DEVICES, METHODS AND SYSTEMS FOR TARGET DETECTION

Information

  • Patent Application
  • 20110195862
  • Publication Number
    20110195862
  • Date Filed
    February 08, 2011
    13 years ago
  • Date Published
    August 11, 2011
    12 years ago
Abstract
Polymer arrays suitable to perform quantitative and qualitative detection as well as sorting of a target molecules and related devices methods and systems.
Description
FIELD

The present disclosure relates to devices methods and systems for target detection. In particular, the present disclosure relates to devices methods and systems for detection of targets on a polymer array.


BACKGROUND

The application of molecular techniques has rapidly advanced the detection and identification of targets in sample where targets of various chemical natures are included. Several techniques are available that allow detection of target molecules such as polymers, and in particular biopolymers, for various purposes, including, for example, identification of microorganisms and microbial systems.


However, reproducibility and/or quantification of targets can still be challenging in particular when detection is performed using a polymer array. Chemical similarities between the target molecules can interfere with the ability to accurately detect multiple targets. In certain cases ability to predict the extent of hybridization and sensitivity of some related reporting techniques can make detection of specific molecules and related quantitation quite challenging.


SUMMARY

Provided herein are devices, methods and systems configured for target detection through Secondary Ion Mass Spectrometry (SIMS), which, in several embodiments, allow quantitative and/or sensitive detection of targets bound to a polymer array. In particular, in several embodiments, devices methods and systems herein described allow quantitative and/or sensitive detection of target polymers presenting SIMS detectable labels following binding of the target polymers with the polymer array.


According to a first aspect a method for quantitative detection of a target is described. The method comprises, labeling a target with a SIMS detectable label, which can in particular be formed by stable isotope probes, to provide a SIMS labeled target, the SIMS labeled target capable of binding a polymer of a polymer array herein described. The method further comprises contacting the SIMS labeled target with the polymer array for a time and under conditions that allow binding of the SIMS labeled target molecule to the polymer array. The method also comprises performing SIMS detection of the polymer array following the contacting to detect the SIMS labeled target bound to the polymer array. For the polymer array, the platform comprises a substrate coated with an electrically conductive layer and the polymer is attached to the platform through a functional linker molecule attached to the electrically conductive layer.


According to a second aspect a method to detect a target in a sample is described: The method comprises exposing the sample to a label detectable by Secondary Ion Mass Spectrometry (SIMS label) for a time and under conditions that allow binding of the SIMS label with the target. The method further comprises contacting a polymer array with the sample to allow binding of the labeled target to the polymer array. The method also comprises performing Secondary Ion Mass Spectrometry on the polymer array following the contacting in order to detect the SIMS labeled target. In the polymer array, the platform comprises a substrate coated with an electrically conductive layer and the polymer is attached to the platform through a functional linker molecule attached to the electrically conductive layer.


According to a third aspect, a system for detection of a target is described, that comprises a polymer array herein described, and a SIMS detectable label. In some embodiments, the system can further include SIMS detecting elements, such as suitable pieces of equipment to perform detection of a target comprising the SIMS detectable label.


According to a fourth aspect, a functionalized platform is described, that comprises a substrate having an electrically conductive surface, the electrically conductive surface attaching a functionalized linker molecule comprising an organosilane presenting an organosilane functional group. The functionalized platform is also configured to be associated, during operation, with a polymer array, through attachment of the polymers of the polymer array with the functionalized linker molecule, and the polymer array is configured for SIMS detection of a target attached to a polymer on the polymer array, through a SIMS detectable label attached to the target.


According to a fifth aspect, a polymer array is described that is configured to allow SIMS detection of a target attached to the polymer through a SIMS detectable label attached to the target. The polymer array comprises a polymer attached to a functionalized platform described herein wherein the polymer is attached to the functionalized linker molecules of the platform.


According to a sixth aspect, a bio-chip is described that comprises a polymer array herein described.


The platforms, arrays, methods and systems described allow in several embodiments quantitative detection of targets such as a polymers and in particular biopolymer comprising nucleic acids, polypeptides and additional polymers identifiable by a skilled person.


The platforms, arrays, methods and systems described herein can be used in connection with applications wherein quantitative detection sorting and/or analysis of targets of interest and in particular nucleic acid molecules through an array is desired, including but not limited to medical application, biological analysis and diagnostics including but not limited to clinical applications.


The details of one or more embodiments of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated into and constitute a part of this specification, illustrate one or more embodiments of the present disclosure and, together with the detailed description and the examples, serve to explain the principles and implementations of the disclosure.



FIG. 1 shows a schematic illustration of the basic coupling chemistry between phosphonate (phosphonic acid) and a metal oxide coated surface to generate a functionalized platform according to an embodiment of the present disclosure.



FIG. 2A shows oligonucleotides spotted onto a glass surface coated with the industry standard triethoxy silane.



FIG. 2B shows an illustration of oligonucleotides spotted on a glass surface coated with an alkyl phosphonate compound terminated with an alkyl phosphonate surface. The illustration is comparative to the corresponding oligonucleotide probes of FIG. 2A.



FIG. 2C shows a diagram illustrating the signal to noise ratio for fluorescent signal of the array of FIG. 2A (silane linker upper trace) and the array of FIG. 2B (ITO lower trace).



FIG. 3 shows a chart illustrating data from an indium tin oxide (referred to as ITO) coated array slide analysis by NanoSIMS. Ion counts from the NanoSIMS analysis indicate the suitability of ITO surfaces for SIMS analysis, as the conductive, oxide coating allows for consistent ion sputtering with depth.



FIG. 4 shows an ITO coated microarray slide analyzed by NanoSIMS. The suitability and stability of ITO coated arrays for SIMS analysis are demonstrated. NanoSIMS secondary electron (left), and 18O and 12C ion images indicating no evidence of sample charging. Clockwise from top left: secondary electron (SE) image, silicon ion image (28Si), oxygen ion image (16O), carbon ion image (12C).



FIG. 5A shows a post-hybridization fluorescence scan of an ITO alkyl phosphonate array synthesized with multiple different Pseudomonas stutzeri probes and hybridized with RNA from 13C labeled P. stutzeri cells. The scale of fluorescence intensity moves from low to high, black to white. Each square region is comprised of a 2×2 grid of separate probe spots, all targeting the same DNA sequence.



FIG. 5B shows a montage of NanoSIMS 13C enrichment images collected from a nanoSIMS analysis of the same array shown in FIG. 5A. The scale of enrichment moves from low to high, black-dark grey-medium grey-light gray-white.



FIG. 5C shows a plot of the quantitative NanoSIMS data displayed in FIG. 5B versus the fluorescence data shown in FIG. 5A. The correlation between the two is good, as evidenced by the R2 value.



FIG. 6 shows fluorescence detection by microarray scanner (FIG. 6A) and 13C enrichment by NanoSIMS (FIG. 6B) of RNA enriched with as little as 0.5% following RNA hybridization to ITO microarray and then detection via NanoSIMS).



FIG. 7 shows a plot of quantitative NanoSIMS data versus hybridization data for an array hybridized with extracted RNA from two bacterial species (Vibrio cholera and Bacillus cereus) grown separately on two different levels of 13C-glucose (FIG. 7A) and 15N-ammonium (FIG. 7B) as their sole carbon and nitrogen source. RNA is from bacterial cultures of Vibrio cholerae (squares), and Bacillus cereus (triangles); background (diamond) values are displayed for reference. HCE=hybridization corrected enrichment, a metric which allows different populations of RNA molecules to be compared with respect to their isotopic enrichment. Each data point represents a distinct probe specific for each bacterial species.



FIG. 8 illustrates detection by array fluorescence (FIG. 8A); and d15N by NanoSIMS (FIG. 8B) of Pseudomonas stutzeri grown on 25% 15N ammonium, and Bacillus cereus grown on natural abundance ammonium; with RNA extracted, mixed in equal concentrations, hybridized on ITO-coated array.



FIG. 9 shows diagrams illustrating the results of experiments with simple two-member communities performed with devices, methods and systems herein described. The two member communities comprise Pseudomonas stutzeri grown on 100% 13C glucose, and Vibrio cholera grown on 20% 13C glucose. In FIG. 9A, each data point represents a NanoSIMS analysis of a single array probe spot (plotted against array fluorescence). In FIG. 9B a one-way ANOVA test, indicating a statistically significant difference between the two RNA populations (p<0.0001) is shown.



FIG. 10A shows an array designed to target marine microorganisms designed using ARB software; each row on the array represents a series of probes designed to hybridize to a different taxon (microbial species), as indicated.



FIG. 10B shows a schematic illustration of an analysis performed with devices, methods and systems herein described. It quantitatively illustrates the flow of three organic substrates to different bacterial taxa in an estuary, identifying substrate specialists and generalists; the thicknesses of the lines are proportional to the substrate incorporation rates.





DETAILED DESCRIPTION

Devices, arrays methods and systems described herein are also indicated as “Chip-SIP” that in several embodiments allow detection of a target on a polymer array through Secondary Ion Mass Spectrometry.


The term “detect” or “detection” as used herein indicates the determination of the existence, presence or fact of a target or signal in a limited portion of space, including but not limited to a sample, a reaction mixture, a molecular complex and a substrate including a platform and an array. A detection is “quantitative” when it refers, relates to, or involves the measurement of quantity or amount of the target or signal (also referred as quantitation), which includes but is not limited to any analysis designed to determine the amounts or proportions of the target or signal. A detection is “qualitative” when it refers, relates to, or involves identification of a quality or kind of the target or signal in terms of relative abundance to another target or signal, which is not quantified. In several embodiments, the Chip-SIP devices, methods and systems allows quantitative detection of single or multiple targets.


The term “target” as used herein indicates an analyte of interest. The term “analyte” refers to a substance, compound or component whose presence or absence in a sample has to be detected. Analytes include but are not limited to biomolecules and in particular biomarkers. The term “biomolecule” as used herein indicates a substance compound or component associated with a biological environment, especially the nucleic acids DNA and RNA. The term “biomarker” indicates a biomolecule that is associated with a specific state of a biological environment including but not limited to a phase of cellular cycle, health and disease state. The presence, absence, reduction, upregulation of the biomarker is associated with and is indicative of a particular state. Biomolecules that are detectable through Chip-SIP include in particular biopolymers, which in certain embodiments can also be used as biomarkers.


According to various embodiments the Chip-SIP herein described, detection of a target can be performed through Secondary Ion Mass Spectrometry analysis of a polymer array presenting a target, typically formed by one or more biopolymers.


The term “polymer array” as used herein indicates a regular and imposing grouping or arrangement of polymer molecules immobilized on an appropriate or compatible substrate in an ordered manner, herein also indicated as probe polymers. More particularly, the term polymer array indicates an ordered grouping of probe polymers arranged so to allow, under appropriate conditions, specific binding of a target to at least one of the polymer composing the polymer array and subsequent detection of the target bound to the polymer.


In Chip-SIP detection, polymer arrays are attached on a functionalized platform through linkage with functional linker molecules attached on an electrically conductive layer and presenting functional groups for binding with probe polymers.


The term “platform” as used herein indicates a physical and usually flat structure suitable for carrying a polymer array. A platform typically comprises a substrate functionalized to be capable of reacting with a polymer of the polymer array and the polymer array.


The term “substrate” as used herein indicates a base material on which processing can be conducted to modify the chemical nature of at least one surface of the base material. Exemplary chemical modifications include functionalization and/or depositing on the modified surface a layer of a second material chemically different from the base material. Exemplary substrates in the sense of the present disclosure include but are not limited to glass, such as silica-based glass, plastics, such as cyclo-olefin copolymer, carbonates and the like, and silicon materials, such as the ones used in the electronic industry. The substrate can be two dimensional such as a typical glass microscope slide of standard dimension, i.e. 25 mm×75 mm.


In platform described herein a substrate is coated with a functionalized electrically conductive layer that can be formed by a metal oxide layer. The term “layer” as used herein indicates a single thickness of material covering a surface. Accordingly, a metal oxide layer is a thickness of a metal oxide compound covering a substrate surface of the substrate of the platform or a portion thereof.


The term “metal oxide” as used herein indicates a compound including at least one oxygen atom bound to a metal atom. Exemplary metal oxides include in particular amphoteric metal oxide such as aluminum oxide and other metal oxides wherein the metal element is in a +3 oxidation state, tin oxide other metal oxides wherein the metal element is in a +4 oxidation state or mixture thereof. In an embodiment, the metal oxide comprises Indium Tin Oxide, a solid solution of indium (III) oxide (In2O3) and tin oxide (SnO2), typically 90% In2O3, 10% SnO2 by weight, which is a particularly suitable electrically conductive material.


In platform herein described, a metal oxide thickness can be applied to the substrate by deposition of the metal oxide performed by techniques identifiable by a skilled person. In particular, in several embodiments herein disclosed, the surface of a substrate is coated by the metal oxide, wherein the term “coat” and “coating” indicates a covering of the metal oxide applied to the surface using techniques known in the art. Exemplary techniques suitable to apply a coating to a substrate include chemical vapor deposition, conversion coating, plating and other techniques identifiable by a skilled person. In case of ITO thin films of indium tin oxide coating procedures can be performed by electron beam evaporation, physical vapor deposition, or a range of sputter deposition techniques. Concentration of charge carriers during deposition is selected in view of the desired electrical conductivity since a high concentration will increase the material's conductivity, but decrease its transparency.


