first set of openings 225 form a straight line parallel to the longitudinal axis of the anchor member 310, and the openings 226 in the second set of openings 226 form another straight line parallel to the longitudinal axis of the anchor member 310 and at a distance from the line formed by the first set of openings 225.



FIG. 9 illustrates an exemplary elongate profile of an exemplary anchor 400 that includes an elongate anchor member 410. The openings 225 in the first set of openings form a curve with the openings 225 in the middle portion of the anchor member closest to the lateral center of the anchor member 410, and the openings 226 in the second set of openings form another curve with the openings 226 in the middle portion of the anchor member 410 closest to the lateral center of the anchor member 410, and the two curves have a lateral distance from each other and together form an “hour glass” shape.



FIGS. 10A and 10B illustrate an exemplary elongate profile of an exemplary anchor 500 that includes an elongate anchor member 510. All openings 225, 226 in both sets of the openings are aligned with each other forming a straight line parallel to the longitudinal axis of the anchor member 510. FIG. 10B is a side elevation view of the anchor member 510 showing the routing of the tensioning member 201 through the anchor member 510.


In various embodiments, at least one pre-set folding line is created between two pairs of the openings 225, 226, as illustrated in FIG. 12A. The pre-set folding line can be made by heat setting with or without a mold. One skilled in the art would understand that other methods can also be used to create pre-set folding lines without undue experimentations. In some embodiments, the pre-set folding lines allow the elongate anchor member to fold at pre-defined places. In certain embodiments, a pre-set folding line is created between every two pairs of the openings 225, 226, for example, as illustrated in FIGS. 8-10.


According to various embodiments of the present teachings, the elongate anchor member (e.g., anchor member 210) shortens and creates folds as illustrated in FIG. 11. In some embodiments, the number of the folds in the anchor in its deployed profile ranges from 4 to 12. In various embodiments, the number of the folds is the same as the number of the openings in at least one set of the openings 225, 226. In other embodiments, the number of the folds has no particular relationship with the number of the openings in either set of the openings 225, 226. In various embodiments, the number of the folds is the same as the number of the pre-set folding lines plus one. In other embodiments, the number of the folds has no particular relationship with the number of the pre-set folding lines.



FIGS. 12A-D illustrate an exemplary embodiment of the present teachings. Specifically, FIGS. 12A and 12D illustrate an exemplary elongate profile and an exemplary deployed profile, respectively, of an anchor 600 of the present teachings. The anchor 600 includes an elongate anchor member 610. As shown in FIG. 12A, the elongate anchor member 610 has two sets of openings 225, 226 through which the tensioning member 201 weaves. The tensioning member 201 weaves through the first set of openings 225 as it extends from the proximal end to the distal end of the anchor member 610 and weaves through the second set of openings 226 as it returns from the distal end to the proximal end of the anchor member 610.


In various embodiments of the present teachings, at least one opening in the first set of openings corresponds with another opening in the second set of openings and together they form a pair of openings on the anchor member. As shown in FIG. 12A, there are 5 pairs of openings 225, 226 in the distal portion of the anchor member, and 3 pairs of openings 225, 226 in the proximal portion of the anchor member 510. As shown in FIG. 12A, each pair of the openings 225, 226 in the distal end section of the distal portion of the anchor member form an imaginary line and the imaginary lines from the opening pairs 225, 226 in the distal portion of the anchor member 610 are parallel to one another and perpendicular to the longitudinal axis of the anchor member 610, and at the lateral center of the anchor member 610; all openings 225, 226 in the proximal end section of the distal portion of the anchor member 610 align with one another and form an imaginary straight line that is parallel to the longitudinal axis of the entire distal portion of the anchor member 610, and at the lateral center of the entire distal portion of the anchor member 610. Thus, in the proximal portion of the anchor member 610, all openings 225, 226 from both set of openings align with one another and form an imaginary straight line that is parallel to the longitudinal axis of the anchor member 610 and at the lateral center of the anchor member 610. One skilled in the art should understand that the amount of pairs of opening in distal and/or proximal portions of the anchor member 610 can be of any number other than what has been described here.



FIG. 12A further illustrates exemplary pre-set folding lines in an elongate anchor member of the present teachings. As shown in FIG. 12A, the folding lines (indicated in the drawings as “L”) in the proximal portions and the distal end portion of the distal portion of the anchor member 610 are parallel to one another and perpendicular to the longitudinal axis of the anchor member 610. The pre-set folding lines L between the distal end section and proximal end section of the distal portion of the anchor member 610 are angled to the other pre-set folding lines L. Although specific pre-set folding patterns is shown in FIG. 12A, one with ordinary skill in the art would understand that other patterns, numbers can be incorporated to form pre-set folding lines L. For example, the both distal and proximal portions of the anchor member 610 are parallel to one another and perpendicular to the longitudinal axis of the anchor member 610, and only a middle portion 615 between the distal and proximal portions of the anchor member 610 are angled, so as to forming a transitional section across the paravalvular leakage upon deployment. Therefore what is shown in FIG. 12A should not be considered as being limiting.



FIG. 12A further illustrates an exemplary narrow section in the distal end portion of the anchor member. This narrow section is the result of radiopaque marker being crimped onto the anchor member. As described above, there are other ways of putting one or more radiopaque markers onto the anchor member. Thus, what is shown in this Figure should not limit the scope of the present teachings.



FIG. 12B illustrates an exemplary deployment profile of an embodiment of the present teachings across a paravalvular leakage site. There are 8 folds in the deployed anchor as shown in FIG. 12B, among which 5 are distal to the paravalvular leakage and 3 are proximal to the leakage. One skilled in the art would understand that the number of folds in each side of the paravalvular leakage should not be viewed as limiting. As shown in FIG. 12B, the folded panels at the proximal portion of the anchor member and at the proximal end section of the distal portion of the anchor member orientate in one direction, and the folded panels in the distal end portion of the anchor member orientate in another direction that is perpendicular to folded panels in the other direction. The transitional folds between the distal and proximal end section of the distal portion of the anchor member are located at the angled pre-set folding line. In this specific embodiment shown in FIG. 12B, the transitional folds are distal to the paravalvular leakage and are generally indicated with the reference character 601 (in other words, the change in folding direction is identified at 601). One skilled in the art should understand that the transitional folds can be proximal to the paravalvular leakage, or across the paravalvular leakage, and thus what has be illustrated here should not be viewed as limiting.



FIG. 12C is a view of the exemplary anchor shown in FIGS. 12A and B in its deployed configuration. The distal deployed anchor portion has a width “x” established by the width of the anchor and a length “y” determined by the distance between two pairs of the openings. The proximal deployed anchor portion has a width “y” established by the distance between the two pairs of the openings and a length “x” established by the width of the anchor. As shown in this view, the configuration in the exemplary embodiment shown in FIGS. 12A-D increases the overall width of the deployed anchor. This configuration prevents the tensioning member from cutting the panel and the paravalvular leakage and increases the retention force of the anchor against the leakage site.


In other words as shown in FIG. 12D, at least two adjacent anchor panels 603, 605 are disposed in a crisscrossed manner in that the longitudinal axes of the adjacent anchor panels 603, 605 are disposed perpendicular to one another as shown.


Other arrangements can be incorporated into the two sets of openings. For example, all the openings from both sets of openings in the distal portion of the anchor member can align with each other to form an imaginary straight line that is parallel to the longitudinal axis of the anchor member, and/or each pair of the openings in the proximal portion of the anchor member can form an imaginary line and all the imaginary lines so formed are parallel to one another and perpendicular to the longitudinal axis of the anchor member. One skilled in the art would understand that openings in either or both set of the openings can form any configuration so long as it serves the intended purpose.


