The devices, methods and kits described here generally relate to the field of gastrointestinal (GI) surgery. In particular, the devices, methods and kits relate to restriction of tissue in a GI tract. The devices, methods and kits can be used to treat obesity, gastroesophageal reflux disease (GERD), and the like.
Morbid obesity represents a serious and rapidly growing health problem. Complications of obesity are numerous and include cardiac failure, diabetes, and hypertension. Thus, the high rate of obesity increases health care costs and can lead to lowered life expectancies. A variety of surgical and non-surgical techniques have been developed to treat morbid obesity. Conventional bariatric surgical techniques have followed two general approaches. First, malabsorptive or gastric bypass techniques have been developed to alter the GI tract to reduce absorption of caloric content of ingested food. Gastric bypass procedures involve bypassing a portion of the small intestine to reduce absorption of nutrients. Second, gastric restriction techniques have been developed to reduce the volume of a part of the GI system (e.g., the stomach) to prevent ingestion of large quantities of food. For example, “stomach stapling” techniques can be used to reduce the volume of a stomach. Alternatively, an adjustable gastric band can be applied around the outside of a stomach to restrict part of the stomach. Both of these techniques generally require open surgery or laparoscopic surgery and can have high rates of complication.
In GERD, weakness or defect in the gastroesophageal junction region between the stomach and the esophagus leads to backflow of stomach acid and contents into the esophagus. One conventional surgical procedure to treat GERD is called a fundoplication and involves the use of staples or sutures to fold the upper part of the stomach around the lower esophageal sphincter to strengthen the sphincter muscle to prevent reflux. Such surgical procedures typically involve access through the abdomen or thoracic region. Furthermore, they may result in complications such as difficulty in swallowing, or vomiting. In addition, staples or sutures may loosen over time, leading to recurrence of the condition. One FDA-approved non-surgical endoscopic procedure for treatment of GERD involves the insertion of a plicator transesophageally to make a fold in tissue in the gastroesophageal junction and secure the fold to strengthen the junction.
GI restriction techniques that require the formation of multiple individual plications in a tissue wall can be very time consuming, subjecting the patient to extended or multiple surgeries and hence to higher surgical risk. Further, devices that secure tissue plications must be adjusted carefully to avoid excess tissue compression that can lead to tissue necrosis.
Accordingly, improved devices, methods and kits for performing GI procedures for treating obesity and GERD are needed. For example, devices, method and kits for restricting a GI tract that do not require formation of individual plications may reduce procedure time, costs, and/or risks. Devices, methods and kits that can be used intraluminally to minimize trauma and complications are desired.
Devices, methods and kits for treating obesity and GERD through tightening of tissue are provided. The devices, methods and kits can enable simplified GI procedures that may minimize the time and extent of equipment required to perform them. The devices, methods and kits can be used intraluminally to reduce trauma associated with the GI procedures.
The devices restrict a portion of a GI tract for treating obesity or GERD. The devices comprise a plurality of tissue-engageable anchors coupled to a tether. Each anchor comprises a first anchor tip defining a first axis. The first anchor tip is configured to pierce a surface of a tissue wall of the GI tract at a first position and penetrate into the tissue wall in a nonaxial direction relative to the first axis to secure the anchor to the tissue wall. The tether can be cinched to draw the anchors together. Some devices include a locking element to lock the tether after cinching. In some variations of the devices, the anchors are non-plicating. At least one of the plurality of anchors can be self-deforming.
The surface of tissue wall can comprise an interior tissue or an exterior tissue of the GI tract. In some variations of the devices, at least one anchor can penetrate into the muscularis tissue layer. In other variations, at least one anchor can penetrate into the serosa tissue layer.
In some variations of the devices, at least one anchor can comprise a second anchor tip defining a second axis. The second anchor tip can be configured to pierce the surface of the tissue wall at a second position and penetrate into the tissue wall in a nonaxial direction relative to the second axis. In those variations, the at least one anchor can comprise two curved tissue-penetrating legs crossing in a single turning direction. One of the two legs can comprise the first anchor tip and the other of the two legs can comprise the second anchor tip. Each of the legs can form an arcuate shape extending into the tissue wall. The legs can engage the tissue wall in opposing directions that minimize tissue deflection. In some devices, at least one anchor is adapted to gather tissue.
The tether in the devices can comprise any suitable material. In some variations, the tether comprises a suture material. At least one of the plurality of anchors can be slidably coupled to the tether. In other variations, the tether and/or at least one of the anchors can compromise a shape memory material, such as a Nickel-Titanium alloy.