In platforms and the microarray herein described, the metal oxide is functionalized to allow attachment of a polymer array. The terms “functionalize” and “functionalization” as used herein, indicates the appropriate chemical modifications of a molecular structure (including a substrate or a compound) resulting in attachment of a functional group to the molecular structure. The term “functional group” as used herein indicates specific groups of atoms within a molecular structure that are responsible for the characteristic chemical reactions of that structure. Exemplary functional groups include, hydrocarbons, groups containing halogen, groups containing oxygen, groups containing nitrogen and groups containing phosphorus and sulfur all identifiable by a skilled person. The term “attach” or “attached” as used herein, refers to connecting or uniting by a bond, link, force or tie in order to keep two or more components together, which encompasses either direct or indirect attachment such that for example where a first compound is directly bound to a second compound or material, and the embodiments wherein one or more intermediate compounds, and in particular molecules, are disposed between the first compound and the second compound or material.


In platforms herein described the electrically conductive layer is functionalized to attach an alkyl phosphonate compound that presents an alkyl phosphonate functional group and/or with organosilanes that presents an organosilane functional group. The term “present” as used herein with reference to a compound or functional group indicates attachment performed to maintain the chemical reactivity of the compound or functional group as attached. Accordingly, a functional group presented on a surface is able to perform under the appropriate conditions the one or more chemical reactions that chemically characterize the functional group.


In particular, in some embodiments, the metal oxide layer is treated with a solution of a functionalized alkyl phosphonate compound. In those embodiments, the phosphonates form an ordered monolayer on the metal oxide surface and are covalently linked to the metal oxide via formation of stable metal-phosphodiester bonds as has been well-established in published scientific literature. In some embodiments, the metal oxide is functionalized with an organosilane, e.g. triethoxyaminoproply silane or other organosilane identifiable by a skilled person. The alkylphosphonate functional group and/or organosilane functional groups are used to attach probe polymers of a polymer array.


The term “polymer” as used herein indicates a large molecule (macromolecule) composed of repeating structural units typically connected by covalent chemical bonds. Polymers constitute a large class of natural and synthetic materials with a variety of properties and purposes and include bio-polymers which are the typical polymer component of polymer arrays as identified herewith. Biopolymers comprise polysaccharides polymers made up of many monosaccharides joined together by glycosidic bonds, polynucleotide and polypeptides that are originally produced by living organisms including viruses.


The term “polynucleotide” as used herein indicates an organic polymer composed of two or more monomers including nucleotides, nucleosides or analogs thereof. The term “nucleotide” refers to any of several compounds that consist of a ribose or deoxyribose sugar joined to a purine or pyrimidine base and to a phosphate group and that is the basic structural unit of nucleic acids. The term “nucleoside” refers to a compound (such as guanosine or adenosine) that consists of a purine or pyrimidine base combined with deoxyribose or ribose and is found especially in nucleic acids. The term “nucleotide analog” or “nucleoside analog” refers respectively to a nucleotide or nucleoside in which one or more individual atoms have been replaced with a different atom or a with a different functional group. Accordingly, the term polynucleotide includes nucleic acids of any length including DNA, RNA, DNA or RNA analogs and fragments thereof. A polynucleotide of three or more nucleotides is also called a nucleotidic oligomers or oligonucleotide. Exemplary polynucleotides composing arrays herein disclosed are DNA molecules, and in particular DNA oligomers, peptide nucleic acids (PNAs), locked nucleic acid polymers (LNAs) and the like.


The term “peptide nucleic acid” indicates an artificially synthesized polymer similar to DNA or RNA and is used in biological research and medical treatments. PNA is not known to occur naturally. In particular, while DNA and RNA have a deoxyribose and ribose sugar backbone, respectively, whereas PNA's backbone is composed of repeating N-(2-aminoethyl)-glycine units linked by peptide bonds. The various purine and pyrimidine bases are linked to the backbone by methylene carbonyl bonds. PNAs are depicted like peptides, with the N-terminus at the first (left) position and the C-terminus at the right.


The term “locked nucleic acid”, often referred to as inaccessible RNA, indicates a modified RNA nucleotide. The ribose moiety of an LNA nucleotide is modified with an extra bridge connecting the 2′ and 4′ carbons. The bridge “locks” the ribose in the 3′-endo structural conformation, which is often found in the A-form of DNA or RNA. LNA nucleotides can be mixed with DNA or RNA bases in the oligonucleotide whenever desired. Such oligomers are commercially available. The locked ribose conformation enhances base stacking and backbone pre-organization. This significantly increases the thermal stability (melting temperature) of oligonucleotides. LNA nucleotides are used to increase the sensitivity and specificity of expression in DNA microarrays, FISH probes, real-time PCR probes and other molecular biology techniques based on oligonucleotides. For the in situ detection of miRNA the use of LNA is currently (2005) the only efficient method. A triplet of LNA nucleotides surrounding a single-base mismatch site maximizes LNA probe specificity unless the probe contains the guanine base of G-T mismatch.


The term “polypeptide” as used herein indicates an organic polymer composed of two or more amino acid monomers and/or analogs thereof. The term “polypeptide” includes amino acid polymers of any length including full length proteins and peptides, as well as analogs and fragments thereof. A polypeptide of three or more amino acids is also called a protein oligomer or oligopeptide. As used herein the term “amino acid”, “amino acidic monomer”, or “amino acid residue” refers to any of the twenty naturally occurring amino acids including synthetic amino acids with unnatural side chains and including both D and L optical isomers. The term “amino acid analog” refers to an amino acid in which one or more individual atoms have been replaced, either with a different atom, isotope, or with a different functional group but is otherwise identical to its natural amino acid analog.


The term “protein” as used herein indicates a polypeptide with a particular secondary and tertiary structure that can participate in, but not limited to, interactions with other biomolecules including other proteins, DNA, RNA, lipids, metabolites, hormones, chemokines, and small molecules. Exemplary proteins composing arrays herein described are antibodies.


The term “antibody” as used herein refers to a protein that is produced by activated B cells after stimulation by an antigen and binds specifically to the antigen promoting an immune response in biological systems and that typically consists of four subunits including two heavy chains and two light chains. The term antibody includes natural and synthetic antibodies, including but not limited to monoclonal antibodies, polyclonal antibodies or fragments thereof. Exemplary antibodies include IgA, IgD, IgG1, IgG2, IgG3, IgM and the like. Exemplary fragments include Fab Fv, Fab′ F(ab′)2 and the like. A monoclonal antibody is an antibody that specifically binds to and is thereby defined as complementary to a single particular spatial and polar organization of another biomolecule which is termed an “epitope”. A polyclonal antibody refers to a mixture of monoclonal antibodies with each monoclonal antibody binding to a different antigenic epitope. Antibodies can be prepared by techniques that are well known in the art, such as immunization of a host and collection of sera (polyclonal) or by preparing continuous hybridoma cell lines and collecting the secreted protein (monoclonal).


In polymer array herein described, any of the above polymers can be synthesized or added and in particular spotted on a coated substrate according to techniques identifiable by a skilled person.


Applicants have surprisingly found that probe polymer arrays on functionalized platforms herein described allow detection of properly labeled target performed through SIMS.


The term “SIMS” or “Secondary Ion Mass Spectrometry” as used herein indicates a technique typically used in materials science and surface science to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions. These secondary ions are typically measured with a mass spectrometer or other SIMS detecting elements to determine the elemental, isotopic, or molecular composition of the surface. In several applications, SIMS is one of the most sensitive surface analysis techniques able to detect elements present in the parts per billion range. Exemplary procedures and detecting elements suitable for SIMS analysis are described for example in the enclosed references (see e.g. ref (1) and ref (15)). A skilled person will be able to identify additional instruments and procedures that are suitable for the implementation of Chip-SIP herein described upon reading of the present disclosure.


A detection performed through SIMS, or “SIMS detection” is performed through measurement of a SIMS detectable signal typically issued by a SIMS label on a surface following sputtering of the surface with a focused primary ion beam. The terms “label” and “labeled molecule” as used herein refer to any elemental label capable of detection, which in general comprise radioactive isotopes, stable isotopes, halogenated oligonucleotide probes, metal ions, nanoparticles, and the like. As a consequence the wording “labeling signal” indicates in general the signal emitted from the label that allows detection of the label.


A “SIMS label” as used herein indicates a label capable of issuing a SIMS detectable signal on a surface following sputtering of the surface with a focused primary ion beam. A “SIMS detectable signal” indicates a signal that is detectable through the use of SIMS detecting elements, (e.g. a sector, quadrupole, and time-of-flight mass analyzer) A SIMS detectable signal is typically in the form of characteristic secondary ions detectable through any appropriate SIMS detecting element as will be understood by a skilled person. Exemplary SIMS labels comprise stable isotopes wherein the term “stable isotope” refers to a non-radioactive isotopic form of an element, which can include, but is not limited to, 13C or 15N, 18O, 19E, 127I, 79Br, or 197Au.


Metal oxide layers and in particular layers formed by comprising Indium Tin Oxide (ITO), are particularly suitable for SIMS analysis because of their conductive properties and stability under reduced pressure. Presentation of probe polymers on such an electrically conducting layer, made possible by use of functionalized linker molecules such as phosphohonate or organosilane, in combination with use of SIMS detectable label has enabled a detection of single and in particular multiple targets that in some embodiments, is significantly more sensitive of corresponding approach of the art. Additional details concerning procedures specific embodiments of platform presenting alkyl phosphonate functional groups are described in US Pat. Application US 2009-0203549 and International Application WO 2009/100201, each of which is herein incorporated in its entirety.


In several embodiments of the Chip-SIP devices, methods and systems, detection of a SIMS signal issued by a SIMS labeled target bound on a polymer array herein described allows quantitative and/or qualitative detection of target.


In particular in some embodiments a quantitative detection of a target can be performed by labeling the target with a SIMS detectable label to provide a SIMS labeled target, the SIMS labeled target capable of binding a polymer of a polymer array herein described.


Suitable labeling procedures depend on the target and desired detection. For example nucleic acids can be labeled by incorporating 13C and/or 15N in the nucleic acids during synthesis which can be performed within a cell, or in vitro e.g. in a cell free system. Additional labeling can be performed by attaching gold nanoparticles or halogen atoms (F, I, Br) to DNA or RNA. In an embodiment, the labeling can be performed by exposing a sample to a SIMS-label to allow binding of the SIMS label with a target whose quantity or presence in the sample one wants to detect. The term “exposing” or “expose” or “to expose” as used herein refers to a contacting of the sample performed to allow the introduction of SIMS-label (e.g. stable isotopes) to a sample, to allow attachment of the SIMS-label in the target if present in the sample. By way of example, in embodiments where detection of nucleic acids in microbes is desired, a bacterial population can be grown on a substrate enriched with a SIMS label formed by stable isotopes. By way of example, bacteria can be grown in a liquid media substance containing stable isotopes wherein the bacteria feed off the stable isotope-containing liquid media. Additional methods for enabling the attachment of a SIMS-label onto a target in a sample are identifiable by a skilled person depending on the specific target and label selected for the detection.


In an embodiment, the SIMS labeled target resulting from a labeling procedure is then contacted with a polymer array for a time and under conditions to allow binding of the SIMS labeled target molecule to the polymer array.


In some embodiments, the contacting is performed by isolating the labeled target from a sample comprising the target (e.g. by extraction of nucleic acids from an organism) and then contacting the isolated target with a polymer array herein described.


In particular, in embodiments, where the target are also biopolymers the contacting can be performed by hybridization of the probe polymers with the target polymer. The term “hybridize” or “hybridization” or “hybridized” as used herein refers to a process by which single strands of nucleic acid sequences form double-helical segments via hydrogen bonding between complementary nucleotides covalently bonded to a functionalized platform. Other forms of specific binding between probe polymers and target herein described will be identifiable by a skilled person. Additional forms of contacting include protein-protein interactions, antigen-antibody interaction, nucleic acid protein interaction and additional interactions identifiable by a skilled person upon reading of the present disclosure.


In some embodiments, the contacting is performed with a polymer array that comprises an arrayed series of thousands of microscopic spots of the polymer of interest, called features, each containing a small amount, (e.g. picomoles) of a specific probe polymer and in particular a probe biopolymer, (for example a DNA polymer having a specific sequence). Exemplary biopolymers include, a short section of a gene or other DNA element that are used as stationary probes capable of binding to added sample molecule (target) under conditions or varying binding stringency. In an embodiment, arrays can include but are not limited to: features ranging in size from 25 square microns (μ2) to 250 square microns (μ2) that are made by mechanically (robotically) or manually spotting a defined volume of polymer on the substrate surface. In an embodiment microarrays can include but are not limited to features ranging in size from 5 square microns (μ2) to 250 square microns (μ2) that are prepared by de novo synthesis of a plurality of defined biopolymer material, e.g. DNA probes; using established solid phase synthetic chemistry. In some embodiments, probe polymers are used the comprise oligonucleotides between 25 and 50 base pairs, although one skilled in the art would recognize that oligonucleotides that are much shorter than 25 base pairs, or significantly longer than 50 base pairs could be used. Probe arrangement suitable for SIMS includes any organized arrangement where probe spots are a consistent distance apart, ideally laid out in a precise grid pattern.


Following contacting, SIMS detection of the polymer array is performed to qualitative and/or quantitatively detect the SIMS labeled target bound to the polymer array. Detecting can be performed with SIMS detecting elements which comprise many SIMS instruments having a resolution of about 10 microns or less, (e.g. a ToF-SIMS). In principle, any SIMS instrument can be used to detect the presence of stable isotopes as described above provided it can rater over a sample feature between 13-15 micron.


In embodiments, wherein an oligonucleotide array is being used to detect or sort a population of nucleic acids, the Chip-SIP approach will allow one to measure the relative amount of hybridization of the target and the surface probe. In particular, in some of those embodiments, Chip-SIP allows relatively rapid, high sensitivity measurements of complex populations of target such as RNA fragments with rapid throughput and high resolution. As demonstrated by Applicants (see Example 5 and in FIG. 7), quantitation can be achieved with an isotopic label concentration as low as 0.05%.