Although the present teachings have been described with reference to preferred embodiments, persons ordinarily skilled in the art will recognize that changes can be made in form and detail without departing from the spirit and scope of the present disclosure.

Claims
  • 1. A method of percutaneously treating a paravalvular leakage comprising the steps of: providing an anchor, wherein: the anchor comprises an elongate anchor member and a tensioning member, the elongate anchor member having a longitudinal axis,the elongate anchor member comprises a distal portion and a first set of openings along a length of the elongate anchor member, and the tensioning member passes through at least two of the first set of openings,the anchor has an elongate configuration and a shortened configuration,the elongate anchor member defines a first pre-set oblique folding line and a second pre-set oblique folding line, each of the first pre-set oblique folding line and the second pre-set oblique folding line being nonparallel and nonorthogonal to the longitudinal axis, and the second pre-set oblique folding line being nonparallel to the first pre-set folding line;positioning the anchor through a paravalvular leakage that comprises a gap defined between an artificial valve and a heart wall, wherein the anchor is positioned perpendicular to the artificial valve and heart wall;deploying the anchor wherein at least a part of the distal portion of the elongate anchor member is on one side of the paravalvular leakage; andplugging the paravalvular leakage by applying tension to the tensioning member so that the elongate anchor member transitions from the elongate configuration to the shortened configuration by folding about the first pre-set oblique folding line and the second pre-set oblique folding line.
  • 2. The method of claim 1, wherein the elongate anchor member comprises a proximal portion.
  • 3. The method of claim 2, wherein the elongate anchor member comprises a second set of openings.
  • 4. The method of claim 2, wherein the tensioning member extends from the proximal portion to the distal portion of the elongate anchor member.
  • 5. The method of claim 3, wherein the tensioning member extends from the distal portion to the proximal portion of the elongate anchor member.
  • 6. The method of claim 5, wherein the tensioning member passes through at least two of the first set of openings.
  • 7. The method of claim 5, wherein the tensioning member passes through at least two of the second set of openings.
  • 8. The method of claim 2, further comprising the step of deploying the anchor wherein at least the part of the proximal portion of the elongate anchor member is on the other side of the paravalvular leakage.
  • 9. The method of claim 2, further comprising the step of applying tension to the tensioning member so that at least the part of the proximal portion of the elongate anchor member transitions from the elongate configuration to the shortened configuration.
  • 10. The method according to claim 2, wherein: the proximal portion defines a plurality of proximal pre-set folding lines that are parallel with each other, and the distal portion defines a plurality of distal pre-set folding lines that are parallel with each other, andplugging the paravalvular leakage by applying tension to the tensioning member comprises plugging the paravalvular leakage by applying tension to the tensioning member so that the elongate anchor member transitions from the elongate configuration to the shortened configuration by folding about the proximal pre-set folding lines and the distal pre-set folding lines.
  • 11. The method according to claim 10, wherein: in the elongate configuration, the distal pre-set folding lines are parallel to the proximal pre-set folding lines, andplugging the paravalvular leakage by applying tension to the tensioning member comprises plugging the paravalvular leakage by applying tension to the tensioning member so that the elongate anchor member transitions from the elongate configuration to the shortened configuration by folding about the first pre-set folding line and the second pre-set folding line such that, in the shortened configuration, the distal pre-set folding lines are nonparallel to the proximal pre-set folding lines.
  • 12. The method according to claim 11, wherein plugging the paravalvular leakage by applying tension to the tensioning member comprises plugging the paravalvular leakage by applying tension to the tensioning member so that the elongate anchor member transitions from the elongate configuration to the shortened configuration by folding about the first pre-set folding line and the second pre-set folding line such that, in the shortened configuration, the distal pre-set folding lines are orthogonal to the proximal pre-set folding lines.
  • 13. The method of claim 1, further comprising the step of introducing a catheter approximately at the paravalvular leakage.
  • 14. The method of claim 13 further comprising the step of withdrawing the catheter to deploy the anchor wherein at least a part of the distal portion of the elongate anchor member is on one side of the paravalvular leakage.
  • 15. The method of claim 13, further comprising the step of withdrawing the catheter to deploy the anchor wherein at least a part of the proximal portion of the elongate anchor member is on the other side of the paravalvular leakage.
  • 16. The method of claim 1 comprising the step of locating the paravalvular leakage.
  • 17. The method of claim 1, wherein the elongate anchor member comprises a plurality of panels, wherein a least one of the plurality of panels is defined between the first pre-set oblique folding line and the second pre-set oblique folding line.
  • 18. The method of claim 17, wherein at least two of the plurality of panels are at least one of substantially overlapping and partially overlapping in the shortened configuration.
  • 19. The method of claim 17, wherein the applying of tension of the tensioning member causes at least two of the plurality of panels to fold about the first pre-set oblique folding line.
  • 20. The method of claim 1, wherein the anchor comprises a second elongate anchor member proximally to the elongate anchor member.
  • 21. The method of claim 20, further comprising the steps of: deploying the anchor, wherein at least a part of the second elongate anchor member is on the other side of the paravalvular leakage; andapplying tension to the tensioning member so that at least a part of the second elongate anchor member transitions from the elongate configuration to the shortened configuration_.
  • 22. The method of claim 21, further comprising introducing a catheter approximately at the paravalvular leakage; and withdrawing the catheter to deploy the anchor wherein at least a part of the elongate anchor member is on one side of the paravalvular leakage.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. Non-Provisional patent application Ser. No. 15/061,549, filed Mar. 4, 2016, which is based on and claims priority to U.S. Provisional Patent Application No. 62/128,997, filed Mar. 5, 2015, all of which are incorporated by reference, as if expressly set forth in their respective entireties herein.