In some devices, the plurality of anchors can comprise a first anchor, a terminal anchor and an intermediate anchor disposed between the first and terminal anchors. In some variations of the devices, the terminal anchor can be fixed to the tether.
Some devices are configured for intraluminal application. For example, devices can be configured for intraluminal application using a delivery device. In those applications, suitable delivery devices include catheters, or steerable catheters. Some delivery devices can be adapted to position the anchors along the surface of the tissue wall and to deploy the anchors to secure the anchors to the tissue wall. Some delivery devices can be adapted to cinch the tether to tighten tissue. Still other delivery devices are configured to lock the tether after the tether has been cinched. In some variations, a delivery device that is configured to deliver and deploy at least two anchors simultaneously can be used to apply the devices described herein intraluminally.
In some devices, at least one of the anchors can comprise a delivery configuration and a deployed configuration. For example, the delivery configuration can be collapsed in at least one dimension and the deployed configuration can be expanded in at least one dimension. For example, the ratio of a diameter of the deployed configuration to a diameter of the delivery configuration can be about 2 to about 20. In some devices having at least one anchor with delivery and deployed configurations, the at least one anchor can comprise two legs. The anchor legs can be compressed in the delivery configuration and expanded in the deployed configuration. Alternatively, the anchor legs can be expanded in the delivery configuration and compressed in the deployed configuration. The at least one anchor can operate to absorb energy during loading of the tissue wall to relieve stress on the tissue wall by collapsing or expanding from its deployed configuration. The anchor legs can be expanded to deploy the anchors into the tissue wall, so that the expansion of the legs drives the anchors into the tissue wall.
Some variations of the devices can include a reinforcing band. Some reinforcing bands can be configured to be joined, e.g., secured, to the tissue wall. Reinforcing bands can be made of any suitable biocompatible material, e.g., DACRON™ polymer.
Methods for restricting a portion of a GI tract are also provided. The methods can be used to treat obesity, GERD, and the like. The methods comprise delivering a plurality of tissue-engageable anchors to a tissue wall of the GI tract. The anchors are coupled to a tether. Each anchor comprises a first anchor tip that defines a first axis. The methods comprise securing each anchor to the tissue wall by piercing a surface of the tissue wall at a first position with the first anchor tip and driving the first anchor tip into the tissue wall in a nonaxial direction relative to the first axis. The methods include cinching the tether to draw the anchors together to tighten the tissue. In the methods described herein, the anchors can be coupled to the tether before or after the anchors are secured to the tissue wall. Some variations of the methods include locking the tether after cinching. The methods can include accessing the GI tract by any suitable method, e.g., laparoscopically or intraluminally.
In some variations of the methods, the anchors can be secured to the tissue wall without plicating the tissue wall. In other variations, at least one anchor is self-deforming and the driving of the first anchor tip of the at least one anchor tip into the tissue wall occurs while the at least one anchor is deforming.
In some variations of the methods, at least one anchor comprises a second anchor tip defining a second axis. The securing of the at least one anchor to the tissue wall comprises piercing the surface of the tissue wall at a second position with the second anchor tip and driving the second anchor tip into the tissue wall in a nonaxial direction relative to the second axis. In these methods, the at least one anchor can comprise two curved tissue-penetrating legs crossing in a single turning direction. One of the two legs can comprise the first anchor tip and the other of the two legs can comprise the second anchor tip. Each of the legs can form an arcuate shape extending into the tissue wall. Some variations of these methods comprise gathering tissue between the two curved legs. For example, the tissue wall can be engaged by the curved legs at spaced apart delivery positions in a delivery configuration. The tissue wall can be gathered together with the legs as the legs approach each other to form a deployed configuration.
The methods can include securing anchors to a tissue wall that comprises interior or exterior tissue of the GI tract. For example, at least one of the anchors can be driven into the muscularis layer of the tissue wall. In other variations of the methods, at least one of the anchors can be driven into the serosa layer of the tissue wall.
In the methods described herein, the tissue wall can comprise at least a portion of a valve. For example, the valve can be the lower esophageal sphincter. In these variations, the methods can be used to treat GERD. The anchors can be positioned circumferentially around the valve and the tether cinched circumferentially to tighten the valve.