In some embodiments, Chip-SIP also allows multiple labels to be used simultaneously. SIMS detection with Chip-SIP further allows for quantification of label incorporation. In some of those embodiments, Chip-SIP can be used for multiplex detection and can be used in applications such as molecular biology and in medicine to analyze/detect molecular recognition, e.g. hybridization between complementary strands of DNA and other chemical and biological properties associated with molecular recognition between biopolymers of interest.


In an embodiment, the Chip-SIP method combines polymer microarray methodology with nano-scale secondary ion mass spectrometry (NanoSIMS) analysis. In particular, Chip-SIP can be accomplished by SIMS-labeling targets, such as microbial nucleic acids (e.g. by exposing organisms and/or microbial communities to isotopically enriched substrates), contacting the SIMS labeled target with a polymer array configured for SIMS detection (e.g. hybridizing the SIMS labeled microbial nucleic acid to an engineered high-density oligonucleotide microarray as described herein), and then analyzing the polymer array binding the SIMS labeled target through NanoSIMS.


NanoSIMS is an imaging secondary ion mass spectrometer with the unprecedented combination of high spatial resolution (50 nm), high sensitivity (1 of every 20 C/N atoms) and high mass specificity (2, 3). For example, when an ITO microarray is hybridized to isotopically labeled RNA fragments, the added oligonucleotides can be quantified with NanoSIMS imaging; the conductive ITO layer uniquely facilitates generation of secondary ions for measurement and quantification. If the population of DNA oligonucleotides are assembled as a microarray on the ITO surface, a test population of complimentary nucleic acid polymers, e.g. DNA, RNA or analogs thereof (PNAs and the like) containing a stable isotope can be hybridized, and the extent of hybridization can be measured and quantified directly by NanoSIMS. Some of the current methods require substantial (15-50 atom %) enrichment of the stable-isotope, whereas Chip-SIP is able to detect small isotopic enrichments (<1 atom %). This provides for the ability to measure the level of isotopic enrichment of DNA/RNA hybridization to pre-synthesized DNA array probes, which can be used for various purposes including linking the identity of microbes to their functional roles.


In some embodiments, CHIP-SIP can be used to: connect identity to physiological function of microorganisms in most environmental or medical settings (i.e. soils. sediments, lake water marine water, insect gut, human tissue) and/or to quantify hybridization or molecular recognition events of nucleic acids on microarray surfaces. Functional roles of microorganisms include, but are not limited to, microbial biofilms pathogenic to human tissues, microbial communities involved in bioremediation, microorganisms controlling the fate of greenhouse gases, microbial communities present in a wide variety of engineered bioreactors, biodegradation of pollutants, and additional functional roles identifiable by a skilled person


In some embodiments, Chip-SIP is accomplished by isotopically-labeling microbial nucleic acids by exposing organisms and/or microbial communities to isotopically enriched substrates. The nucleic acids are then hybridized to the engineered high-density oligonucleotide microarray as described herein, and then analyzed by NanoSIMS.


In several embodiments, Chip-SIP can be used to decipher of wide variety of microbial systems having unique functional roles: microbial biofilms pathogenic to human tissues, microbial communities involved in bioremediation, microorganisms controlling the fate of greenhouse gases, microbial communities present in a wide variety of engineered bioreactors, biodegradation of pollutants, etc.


Microbial systems refer to systems formed by microorganisms. The term “microorganism” as used herein refers to prokaryotic and eukaryotic cells, which grow as single cells, or when growing in association with other cells, do not form organs. Microorganisms include, but are not limited to, bacteria, yeast, molds, protozoa, plankton and fungi. Exemplary microbial system that can be investigated with Chip SIP comprise Pseudomonas stutzeri, Vibria cholera, Bacillus cereus, Francisellia tularensis, and the cellulose-degrading and N-fixing microorganisms found in the guts of the passalid beetle Odontotaenius disjunctus In an embodiment, Chip-SIP analysis can be performed on microorganisms that are collected from a marine and/or estuarine environment.


In particular in some embodiments, nucleic acid stable isotope probing techniques (4, 5) can be used to directly connect specific substrate utilization to microbial identity. In an exemplary approach natural microbial communities are incubated in the presence of substrates enriched in rare isotopes (e.g., 13C or 15N). The organisms, including their nucleic acids, incorporate the substrate and become isotopically enriched over time. DNA- and RNA-Stable isotope probing technique exposure requires high substrate concentrations in order to meet the sensitivity threshold of density gradient separation (in many systems >20% 13C DNA) (6) and can be extremely difficult to perform with 15N substrates (>40% 15N DNA required) (7). Traditional SIP further requires long exposure times (risking community cross-feeding), low-throughput (1-2 weeks lab processing time per sample batch), and incomplete quantification. Related culture-independent approaches can link microbial identity to function and can also have ideal qualities such as high sensitivity or in situ resolution (e.g. 13C-PLFA (8); EL FISH (9), FISH MAR (10), isotope arrays (11)). In contrast, the multiple stable isotope (e.g. 15N and 13C) incorporation made possible with the Chip-SIP method combines high throughput, sensitivity, taxonomic resolution, and quantitative estimation.


Molecular approaches for detection of microbes typically target conserved biomarkers present in all organisms of interest, such as the small subunit ribosomal RNA molecule (16S rRNA for prokaryotes and 18S rRNA for eukaryotes). Detection and monitoring of bacteria and archaea routinely rely upon classifying heterogeneous 16S rRNA molecules, either as RNA or as gene fragments amplified by universal PCR.


In an embodiment described herein, cellular RNA is used as the nucleic acid to identify organisms because one skilled in the art would recognize that the higher synthesis rates of cellular RNA allows rapid response to environmental stimuli.


An embodiment described herein, rRNA is used as the nucleic acid to identify organisms. One skilled in the art would recognize that the use of rRNA facilitates the identification of organisms with higher ribosome content, which is the active fraction of a microbial community. One skilled in the art would recognize, however, that any type of natural or synthesized nucleic acid can be used with the methods and system described herein.


As described herein, following extraction from a sample population of interest, isotopically hybridized nucleic acids can be hybridized to a functional platform using probes complementary to active community microorganism. Hybridization allows the identification of each probe having a target match, as evidenced by a fluorescent signal.


In an embodiment, 16S rRNA microarrays can be used to analyze the prokaryotic composition of complex environmental samples, such as those obtained from bioaerosols (12), soils ((13) and water(14). Such microarrays take advantage of the potential for array technology to identify individual components and assess multiple samples simultaneously. The 16S rRNA PhyloChip consists of almost 9,000 sets of 25-mer oligonucleotide probes, and is exemplary of a type of 16S rRNA microarray that can be used as a functionalized platform. Each set is specific for one 16S-rRNA gene of a particular species or group of related species. Each probe set is composed of at least 11 individual perfect-match probes and their corresponding single mismatch probes, which contain one centrally located sequence mismatch. The mismatch probe allows for the assessment and control of non-specific hybridization. For data analysis using the 16S rRNA PhyloChip, a summary statistic that describes the quantity of sequence-specific hybridization to each probe set can be calculated from the ratio of perfect-match to mismatch probe fluorescence for each probe and the consistency in fluorescence across all the probes within a given probe set.


In an embodiment, 18S DNA microarrays can be used to analyze the eukaryotic composition of complex environmental samples.


In an embodiment, hybridized mixtures of 13C-RNA are combined with mixtures of RNA from multiple organisms. Such an approach can provide both a qualitative and quantitative measure (e.g. a spot can be identified as either enriched or not, and the degree of enrichment can be known by the heavy/light isotope ratio of the spot). Additionally, different organisms can be labeled to differing degrees, creating a standard curve of 13C-RNA samples, with which it can be determined the sensitivity limits and ability to generate quantitative information based upon the degree of isotope incorporation and thus intensity of 13C in individual spots. Hybridized RNA containing stable isotopes can then be quantified trough SIM detection for example using NanoSIMS as herein described.


As disclosed herein, the functionalized platform, probe polymers, polymer arrays and SIMS-label, can be provided as a part of systems to detect targets according to any of the methods described herein. The systems can be provided in the form of kits of parts.


In a kit of parts, the functionalized platform, probe polymers, polymer arrays and SIMS-label and other reagents to perform the methods can be comprised in the kit independently. One or more probe polymers and SIMS-labels can be included in one or more compositions alone or in mixtures identifiable by a skilled person. Each of the one or more of probe polymers or SIMS labels or other reagents can be in a composition together with a suitable vehicle.


Additional reagents can include molecules suitable to enhance or favor the contacting according to any embodiments herein described and/or molecules, standards and/or equipment to allow detection of pressure temperature and possibly other suitable conditions.


In particular, the components of the kit can be provided, with suitable instructions and other necessary reagents, in order to perform the methods here described. The kit will normally contain the compositions in separate containers. Instructions, for example written or audio instructions, on paper or electronic support such as tapes or CD-ROMs, for carrying out the assay, will usually be included in the kit. The kit can also contain, depending on the particular method used, other packaged reagents and materials (i.e. wash buffers and the like).


Further advantages and characteristics of the present disclosure will become more apparent hereinafter from the following detailed disclosure by way of illustration only with reference to an experimental section.


EXAMPLES

The platforms, arrays, methods and systems herein disclosed are further illustrated in the following examples, which are provided by way of illustration and are not intended to be limiting.


In particular, in the following examples platforms, array and related methods and systems are described that use ITO coated glass slide attaching nucleic acid probes through organosilanes or alkyl phosphonate and directed to detection of target biopolymers such as DNA or RNA. A skilled person will be able to adapt the exemplary materials, structures and procedure to additional supports, conductive material probes functionalized linker probes and targets in accordance with the present disclosure.


Example 1
Custom Conductive Surface for Microarrays

A custom conductive surface for the microarrays is used to eliminate charging during SIMS analysis. Glass slides coated with indium-tin oxide (ITO; Sigma) are treated with an amino- or hydroxy-alkyl phosphonate to provide a starting matrix for DNA synthesis (FIG. 1).


Custom-designed microarrays (feature size=15 μm) are synthesized using a photolabile deprotection strategy (15) on the LLNL Maskless Array Synthesizer (MAS)(Roche Nimblegen, Madison, Wis.). Reagents for synthesis (Roche Nimblegen) are delivered via an automated DNA synthesizer (Expedite, PerSeptive Biosystems). For quality control (to determine that DNA synthesis was successful), each slide contains a set of DNA probes to Arabidopsis calmodulin protein kinase 6 (CPK6); the latter is detected using complimentary oligonucleotides labeled with Cy3 (Integrated DNA Technologies).


If synthesis is successful, hybridization with Cy3 or Cy5-labeled complimentary targets reveals a series of ordered fiducial marks (probe spots with the complementary sequence synthesized throughout the array area). Probes targeting microbial taxa are arranged in a densely packed formation to decrease the total area analyzed by imaging secondary ion mass spectrometry the NanoSIMS. Hybridized arrays are later analyzed using a Cameca NanoSIMS 50 which provides the critical capacity to detect isotopic enrichment in the captured ribosomal RNA fragments.


Example 2
Target RNA Extraction, Labelingand Subsequent Array Hybridization

RNA from pelleted cells (for pure culture laboratory strains) and filters (for aquatic field samples) are extracted with the Qiagen RNEasy kit according to manufacturer's instructions, with slight modifications for field samples.


This protocol was used for pure cultures of P. stutzeri, V cholera and B. cereus, and it has also worked for the complex communities found in seawater and insect hindguts.


Filters are incubated in 200 μL TE buffer with 5 mg mL−1 lysozyme and vortexed for 10 min at RT. RLT buffer (800 μL, Qiagen) is then added, vortexed, centrifuged, and the supernatant transferred to a new tube. Ethanol (560 μl) is added, mixed gently, and the sample is applied to the kit-provided mini-column.


The remaining manufacturer's protocol is subsequently followed. At this point, RNA samples are split: one fraction saved for fluorescent labeling (see below), the other saved unlabeled for NanoSIMS analysis. This procedure is used because the labeling protocol introduces background carbon (mostly 12C) that dilutes the 13C signal (data not shown). Alexafluor 546 labeling is done with the Ulysis kit (Invitrogen) for 10 min at 90° C. (2 μL RNA, 10 μL labeling buffer, 2 μL Alexafluor reagent), followed by fragmentation. All RNA (fluorescently labeled or not) is fragmented using 5× fragmentation buffer (Affymetrix) for 10 min at 90° C. before hybridization. Labeled RNA is purified using a SPIN-OUT™mini-column (Millipore), and RNA is concentrated by ethanol precipitation to a final concentration of 500 ng μL−1.


For array hybridization, RNA samples in 1× Hybridization buffer (Nimblegen) are placed on Nimblegen X4 mixer slides and incubated inside a Maui hybridization system (BIOMICRO® Systems) for 18 hrs at 42° C. and subsequently washed according to manufacturer's instructions (Nimblegen). Arrays with fluorescently labeled RNA are imaged with a Genepix 4000B fluorescence scanner at pmt=650 units. Arrays with RNA that is not fluorescently labeled are marked with a diamond pen and also imaged with the fluorescence scanner to subsequently navigate to the analysis spots in the NanoSIMS.


These spots are observable in the fluorescence image because fiducial probe spots are synthesized around the outline of the area to be analyzed by NanoSIMS. Prior to NanoSIMS analysis, samples are not metal coated to avoid further dilution of the RNA's isotope ratio or loss of material Finally, slides are trimmed and mounted in custom-built stainless steel holders.