US Referenced Citations (823)
Number Name Date Kind
3604488 Wishart et al. Sep 1971 A
3656185 Carpentier Apr 1972 A
3840018 Heifetz Oct 1974 A
3881366 Bradley et al. May 1975 A
3898701 La Russa Aug 1975 A
4042979 Angell Aug 1977 A
4118805 Reimels Oct 1978 A
4214349 Munch Jul 1980 A
4261342 Aranguren Duo Apr 1981 A
4290151 Massana Sep 1981 A
4434828 Trincia Mar 1984 A
4473928 Johnson Oct 1984 A
4602911 Ahmadi et al. Jul 1986 A
4625727 Leiboff Dec 1986 A
4712549 Peters et al. Dec 1987 A
4778468 Hunt et al. Oct 1988 A
4917698 Carpentier et al. Apr 1990 A
4935027 Yoon Jun 1990 A
4961738 Mackin Oct 1990 A
5042707 Taheri Aug 1991 A
5061277 Carpentier et al. Oct 1991 A
5064431 Gilbertson et al. Nov 1991 A
5104407 Lam et al. Apr 1992 A
5108420 Marks Apr 1992 A
5201880 Wright et al. Apr 1993 A
5258008 Wilk Nov 1993 A
5300034 Behnke et al. Apr 1994 A
5325845 Adair Jul 1994 A
5346498 Greelis et al. Sep 1994 A
5383852 Stevens-Wright Jan 1995 A
5449368 Kuzmak Sep 1995 A
5450860 O'Connor Sep 1995 A
5464404 Abela et al. Nov 1995 A
5474518 Farrer Velazquez Dec 1995 A
5477856 Lundquist Dec 1995 A
5593424 Northrup, III Jan 1997 A
5601572 Middleman et al. Feb 1997 A
5626609 Zvenyatsky et al. May 1997 A
5643317 Pavcnik et al. Jul 1997 A
5669919 Sanders et al. Sep 1997 A
5676653 Taylor et al. Oct 1997 A
5683402 Cosgrove et al. Nov 1997 A
5702397 Goble et al. Dec 1997 A
5702398 Tarabishy Dec 1997 A
5709695 Northrup, III Jan 1998 A
5716370 Williamson, IV et al. Feb 1998 A
5716397 Myers Feb 1998 A
5728116 Rosenman Mar 1998 A
5730150 Peppel et al. Mar 1998 A
5749371 Zadini et al. May 1998 A
5782844 Yoon et al. Jul 1998 A
5810882 Bolduc et al. Sep 1998 A
5824066 Gross Oct 1998 A
5830221 Stein et al. Nov 1998 A
5843120 Israel et al. Dec 1998 A
5855614 Stevens et al. Jan 1999 A
5876373 Giba et al. Mar 1999 A
5935098 Blaisdell et al. Aug 1999 A
5957953 DiPoto et al. Sep 1999 A
5961440 Schweich, Jr. et al. Oct 1999 A
5961539 Northrup, III et al. Oct 1999 A
5984959 Robertson et al. Nov 1999 A
6042554 Rosenman et al. Mar 2000 A
6045497 Schweich, Jr. et al. Apr 2000 A
6050936 Schweich, Jr. et al. Apr 2000 A
6059715 Schweich, Jr. et al. May 2000 A
6074341 Anderson et al. Jun 2000 A
6074401 Gardiner et al. Jun 2000 A
6074417 Peredo Jun 2000 A
6086582 Altman et al. Jul 2000 A
6102945 Campbell Aug 2000 A
6106550 Magovern et al. Aug 2000 A
6110200 Hinnenkamp Aug 2000 A
6132390 Cookston et al. Oct 2000 A
6143024 Campbell et al. Nov 2000 A
6159240 Sparer et al. Dec 2000 A
6165119 Schweich, Jr. et al. Dec 2000 A
6174332 Loch et al. Jan 2001 B1
6183411 Mortier et al. Feb 2001 B1
6187040 Wright Feb 2001 B1
6210347 Forsell Apr 2001 B1
6217610 Carpentier et al. Apr 2001 B1
6231602 Carpentier et al. May 2001 B1
6251092 Qin et al. Jun 2001 B1
6296656 Bolduc et al. Oct 2001 B1
6315784 Djurovic Nov 2001 B1
6319281 Patel Nov 2001 B1
6328746 Gambale Dec 2001 B1
6332893 Mortier et al. Dec 2001 B1
6355030 Aldrich et al. Mar 2002 B1
6361559 Houser et al. Mar 2002 B1
6368348 Gabbay Apr 2002 B1
6402780 Williamson, IV et al. Jun 2002 B2
6406420 McCarthy et al. Jun 2002 B1
6406493 Tu et al. Jun 2002 B1
6419696 Ortiz et al. Jul 2002 B1
6451054 Stevens Sep 2002 B1
6458076 Pruitt Oct 2002 B1
6461336 Larre Oct 2002 B1
6461366 Seguin Oct 2002 B1
6470892 Forsell Oct 2002 B1
6503274 Howanec, Jr. et al. Jan 2003 B1
6524338 Gundry Feb 2003 B1
6527780 Wallace et al. Mar 2003 B1
6530952 Vesely Mar 2003 B2
6533772 Sherts et al. Mar 2003 B1
6537314 Langberg et al. Mar 2003 B2
6547801 Dargent et al. Apr 2003 B1
6554845 Fleenor et al. Apr 2003 B1
6564805 Garrison et al. May 2003 B2
6565603 Cox May 2003 B2
6569198 Wilson et al. May 2003 B1
6579297 Bicek et al. Jun 2003 B2
6589160 Schweich, Jr. et al. Jul 2003 B2
6592593 Parodi et al. Jul 2003 B1
6602288 Cosgrove et al. Aug 2003 B1
6602289 Colvin et al. Aug 2003 B1
6613078 Barone Sep 2003 B1
6613079 Wolinsky et al. Sep 2003 B1
6619291 Hlavka et al. Sep 2003 B2
6626899 Houser et al. Sep 2003 B2
6626917 Craig Sep 2003 B1
6626930 Allen et al. Sep 2003 B1
6629534 St. Goar et al. Oct 2003 B1
6629921 Schweich, Jr. et al. Oct 2003 B1
6651671 Donlon et al. Nov 2003 B1
6652556 VanTassel et al. Nov 2003 B1
6682558 Tu et al. Jan 2004 B2
6689125 Keith et al. Feb 2004 B1
6689164 Seguin Feb 2004 B1
6695866 Kuehn et al. Feb 2004 B1
6702826 Liddicoat et al. Mar 2004 B2
6702846 Mikus et al. Mar 2004 B2
6706065 Langberg et al. Mar 2004 B2
6709385 Forsell Mar 2004 B2
6709456 Langberg et al. Mar 2004 B2
6711444 Koblish Mar 2004 B2
6719786 Ryan et al. Apr 2004 B2
6723038 Schroeder et al. Apr 2004 B1
6726716 Marquez Apr 2004 B2
6726717 Alfieri et al. Apr 2004 B2
6749630 McCarthy et al. Jun 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6764310 Ichihashi et al. Jul 2004 B1
6764510 Vidlund et al. Jul 2004 B2
6764810 Ma et al. Jul 2004 B2
6770083 Seguin Aug 2004 B2
6786924 Ryan et al. Sep 2004 B2
6786925 Schoon et al. Sep 2004 B1
6790231 Liddicoat et al. Sep 2004 B2
6797001 Mathis et al. Sep 2004 B2
6797002 Spence et al. Sep 2004 B2
6802319 Stevens et al. Oct 2004 B2
6805710 Bolling et al. Oct 2004 B2
6805711 Quijano et al. Oct 2004 B2
6855126 Flinchbaugh Feb 2005 B2
6858039 McCarthy Feb 2005 B2
6884250 Monassevitch et al. Apr 2005 B2
6893459 Macoviak May 2005 B1
6908478 Alterness et al. Jun 2005 B2
6908482 McCarthy et al. Jun 2005 B2
6918917 Nguyen et al. Jul 2005 B1
6926730 Nguyen et al. Aug 2005 B1
6960217 Bolduc Nov 2005 B2
6976995 Mathis et al. Dec 2005 B2
6986775 Morales et al. Jan 2006 B2
6989028 Lashnski et al. Jan 2006 B2
6997951 Solem et al. Feb 2006 B2
7004176 Lau Feb 2006 B2
7007798 Happonen et al. Mar 2006 B2