In other variations of the methods, the tissue wall can comprise at least a portion of a stomach, so that the cinching of the tether causes restriction of that portion of the stomach. For example, in some variations of the methods described herein, the fundus of the stomach is restricted. The methods can include positioning the anchors circumferentially around a least a portion of the stomach and cinching the tether circumferentially. In other variations of the methods, the stomach can be partitioned into two or more partitions. One of the two or more partitions can comprise at least a portion of the fundus of the stomach.
The methods can also comprise loading at least one anchor into a delivery device. The delivery device can be configured to deliver the at least one anchor to the tissue wall. Further, the delivery device can be configured to deploy the at least one anchor to secure that anchor to the tissue wall. The delivery device in some variations of the methods can hold the anchors in a delivery configuration and deploy the anchors to adopt a deployed configuration. A delivery device can be pre-loaded with at least one anchor. The methods can include inserting and operating the delivery device intraluminally.
Some variations of the methods described herein can include delivering at least two anchors simultaneously to the tissue wall. Further, the methods can comprise deploying at least two anchors simultaneously to secure the at least two anchors to the tissue wall.
Some methods comprise cinching the tether to restrict the portion of the GI tract to a predetermined dimension or a predetermined tension. The tether tension can be adjusted during or after the procedure, e.g., post-operatively. The tension in the tether can be adjusted automatically or manually. In some variations, the methods further comprise reinforcing the tissue wall with a reinforcing band. For example, the reinforcing band can be attached to the tissue wall.
Kits for restricting a portion of a GI tract are also provided herein. The kits provide in packaged combination a plurality of tissue-engageable anchors. Each anchor comprises a first anchor tip defining a first axis. The first anchor tip is capable of piercing a surface of a tissue wall at a first position and penetrating into the tissue wall in a nonaxial direction relative to the first axis to secure the anchor to the wall. The kits also include a cinchable tether for coupling the anchors together. In some kits, the anchors are non-plicating. Kits can include at least one anchor comprising two curved legs crossing in a single turning direction. Some variations of the kits also comprise a delivery device capable of delivering the anchors to the tissue wall. Still other variations of the kits comprise a delivery device capable of securing the anchors to the tissue wall. Kits can comprise a locking element to lock the tether in position and may also comprise a tension-measuring device for gauging tension in the tether, or a tension-setting device for setting tension in the tether. Kits can also include instructions for use.
Described herein are devices, methods and kits for restricting a portion of a GI tract. The devices, methods and kits can be used to treat GERD, obesity, and other disorders of the GI tract that may benefit from the described devices, methods, and kits. The devices, methods, and kits do not require the formation of plications in tissue walls or the formation of tissue mounds. Therefore, the devices, methods and kits described herein may result in faster application, reduced surgical trauma, reduced risk, and/or reduced cost.
The devices comprise a plurality of tissue-engageable anchors coupled to a tether. Each anchor is secured to a tissue wall of the GI tract. The anchors are secured to the tissue wall in a manner that can reduce tissue destruction by axially piercing a surface of the tissue wall with a first anchor tip at a first position, and penetrating that anchor tip into the tissue wall in a nonaxial direction. The tether is configured to be cinched to draw the anchors together, which in turn draws the tissue secured to the anchors together to tighten tissue in a GI tract. The devices, methods and kits can be applied to tissue in any suitable region of a GI tract, e.g., the esophagus to treat GERD, or the stomach to treat obesity.
Referring still to
Referring now to
In the devices described herein, tissue-engageable anchors are secured to tissue of a GI tract. The anchors are coupled to a tether, and the tether is configured to be cinched to restrict a portion of a GI tract to treat GERD, obesity, and the like. The devices do not require a separate step or procedure to form plications or tissue mounds in the tissue wall to be restricted. That is, the anchors themselves need not plicate tissue, nor must plications or tissue mounds be formed prior to application of the anchors. Although variations of the devices are illustrated herein as being applied via interior access (e.g., intraluminally) to the lumen of a stomach, devices described herein can be applied to other locations or areas of a GI tract (e.g., the esophagus or the pylorus) and can also be applied via exterior access (e.g., laparoscopically).
The anchors of the devices have at least one anchor tip that can penetrate tissue. The anchor tip is a distal section of the anchor that defines an axis just prior to piercing a tissue surface. “Axial” as used herein refers to a direction along the axis defined by a particular tip, whereas “nonaxial” refers to a direction that is not along the axis defined by a particular anchor tip.