Example 3
NanoSIMS Analysis

Secondary ion mass spectrometry analysis of microarrays hybridized with 13C and/or 15N rRNA is performed with a Cameca NanoSIMS 50 (Cameca, Gennevilliers, France).


A Cs+ primary ion beam is used to enhance the generation of negative secondary ions. Carbon and nitrogen isotopic ratios are determined by electrostatic peak switching on electron multipliers in pulse counting mode, alternately measuring 12C14N and 12C15N simultaneously for the 15N/14N ratio, and then measuring 12C14N and 13C14N and simultaneously for the 13C/12C ratio. Peak switching strategy is used because the secondary ion count rate for the CN species in these samples is 5-10 times higher than any of the other carbon species (e.g., C, CH, C2), and therefore higher precision is achieved even though total analytical time is split between the two CN species at mass 27.


If only one isotopic ratio was needed, peak switching was not performed. Mass resolution is set to ˜10,000 mass resolving power to minimize the contribution of isobaric interferences to the species of interest (e.g., 11B16O contribution to 13C14N<1/100; 13C2 contribution to 12C14N<1/1000). Analyses are performed in imaging mode to generate digital ion images of the sample for each ion species. Analytical conditions are optimized for speed of analysis, ability to spatially resolve adjacent hybridization locations, and analytical stability. The primary beam current is set to 5 to 7 pA Cs+, which yields spatial resolution of 200-400 nm and a maximum count rate on the detectors of ˜300,000 cps 12C14N. Analysis area is 50×50 μm2 with a pixel density of 256×256 with 0.5 or 1 ms/pixel dwell time. For peak switching, one scan of the analysis area is made per species set, resulting in two scans per analytical cycle. With these conditions, reproducible secondary ion ratios can be measured for a maximum of 4 cycles through the two sets of measurements before the sample is largely consumed.


Data are collected for 2 to 4 cycles. Based on total counts for analyzed cycles, precision of 2-3% for 13C14N and 1-4% for 15N12C can be achieved depending on the enrichment and hybridization intensity. A single microarray analysis of approximately 2500 probes, with an area of 0.75 mm2 and the acquisition of 300 images, was carried out using the Cameca software automated chain analysis in 16 hours. Ion images are stitched together and processed to generate isotopic ratios with custom software (L'IMAGE, L. Nittler, Carnegie Institution of Washington). Ion counts are corrected for detector dead time on a pixel by pixel basis.


Hybridization locations are selected by hand or with the auto-ROI function, and isotopic ratios are calculated for the selected regions over all cycles to produce the location isotopic ratios. Isotopic ratios are converted to delta values using δ=[(Rmeas/Rstandard) 1]×1000, where R the measured ratio and Rstandard is the standard ratio (0.00367 for 15N/14N and 0.011237 for Data are corrected for natural abundance ratios measured in unhybridized locations of the sample.


Example 4
Detection and Data Analysis

For each taxon identified by a microarray probe spot, isotopic enrichment of individual probe spots is plotted against fluorescence and the linear regression slope is calculated with the y-intercept constrained to natural isotope abundances (zero permil for 15N data and −20 permil for 13C data).


This calculated slope (permil/fluorescence), referred to as hybridization-corrected enrichment (HCE), is a metric that can be used to compare the relative incorporation of a given substrate by different taxa. It should be noted that due to the different natural concentrations of 13C and 15N, and more importantly, different background contributions from the microarray, HCEs for 15N substrates and 13C substrates are not comparable.


Example 5
Applicability of Chip-SIP to Microbial Cultures

Initial tests spotted slides with synthetic DNA oligonucleotides representing/covering the genome of a strain of Francisellia tularensis, creating a DNA array. Microscopic examination of the autofluorescence of the arrays provides initial visual assessment of spotting efficiency and sample-substrate interaction.


The features on an alkyl phosphonate spotted array are approximately 150 um in diameter (FIG. 2B), while those spotted on traditional glass silane (coated with the industry standard y-aminopropylsilane) are roughly half the size.


The results of the test illustrated in FIG. 2A and FIG. 2B show preliminary evaluation of glass arrays with (FIG. 2A) traditional triethoxy silane coating versus (FIG. 2B) new alkylphosphonate surface chemistry., (C) ITO array has higher signal to noise for fluorescent signal than traditional silane array. The preliminary results of spotting DNA oligonucleotides (short pieces of DNA) for the alkylphosphonate surface suggests it has highly stable binding, and larger, more uniform spot size. In hybridization tests with fluorescently labeled cDNA generated from F. tularensis RNA samples, signals generated from the phosphonate surface were comparable to the triethoxy silane derivatized slide (hybridization data not shown).


A further series of experiments showed that an ITO coated array slide can be successfully analyzed by NanoSIMS. 5 μm region of ITO coated microarray was sputtered for 20 minutes. The ion plot of carbon (12C), oxygen (16O) and silicon (28Si) generated during NanoSIMS analysis of an ITO-coated microarray is illustrated in FIG. 3.


As shown in the illustration of FIG. 3, the ion concentrations change as the array surface is sputtered by the NanoSIMS primary ion bean. ITO coating makes this array much more conducive, and appropriate for NanoSIMS analysis, than traditional microarraysIon counts over time from a NanoSIMS depth analysis indicate the suitability of ITO surfaces for SIMS analysis (FIG. 3), as the conductive, oxide coating allows for consistent ion sputtering for a sustained period with depth.


A skilled person will understand that the exemplary results shown in FIG. 3 provide a proof of concept for the devices methods and systems herein described with a simple ITO coated glass slide (not yet printed with oligos to make it an array) and not yet hybridized. In particular the results on the conductive platform that has been analyzed by SIMS show minimization of charges build up and a cleaner signal with respect to certain other traditional array of the art.


The suitability and stability of ITO coated arrays for SIMS analysis are demonstrated with a further series of experiments resulting in NanoSIMS analysis images following sputtering of a 5 μm region for 20 minutes.


The results illustrated in FIG. 4). show no evidence of sample charging (as there is with an uncoated, standard microarray). These exemplary result provides a proof of concept with a simple ITO coated glass slide (not yet printed with oligos to make it an array) and not yet hybridized as would be understood by a skilled person.


In further proof of concept experiments, after extracting RNA from microbial cultures of Pseudomonas stuzeri exposed to 13C glucose, NanoSIMS was used to detect isotopic enrichment in P. stuzeri rRNA hybridized to oligonucleotide probe spots on a microarray.


The results of hybridization of extracted RNA from a single bacterial species (Pseudomonas stutzeri) grown on 13C-glucose as the sole carbon source are illustrated in FIG. 5A (fluorescence microarray scanner), FIG. 5B (13C enrichment by NanoSIMS) and FIG. 5C (Plot of 13C enrichment by NanoSIMS versus fluorescence by microarray scanner). Each spot (and data point) represents a distinct probe specific for Pseudomonas. P. stuzeri isolates were grown on 99 atom % 13C-glucose until fully isotope labeled. RNA was extracted and hybridized to a microarray containing probe sets designed to hybridize to P. stuzeri. Mismatch probes were synthesized as negative controls.


By imaging multiple probe spots simultaneously with the NanoSIMS, isotopically enriched nucleic acids were identified against the large background of non-enriched genes in a mixed microbial community RNA sample (FIG. 5B). The excellent correlation (FIG. 5C) of these data (fluorescence (a measure of how much RNA is hybridized) and 13C enrichment) to the standard fluorescence analysis of the array (FIG. 5A) demonstrates successful detection of labeled RNA by NanoSIMS.


NanoSIMS measurements demonstrate detection of 13C in successfully hybridized probe spots (FIG. 5A and FIG. 5B). Fluorescence is a measure of how much RNA is hybridized, which is positively correlated with 13C enrichment, demonstrating successful detection of labeled RNA by NanoSIMS (FIG. 5C).


Results of RNA hybridization to ITO microarray and then detection via NanoSIMS illustrated in FIG. 6 also show that RNA enriched with 0.5% 13C is successfully detected by the Chip-SIP approach (see in particular FIG. 6A Fluorescence by microarray scanner; and FIG. 6B13C enrichment by nanoSIMS.)


To demonstrate that the approach works with mixtures of nucleic acids, enriched to differing degrees, isolates of two bacterial strains (Vibrio cholerae and Bacillus cereus) were grown on multiple different enrichment levels of 13C glucose. Fluorescence and NanoSIMS analysis of the mixed 13C and 15N V. cholerae and B. cereus RNA on ITO arrays hybridized with differential isotopic enrichment shows clear separation of the two different RNA types (FIG. 7A and FIG. 7B). A useful parameter for comparing the two taxa's RNA is “HCE”, or hybridization corrected enrichment, a metric which allows different populations of RNA molecules to be compared with respect to their isotopic enrichment (FIG. 7). The analysis of 13C and 15N in two different types of RNA with differential isotopic enrichment illustrated in FIG. 7A, and FIG. 7B—demonstrates clear separation of the two different types.


This exemplary series of experiments demonstrates that the Chip-SIP method works with mixtures of RNA (from different taxa) and also with mixtures of both low and high isotope enrichment.


Additional experiments with simple two-member communities including Pseudomonas stutzeri grown on 25% 15N ammonium and Bacillus cereus grown on natural abundance ammonium demonstrate that unenriched RNA is not detected via false positive measurements. From each culture, RNA was extracted, mixed in equal concentrations, and hybridized to an ITO-coated array. Array fluorescence (FIG. 8A) and d15N by nanoSIMS (FIG. 8B) measurements prove that unlabeled taxa do not show isotopic signal in NanoSIMS images, and the Chip-SIP method is quantitative (e.g. one taxon is more enriched than another).


The results illustrated in FIG. 8 show as a control that unlabeled taxa do not show isotopic signals in NanoSIMS. This set of results demonstrates that the NanoSIMS analysis is quantitative (e.g. one taxon is more enriched than another) and that non-specific binding is not occurring on the arrays—otherwise isotopic enrichment would be evident in the region of 12C (Bacillus cereus) probes at the bottom of the figure. Additionally unlabeled taxa do not show isotopic signal in NanoSIMS analyses.


Additional experiments with simple two-member communities including Pseudomonas stutzeri grown on 100% 13C glucose and Vibrio cholera grown on 20% 13C glucose demonstrate that two different types of RNA, enriched to different levels and mixed, can be statistically separated with the Chip-SIP method (FIG. 9). A one way ANOVA analyzing the two populations of data is significant (p<0.0001). These experiments prove that unlabeled taxa do not show isotopic signal in NanoSIMS, and that the Chip-SIP method is quantitative (e.g. proving one taxon is more enriched than another).


Additionally, the experiments of FIG. 9 demonstrates that unlabeled taxa do not show isotopic signal in the NanoSIMS analysis of their RNA hybridized to an ITO microarray, and the Chip-SIP method is quantitative (e.g. one taxon is more enriched than another).


Example 6
Use of Chip-Sip to Identify Resource Utilization in Complex Microbial Communities

The Chip-SIP method of analyzing isotopic or elementally labeled RNA fragments on a high density ITO microarray, can be particularly useful when applied to naturally occurring environmental microbes in which a 16S rRNA and 18S rRNA microarray for common marine microbial taxa (bacteria, archaea, and protists) has been designed to target specific phylotypes (approximately at the species/genus level). In such cases, the technique allows simultaneous identification of a taxa's identity and its physiology.


Currently little is known about organic carbon incorporation patterns in marine and estuarine environments, partly because the dominant organisms are uncultured and cannot be directly interrogated in the laboratory. Applicants used the Chip-SIP method to test whether different taxa incorporate amino acids, fatty acids, and starch for their carbon growth requirements.


A Target taxa selection was performed by PhyloChip analysis and de novo probe design. RNA extracts from SF Bay SIP experiment samples were treated with DNAse I and reverse-transcribed to produce cDNA using the Genechip Expression 3′ amplification one-cycle cDNA synthesis kit (Affymetrix). The cDNA was PCR amplified with bacterial and archaeal primers, fragmented, fluorescently labeled, and hybridized to the G2 PhyloChip (6). Taxa (16S operating taxonomic units, OTU) considered to be present in the samples were identified based on 90% of the probes for that taxon being responsive, defined as the signal of the perfect match probe >1.3 times the signal from the mismatch probe. From approximately 1500 positively identified taxa, we chose a subset of 100 taxa commonly found in marine environments to target with chip-SIP. We also did not target OTUs previously identified from soil, sewage, and bioreactors as our goal was to characterize the activity of marine microorganisms. Using the Greengenes database (18) implemented in ARB (19), Applicants designed 25 probes (25 by long), to create a ‘probe set’ for each taxon (see SEQ ID NO: 1 to SEQ ID NO: 2805 of the annexed Sequence Listing incorporated herein by reference in its entirety), as well as general probes for the three domains of life. Probes for single laboratory strains (Pseudomonas stutzeri, Bacillus cereus, and Vibrio cholerae) were also designed with ARB (SEQ ID NO: 1 to SEQ ID NO: 2805 of the annexed Sequence Listing incorporated herein by reference in its entirety). Sequences of the probes are also reported in the following table









TABLE 1







list of probes specific for laboratory bacterial strains












SEQUENCE_ID
PROBE_SEQUENCE
SEQUENCE_ID
PROBE_SEQUENCE
SEQUENCE_ID
PROBE_SEQUENCE
















Pstutzeri_1
TAACCGTCCCCCCGAAG
Vcholerae_1
AACTTAACCACCTTC
Bcereus_1
TCCACCTCGCGGTCTT




GTTAGACT

CTCCCTACTG

GCAGCTCTT





Pstutzeri_2
GGTAACCGTCCCCCCGA
Vcholerae_2
GTAGGTAACGTCAA
Bcereus_2
GCCTTTCAATTTCGAA