7011669 Kimblad Mar 2006 B2
7011682 Lashinski et al. Mar 2006 B2
7018406 Seguin et al. Mar 2006 B2
7037334 Hlavka et al. May 2006 B1
7077850 Kortenbach Jul 2006 B2
7077862 Vidlund et al. Jul 2006 B2
7087064 Hyde Aug 2006 B1
7101395 Tremulis et al. Sep 2006 B2
7101396 Artof et al. Sep 2006 B2
7112207 Allen et al. Sep 2006 B2
7118595 Ryan et al. Oct 2006 B2
7125421 Tremulis et al. Oct 2006 B2
7150737 Purdy et al. Dec 2006 B2
7159593 McCarthy et al. Jan 2007 B2
7166127 Spence et al. Jan 2007 B2
7169187 Datta et al. Jan 2007 B2
7172625 Shu et al. Feb 2007 B2
7175660 Cartledge et al. Feb 2007 B2
7186262 Saadat Mar 2007 B2
7186264 Liddicoat et al. Mar 2007 B2
7189199 McCarthy et al. Mar 2007 B2
7192443 Solem et al. Mar 2007 B2
7220277 Arru et al. May 2007 B2
7226467 Lucatero et al. Jun 2007 B2
7226477 Cox Jun 2007 B2
7226647 Kasperchik et al. Jun 2007 B2
7229452 Kayan Jun 2007 B2
7238191 Bachmann Jul 2007 B2
7288097 Seguin Oct 2007 B2
7294148 McCarthy Nov 2007 B2
7311728 Solem et al. Dec 2007 B2
7311729 Mathis et al. Dec 2007 B2
7314485 Mathis Jan 2008 B2
7316710 Cheng et al. Jan 2008 B1
7329279 Haug et al. Feb 2008 B2
7329280 Bolling et al. Feb 2008 B2
7335213 Hyde et al. Feb 2008 B1
7361190 Shaoulian et al. Apr 2008 B2
7364588 Mathis et al. Apr 2008 B2
7377941 Rhee et al. May 2008 B2
7390329 Westra et al. Jun 2008 B2
7404824 Webler et al. Jul 2008 B1
7431692 Zollinger et al. Oct 2008 B2
7442207 Rafiee Oct 2008 B2
7452376 Lim et al. Nov 2008 B2
7455690 Cartledge et al. Nov 2008 B2
7485142 Milo Feb 2009 B2
7485143 Webler et al. Feb 2009 B2
7500989 Solem et al. Mar 2009 B2
7507252 Lashinski et al. Mar 2009 B2
7510575 Spenser et al. Mar 2009 B2
7510577 Moaddeb et al. Mar 2009 B2
7527647 Spence May 2009 B2
7530995 Quijano et al. May 2009 B2
7549983 Roue et al. Jun 2009 B2
7559936 Levine Jul 2009 B2
7562660 Saadat Jul 2009 B2
7563267 Goldfarb et al. Jul 2009 B2
7563273 Goldfarb et al. Jul 2009 B2
7569062 Kuehn et al. Aug 2009 B1
7585321 Cribier Sep 2009 B2
7588582 Starksen et al. Sep 2009 B2
7591826 Alferness et al. Sep 2009 B2
7604646 Goldfarb et al. Oct 2009 B2
7608091 Goldfarb et al. Oct 2009 B2
7608103 McCarthy Oct 2009 B2
7625403 Krivoruchko Dec 2009 B2
7632303 Stalker et al. Dec 2009 B1
7635329 Goldfarb et al. Dec 2009 B2
7635386 Gammie Dec 2009 B1
7655015 Goldfarb et al. Feb 2010 B2
7666204 Thornton et al. Feb 2010 B2
7682319 Martin et al. Mar 2010 B2
7682369 Seguin Mar 2010 B2
7686822 Shayani Mar 2010 B2
7699892 Rafiee et al. Apr 2010 B2
7704269 St. Goar et al. Apr 2010 B2
7704277 Zakay et al. Apr 2010 B2
7722666 Lafontaine May 2010 B2
7736388 Goldfarb et al. Jun 2010 B2
7780726 Seguin Jun 2010 B2
7748389 Salahieh et al. Jul 2010 B2
7753924 Starksen et al. Jul 2010 B2
7758632 Hojeibane et al. Jul 2010 B2
7871368 Zollinger et al. Jan 2011 B2
7871433 Lattouf Jan 2011 B2
7883475 Dupont et al. Feb 2011 B2
7883538 To et al. Feb 2011 B2
7892281 Seguin et al. Feb 2011 B2
7927370 Webler et al. Apr 2011 B2
7927371 Navia et al. Apr 2011 B2
7942927 Kaye et al. May 2011 B2
7947056 Griego et al. May 2011 B2
7955315 Feinberg et al. Jun 2011 B2
7955377 Melsheimer Jun 2011 B2
7992567 Hirotsuka et al. Aug 2011 B2
7993368 Gambale et al. Aug 2011 B2
7993397 Lashinski et al. Aug 2011 B2
8012201 Lashinski et al. Sep 2011 B2
8034103 Burriesci et al. Oct 2011 B2
8052592 Goldfarb et al. Nov 2011 B2
8057493 Goldfarb et al. Nov 2011 B2
8062355 Figulla et al. Nov 2011 B2
8070804 Hyde et al. Dec 2011 B2
8070805 Vidlund et al. Dec 2011 B2
8075616 Solem et al. Dec 2011 B2
8100964 Spence Jan 2012 B2
8123801 Milo Feb 2012 B2
8142493 Spence et al. Mar 2012 B2
8142495 Hasenkam et al. Mar 2012 B2
8142496 Berreklouw Mar 2012 B2
8147542 Maisano et al. Apr 2012 B2
8152844 Rao et al. Apr 2012 B2
8163013 Machold et al. Apr 2012 B2
8187299 Goldfarb et al. May 2012 B2
8187324 Webler et al. May 2012 B2
8202315 Hlavka et al. Jun 2012 B2
8206439 Gomez Duran Jun 2012 B2
8216302 Wilson et al. Jul 2012 B2
8231671 Kim Jul 2012 B2
8262725 Subramanian Sep 2012 B2
8265758 Policker et al. Sep 2012 B2
8277502 Miller et al. Oct 2012 B2
8287584 Salahieh et al. Oct 2012 B2
8287591 Keidar et al. Oct 2012 B2
8292884 Levine et al. Oct 2012 B2
8303608 Goldfarb et al. Nov 2012 B2
8323334 Deem et al. Dec 2012 B2
8328868 Paul et al. Dec 2012 B2
8333777 Schaller et al. Dec 2012 B2
8343173 Starksen et al. Jan 2013 B2
8343174 Goldfarb et al. Jan 2013 B2
8343213 Salahieh et al. Jan 2013 B2
8349002 Milo Jan 2013 B2
8353956 Miller et al. Jan 2013 B2
8357195 Kuehn Jan 2013 B2
8382829 Call et al. Feb 2013 B1
8388680 Starksen et al. Mar 2013 B2
8393517 Milo Mar 2013 B2
8419825 Burgler et al. Apr 2013 B2
8430926 Kirson Apr 2013 B2
8449573 Chu May 2013 B2
8449599 Chau et al. May 2013 B2
8454686 Alkhatib Jun 2013 B2
8460370 Zakay Jun 2013 B2
8460371 Hlavka et al. Jun 2013 B2
8475491 Milo Jul 2013 B2
8475525 Maisano et al. Jul 2013 B2
8480732 Subramanian Jul 2013 B2
8518107 Tsukashima et al. Aug 2013 B2
8523940 Richardson et al. Sep 2013 B2
8551161 Dolan Oct 2013 B2
8585755 Chau et al. Nov 2013 B2
8591576 Hasenkam et al. Nov 2013 B2
8608797 Gross et al. Dec 2013 B2
8628569 Benichou et al. Jan 2014 B2
8628571 Hacohen et al. Jan 2014 B1
8641727 Starksen et al. Feb 2014 B2
8652202 Alon et al. Feb 2014 B2
8652203 Quadri et al. Feb 2014 B2
8679174 Ottma et al. Mar 2014 B2
8685086 Navia et al. Apr 2014 B2
8728097 Sugimoto et al. May 2014 B1
8728155 Montorfano et al. May 2014 B2
8734467 Miller et al. May 2014 B2
8734699 Heideman et al. May 2014 B2
8740920 Goldfarb et al. Jun 2014 B2
8747463 Fogarty et al. Jun 2014 B2
8778021 Cartledge Jul 2014 B2