Thus, anchors of the devices have a first anchor tip defining a first axis. The first anchor tip axially pierces a surface (i.e., an interior or exterior surface) of a tissue wall of the GI tract at a first position. That is, the first anchor tip pierces the surface in the direction of the first axis. The first anchor tip then penetrates into the tissue wall in a nonaxial direction relative to the first axis to secure the anchor to the tissue wall. The length of the anchor legs may be adjusted so that the legs do not pierce completely through the tissue wall (e.g., perforate a stomach wall or an esophagus wall), which may reduce risks associated with surgical procedures on the GI tract.
In some variations, at least one anchor can have more than one anchor tip that can penetrate tissue. For example, some devices have at least one anchor comprising a second anchor tip defining a second axis. The second tip pierces the surface of the tissue wall at a second position axially, or in the direction of the second axis. The second tip then penetrates into the tissue wall in a nonaxial direction relative to the second axis.
A variety of anchors can be used in the devices described herein. Referring to
Anchor 221 illustrated in
Anchor 224 as illustrated in
Referring now to
Expanded partial views of devices applied to GI tract via interior access are illustrated in
As shown in
In some variations, as illustrated in
As stated above, anchors used in the devices can have a variety of configurations and features. For example, the anchors can be flexible. Some anchors can have a delivery configuration that is distinct from a deployed configuration, e.g., the configuration of an anchor prior to being secured into tissue can be distinct from its configuration after it is secured into tissue. Still other anchors can be self-deforming. That is, the anchors can have a deformed state, e.g., prior to deployment, and are capable of recovering to a non-deformed state, e.g., after deployment. In some variations of the devices, the anchors are curved or helical. In still other variations, the anchors can include hinging elements. Some anchors are integral, while other anchors are multi-bodied. Some devices comprise non-plicating anchors, i.e., anchors that do not fold or pleat a tissue wall (that is, they do not gather tissue). However, some anchors applied to an interior or exterior surface of a tissue wall may be plicating and gather a portion of that tissue wall. Some anchors include barbs, spikes, roughened surfaces, or the like, or a combination thereof to enhance their ability to remain embedded in tissue. In many variations, an anchor does not perforate the entire thickness of a tissue wall, i.e., pierce both interior and exterior surfaces. Of course, the devices described herein may include more than one variation of an anchor.
In some variations, the anchors can be flexible anchors having two curved, tissue-penetrating legs. The curved legs can cross in a single turning direction to form a loop. In these variations, the anchor legs can engage the tissue wall in opposing directions to minimize tissue deflection. An example of such a variation of an anchor that can be used in the devices described herein is shown in
The tissue-penetrating legs of anchors used in the devices described herein can have any type of tip that can penetrate tissue. For example, anchor leg tips can be flat, e.g., end-cut, rounded, pointed, beveled, angled, sharpened, or otherwise adapted to enhance tissue penetration. For example, tips 870a, 870b of legs 860a, 860b, respectively, of anchor 820 in
The anchors can have various deployed configurations, i.e., configurations assumed after the anchor is secured to tissue. In some variations, the anchors assume a substantially closed deployed configuration. For example, the anchor illustrated in
Anchors may have an eye, eyelet or eye region through which the tether may be threaded. For example, for the anchor variations shown in
The anchors in their deployed configuration may be generally planar, meaning that the parts of the anchor including legs occupy approximately the same plane. For example, the anchors illustrated in
The anchors may include one or more hollow regions. For example, anchors may be formed from a tubular material so that the interior of the anchor is substantially hollow. The hollow interior can be used to house drugs or other healing agents. For example, the interior of one or more anchor legs can be loaded with a healing agent, and the healing agent can be at least partially encapsulated to allow timed or delayed release of the healing agent. In addition, anchors may include one or more holes in the anchor surface. The holes can extend through the thickness of the anchor so that the anchor is at least partially porous. Such holes can act as sites for tissue in-growth to further attach the anchor to tissue.