AGGTTAGA

ATGATTAAGGT

CCATGCGGT





Pstutzeri_3
TGGTAACCGTCCCCCCG
Vcholerae_3
TGTAGGTAACGTCA
Bcereus_3
CTCTTAATCCATTCGC



AAGGTTAG

AATGATTAAGG

TCGACTTGC





Pstutzeri_4
GTAACCGTCCCCCCGAA
Vcholerae_4
TAACTTAACCACCTT
Bcereus_4
CCACCTCGCGGTCTTG



GGTTAGAC

CCTCCCTACT

CAGCTCTTT





Pstutzeri_5
ACTCCGTGGTAACCGTC
Vcholerae_5
ACTTAACCACCTTCC
Bcereus_5
CTCTGCTCCCGAAGG



CCCCCGAA

TCCCTACTGA

AGAAGCCCTA





Pstutzeri_6
CACTCCGTGGTAACCGT
Vcholerae_6
TTAACTTAACCACCT
Bcereus_6
CCGCCTTTCAATTTCG



CCCCCCGA

TCCTCCCTAC

AACCATGCG





Pstutzeri_7
TCACTCCGTGGTAACCG
Vcholerae_7
TAAGGTATTAACTTA
Bcereus_7
TCTGCTCCCGAAGGA



TCCCCCCG

ACCACCTTCC

GAAGCCCTAT





Pstutzeri_8
ACCGTCCCCCCGAAGGT
Vcholerae_8
CTGTAGGTAACGTC
Bcereus_8
ACCTGTCACTCTGCTC



TAGACTAG

AAATGATTAAG

CCGAAGGAG





Pstutzeri_9
ATCACTCCGTGGTAACC
Vcholerae_9
CTTAACCACCTTCCT
Bcereus_9
GCTCTTAATCCATTCG



GTCCCCCC

CCCTACTGAA

CTCGACTTG





Pstutzeri_10
CCGTGGTAACCGTCCCC
Vcholerae_10
ATTAACTTAACCAC
Bcereus_10
CGCCTTTCAATTTCGA



CCGAAGGT

CTTCCTCCCTA

ACCATGCGG





Pstutzeri_11
CTCCGTGGTAACCGTCC
Vcholerae_11
AAGGTATTAACTTA
Bcereus_11
ACTCTGCTCCCGAAG



CCCCGAAG

ACCACCTTCCT

GAGAAGCCCT





Pstutzeri_12
CCGTCCCCCCGAAGGTT
Vcholerae_12
TTAACCACCTTCCTC
Bcereus_12
GCTCCCGAAGGAGAA



AGACTAGC

CCTACTGAAA

GCCCTATCTC





Pstutzeri_13
CCACCACCCTCTGCCAT
Vcholerae_13
CTTCTGTAGGTAACG
Bcereus_13
TCACTCTGCTCCCGAA



ACTCTAGC

TCAAATGATT

GGAGAAGCC





Pstutzeri_14
TCCACCACCCTCTGCCA
Vcholerae_14
TATTAACTTAACCAC
Bcereus_14
TCTTAATCCATTCGCT



TACTCTAG

CTTCCTCCCT

CGACTTGCA





Pstutzeri_15
TTCCACCACCCTCTGCC
Vcholerae_15
ACGACGTACTTTGTG
Bcereus_15
CTGCTCCCGAAGGAG



ATACTCTA

AGATTCGCTC

AAGCCCTATC





Pstutzeri_16
AATTCCACCACCCTCTG
Vcholerae_16
TACGACGTACTTTGT
Bcereus_16
TAATCCATTCGCTCGA



CCATACTC

GAGATTCGCT

CTTGCATGT





Pstutzeri_17
AAATTCCACCACCCTCT
Vcholerae_17
ACTACGACGTACTTT
Bcereus_17
CACTCTGCTCCCGAA



GCCATACT

GTGAGATTCG

GGAGAAGCCC





Pstutzeri_18
GAAATTCCACCACCCTC
Vcholerae_18
CTACGACGTACTTTG
Bcereus_18
GGTCTTGCAGCTCTTT



TGCCATAC

TGAGATTCGC

GTACCGTCC





Pstutzeri_19
ATTCCACCACCCTCTGC
Vcholerae_19
GACTACGACGTACT
Bcereus_19
TGCTCCCGAAGGAGA



CATACTCT

TTGTGAGATTC

AGCCCTATCT





Pstutzeri_20
GGAAATTCCACCACCCT
Vcholerae_20
AGGTATTAACTTAA
Bcereus_20
CTTAATCCATTCGCTC



CTGCCATA

CCACCTTCCTC

GACTTGCAT





Pstutzeri_21
CAGGAAATTCCACCACC
Vcholerae_21
GGTATTAACTTAACC
Bcereus_21
TTAATCCATTCGCTCG



CTCTGCCA

ACCTTCCTCC

ACTTGCATG





Pstutzeri_22
AGGAAATTCCACCACCC
Vcholerae_22
GTATTAACTTAACCA
Bcereus_22
CTCCCGAAGGAGAAG



TCTGCCAT

CCTTCCTCCC

CCCTATCTCT





Pstutzeri_23
CAGTGTCAGTATTAGCC
Vcholerae_23
CGCGGTATCGCTGC
Bcereus_23
GTCACTCTGCTCCCGA



CAGGTGGT

CCTCTGTATAC

AGGAGAAGC





Pstutzeri_24
TCAGTATTAGCCCAGGT
Vcholerae_24
TCGCGGTATCGCTG
Bcereus_24
CACCTCGCGGTCTTGC



GGTCGCCT

CCCTCTGTATA

AGCTCTTTG





Pstutzeri_25
TCAGTGTCAGTATTAGC
Vcholerae_25
CTTGTCAGTTTCAAA
Bcereus_25
GTCTTGCAGCTCTTTG



CCAGGTGG

TGCGATTCCT

TACCGTCCA





Pstutzeri_26
TGTCAGTATTAGCCCAG
Vcholerae_26
TTGTCAGTTTCAAAT
Bcereus_26
TGTCACTCTGCTCCCG



GTGGTCGC

GCGATTCCTA

AAGGAGAAG





Pstutzeri_27
GTCAGTATTAGCCCAGG
Vcholerae_27
GCGGTATCGCTGCC
Bcereus_27
TCCCGAAGGAGAAGC



TGGTCGCC

CTCTGTATACG

CCTATCTCTA





Pstutzeri_28
CCTCAGTGTCAGTATTA
Vcholerae_28
CCTGGGCATATCCG
Bcereus_28
CGGTCTTGCAGCTCTT



GCCCAGGT

GTAGCGCAAGG

TGTACCGTC





Pstutzeri_29
CTCAGTGTCAGTATTAG
Vcholerae_29
TCCCACCTGGGCAT
Bcereus_29
TCAAAATGTTATCCG



CCCAGGTG

ATCCGGTAGCG

GTATTAGCCC





Pstutzeri_30
ACCTCAGTGTCAGTATT
Vcholerae_30
GGCATATCCGGTAG
Bcereus_30
CCTGTCACTCTGCTCC



AGCCCAGG

CGCAAGGCCCG

CGAAGGAGA





Pstutzeri_31
GTGTCAGTATTAGCCCA
Vcholerae_31
ACCTGGGCATATCC
Bcereus_31
TTCAAAATGTTATCCG



GGTGGTCG

GGTAGCGCAAG

GTATTAGCC





Pstutzeri_32
AGTGTCAGTATTAGCCC
Vcholerae_32
CTGGGCATATCCGG
Bcereus_32
CACCTGTCACTCTGCT



AGGTGGTC

TAGCGCAAGGC

CCCGAAGGA





Pstutzeri_33
CACCTCAGTGTCAGTAT
Vcholerae_33
CCCACCTGGGCATA
Bcereus_33
TCTTGCAGCTCTTTGT



TAGCCCAG

TCCGGTAGCGC

ACCGTCCAT





Pstutzeri_34
GCACCTCAGTGTCAGTA
Vcholerae_34
TGGGCATATCCGGT
Bcereus_34
CTGTCACTCTGCTCCC



TTAGCCCA

AGCGCAAGGCC

GAAGGAGAA





Pstutzeri_35
CGCACCTCAGTGTCAGT
Vcholerae_35
GGGCATATCCGGTA
Bcereus_35
GCGGTCTTGCAGCTCT



ATTAGCCC

GCGCAAGGCCC

TTGTACCGT





Pstutzeri_36
TTCGCACCTCAGTGTCA
Vcholerae_36
GCATATCCGGTAGC
Bcereus_36
CGCGGTCTTGCAGCT



GTATTAGC

GCAAGGCCCGA

CTTTGTACCG





Pstutzeri_37
TCGCACCTCAGTGTCAG
Vcholerae_37
CCACCTGGGCATAT
Bcereus_37
AGCTCTTAATCCATTC



TATTAGCC

CCGGTAGCGCA

GCTCGACTT





Pstutzeri_38
AATGCGTTAGCTGCGCC
Vcholerae_38
CATATCCGGTAGCG
Bcereus_38
ACCTCGCGGTCTTGC



ACTAAGAT

CAAGGCCCGAA

AGCTCTTTGT





Pstutzeri_39
CACCACCCTCTGCCATA
Vcholerae_39
CACCTGGGCATATC
Bcereus_39
TCGCGGTCTTGCAGCT



CTCTAGCT

CGGTAGCGCAA

CTTTGTACC





Pstutzeri_40
ACACAGGAAATTCCACC
Vcholerae_40
ATATCCGGTAGCGC
Bcereus_40
CTCGCGGTCTTGCAG



ACCCTCTG

AAGGCCCGAAG

CTCTTTGTAC





Pstutzeri_41
CACAGGAAATTCCACCA
Vcholerae_41
TATCCGGTAGCGCA
Bcereus_41
TGCACCACCTGTCACT



CCCTCTGC

AGGCCCGAAGG

CTGCTCCCG





Pstutzeri_42
ACAGGAAATTCCACCAC
Vcholerae_42
TCCCCTGCTTTGCTC
Bcereus_42
ATGCACCACCTGTCA



CCTCTGCC

TTGCGAGGTT

CTCTGCTCCC





Pstutzeri_43
GAAGTTAGCCGGTGCTT
Vcholerae_43
GTCCCCTGCTTTGCT
Bcereus_43
ACCACCTGTCACTCTG



ATTCTGTC

CTTGCGAGGT

CTCCCGAAG





Pstutzeri_44
GAAAGTTCTCTGCATGT
Vcholerae_44
CCGAAGGTCCCCTG
Bcereus_44
GCACCACCTGTCACT



CAAGGCCT

CTTTGCTCTTG

CTGCTCCCGA





Pstutzeri_45
AAAGTTCTCTGCATGTC
Vcholerae_45
GGTCCCCTGCTTTGC
Bcereus_45
CACCACCTGTCACTCT



AAGGCCTG

TCTTGCGAGG

GCTCCCGAA





Pstutzeri_46
TCTCTGCATGTCAAGGC
Vcholerae_46
GAAGGTCCCCTGCT
Bcereus_46
CATAAGAGCAAGCTC



CTGGTAAG

TTGCTCTTGCG

TTAATCCATT





Pstutzeri_47
GTTCTCTGCATGTCAAG
Vcholerae_47
AGGTCCCCTGCTTTG
Bcereus_47
CCTCGCGGTCTTGCA



GCCTGGTA

CTCTTGCGAG

GCTCTTTGTA





Pstutzeri_48
AGTTCTCTGCATGTCAA
Vcholerae_48
CGAAGGTCCCCTGC
Bcereus_48
CCACCTGTCACTCTGC



GGCCTGGT

TTTGCTCTTGC

TCCCGAAGG





Pstutzeri_49
AAGTTCTCTGCATGTCA
Vcholerae_49
AAGGTCCCCTGCTTT
Bcereus_49
AAGAGCAAGCTCTTA



AGGCCTGG

GCTCTTGCGA

ATCCATTCGC





Pstutzeri_50
CTCTGCATGTCAAGGCC
Vcholerae_50
CCCCTGCTTTGCTCT
Bcereus_50
CGAAGGAGAAGCCCT



TGGTAAGG

TGCGAGGTTA

ATCTCTAGGG





Pstutzeri_51
TTCTCTGCATGTCAAGG
Vcholerae_51
TCTAGGGCACAACC
Bcereus_51
AAGCTCTTAATCCATT



CCTGGTAA

TCCAAGTAGAC

CGCTCGACT





Pstutzeri_52
CTGCATGTCAAGGCCTG
Vcholerae_52
CTCTAGGGCACAAC
Bcereus_52
TAAGAGCAAGCTCTT



GTAAGGTT

CTCCAAGTAGA

AATCCATTCG





Pstutzeri_53
TCTGCATGTCAAGGCCT
Vcholerae_53
CCTCTAGGGCACAA
Bcereus_53
ATAAGAGCAAGCTCT



GGTAAGGT

CCTCCAAGTAG

TAATCCATTC





Pstutzeri_54
TACTCACCCGTCCGCCG
Vcholerae_54
CGACGTACTTTGTGA
Bcereus_54
CCCGAAGGAGAAGCC



CTGAATCA

GATTCGCTCC

CTATCTCTAG





Pstutzeri_55
CAGCCATGCAGCACCTG
Vcholerae_55
TCAGTTTCAAATGCG
Bcereus_55
CCGAAGGAGAAGCCC



TGTCAGAG

ATTCCTAGGT

TATCTCTAGG





Pstutzeri_56
ACAGCCATGCAGCACCT
Vcholerae_56
AGTTTCAAATGCGA
Bcereus_56
CAAGCTCTTAATCCAT