8784481 Aikhatib et al. Jul 2014 B2
8790367 Nguyen et al. Jul 2014 B2
8790394 Miller et al. Jul 2014 B2
8795298 Hernlund et al. Aug 2014 B2
8795355 Alkhatib Aug 2014 B2
8795356 Quadri et al. Aug 2014 B2
8795357 Yohanan et al. Aug 2014 B2
8808366 Braido et al. Aug 2014 B2
8808368 Maisano et al. Aug 2014 B2
8645717 Khairkhahan et al. Sep 2014 B2
8845723 Spence et al. Sep 2014 B2
8852261 White Oct 2014 B2
8852272 Gross et al. Oct 2014 B2
8858623 Miller et al. Oct 2014 B2
8864822 Spence et al. Oct 2014 B2
8870948 Erzberger et al. Oct 2014 B1
8870949 Rowe Oct 2014 B2
8888843 Khairkhahan et al. Nov 2014 B2
8889861 Skead et al. Nov 2014 B2
8894702 Quadri et al. Nov 2014 B2
8911461 Traynor et al. Dec 2014 B2
8911494 Hammer et al. Dec 2014 B2
8926696 Cabiri et al. Jan 2015 B2
8926697 Gross et al. Jan 2015 B2
8932343 Alkhatib et al. Jan 2015 B2
8932348 Solem et al. Jan 2015 B2
8940044 Hammer et al. Jan 2015 B2
8945211 Sugimoto Feb 2015 B2
8951285 Sugimoto et al. Feb 2015 B2
8951286 Sugimoto et al. Feb 2015 B2
8961595 Alkhatib Feb 2015 B2
8961602 Kovach et al. Feb 2015 B2
8979922 Jayasinghe et al. Mar 2015 B2
8992604 Gross et al. Mar 2015 B2
9005273 Salahieh et al. Apr 2015 B2
9011520 Miller et al. Apr 2015 B2
9011530 Reich et al. Apr 2015 B2
9023100 Quadri et al. May 2015 B2
9072603 Tuval et al. Jul 2015 B2
9107749 Bobo et al. Aug 2015 B2
9119719 Zipory et al. Sep 2015 B2
9125632 Loulmet et al. Sep 2015 B2
9125742 Yoganathan et al. Sep 2015 B2
9138316 Bielefeld Sep 2015 B2
9173646 Fabro Nov 2015 B2
9180005 Lashinski et al. Nov 2015 B1
9180007 Reich et al. Nov 2015 B2
9192472 Gross et al. Nov 2015 B2
9198756 Aklog et al. Dec 2015 B2
9226825 Starksen et al. Jan 2016 B2
9259218 Robinson Feb 2016 B2
9265608 Miller et al. Feb 2016 B2
9326857 Cartledge et al. May 2016 B2
9414921 Miller et al. Aug 2016 B2
9427316 Schweich, Jr. et al. Aug 2016 B2
9474606 Zipory et al. Oct 2016 B2
9526613 Gross et al. Dec 2016 B2
9561104 Miller et al. Feb 2017 B2
9579090 Simms et al. Feb 2017 B1
9730793 Reich et al. Jun 2017 B2
9693865 Gilmore et al. Jul 2017 B2
9724084 Groothuis et al. Aug 2017 B2
9788941 Hacohen Oct 2017 B2
9801720 Gilmore et al. Oct 2017 B2
9907547 Gilmore et al. Mar 2018 B2
10368852 Gerhardt et al. Aug 2019 B2
20010021874 Carpentier et al. Sep 2001 A1
20020022862 Grafton et al. Feb 2002 A1
20020082525 Oslund et al. Jun 2002 A1
20020087048 Brock et al. Jul 2002 A1
20020103532 Langberg et al. Aug 2002 A1
20020120292 Morgan Aug 2002 A1
20020151916 Muramatsu et al. Oct 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020169358 Mortier et al. Nov 2002 A1
20020177904 Huxel et al. Nov 2002 A1
20020188301 Dallara et al. Dec 2002 A1
20020188350 Arru et al. Dec 2002 A1
20020198586 Inoue Dec 2002 A1
20030050693 Quijano et al. Mar 2003 A1
20030078465 Pai et al. Apr 2003 A1
20030078653 Vesely et al. Apr 2003 A1
20030105519 Fasol et al. Jun 2003 A1
20030114901 Loeb et al. Jun 2003 A1
20030120340 Liska et al. Jun 2003 A1
20030144657 Bowe et al. Jul 2003 A1
20030171760 Gambale Sep 2003 A1
20030199974 Lee et al. Oct 2003 A1
20030204193 Gabriel et al. Oct 2003 A1
20030204195 Keane et al. Oct 2003 A1
20030229350 Kay Dec 2003 A1
20030229395 Cox Dec 2003 A1
20040010287 Bonutti Jan 2004 A1
20040019359 Worley et al. Jan 2004 A1
20040019377 Taylor et al. Jan 2004 A1
20040024451 Johnson et al. Feb 2004 A1
20040039442 St. Goar et al. Feb 2004 A1
20040044350 Martin et al. Mar 2004 A1
20040059413 Argento Mar 2004 A1
20040068273 Fariss et al. Apr 2004 A1
20040111095 Gordon et al. Jun 2004 A1
20040122514 Fogarty et al. Jun 2004 A1
20040127982 Machold et al. Jul 2004 A1
20040133274 Webler et al. Jul 2004 A1
20040133374 Kattan Jul 2004 A1
20040138744 Lashinski et al. Jul 2004 A1
20040138745 Macoviak et al. Jul 2004 A1
20040148019 Vidlund et al. Jul 2004 A1
20040148020 Vidlund et al. Jul 2004 A1
20040148021 Cartledge et al. Jul 2004 A1
20040176788 Opolski Sep 2004 A1
20040181287 Gellman Sep 2004 A1
20040186566 Hindrichs et al. Sep 2004 A1
20040193191 Starksen et al. Sep 2004 A1
20040243227 Starksen et al. Dec 2004 A1
20040260317 Bloom et al. Dec 2004 A1
20040260344 Lyons et al. Dec 2004 A1
20040260393 Rahdert et al. Dec 2004 A1
20040260394 Douk et al. Dec 2004 A1
20040267358 Reitan Dec 2004 A1
20050004668 Aklog et al. Jan 2005 A1
20050010287 Macoviak et al. Jan 2005 A1
20050010787 Tarbouriech Jan 2005 A1
20050016560 Voughlohn Jan 2005 A1
20050049692 Numamoto et al. Mar 2005 A1
20050055038 Kelleher et al. Mar 2005 A1
20050055087 Starksen Mar 2005 A1
20050060030 Lashinski et al. Mar 2005 A1
20050065601 Lee et al. Mar 2005 A1
20050070999 Spence Mar 2005 A1
20050075727 Wheatley Apr 2005 A1
20050090827 Gedebou Apr 2005 A1
20050090834 Chiang et al. Apr 2005 A1
20050096740 Langberg et al. May 2005 A1
20050107871 Realyvasquez et al. May 2005 A1
20050119734 Spence et al. Jun 2005 A1
20050125002 Baran et al. Jun 2005 A1
20050125011 Spence et al. Jun 2005 A1
20050131533 Alfieri et al. Jun 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050159728 Armour et al. Jul 2005 A1
20050171601 Cosgrove et al. Aug 2005 A1
20050177180 Kaganov et al. Aug 2005 A1
20050177228 Solem et al. Aug 2005 A1
20050187568 Klenk et al. Aug 2005 A1
20050192596 Jugenheimer et al. Sep 2005 A1
20050203549 Realyvasquez Sep 2005 A1
20050203606 VanCamp Sep 2005 A1
20050216039 Lederman Sep 2005 A1
20050216079 MaCoviak Sep 2005 A1
20050222665 Aranyi Oct 2005 A1
20050256532 Nayak et al. Nov 2005 A1
20050267478 Corradi et al. Dec 2005 A1
20050273138 To et al. Dec 2005 A1
20050288778 Shaoulian et al. Dec 2005 A1
20060004442 Spenser et al. Jan 2006 A1