Anchors may be made of any suitable material, or combination of materials. Suitable materials include biocompatible metals and polymers. For example, anchors can be made of a single wire that is formed into the desired deployed configuration. In other variations, anchors can be formed from a sheet of material, e.g., cut, etched, or stamped. Anchors may be at least partially made of an elastic or superelastic material, e.g., a metal (e.g., spring metal), an alloy, or a polymer (e.g., a rubber, polyethyl ether ketone (PEEK), polyester, nylon, etc.), or some combination thereof that can recover elastically from deformation. For example, anchors can be at least partially made of a shape memory material, e.g., a shape memory metal, such as a Nickel Titanium alloy (e.g., Nitinol), or a shape memory polymer, such as oligo(ε-caprolactone) diol or a polymer or copolymer thereof, or oligo(ε-caprolactone) dimethacrylate or a polymer or copolymer thereof, or oligo(ρ-dioxanone) diol or a polymer or copolymer thereof, etc. In addition to biocompatibility, materials can be chosen for their mechanical characteristics, e.g., strength, stiffness, flexibility, ductility, elasticity, and the like. In some variations, anchors can be made of more than one material. For example, anchor tips and/or legs can be made of a metal that can be sharpened easily, whereas anchor loop region can be made of a material selected to have sufficient stiffness to keep the anchor legs in their deployed configuration without deforming. Anchors may be at least partially biodegradable and/or bioabsorbable. For example, anchors may include a biodegradable coating or be at least partially formed of a biodegradable and/or bioabsorbable material, such as poly(lactic acid), poly(lactic co-glycolic acid), or poly(caprolactone). Thus, these variations of anchors may change in shape, thickness, or other dimension over the time they remain in the body. Further, as anchors change in dimension, e.g., by dissolution or degradation, or by dissolution or degradation of a coating, they may also become more flexible.
As stated above, an anchor can have a delivery configuration that is distinct from its deployed configuration. An anchor's deployed configuration may be a relaxed configuration relative to its delivery configuration, which may be the case for self-deforming anchors. In some variations of the devices, the anchors can absorb energy during loading of the tissue wall to relieve stress on the tissue wall by collapsing or expanding from the deployed configuration. For example, anchors able to absorb energy during loading of a tissue wall may be used in tightening stomach tissue that must continually expand and contract during the digestion process. Further, anchors able to absorb energy during loading of a tissue wall may be used in tightening an LES to relieve stress placed on delicate esophageal tissues. The anchor's delivery configuration can be any configuration in which the anchor is prepared for delivery to the tissue. In some variations, the anchor's legs can be compressed in the delivery configuration so that the anchor has a collapsed profile in at least one dimension. In other variations, the anchor's legs can be expanded in the delivery configuration, again so that the anchor has a collapsed profile in at least one dimension. For example, anchor delivery configurations in which the anchor has an outer diameter (O.D.) of less than about 3.0 mm, or about 2.5 mm, or about 2.0 mm, or about 1.5 mm, or about 1.0 mm, or about 0.5 mm can be used so as to fit into a delivery catheter or delivery device having an inner diameter (I.D.) of about 3.0 mm to about 0.5 mm. In some variations, the anchor may have a delivery configuration having an O.D. of less than about 1.0 mm so that it can be used with a delivery catheter or other delivery device having an I.D. of about 1.0 mm. The ratio of a diameter of a delivery configuration to a diameter of a deployed configuration can be about 1:2 to about 1:20, e.g., about 1:5, or about 1:8, or about 1:10, or about 1:12, or about 1:15, or about 1:18.
The dimensions of the anchors, including thickness, and deployed width and length, can be adapted for the desired application. For example, the variation of the deployed anchor configuration 1019 illustrated in
The anchors of the devices can be coupled to the tether in any suitable way. In some devices, anchors can be fixed to the tether. In other devices, as illustrated in
In other devices, one or more locking elements can be applied to the tether to lock the tether in a desired position. The locking element can be applied to both ends of a tether, or can be applied to one end of the tether. The locking element can be any suitable element, e.g., a knot in the tether, a blocking object fixedly coupled to the tether that will not pass through the opening of the anchor through which the tether passes (e.g., an eyelet), a clamp, a crimp, or the like. For example, as illustrated in
The cinchable tether of the devices can be made of any suitable biocompatible material. For example, in some variations, the tether can be made of a suture material, e.g., a polymeric or non-polymeric suture. When the tether is made of a suture material, the plurality of anchors can, e.g., be slidably coupled to the tether to allow the tether to be cinched to draw the anchors together. In other variations, the tether can comprise a shape memory material, such as a shape memory metal or alloy, such as a Nickel Titanium alloy (e.g., Nitinol), or a shape memory polymer. Suitable shape memory polymers can include oligo(ε-caprolactone) diol or a polymer or copolymer thereof, oligo(ε-caprolactone) dimethacrylate or a polymer or copolymer thereof, and oligo(ρ-dioxanone) diol or a polymer or copolymer thereof. A tether made of a shape memory material can self-cinch by adopting a constricted state, as illustrated in
Some devices are configured for intraluminal application using a delivery device. The delivery device can be a catheter, e.g., a flexible catheter. In some variations, the delivery device can be a steerable catheter. The delivery device can be adapted to position the anchors along the surface of the tissue wall. Further, the delivery device can be adapted to deploy the anchors to secure the anchors to the tissue wall. In some variations, the delivery device can be configured to deliver and/or deploy anchors in a serial manner, e.g., one at a time. In other variations, the delivery device can be configured to deliver and/or deploy more than one anchor simultaneously. In still other variations, the delivery device can be configured to cinch and/or lock the tether. Some variations of the devices are configured to be applied intraluminally with a delivery device that can be pre-loaded with one or more anchors and/or a tether.