GTGTCAGA

TTCCTAGGTTG

TCGCTCGAC





Pstutzeri_57
GACAGCCATGCAGCAC
Vcholerae_57
TGTCAGTTTCAAATG
Bcereus_57
AAGGAGAAGCCCTAT



CTGTGTCAG

CGATTCCTAG

CTCTAGGGTT





Pstutzeri_58
CTGGAAAGTTCTCTGCA
Vcholerae_58
GTTTCAAATGCGATT
Bcereus_58
GAAGGAGAAGCCCTA



TGTCAAGG

CCTAGGTTGA

TCTCTAGGGT





Pstutzeri_59
TGGAAAGTTCTCTGCAT
Vcholerae_59
CTAGCTTGTCAGTTT
Bcereus_59
GCAAGCTCTTAATCC



GTCAAGGC

CAAATGCGAT

ATTCGCTCGA





Pstutzeri_60
GGAAAGTTCTCTGCATG
Vcholerae_60
TCTAGCTTGTCAGTT
Bcereus_60
AGCAAGCTCTTAATC



TCAAGGCC

TCAAATGCGA

CATTCGCTCG





eukaryotes_1
AACTAAGAACGGCCAT
sphingo_1_1
CCAGCTTGCTGCCCT
alpha_7_1
ACATCTCTGTTTCCGC



GCACCACCA

CTGTACCATC

GACCGGGAT





eukaryotes_2
CACCAACTAAGAACGG
sphingo_1_2
CAGCTTGCTGCCCTC
alpha_7_2
CATCTCTGTTTCCGCG



CCATGCACC

TGTACCATCC

ACCGGGATG





eukaryotes_3
CCAACTAAGAACGGCC
sphingo_1_3
GCCAGCTTGCTGCC
alpha_7_3
AAACATCTCTGTTTCC



ATGCACCAC

CTCTGTACCAT

GCGACCGGG





eukaryotes_4
ACCAACTAAGAACGGC
sphingo_1_4
TGCCAGCTTGCTGCC
alpha_7_4
GAAACATCTCTGTTTC



CATGCACCA

CTCTGTACCA

CGCGACCGG





eukaryotes_5
CCACCAACTAAGAACG
sphingo_1_5
CAGTTTACGACCCA
alpha_7_5
AGAAACATCTCTGTTT



GCCATGCAC

GAGGGCTGTCT

CCGCGACCG





eukaryotes_6
TCCACCAACTAAGAACG
sphingo_1_6
AGCAGTTTACGACC
alpha_7_6
AACATCTCTGTTTCCG



GCCATGCA

CAGAGGGCTGT

CGACCGGGA





eukaryotes_7
CAACTAAGAACGGCCA
sphingo_1_7
AAGCAGTTTACGAC
alpha_7_7
ATCTCTGTTTCCGCGA



TGCACCACC

CCAGAGGGCTG

CCGGGATGT





eukaryotes_8
CTCCACCAACTAAGAAC
sphingo_1_8
GCAGTTTACGACCC
alpha_7_8
CTGCCACTGTCCACCC



GGCCATGC

AGAGGGCTGTC

GAGCAAGCT





eukaryotes_9
TTGGAGCTGGAATTACC
sphingo_1_9
CCGCCTACCTCTAGT
alpha_7_9
CCACTGTCCACCCGA



GCGGCTGC

GTATTCAAGC

GCAAGCTCGG





eukaryotes_10
TCAGGCTCCCTCTCCGG
sphingo_1_10
CATTCCGCCTACCTC
alpha_7_10
GCCACTGTCCACCCG



AATCGAAC

TAGTGTATTC

AGCAAGCTCG





eukaryotes_11
TCTCAGGCTCCCTCTCC
sphingo_1_11
TGCTGTTGCCAGCTT
alpha_7_11
AAACCTCTAGGTAGA



GGAATCGA

GCTGCCCTCT

TACCCACGCG





eukaryotes_12
TATTGGAGCTGGAATTA
sphingo_1_12
GCTGTTGCCAGCTTG
alpha_7_12
CCAAACCTCTAGGTA



CCGCGGCT

CTGCCCTCTG

GATACCCACG





eukaryotes_13
ATTGGAGCTGGAATTAC
sphingo_1_13
TTGCTGTTGCCAGCT
alpha_7_13
GTCTGCCACTGTCCAC



CGCGGCTG

TGCTGCCCTC

CCGAGCAAG





eukaryotes_14
TAAGAACGGCCATGCA
sphingo_1_14
CACATTCCGCCTACC
alpha_7_14
CCACCCGAGCAAGCT



CCACCACCC

TCTAGTGTAT

CGGGTTTCTC





eukaryotes_15
CTAAGAACGGCCATGC
sphingo_1_15
GTCACATTCCGCCTA
alpha_7_15
TGCCACTGTCCACCC



ACCACCACC

CCTCTAGTGT

GAGCAAGCTC





eukaryotes_16
ACTAAGAACGGCCATG
sphingo_1_16
TCACATTCCGCCTAC
alpha_7_16
CAAACCTCTAGGTAG



CACCACCAC

CTCTAGTGTA

ATACCCACGC





eukaryotes_17
CTCAGGCTCCCTCTCCG
sphingo_1_17
GCTTTCGCTTAGCCG
alpha_7_17
TCTGCCACTGTCCACC



GAATCGAA

CTAACTGTGT

CGAGCAAGC





eukaryotes_18
CTATTGGAGCTGGAATT
sphingo_1_18
CGCTTTCGCTTAGCC
alpha_7_18
CGTCTGCCACTGTCCA



ACCGCGGC

GCTAACTGTG

CCCGAGCAA





eukaryotes_19
AAGAACGGCCATGCAC
sphingo_1_19
TCGCTTAGCCGCTA
alpha_7_19
TCCGAACCTCTAGGT



CACCACCCA

ACTGTGTATCG

AGATTCCCAC





eukaryotes_20
AGGCTCCCTCTCCGGAA
sphingo_1_20
TTCGCTTAGCCGCTA
alpha_7_20
CACCCGAGCAAGCTC



TCGAACCC

ACTGTGTATC

GGGTTTCTCG





eukaryotes_21
CAGGCTCCCTCTCCGGA
sphingo_1_21
CTTTCGCTTAGCCGC
alpha_7_21
ACCCGAGCAAGCTCG



ATCGAACC

TAACTGTGTA

GGTTTCTCGT





eukaryotes_22
GCTATTGGAGCTGGAAT
sphingo_1_22
CTGTTGCCAGCTTGC
alpha_7_22
CCGTCTGCCACTGTCC



TACCGCGG

TGCCCTCTGT

ACCCGAGCA





eukaryotes_23
TTTCTCAGGCTCCCTCT
sphingo_1_23
GTTGCCAGCTTGCTG
alpha_7_23
CCGAACCTCTAGGTA



CCGGAATC

CCCTCTGTAC

GATTCCCACG





eukaryotes_24
GGCTCCCTCTCCGGAAT
sphingo_1_24
TGTTGCCAGCTTGCT
alpha_7_24
AACCTCTAGGTAGAT



CGAACCCT

GCCCTCTGTA

ACCCACGCGT





eukaryotes_25
CACTCCACCAACTAAGA
sphingo_1_25
CGCTTAGCCGCTAA
alpha_7_25
TCCACCCGAGCAAGC



ACGGCCAT

CTGTGTATCGC

TCGGGTTTCT





archaea_1
TTGTGGTGCTCCCCCGC
sphingo_2_1
TCACCGCTACACCC
alpha_8_1
CTGCCACTGTCCACCC



CAATTCCT

CTCGTTCCGCT

GAGCAAGCT





archaea_2
TGCTCCCCCGCCAATTC
sphingo_2_2
GCTATCGGCGTTCTG
alpha_8_2
GCCACTGTCCACCCG



CTTTAAGT

AGGAATATCT

AGCAAGCTCG





archaea_3
CGCGCCTGCTGCGCCCC
sphingo_2_3
CGCTATCGGCGTTCT
alpha_8_3
AAACCTCTAGGTAGA



GTAGGGCC

GAGGAATATC

TACCCACGCG





archaea_4
TTTCGCGCCTGCTGCGC
sphingo_2_4
TCGGCGTTCTGAGG
alpha_8_4
GTCTGCCACTGTCCAC



CCCGTAGG

AATATCTATGC

CCGAGCAAG





archaea_5
TCGCGCCTGCTGCGCCC
sphingo_2_5
TTCACCGCTACACCC
alpha_8_5
CCACCCGAGCAAGCT



CGTAGGGC

CTCGTTCCGC

CGGGTTTCTC





archaea_6
TTCGCGCCTGCTGCGCC
sphingo_2_6
TTTCACCGCTACACC
alpha_8_6
TGCCACTGTCCACCC



CCGTAGGG

CCTCGTTCCG

GAGCAAGCTC





archaea_7
GTGCTCCCCCGCCAATT
sphingo_2_7
TCGCTTTCGCTTAGC
alpha_8_7
CAAACCTCTAGGTAG



CCTTTAAG

CACTTACTGT

ATACCCACGC





archaea_8
GCTCCCCCGCCAATTCC
sphingo_2_8
CGGCGTTCTGAGGA
alpha_8_8
TCTGCCACTGTCCACC



TTTAAGTT

ATATCTATGCA

CGAGCAAGC





archaea_9
GCGCCTGCTGCGCCCCG
sphingo_2_9
AACTAATGGGGCGC
alpha_8_9
ACTGTCCACCCGAGC



TAGGGCCT

ATGCCCATCCC

AAGCTCGGGT





archaea_10
CGCCTGCTGCGCCCCGT
sphingo_2_10
CGCTTAGCCACTTAC
alpha_8_10
CCACTGTCCACCCGA



AGGGCCTG

TGTATATCGC

GCAAGCTCGG





archaea_11
GCCTGCTGCGCCCCGTA
sphingo_2_11
ACTAATGGGGCGCA
alpha_8_11
CCAAACCTCTAGGTA



GGGCCTGG

TGCCCATCCCG

GATACCCACG





archaea_12
GTTTCGCGCCTGCTGCG
sphingo_2_12
GCCATGCAGCACCT
alpha_8_12
GTCCACCCGAGCAAG



CCCCGTAG

CGTATAGAGTC

CTCGGGTTTC





archaea_13
CTTGTGGTGCTCCCCCG
sphingo_2_13
AGCCATGCAGCACC
alpha_8_13
TCCACCCGAGCAAGC



CCAATTCC

TCGTATAGAGT

TCGGGTTTCT





archaea_14
GGTTTCGCGCCTGCTGC
sphingo_2_14
CAGCCATGCAGCAC
alpha_8_14
CGTCTGCCACTGTCCA



GCCCCGTA

CTCGTATAGAG

CCCGAGCAA





archaea_15
AGGTTTCGCGCCTGCTG
sphingo_2_15
ACAGCCATGCAGCA
alpha_8_15
TGTCCACCCGAGCAA



CGCCCCGT

CCTCGTATAGA

GCTCGGGTTT





archaea_16
CCTGCTGCGCCCCGTAG
sphingo_2_16
CTTACTTGTCAGCCT
alpha_8_16
ACCTCTAGGTAGATA



GGCCTGGA

ACGCACCCTT

CCCACGCGTT





archaea_17
CCTTGTGGTGCTCCCCC
sphingo_2_17
ACTTACTTGTCAGCC
alpha_8_17
CACCCGAGCAAGCTC



GCCAATTC

TACGCACCCT

GGGTTTCTCG





archaea_18
CCCCTTGTGGTGCTCCC
sphingo_2_18
CCACTGACTTACTTG
alpha_8_18
TAAGCCGTCTGCCAC



CCGCCAAT

TCAGCCTACG

TGTCCACCCG





archaea_19
ACCCCTTGTGGTGCTCC
sphingo_2_19
CACTGACTTACTTGT
alpha_8_19
ACCCGAGCAAGCTCG



CCCGCCAA

CAGCCTACGC

GGTTTCTCGT





archaea_20
CCCTTGTGGTGCTCCCC
sphingo_2_20
GACTTACTTGTCAGC
alpha_8_20
CCGTCTGCCACTGTCC



CGCCAATT

CTACGCACCC

ACCCGAGCA





archaea_21
CACCCCTTGTGGTGCTC
sphingo_2_21
TGACTTACTTGTCAG
alpha_8_21
AACCTCTAGGTAGAT



CCCCGCCA

CCTACGCACC

ACCCACGCGT





archaea_22
GTGTGTGCAAGGAGCA
sphingo_2_22
CTGACTTACTTGTCA
alpha_8_22
GCCGTCTGCCACTGTC



GGGACGTAT

GCCTACGCAC

CACCCGAGC





archaea_23
TGTGTGCAAGGAGCAG
sphingo_2_23
ACTGACTTACTTGTC
alpha_8_23
TAGATACCCACGCGT



GGACGTATT

AGCCTACGCA

TACTAAGCCG





archaea_24
CGGTGTGTGCAAGGAG
sphingo_2_24
CCATGCAGCACCTC
alpha_8_24
AAGCCGTCTGCCACT



CAGGGACGT

GTATAGAGTCC

GTCCACCCGA





archaea_25
GGTGTGTGCAAGGAGC
sphingo_2_25
CGCTTTCGCTTAGCC
alpha_8_25
GTAGATACCCACGCG



AGGGACGTA

ACTTACTGTA

TTACTAAGCC





bacteria_1
CGCTCGTTGCGGGACTT
sphingo_3_1
AGTTTCCTCGAGCTA
alpha_9_1
TCTCCGGCGACCAAA



AACCCAAC

TGCCCCAGTT

CTCCCCATGT





bacteria_2
GCTCGTTGCGGGACTTA
sphingo_3_2
CGAGTTTCCTCGAG
alpha_9_2
CGTCTCCGGCGACCA