20060004443 Liddicoat et al. Jan 2006 A1
20060020326 Bolduc et al. Jan 2006 A9
20060020327 Lashinski et al. Jan 2006 A1
20060020333 Lashinski et al. Jan 2006 A1
20060020336 Liddicoat Jan 2006 A1
20060025787 Morales et al. Feb 2006 A1
20060025858 Alameddine Feb 2006 A1
20060030885 Hyde Feb 2006 A1
20060041319 Taylor et al. Feb 2006 A1
20060069429 Spence et al. Mar 2006 A1
20060074486 Liddicoat et al. Apr 2006 A1
20060085012 Dolan Apr 2006 A1
20060095009 Lampropoulos et al. May 2006 A1
20060106423 Weisel et al. May 2006 A1
20060116757 Lashinski et al. Jun 2006 A1
20060122633 To et al. Jun 2006 A1
20060129166 Lavelle Jun 2006 A1
20060142694 Bednarek et al. Jun 2006 A1
20060149280 Harvie et al. Jul 2006 A1
20060149368 Spence Jul 2006 A1
20060161265 Levine et al. Jul 2006 A1
20060184240 Jimenez et al. Aug 2006 A1
20060184242 Lichtenstein Aug 2006 A1
20060195134 Crittenden Aug 2006 A1
20060206203 Yang et al. Sep 2006 A1
20060241622 Zergiebel Oct 2006 A1
20060241656 Starksen et al. Oct 2006 A1
20060241748 Lee et al. Oct 2006 A1
20060247763 Slater Nov 2006 A1
20060259135 Navia et al. Nov 2006 A1
20060271175 Woolfson et al. Nov 2006 A1
20060276871 Lamson et al. Dec 2006 A1
20060282161 Huynh et al. Dec 2006 A1
20060287661 Bolduc et al. Dec 2006 A1
20060287716 Banbury et al. Dec 2006 A1
20070001627 Lin et al. Jan 2007 A1
20070010800 Weitzner et al. Jan 2007 A1
20070010857 Sugimoto Jan 2007 A1
20070016287 Cartledge et al. Jan 2007 A1
20070016288 Gurskis et al. Jan 2007 A1
20070021781 Jervis et al. Jan 2007 A1
20070027533 Douk Feb 2007 A1
20070027536 Mihaljevic et al. Feb 2007 A1
20070032823 Tegg Feb 2007 A1
20070038221 Fine et al. Feb 2007 A1
20070038293 St.Goar et al. Feb 2007 A1
20070038296 Navia et al. Feb 2007 A1
20070039425 Wang Feb 2007 A1
20070049942 Hindrichs et al. Mar 2007 A1
20070049970 Belef et al. Mar 2007 A1
20070051377 Douk et al. Mar 2007 A1
20070055206 To et al. Mar 2007 A1
20070061010 Hauser et al. Mar 2007 A1
20070066863 Rafiee et al. Mar 2007 A1
20070078297 Rafiee et al. Apr 2007 A1
20070080188 Spence et al. Apr 2007 A1
20070083168 Whiting et al. Apr 2007 A1
20070083235 Jervis et al. Apr 2007 A1
20070100427 Perouse May 2007 A1
20070106328 Wardle et al. May 2007 A1
20070112359 Kimura et al. May 2007 A1
20070112422 Dehdashtian May 2007 A1
20070118151 Davidson May 2007 A1
20070118154 Crabtree May 2007 A1
20070118213 Loulmet May 2007 A1
20070118215 Moaddeb May 2007 A1
20070142907 Moaddeb et al. Jun 2007 A1
20070162111 Fukamachi et al. Jul 2007 A1
20070198082 Kapadia et al. Aug 2007 A1
20070219558 Deutsch Sep 2007 A1
20070239208 Crawford Oct 2007 A1
20070255397 Ryan et al. Nov 2007 A1
20070255400 Parravicini et al. Nov 2007 A1
20070270755 Von Depen et al. Nov 2007 A1
20070276437 Call et al. Nov 2007 A1
20070282375 Hindrichs et al. Dec 2007 A1
20070282429 Hauser et al. Dec 2007 A1
20070295172 Swartz Dec 2007 A1
20070299424 Cumming et al. Dec 2007 A1
20080004697 Lichtenstein et al. Jan 2008 A1
20080027483 Cartledge et al. Jan 2008 A1
20080027555 Hawkins Jan 2008 A1
20080035160 Woodson et al. Feb 2008 A1
20080039935 Buch et al. Feb 2008 A1
20080051703 Thornton et al. Feb 2008 A1
20080058595 Snoke et al. Mar 2008 A1
20080065011 Marchand et al. Mar 2008 A1
20080065204 Macoviak et al. Mar 2008 A1
20080071366 Tuval et al. Mar 2008 A1
20080086138 Stone et al. Apr 2008 A1
20080086203 Roberts Apr 2008 A1
20080091169 Heideman et al. Apr 2008 A1
20080091257 Andreas et al. Apr 2008 A1
20080097483 Ortiz et al. Apr 2008 A1
20080097523 Bolduc et al. Apr 2008 A1
20080103572 Gerber May 2008 A1
20080140116 Bonutti Jun 2008 A1
20080167713 Bolling Jul 2008 A1
20080167714 St. Goar et al. Jul 2008 A1
20080177380 Starksen et al. Jul 2008 A1
20080195126 Solem Aug 2008 A1
20080195200 Vidlund et al. Aug 2008 A1
20080208265 Frazier et al. Aug 2008 A1
20080221672 Lamphere et al. Sep 2008 A1
20080234729 Page et al. Sep 2008 A1
20080262480 Stahler et al. Oct 2008 A1
20080262609 Gross et al. Oct 2008 A1
20080275300 Rothe et al. Nov 2008 A1
20080275469 Fanton et al. Nov 2008 A1
20080275551 Alfieri Nov 2008 A1
20080281353 Aranyi et al. Nov 2008 A1
20080281411 Berreklouw Nov 2008 A1
20080287862 Weitzner et al. Nov 2008 A1
20080288044 Osborne Nov 2008 A1
20080288062 Andrieu et al. Nov 2008 A1
20080300537 Bowman Dec 2008 A1
20080300629 Surti Dec 2008 A1
20080312506 Spivey et al. Dec 2008 A1
20090024110 Heideman et al. Jan 2009 A1
20090028670 Garcia et al. Jan 2009 A1
20090043381 Macoviak et al. Feb 2009 A1
20090054723 Khairkhahan et al. Feb 2009 A1
20090054969 Salahieh et al. Feb 2009 A1
20090062866 Jackson Mar 2009 A1
20090076586 Hauser et al. Mar 2009 A1
20090076600 Quinn Mar 2009 A1
20090088837 Gillinov et al. Apr 2009 A1
20090093877 Keidar et al. Apr 2009 A1
20090099650 Bolduc et al. Apr 2009 A1
20090105816 Olsen et al. Apr 2009 A1
20090125102 Cartledge et al. May 2009 A1
20090166913 Guo et al. Jul 2009 A1
20090171439 Nissl Jul 2009 A1
20090177266 Powell et al. Jul 2009 A1
20090177274 Scorsin et al. Jul 2009 A1
20090248148 Shaolian et al. Oct 2009 A1
20090254103 Deutsch Oct 2009 A1
20090264994 Saadat Oct 2009 A1
20090287231 Brooks et al. Nov 2009 A1
20090287304 Dahlgren et al. Nov 2009 A1
20090299409 Coe et al. Dec 2009 A1
20090326648 Machold et al. Dec 2009 A1
20100001038 Levin et al. Jan 2010 A1
20100010538 Juravic et al. Jan 2010 A1
20100023118 Medlock et al. Jan 2010 A1
20100030014 Ferrazzi Feb 2010 A1
20100030328 Seguin et al. Feb 2010 A1
20100042147 Janovsky et al. Feb 2010 A1
20100063542 van der Burg et al. Mar 2010 A1
20100063550 Felix et al. Mar 2010 A1
20100076499 McNamara et al. Mar 2010 A1