Delivery devices for intraluminal application of the devices described herein can contain a housing for holding one or more anchors, e.g., anchors in a delivery configuration. The housing can have any suitable construction. For example, the housing can be a catheter, a flexible catheter, or a steerable catheter, where one or more anchors are housed in the lumen of the catheter. In addition, delivery devices can include a pusher device configured to push one or more anchors out of the housing. Pusher devices can be operated manually or automatically. As described above, some delivery devices can be pre-loaded with at least one anchor. As illustrated in
Some delivery devices that can be used for intraluminal application of the devices described herein can house more than one anchor. Some of these delivery devices can deliver and/or deploy multiple anchors substantially simultaneously. For example, as illustrated in
Some variations of the devices comprise a reinforcing band. The reinforcing band can be made from any suitable material, e.g., a biocompatible polymer or mesh. For example, the reinforcing band can comprise a DACRON™ polymer. In other variations, the reinforcing band can be bioabsorbable or biodegradable so that it dissipates over time. In still other variations, the thickness of the reinforcing band can be chosen to reduce an interior dimension of a portion of a GI tract, e.g., stomach. Reinforcing bands can also be selected to have a large surface area so as to reduce the exposed surface area of tissue of a GI tract, e.g., to reduce caloric uptake. In one variation illustrated in
Methods are described herein for restricting a portion of a GI tract by tightening tissue. The methods comprise delivering a plurality of tissue-engageable anchors to a tissue wall of the GI tract. The anchors are coupled to a tether. Each anchor comprises a first anchor tip that defines a first axis. The anchors are secured to the tissue wall by axially piercing a surface of a tissue wall at a first position with the first anchor tip and driving the first anchor tip into the tissue wall in a nonaxial direction with respect to the first axis. Thus, in the methods described herein, anchors can be secured to the tissue wall without plicating the tissue wall. The methods include cinching the tether to draw the anchors together, thereby tightening tissue. Several variations of the methods are contemplated to treat obesity, GERD, and the like.
In some variations of the methods, at least one anchor comprises a second anchor tip defining a second axis in addition to the first anchor tip defining the first axis. The at least one anchor can be secured to the tissue wall by piercing the surface of the tissue at a first position with the first anchor tip and driving the first anchor tip into the tissue wall in a nonaxial direction with respect to the first axis, and piercing the surface of the tissue wall at a second position with the second anchor tip and driving the second anchor tip into the tissue wall in a nonaxial direction with respect to the second axis. For example, at least one anchor can comprise two curved tissue-penetrating legs crossing in a single turning direction, with one of the two legs comprising the first anchor tip that pierces the tissue wall at the first position in the direction of the first axis, and the other of the two legs comprising the second anchor tip that pierces the tissue wall at the second position in the direction of the second axis. Each of the two legs can form an arcuate shape extending into the tissue wall. In some variations of the methods, tissue can be gathered between two curved legs. If two curved legs are held at spaced apart delivery positions of a delivery configuration, tissue can be gathered as the legs approach each other to adopt the deployed configuration (see, e.g.,
In some variations of the methods, the anchors can be self-deforming, and the driving of the anchor tip into the tissue wall can occur while the anchors are deforming. FIG. 14 can be used to illustrate a variation of one such method. Anchor 1420 is held in collapsed delivery configuration 1419′ prior to securing into tissue. Tips 1470a, 1470b of collapsed legs 1460a′, 1460b′ abut or urge against interior surface 1443 of tissue wall 1440 at first position 1450a and second position 1450b, respectively. Tip 1470 initially pierces surface 1443 along a direction defined by axis 1490a, and tip 1470b initially pierces surface 1443 along a direction defined by axis 1490b. As collapsed legs 1460a′, 1460b′ adopt their expanded deployed configurations (not shown), tip 1470a bores a path into the tissue wall that is nonaxial with respect to axis 1490a, and tip 1470b bores a path into the tissue wall that is nonaxial with respect to axis 1490b. Anchor legs are thereby drawn into the tissue wall and secured to the tissue wall. By adjusting features of the anchors, e.g., leg length, leg curvature and/or degree of compression in their delivery state relative to that in their deployed state, and by adjusting the force applied during anchor deployment, the depth to which the anchor is embedded into the tissue can be controlled. Thus, the methods can be adapted to restricting different types of tissue within a GI tract. For example, small delicate anchors may be used in restricting a portion of an esophagus, e.g., an LES, whereas larger, more robust anchors may be used in restricting a portion of the stomach.