ACCCAACA

CTATGCCCCAG

AACTCCCCAT





bacteria_3
GACTTAACCCAACATCT
sphingo_3_3
GTTTCCTCGAGCTAT
alpha_9_3
GTCTCCGGCGACCAA



CACGACAC

GCCCCAGTTA

ACTCCCCATG





bacteria_4
AACCCAACATCTCACGA
sphingo_3_4
TTTCCTCGAGCTATG
alpha_9_4
CTCCGGCGACCAAAC



CACGAGCT

CCCCAGTTAA

TCCCCATGTC





bacteria_5
ACTTAACCCAACATCTC
sphingo_3_5
GAGTTTCCTCGAGCT
alpha_9_5
GCCGTCTCCGGCGAC



ACGACACG

ATGCCCCAGT

CAAACTCCCC





bacteria_6
TAACCCAACATCTCACG
sphingo_3_6
TCGAGTTTCCTCGAG
alpha_9_6
TCCGGCGACCAAACT



ACACGAGC

CTATGCCCCA

CCCCATGTCA





bacteria_7
GGACTTAACCCAACATC
sphingo_3_7
TTACCGAAGTAAAT
alpha_9_7
CCGTCTCCGGCGACC



TCACGACA

GCTGCCCCTCG

AAACTCCCCA





bacteria_8
CTTAACCCAACATCTCA
sphingo_3_8
GTTGCTAGCTCTACC
alpha_9_8
CGCCGTCTCCGGCGA



CGACACGA

CTAAACAGCG

CCAAACTCCC





bacteria_9
TTAACCCAACATCTCAC
sphingo_3_9
AGTTGCTAGCTCTAC
alpha_9_9
CCGGCGACCAAACTC



GACACGAG

CCTAAACAGC

CCCATGTCAA





bacteria_10
GGGACTTAACCCAACAT
sphingo_3_10
CCATTTACCGAAGT
alpha_9_10
ACGCCGTCTCCGGCG



CTCACGAC

AAATGCTGCCC

ACCAAACTCC





bacteria_11
ACTGCTGCCTCCCGTAG
sphingo_3_11
CATTTACCGAAGTA
alpha_9_11
GAACTGAAGGACGCC



GAGTCTGG

AATGCTGCCCC

GTCTCCGGCG





bacteria_12
CTCGTTGCGGGACTTAA
sphingo_3_12
CGCCATTTACCGAA
alpha_9_12
CGGCGACCAAACTCC



CCCAACAT

GTAAATGCTGC

CCATGTCAAG





bacteria_13
CGGGACTTAACCCAACA
sphingo_3_13
TTGCTAGCTCTACCC
alpha_9_13
GTCGGCAGCCTCCCTT



TCTCACGA

TAAACAGCGC

ACGGGTCGG





bacteria_14
TCGTTGCGGGACTTAAC
sphingo_3_14
GCCATTTACCGAAG
alpha_9_14
GGTCGGCAGCCTCCC



CCAACATC

TAAATGCTGCC

TTACGGGTCG





bacteria_15
CGTTGCGGGACTTAACC
sphingo_3_15
TCCTCGAGCTATGCC
alpha_9_15
TGGTCGGCAGCCTCC



CAACATCT

CCAGTTAAAG

CTTACGGGTC





bacteria_16
GTTGCGGGACTTAACCC
sphingo_3_16
TTCCTCGAGCTATGC
alpha_9_16
TCGGCAGCCTCCCTTA



AACATCTC

CCCAGTTAAA

CGGGTCGGC





bacteria_17
TGCGGGACTTAACCCAA
sphingo_3_17
CAGTTGCTAGCTCTA
alpha_9_17
GTGGTCGGCAGCCTC



CATCTCAC

CCCTAAACAG

CCTTACGGGT





bacteria_18
TTGCGGGACTTAACCCA
sphingo_3_18
TGCTAGCTCTACCCT
alpha_9_18
CGTGGTCGGCAGCCT



ACATCTCA

AAACAGCGCC

CCCTTACGGG





bacteria_19
CCCCACTGCTGCCTCCC
sphingo_3_19
CCGTCAGATCCTCTC
alpha_9_19
CGGCAGCCTCCCTTA



GTAGGAGT

GCAAGAGTAT

CGGGTCGGCG





bacteria_20
GCGGGACTTAACCCAAC
sphingo_3_20
CTCGAGCTATGCCC
alpha_9_20
CGCACCTCAGCGTCA



ATCTCACG

CAGTTAAAGGT

GATCCGGACC





bacteria_21
GCGCTCGTTGCGGGACT
sphingo_3_21
CCTCGAGCTATGCC
alpha_9_21
AATCTTTCCCCCTCAG



TAACCCAA

CCAGTTAAAGG

GGCTTATCC





bacteria_22
TCCCCACTGCTGCCTCC
sphingo_3_22
CCAGTTGCTAGCTCT
alpha_9_22
CGAACTGAAGGACGC



CGTAGGAG

ACCCTAAACA

CGTCTCCGGC





bacteria_23
ATTCCCCACTGCTGCCT
sphingo_3_23
TCTCTCTGGATGTCA
alpha_9_23
TACCCTCTTCCGATCT



CCCGTAGG

CTCGCATTCT

CTAGCCTAG





bacteria_24
TTCCCCACTGCTGCCTC
sphingo_3_24
ATCTCTCTGGATGTC
alpha_9_24
GGCAGCCTCCCTTAC



CCGTAGGA

ACTCGCATTC

GGGTCGGCGA





bacteria_25
ACCCAACATCTCACGAC
sphingo_3_25
CTCTCTGGATGTCAC
alpha_9_25
GGCGACCAAACTCCC



ACGAGCTG

TCGCATTCTA

CATGTCAAGG





rhodobacter_1
TCCCCAGGCGGAATGCT
caldithrix_1_1
ACTCCTCAGAGCTTC
alpha_10_1
CGCACCTGAGCGTCA



TAATCCGT

ATCGCCCACG

GATCTAGTCC





rhodobacter_2
CTCCCCAGGCGGAATGC
caldithrix_1_2
CTCCTCAGAGCTTCA
alpha_10_2
TCGCACCTGAGCGTC



TTAATCCG

TCGCCCACGC

AGATCTAGTC





rhodobacter_3
ACTCCCCAGGCGGAATG
caldithrix_1_3
AACAGGGCTTTACA
alpha_10_3
CGTGCGCCACTCTCC



CTTAATCC

CTCCTCAGAGC

AGTTCCCGAA





rhodobacter_4
CCCCAGGCGGAATGCTT
caldithrix_1_4
CACTCCTCAGAGCTT
alpha_10_4
CCGTGCGCCACTCTCC



AATCCGTT

CATCGCCCAC

AGTTCCCGA





rhodobacter_5
CACCGCGTCATGCTGTT
caldithrix_1_5
ACAGGGCTTTACAC
alpha_10_5
CCCGTGCGCCACTCTC



ACGCGATT

TCCTCAGAGCT

CAGTTCCCG





rhodobacter_6
TCACCGCGTCATGCTGT
caldithrix_1_6
ACACTCCTCAGAGC
alpha_10_6
CTGAGCGTCAGATCT



TACGCGAT

TTCATCGCCCA

AGTCCAGGTG





rhodobacter_7
ATTCACCGCGTCATGCT
caldithrix_1_7
CAGGGCTTTACACT
alpha_10_7
TTCGCACCTGAGCGT



GTTACGCG

CCTCAGAGCTT

CAGATCTAGT





rhodobacter_8
TAGCCCAACCCGTAAGG
caldithrix_1_8
TCCTCAGAGCTTCAT
alpha_10_8
CCAACCGTTATCCCCC



GCCATGAG

CGCCCACGCG

ACTAAGAGG





rhodobacter_9
TACTCCCCAGGCGGAAT
caldithrix_1_9
TACACTCCTCAGAG
alpha_10_9
TCCAACCGTTATCCCC



GCTTAATC

CTTCATCGCCC

CACTAAGAG





rhodobacter_10
AGCCCAACCCGTAAGG
caldithrix_1_10
CTTCTGGCACTCCCG
alpha_10_10
GCACCTGAGCGTCAG



GCCATGAGG

ACTTTCATGG

ATCTAGTCCA





rhodobacter_11
GCCCAACCCGTAAGGG
caldithrix_1_11
TTACACTCCTCAGA
alpha_10_11
CCTGAGCGTCAGATC



CCATGAGGA

GCTTCATCGCC

TAGTCCAGGT





rhodobacter_12
AACGTATTCACCGCGTC
caldithrix_1_12
CCTCAGAGCTTCATC
alpha_10_12
GTTAGCCCACCGTCTT



ATGCTGTT

GCCCACGCGG

CGGGTAAAA





rhodobacter_13
TTCACCGCGTCATGCTG
caldithrix_1_13
CCTAACAGGGCTTT
alpha_10_13
CCACTAAGAGGTAGG



TTACGCGA

ACACTCCTCAG

TCCCCACGCG





rhodobacter_14
ACCGCGTCATGCTGTTA
caldithrix_1_14
AGGGCTTTACACTC
alpha_10_14
TGAGCGTCAGATCTA



CGCGATTA

CTCAGAGCTTC

GTCCAGGTGG





rhodobacter_15
GCGGAATGCTTAATCCG
caldithrix_1_15
TTCTGGCACTCCCGA
alpha_10_15
ATCCCCCACTAAGAG



TTAGGTGT

CTTTCATGGC

GTAGGTCCCC





rhodobacter_16
CCAACCCGTAAGGGCC
caldithrix_1_16
TCTGGCACTCCCGA
alpha_10_16
GCTTTCACCCCTGACT



ATGAGGACT

CTTTCATGGCG

GGCAAGACC





rhodobacter_17
CCCAGGCGGAATGCTTA
caldithrix_1_17
CTCAGAGCTTCATC
alpha_10_17
CAACCGTTATCCCCC



ATCCGTTA

GCCCACGCGGC

ACTAAGAGGT





rhodobacter_18
CCCAACCCGTAAGGGCC
caldithrix_1_18
GGGCTTTACACTCCT
alpha_10_18
GCGTCACCGAAATCG



ATGAGGAC

CAGAGCTTCA

AAATCCCGAC





rhodobacter_19
AATTCCACTCACCTCTC
caldithrix_1_19
CTCCTAACAGGGCT
alpha_10_19
TGCGTCACCGAAATC



TCGAACTC

TTACACTCCTC

GAAATCCCGA





rhodobacter_20
GAATTCCACTCACCTCT
caldithrix_1_20
CTGGCACTCCCGAC
alpha_10_20
CGTCACCGAAATCGA



CTCGAACT

TTTCATGGCGT

AATCCCGACA





rhodobacter_21
TATTCACCGCGTCATGC
caldithrix_1_21
TCAGAGCTTCATCG
alpha_10_21
CTGCGTCACCGAAAT



TGTTACGC

CCCACGCGGCG

CGAAATCCCG





rhodobacter_22
ACGTATTCACCGCGTCA
caldithrix_1_22
ACCTCTACAGCAGT
alpha_10_22
TTTCGCACCTGAGCGT



TGCTGTTA

CCCGAAGGAAG

CAGATCTAG





rhodobacter_23
GAACGTATTCACCGCGT
caldithrix_1_23
CCCTCCTAACAGGG
alpha_10_23
CTTTCACCCCTGACTG



CATGCTGT

TTTTACACTCC

GCAAGACCG





rhodobacter_24
GGAATTCCACTCACCTC
caldithrix_1_24
GGTCGAAACCTCCA
alpha_10_24
CTAAAAGGTTAGCCC



TCTCGAAC

ACACCTAGTGC

ACCGTCTTCG





rhodobacter_25
GTAGCCCAACCCGTAAG
caldithrix_1_25
GTCGAAACCTCCAA
alpha_10_25
CCCACTAAGAGGTAG



GGCCATGA

CACCTAGTGCC

GTCCCCACGC





margrpA_1
ACGAAGTTAGCCGGTGC
chloroflexi_1_1
TCTCCGAGGAGTCG
alpha_12_1
CCGTGCGCCACTCTAT



TTTCTTGT

TTCCAGTTTCC

AAATAGCGT





margrpA_2
CACGAAGTTAGCCGGTG
chloroflexi_1_2
CTCCGAGGAGTCGT
alpha_12_2
CCCGTGCGCCACTCT



CTTTCTTG

TCCAGTTTCCC

ATAAATAGCG





margrpA_3
GTTACTCACCCGTTCGC
chloroflexi_1_3
ACGAATGGGTTTGA
alpha_12_3
CCAACCGTTATCCCG



CAGTTTAC

CACCACCCACA

CAGAAAAAGG





margrpA_4
TAAGGGACATACTGACT
chloroflexi_1_4
CGAATGGGTTTGAC
alpha_12_4
CCCGCAGAAAAAGGC



TGACATCA

ACCACCCACAC

AGGTTCCCAC





margrpA_5
ATAAGGGACATACTGA
chloroflexi_1_5
CTCTCCGAGGAGTC
alpha_12_5
ACCGTTATCCCGCAG



CTTGACATC

GTTCCAGTTTC

AAAAAGGCAG





margrpA_6
AAGGGACATACTGACTT
chloroflexi_1_6
TCCGAGGAGTCGTT
alpha_12_6
CAACCGTTATCCCGC



GACATCAT

CCAGTTTCCCT

AGAAAAAGGC





margrpA_7
TTACTCACCCGTTCGCC
chloroflexi_1_7
GAATGGGTTTGACA
alpha_12_7
CGTTTCCAACCGTTAT