20100094248 Nguyen et al. Apr 2010 A1
20100106141 Osypka et al. Apr 2010 A1
20100114180 Rock et al. May 2010 A1
20100121349 Meier et al. May 2010 A1
20100121435 Subramanian et al. May 2010 A1
20100121437 Subramanian et al. May 2010 A1
20100130989 Bourque et al. May 2010 A1
20100130992 Machold et al. May 2010 A1
20100152845 Bloom et al. Jun 2010 A1
20100161043 Maisano et al. Jun 2010 A1
20100168645 Wrigrit Jul 2010 A1
20100174358 Rabkin et al. Jul 2010 A1
20100179574 Longoria et al. Jul 2010 A1
20100217184 Koblish et al. Aug 2010 A1
20100217382 Chau et al. Aug 2010 A1
20100234935 Bashiri et al. Sep 2010 A1
20100249497 Peine et al. Sep 2010 A1
20100249908 Chau et al. Sep 2010 A1
20100249915 Zhang Sep 2010 A1
20100249920 Bolling et al. Sep 2010 A1
20100262232 Annest Oct 2010 A1
20100262233 He Oct 2010 A1
20100286628 Gross Nov 2010 A1
20100305475 Hinchliffe et al. Dec 2010 A1
20100324598 Anderson Dec 2010 A1
20110004210 Johnson et al. Jan 2011 A1
20110004298 Lee et al. Jan 2011 A1
20110009956 Cartledge et al. Jan 2011 A1
20110011917 Loulmet Jan 2011 A1
20110026208 Utsuro et al. Feb 2011 A1
20110029066 Gilad et al. Feb 2011 A1
20110035000 Nieminen et al. Feb 2011 A1
20110066231 Cartledge et al. Mar 2011 A1
20110067770 Pederson et al. Mar 2011 A1
20110071626 Wright et al. Mar 2011 A1
20110082538 Dahlgren et al. Apr 2011 A1
20110087146 Ryan et al. Apr 2011 A1
20110093002 Rucker et al. Apr 2011 A1
20110118832 Punjabi May 2011 A1
20110137410 Hacohen Jun 2011 A1
20110144703 Krause et al. Jun 2011 A1
20110202130 Cartledge et al. Aug 2011 A1
20110208283 Rust Aug 2011 A1
20110230941 Markus Sep 2011 A1
20110230961 Langer et al. Sep 2011 A1
20110238088 Bolduc et al. Sep 2011 A1
20110257433 Walker Oct 2011 A1
20110257633 Cartledge et al. Oct 2011 A1
20110264208 Duffy et al. Oct 2011 A1
20110276062 Bolduc Nov 2011 A1
20110288435 Christy et al. Nov 2011 A1
20110301498 Maenhout et al. Dec 2011 A1
20120053628 Sojka et al. Mar 2012 A1
20120078355 Zipory et al. Mar 2012 A1
20120078359 Li et al. Mar 2012 A1
20120089022 House et al. Apr 2012 A1
20120089125 Scheibe et al. Apr 2012 A1
20120095552 Spence et al. Apr 2012 A1
20120109155 Robinson et al. May 2012 A1
20120150290 Gabbay Jun 2012 A1
20120158021 Morrill Jun 2012 A1
20120179086 Shank et al. Jul 2012 A1
20120191182 Hauser et al. Jul 2012 A1
20120226349 Tuval et al. Sep 2012 A1
20120239142 Liu et al. Sep 2012 A1
20120245604 Tegzes Sep 2012 A1
20120271198 Whittaker et al. Oct 2012 A1
20120296349 Smith et al. Nov 2012 A1
20120296417 Hill et al. Nov 2012 A1
20120310330 Buchbinder et al. Dec 2012 A1
20120323313 Seguin Dec 2012 A1
20130030522 Rowe et al. Jan 2013 A1
20130046373 Cartledge et al. Feb 2013 A1
20130053884 Roorda Feb 2013 A1
20130079873 Migliazza et al. Mar 2013 A1
20130085529 Housman Apr 2013 A1
20130090724 Subramanian et al. Apr 2013 A1
20130096673 Hill et al. Apr 2013 A1
20130116776 Gross et al. May 2013 A1
20130123910 Cartledge et al. May 2013 A1
20130131791 Hlavka et al. May 2013 A1
20130166017 Cartledge et al. Jun 2013 A1
20130190863 Call et al. Jul 2013 A1
20130204361 Adams et al. Aug 2013 A1
20130226289 Shaolian et al. Aug 2013 A1
20130226290 Yellin et al. Aug 2013 A1
20130268069 Zakai et al. Oct 2013 A1
20130282059 Ketai et al. Oct 2013 A1
20130289718 Tsukashima et al. Oct 2013 A1
20130297013 Klima et al. Nov 2013 A1
20130304093 Serina et al. Nov 2013 A1
20130331930 Rowe et al. Dec 2013 A1
20140067054 Chau et al. Mar 2014 A1
20140081394 Keranen et al. Mar 2014 A1
20140088368 Park Mar 2014 A1
20140088646 Wales et al. Mar 2014 A1
20140094826 Sutherland et al. Apr 2014 A1
20140094903 Miller et al. Apr 2014 A1
20140094906 Spence et al. Apr 2014 A1
20140114390 Tobis et al. Apr 2014 A1
20140135799 Henderson May 2014 A1
20140142619 Serina et al. May 2014 A1
20140142695 Gross et al. May 2014 A1
20140148849 Serina et al. May 2014 A1
20140155783 Starksen et al. Jun 2014 A1
20140163670 Alon et al. Jun 2014 A1
20140163690 White Jun 2014 A1
20140188108 Goodine et al. Jul 2014 A1
20140188140 Meier et al. Jul 2014 A1
20140188215 Hlavka et al. Jul 2014 A1
20140194976 Starksen et al. Jul 2014 A1
20140207231 Hacohen et al. Jul 2014 A1
20140243859 Robinson Aug 2014 A1
20140243894 Groothuis et al. Aug 2014 A1
20140243963 Sheps et al. Aug 2014 A1
20140251042 Asselin et al. Sep 2014 A1
20140275757 Goodwin et al. Sep 2014 A1
20140276648 Hammer et al. Sep 2014 A1
20140296962 Cartledge et al. Oct 2014 A1
20140303649 Nguyen et al. Oct 2014 A1
20140303720 Sugimoto et al. Oct 2014 A1
20140309661 Sheps et al. Oct 2014 A1
20140309730 Alon et al. Oct 2014 A1
20140343668 Zipory et al. Nov 2014 A1
20140350660 Cocks et al. Nov 2014 A1
20140379006 Sutherland et al. Dec 2014 A1
20150018940 Quill et al. Jan 2015 A1
20150051697 Spence et al. Feb 2015 A1
20150081014 Gross et al. Mar 2015 A1
20150094800 Chawla Apr 2015 A1
20150100116 Mohl et al. Apr 2015 A1
20150112432 Reich et al. Apr 2015 A1
20150127097 Neumann et al. May 2015 A1
20150133997 Deitch et al. May 2015 A1
20150182336 Zipory et al. Jul 2015 A1
20150190226 Johnson Jul 2015 A1
20150230919 Chau et al. Aug 2015 A1
20150272586 Herman et al. Oct 2015 A1
20150272734 Sheps et al. Oct 2015 A1
20150282931 Brunnett et al. Oct 2015 A1
20150351910 Gilmore et al. Dec 2015 A1
20160008132 Cabiri et al. Jan 2016 A1
20160058557 Reich et al. Mar 2016 A1
20160113767 Miller et al. Apr 2016 A1
20160120642 Shaolian et al. May 2016 A1
20160120645 Alon May 2016 A1
20160158008 Miller et al. Jun 2016 A1
20160242762 Gilmore et al. Aug 2016 A1
20160262755 Zipory et al. Sep 2016 A1
20160302917 Schewel Oct 2016 A1
20160317302 Madjarov et al. Nov 2016 A1