In the methods described herein, the anchors can be coupled to a tether using any suitable method. Anchors can be slidably coupled to the tether, e.g., through an eyelet, or anchors can be fixed to the tether, e.g., by knotting, using adhesive, friction fit, crimping, clamping, or the like. In some variations of the methods, the tether can be coupled to one or more anchors prior to securing those anchors to the tissue. In other variations, the tether can be coupled to one or more anchors following the securing of that anchor to the tissue, e.g., by threading the tether through a secured anchor. In some variations of the methods, some of the anchors can be attached to the tether prior to securing to tissue and some of the anchors can be attached to tether after being secured to tissue.
Once the anchors are secured to tissue, the methods include cinching the tether to draw the anchors together to restrict or tighten the tissue to which they are secured. Tethers can be cinched in any suitable manner. In some variations, one end of the tether can be fixed and the anchors can be slidably coupled to the tether so that tether can be cinched by pulling on the nonfixed end of the tether. In other variations with slidably coupled anchors, the tether can be cinched by pulling on both ends of the tether. In still other variations, the tether may be self-cinching, e.g., if the tether is made from a shape memory material.
Some variations of the methods include adjusting tension in the tether, either manually or automatically, or by a combination of manual and automatic adjustments. In variations of the methods that include adjustment of tether tension, the tether may be locked into position in a reversible manner, e.g., the methods may include unlocking the tether, adjust the tether and relocking the tether in position. Further, some methods can include measuring the tension in the tether. In some cases, the tether can be accessed and its tension adjusted post-operatively. For example, the tension in a tether can be adjusted post-operatively to accommodate changes in tissue associated with swelling and the healing process, or to tighten or loosen the restriction on the GI tract wall. In some variations, the tether can be cinched to a predetermined tension, while in other variations, the tether can be cinched to a predetermined dimension.
As stated above, the methods allow for restricting a portion of a GI tract without forming plications in the tissue wall with the anchors. In addition, the methods do not require the formation of plications or mounds in the tissue wall prior to securing the anchors thereto. Rather, the methods in some cases result in automatic formation of gathers, plications, or tissue mounds as the tether is cinched. For example, as illustrated in
After the tether is cinched, the methods can include locking the tether to hold a desired tension on the restricted GI tissue. The tether can be locked in any suitable manner. For example, a locking element can be applied to the tether ends. For variations of methods in which the anchors are slidably coupled to the tether, the locking element can be any element that has sufficient diameter so as to not allow the anchor to slide beyond the locking element. The locking element can include one or more knots, clamps, crimps, blocks, or the like. In other variations, the tether itself can be deformed to form a locking element, e.g., by local heating of a tether made from a polymeric or shape memory material. The locking elements can be reversible. For example, the locking element may be a removable clamp that allows subsequent adjustments in tether tension. In some variations, the locking elements can be quasi-permanent or permanent, e.g., a knot or a crimp installed on the tether by a one-way mechanical deformation.
Some methods include loading at least one anchor into a delivery device, wherein the delivery device is configured to deliver the at least one anchor to the tissue wall. One or more anchors can be preloaded in a delivery device, and in some cases, pre-loaded anchors can be coupled to a tether prior to delivery. Some delivery devices are configured to deploy the at least one anchor to secure the at least one anchor to the tissue wall. Methods can also include delivering and/or deploying more than one anchor substantially simultaneously with a delivery device. Still other variations of the methods include cinching the tether with a delivery device. Some methods include locking the tether with the delivery device.