20160361058 Bolduc et al. Dec 2016 A1
20160361168 Gross et al. Dec 2016 A1
20160361169 Gross et al. Dec 2016 A1
20170000609 Gross et al. Jan 2017 A1
20170042670 Shaolian et al. Feb 2017 A1
20170224489 Starksen et al. Aug 2017 A1
20170245993 Gross et al. Aug 2017 A1
20180008409 Kutzik et al. Jan 2018 A1
20180049875 Iflah et al. Feb 2018 A1
20180168803 Pesce et al. Jun 2018 A1
20180289480 D'ambra et al. Oct 2018 A1
20180318080 Quill et al. Nov 2018 A1
20180318083 Bolling et al. Nov 2018 A1
20190029498 Mankowski et al. Jan 2019 A1
20190038411 Alon Feb 2019 A1
20190111239 Bolduc et al. Apr 2019 A1
20190117400 Medema et al. Apr 2019 A1
20190125325 Sheps et al. May 2019 A1
20190151093 Keidar et al. May 2019 A1
20190175346 Schaffner et al. Jun 2019 A1
20190183648 Trapp et al. Jun 2019 A1
20190290260 Caffes et al. Sep 2019 A1
20190290431 Genovese et al. Sep 2019 A1
20190343633 Garvin et al. Nov 2019 A1
Foreign Referenced Citations (13)
Number Date Country
1034753 Sep 2000 EP
3531975 Sep 2019 EP
9205093 Apr 1992 WO
9846149 Oct 1998 WO
02085250 Feb 2003 WO
03047467 Jun 2003 WO
2010000454 Jan 2010 WO
2012176195 Mar 2013 WO
2014064964 May 2014 WO
2019145941 Aug 2019 WO
2019145947 Aug 2019 WO
2019182645 Sep 2019 WO
2019224814 Nov 2019 WO
Non-Patent Literature Citations (28)
Entry
Agarwal et al. International Cardiology Perspective Functional Tricuspid Regurgitation, Circ Cardiovasc Interv 2009;2;2;565-573 (2009).
Ahmadi, A., G. Spillner, and Th Johannesson. “Hemodynamic changes following experimental production and correction of acute mitral regurgitation with an adjustable ring prosthesis.” The Thoracic and cardiovascular surgeon36.06 (1988): 313-319.
Ahmadi, Ali et al. “Percutaneously adjustable pulmonary artery band.” The Annals of thoracic surgery 60 (1995): S520-S522.
Alfieri et al., “An effective technique to correct anterior mitral leaflet prolapse,” J Card 14(6):468-470 (1999).
Alfieri et al., “The double orifice technique in mitral valve repair: a simple solution for complex problems,” Journal of Thoracic Cardiovascular Surgery 122:674-681 (2001).
Alfieri et al.“Novel Suture Device for Beating-Heart Mitral Leaflet Approximation”, Ann Thorac Surg. 2002, 74:1488-1493.
Alfieri, “The edge-to-edge repair of the mitral valve,” [Abstract] 6th Annual NewEra Cardiac Care: Innovation & Technology, Heart Surgery Forum pp. 103. (2000).
Amplatzer Cardiac Plug brochure (English pages), AGA Medical Corporation (Plymouth, MN) (copyright 2008-2010, downloaded Jan. 11, 2011).
AMPLATZER® Cribriform Occluder. A patient guide to Percutaneous, Transcatheter, Atrial Septal Defect Closuer, AGA Medical Corporation, Apr. 2008.
AMPLATZER® Septal Occluder. A patient guide to the Non-Surgical Closuer of the Atrial Septal Defect Using the AMPLATZER Septal Occluder System, AGA Medical Corporation, Apr. 2008.
Assad, Renato S. “Adjustable Pulmonary Artery Banding.” (2014).
Brennan, Jennifer, 510(k) Summary of safety and effectiveness, Jan. 2008.
Daebritz, S. et al. “Experience with an adjustable pulmonary artery banding device in two cases: initial success-midterm failure,” The Thoracic and cardiovascular surgeon 47.01 (1999): 51-52.
Dang NC et al, “Simplified Placement of Multiple Artificial Mitral Valve Chords,” The Heart Surgery Forum #2005-1005, 8 (3) (2005).
Dictionary.com definition of “lock”, Jul. 29, 2013.
Dieter RS, “Percutaneous valve repair: Update on mitral regurgitation and endovascular approaches to the mitral valve,” Applications in Imaging, Cardiac Interventions, Supported by an educational grant from Amersham Health pp. 11-14 (2003).
Elliott, Daniel S., Gerald W. Timm, and David M. Barrett. “An implantable mechanical urinary sphincter: a new nonhydraulic design concept,” Urology52.6 (1998): 1151-1154.
Langer et al. Ring plus String: Papillary muscle repositioning as an adjunctive repair technique for ischemic mitral regurgitation, The Journal of Thoracic Cardiovascular surgery vol. 133 No. 1, Jan. 2007.
Langer et al. RING+STRING, Successful Repair technique for ischemic mitral regurgitation with severe leaflet Tethering, The Department of Thoracic Cardiovascular surgery, Hamburg, Germany, Nov. 2008.
Maisano, “The double-orifice technique as a standardized approach to treat mitral,” European Journal of Cardio-thoracic Surgery 17 (2000) 201-205.
Odell JA et al., “Early Results o4yf a Simplified Method of Mitral Valve Annuloplasty,” Circulation 92:150-154 (1995).
O'Reilly S et al.; “Heart valve surgery pushes the envelope,” Medtech Insight 8(3): 73, 99-108 (2006).
Park, Sang C. et al. “A percutaneously adjustable device for banding of the pulmonary trunk,” International journal of cardiology 9.4 (1985): 477-484.
Swain CP et al., “An endoscopically deliverable tissue-transfixing device for securing biosensors in the gastrointestinal tract,” Gastrointestinal Endoscopy 40(6): 730-734 (1994).
Swenson, O. An experimental implantable urinary sphincter. Invest Urol. Sep. 1976;14(2):100-3.
Swenson, O. and Malinin, T,I., 1978, An improved mechanical device for control of urinary incontinence. Investigative urology, 15(5), pp. 389-391.
Swenson, Orvar. “Internal device for control of urinary incontinence.” Journal of pediatric surgery 7.5 (1972): 542-545.
Tajik, Abdul, “Two dimensional real-time ultrasonic imaging of the heart and great vessels”, Mayo Clin Proc. vol. 53:271-303, 1978.
Related Publications (1)
Number Date Country
20190254677 A1 Aug 2019 US
Provisional Applications (1)
Number Date Country
62128997 Mar 2015 US
Continuations (1)
Number Date Country
Parent 15061549 Mar 2016 US
Child 16249470 US