Some variations of the methods are conducted intraluminally. For example, the methods can comprise inserting and operating a delivery device intraluminally. Some examples of variations of delivery devices suitable for use in intraluminal methods are illustrated in
The methods described herein can be used to restrict or tighten any suitable part of a GI tract to treat GERD, obesity, or the like. The anchors used in the methods have at least one anchor tip that axially pierces the interior surface of the tissue wall and then penetrates within the tissue wall in a nonaxial direction. The anchor can be embedded into the bulk of the tissue wall that has the greatest physical integrity and therefore the greatest ability to withstand a load, e.g., the muscularis and/or serosa, without tearing or ripping the tissue during the process of embedding. This is because the anchor tip penetrates the tissue in a driving or boring manner, and the body or leg of the anchor can follow the anchor tip into the bulk of the tissue wall.
In some variations of the methods, a reinforcing band can be applied to the tissue to which the anchors will be secured. The reinforcing band can be overlaid on the targeted tissue, and the anchors deployed to penetrate both the reinforcing band and tissue beneath the band. The reinforcing band can be made of any suitable biocompatible material, e.g., a polymer such as a DACRON™ polymer, or a mesh. In some variations, the reinforcing band may be of a biodegradable or bioabsorbable material, e.g., a biodegradable polymer, so that it provides temporary reinforcement during a healing or adjustment stage, and then dissipates. As illustrated by
Some variations of the methods comprise restricting a portion of a valve or sphincter within a GI tract, e.g., the LES or the pyloric sphincter. GERD can be treated surgically by reinforcing the LES or by restricting the diameter of the esophagus near the LES to limit the backflow of stomach acid. The methods described herein can be used in either approach. For example, anchors can be secured to tissue surrounding the LES intraluminally using the methods described herein. That is, a plurality of flexible anchors coupled to a tether can be secured to the LES tissue wall via the intraluminal access. The tether coupled to the anchor can be cinched so as to draw the anchors together and tighten the tissue around the LES, thereby reinforcing a weak LES that fails to close properly. Esophagus tissue can be fragile, and thus minimized tissue damage will lead to improved methods. In some cases, for treating GERD the anchors can be applied essentially around the entire circumference of the esophagus in the region of the LES. In other cases, anchors can be applied circumferentially around only a portion of the circumference of the esophagus.
Referring now to
The methods described herein can be used to restrict a portion of the stomach to treat obesity. The stomach can be accessed intraluminally, and a series of anchors can be secured circumferentially around the interior of the stomach. The circumferentially-secured anchors are coupled to a tether, and the tether can be cinched to restrict and thereby partition the stomach. By partitioning the stomach such that the upper portion of the stomach has reduced volume, a sensation of fullness can be achieved, causing the patient to consume less food. Further, the reduced volume of the upper part of the stomach may slow down the rate at which food passes into the lower part of the stomach, providing a prolonged sensation of fullness. It is contemplated that the methods described here can be used to restrict a portion of a stomach to treat obesity via intraluminal access, or via exterior access, e.g., using laparoscopy.
For example, as illustrated in
In some variations of methods for treating obesity or GERD, a reinforcing band may be applied circumferentially along an interior stomach surface, for example as illustrated in
Kits are provided for restricting a portion of a GI tract. The kits can be used to treat GERD, obesity, or the like. The kits include in packaged combination a plurality of tissue-engageable anchors, and a cinchable tether. One or more anchors in the kits comprises a first anchor tip defining a first axis. The first anchor tip is capable of piercing a surface of the tissue wall at a first position and penetrating into the tissue wall in a nonaxial direction relative to the first axis to secure the anchor to the tissue wall. In some variations of the kits, the tether can be coupled to the anchors prior to delivery, and in other variations of the kits, the tether is coupled to the anchors after the anchors have been secured to tissue.
The kits can include a delivery device capable of delivering the anchors to the tissue wall. In some kits, the delivery device can be pre-loaded with one or more anchors. In those variations, the delivery device can be pre-loaded with anchors coupled to a tether. In some kits, the delivery device is capable of securing anchors to the tissue and/or cinching the tether. In still other kits, a delivery device can be included that can lock and/or unlock a tether. In some variations of the kits, the anchors are non-plicating. In other variations of the kits, at least one of the anchors comprises two curved tissue-penetrating legs crossing in a single turning direction. Some kits include a locking element for locking the tether after cinching. Some kits include a tension-measuring device for gauging tension in the tether. Other kits include a tension-setting device for setting tension in the tether. Some kits include instructions for use.