AGTTTACT

CCACCCACACC

CCCGCAGAA





margrpA_8
CGTTACTCACCCGTTCG
chloroflexi_1_8
GCTCTCCGAGGAGT
alpha_12_8
CCGCAGAAAAAGGCA



CCAGTTTA

CGTTCCAGTTT

GGTTCCCACG





margrpA_9
GCGTTACTCACCCGTTC
chloroflexi_1_9
CCGAGGAGTCGTTC
alpha_12_9
CGCAGAAAAAGGCAG



GCCAGTTT

CAGTTTCCCTT

GTTCCCACGC





margrpA_10
CGCGTTACTCACCCGTT
chloroflexi_1_10
CGCTCTCCGAGGAG
alpha_12_10
CCGTTATCCCGCAGA



CGCCAGTT

TCGTTCCAGTT

AAAAGGCAGG





margrpA_11
ACATACTGACTTGACAT
chloroflexi_1_11
AATGGGTTTGACAC
alpha_12_11
CGTTATCCCGCAGAA



CATCCCCA

CACCCACACCT

AAAGGCAGGT





margrpA_12
TACTGACTTGACATCAT
chloroflexi_1_12
CGAGGAGTCGTTCC
alpha_12_12
ACCCGTGCGCCACTC



CCCCACCT

AGTTTCCCTTC

TATAAATAGC





margrpA_13
GGACATACTGACTTGAC
chloroflexi_1_13
AGGAGTCGTTCCAG
alpha_12_13
CACCCGTGCGCCACT



ATCATCCC

TTTCCCTTCAC

CTATAAATAG





margrpA_14
GACATACTGACTTGACA
chloroflexi_1_14
GAGGAGTCGTTCCA
alpha_12_14
TCCCGCAGAAAAAGG



TCATCCCC

GTTTCCCTTCA

CAGGTTCCCA





margrpA_15
ATACTGACTTGACATCA
chloroflexi_1_15
CGCTTTGCGACATG
alpha_12_15
GCAGAAAAAGGCAGG



TCCCCACC

AGCGTCAGGTT

TTCCCACGCG





margrpA_16
CATACTGACTTGACATC
chloroflexi_1_16
TGAGCGTCAGGTTC
alpha_12_16
GGAAACCAAACTCCC



ATCCCCAC

AATGCCAGGGT

CATGTCAAGG





margrpA_17
AGGGACATACTGACTTG
chloroflexi_1_17
ACGCTTTGCGACAT
alpha_12_17
CCTCCTGCAAGCAGG



ACATCATC

GAGCGTCAGGT

TTAGCTCACC





margrpA_18
GGGACATACTGACTTGA
chloroflexi_1_18
TCCCCACGCTTTGCG
alpha_12_18
TTTCGCGCCTCAGCGT



CATCATCC

ACATGAGCGT

CAAAATCGG





margrpA_19
ACGCGTTACTCACCCGT
chloroflexi_1_19
TCAGGTTCAATGCC
alpha_12_19
TTCGCGCCTCAGCGTC



TCGCCAGT

AGGGTACCGCT

AAAATCGGA





margrpA_20
GCACGAAGTTAGCCGGT
chloroflexi_1_20
ATCATCTCGGCCTTC
alpha_12_20
ACTCCCCATGTCAAG



GCTTTCTT

ACGTTCGACT

GACTGGTAAG





margrpA_21
GGCACGAAGTTAGCCG
chloroflexi_1_21
TGCGACATGAGCGT
alpha_12_21
GCCTCCTGCAAGCAG



GTGCTTTCT

CAGGTTCAATG

GTTAGCTCAC





margrpA_22
TGGCACGAAGTTAGCCG
chloroflexi_1_22
ATGAGCGTCAGGTT
alpha_12_22
CAGAAAAAGGCAGGT



GTGCTTTC

CAATGCCAGGG

TCCCACGCGT





margrpA_23
ACTGACTTGACATCATC
chloroflexi_1_23
CACGCTTTGCGACA
alpha_12_23
TCCGGCGGACCTTTCC



CCCACCTT

TGAGCGTCAGG

CCCGTAGGG





margrpA_24
CTGGCACGAAGTTAGCC
chloroflexi_1_24
CATGAGCGTCAGGT
alpha_12_24
TATCCCGCAGAAAAA



GGTGCTTT

TCAATGCCAGG

GGCAGGTTCC





margrpA_25
ACGATTACTAGCGATTC
chloroflexi_1_25
GTAATCATCTCGGC
alpha_12_25
CCCCTCTTTCTCCGGC



CTGCTTCA

CTTCACGTTCG

GGACCTTTC





vibrionaceae_1
TATCCCCCACATCAGGG
chloroflexi_2_1
GGTGACTCCCCTTTC
alpha_13_1
TCTAACTGTTCAAGC



CAATTTCC

AGGTTGCTAC

AGCCTGCGAG





vibrionaceae_2
CGACATTACTCGCTGGC
chloroflexi_2_2
AGGTGACTCCCCTTT
alpha_13_2
CTAACTGTTCAAGCA



AAACAAGG

CAGGTTGCTA

GCCTGCGAGC





vibrionaceae_3
CCGACATTACTCGCTGG
chloroflexi_2_3
CCCTCCCCATTAAGC
alpha_13_3
TAACTGTTCAAGCAG



CAAACAAG

GGGGAGATTT

CCTGCGAGCC





vibrionaceae_4
CCCCACATCAGGGCAAT
chloroflexi_2_4
GCAAGCTTGGCTCA
alpha_13_4
GTCTAACTGTTCAAG



TTCCTAGG

TCGGTACCGTT

CAGCCTGCGA





vibrionaceae_5
CCCCCACATCAGGGCAA
chloroflexi_2_5
CTCTCCCGATGTTCC
alpha_13_5
CGCTCCTCAGCGTCA



TTTCCTAG

AAGCAAGCTT

GAAAATAGCC





vibrionaceae_6
CCCACATCAGGGCAATT
chloroflexi_2_6
CCCCTCCCCATTAAG
alpha_13_6
GCTCCTCAGCGTCAG



TCCTAGGC

CGGGGAGATT

AAAATAGCCA





vibrionaceae_7
CCACATCAGGGCAATTT
chloroflexi_2_7
TTCCAAGCAAGCTT
alpha_13_7
TCGCTCCTCAGCGTCA



CCTAGGCA

GGCTCATCGGT

GAAAATAGC





vibrionaceae_8
TCCCCCACATCAGGGCA
chloroflexi_2_8
AGCAAGCTTGGCTC
alpha_13_8
CGTCTAACTGTTCAA



ATTTCCTA

ATCGGTACCGT

GCAGCCTGCG





vibrionaceae_9
CCCGACATTACTCGCTG
chloroflexi_2_9
ACTCTCCCGATGTTC
alpha_13_9
AACTGTTCAAGCAGC



GCAAACAA

CAAGCAAGCT

CTGCGAGCCC





vibrionaceae_10
ATCCCCCACATCAGGGC
chloroflexi_2_10
ACCCCTCCCCATTAA
alpha_13_10
CACGTCTAACTGTTCA



AATTTCCT

GCGGGGAGAT

AGCAGCCTG





vibrionaceae_11
TGGTTATCCCCCACATC
chloroflexi_2_11
TCTCCCGATGTTCCA
alpha_13_11
ACGTCTAACTGTTCA



AGGGCAAT

AGCAAGCTTG

AGCAGCCTGC





vibrionaceae_12
CCCCCACATCAGGGCAA
chloroflexi_2_12
CTCCCGATGTTCCAA
alpha_13_12
ACTGTTCAAGCAGCC



TTTCCCAG

GCAAGCTTGG

TGCGAGCCCT





vibrionaceae_13
TCCCCCACATCAGGGCA
chloroflexi_2_13
AATGACCCCTCCCC
alpha_13_13
CCGGGGATTTCACGT



ATTTCCCA

ATTAAGCGGGG

CTAACTGTTC





vibrionaceae_14
CCCCACATCAGGGCAAT
chloroflexi_2_14
GAATGACCCCTCCC
alpha_13_14
CTCCTCAGCGTCAGA



TTCCCAGG

CATTAAGCGGG

AAATAGCCAG





vibrionaceae_15
CCCACATCAGGGCAATT
chloroflexi_2_15
GTTCCAAGCAAGCT
alpha_13_15
TTCAAGCAGCCTGCG



TCCCAGGC

TGGCTCATCGG

AGCCCTTTAC





vibrionaceae_16
CACATCAGGGCAATTTC
chloroflexi_2_16
CGAATGACCCCTCC
alpha_13_16
TGTTCAAGCAGCCTG



CCAGGCAT

CCATTAAGCGG

CGAGCCCTTT





vibrionaceae_17
CCACATCAGGGCAATTT
chloroflexi_2_17
TGTTCCAAGCAAGC
alpha_13_17
CTGTTCAAGCAGCCT



CCCAGGCA

TTGGCTCATCG

GCGAGCCCTT





vibrionaceae_18
ATCCCCCACATCAGGGC
chloroflexi_2_18
TCGAATGACCCCTC
alpha_13_18
GTTCAAGCAGCCTGC



AATTTCCC

CCCATTAAGCG

GAGCCCTTTA





vibrionaceae_19
TCCCGACATTACTCGCT
chloroflexi_2_19
AAGCAAGCTTGGCT
alpha_13_19
CGGCATTGCTGGATC



GGCAAACA

CATCGGTACCG

AGAGTTGCCT





vibrionaceae_20
GGTTATCCCCCACATCA
chloroflexi_2_20
TGACCCCTCCCCATT
alpha_13_20
GGCATTGCTGGATCA



GGGCAATT

AAGCGGGGAG

GAGTTGCCTC





vibrionaceae_21
CGCAAGTTGGCCGCCCT
chloroflexi_2_21
CCACTCTCCCGATGT
alpha_13_21
CGCGGCATTGCTGGA



CTGTATGC

TCCAAGCAAG

TCAGAGTTGC





vibrionaceae_22
GCAAGTTGGCCGCCCTC
chloroflexi_2_22
CCTCCCCATTAAGC
alpha_13_22
GCATTGCTGGATCAG



TGTATGCG

GGGGAGATTTC

AGTTGCCTCC





vibrionaceae_23
ATGGTTATCCCCCACAT
chloroflexi_2_23
CAAGCTTGGCTCAT
alpha_13_23
GCGGCATTGCTGGAT



CAGGGCAA

CGGTACCGTTC

CAGAGTTGCC





vibrionaceae_24
ACTCGCTGGCAAACAA
chloroflexi_2_24
CCGATGTTCCAAGC
alpha_13_24
CCCGGGGATTTCACG



GGATAAGGG

AAGCTTGGCTC

TCTAACTGTT





vibrionaceae_25
CGCATCTGAGTGTCAGT
chloroflexi_2_25
CACTCTCCCGATGTT
alpha_13_25
ACGCGGCATTGCTGG



ATCTGTCC

CCAAGCAAGC

ATCAGAGTTG





alteromonadales_1
CCCACTTGGGCCAATCT
chlorella_p1_1
CGCCACTCATCGCA
delta_1_1
CCGAACTACGAACTG



AAAGGCGA

ATCTGGCAAGC

CTTTCTGGGA





alteromonadales_2
ATCCCACTTGGGCCAAT
chlorella_p1_2
GCCACTCATCGCAA
delta_1_2
TCCGAACTACGAACT



CTAAAGGC

TCTGGCAAGCC

GCTTTCTGGG





alteromonadales_3
TCCCACTTGGGCCAATC
chlorella_p1_3
CCACTCATCGCAAT
delta_1_3
TTGCTGCGGCACAGC



TAAAGGCG

CTGGCAAGCCA

AGGGGTCAAT





alteromonadales_4
CCACTTGGGCCAATCTA
chlorella_p1_4
CACTCATCGCAATCT
delta_1_4
GTTTGCTGCGGCACA



AAGGCGAG

GGCAAGCCAA

GCAGGGGTCA





alteromonadales_5
CACTTGGGCCAATCTAA
chlorella_p1_5
GCAAGCCAAATTGC
delta_1_5
TTTGCTGCGGCACAG



AGGCGAGA

ATGCGTACGAC

CAGGGGTCAA





alteromonadales_6
ACTTGGGCCAATCTAAA
chlorella_p1_6
GCCAAATTGCATGC
delta_1_6
TTGCCCAACGACTTCT



GGCGAGAG

GTACGACTTGC

GGTACAACC





alteromonadales_7
CTTGGGCCAATCTAAAG
chlorella_p1_7
TGGCAAGCCAAATT
delta_1_7
GGTTTGCCCAACGAC



GCGAGAGC

GCATGCGTACG

TTCTGGTACA





alteromonadales_8
CACCTCAAGGCATGTTC
chlorella_p1_8
CTGTGTCCACTCTGG
delta_1_8
TCCCCGAAGGGTTTG



CCAAGCAT

AACTTCCCCT

CCCAACGACT





alteromonadales_9
TGAGCGTCAGTGTTGAC
chlorella_p1_9
CCGTCCGCCACTCAT
delta_1_9
CCCCGAAGGGTTTGC



CCAGGTGG

CGCAATCTGG

CCAACGACTT





alteromonadales_10
CGAAGCCCCCTTTGGTC
chlorella_p1_10
CCGCCACTCATCGC
delta_1_10
CCGAAGGGTTTGCCC



CGTAGACA

AATCTGGCAAG

AACGACTTCT





alteromonadales_11
ACAGAACCGAGGTTCC
chlorella_p1_11
CGTCCGCCACTCATC
delta_1_11
CCCGAAGGGTTTGCC



GAGCTTCTA

GCAATCTGGC

CAACGACTTC





alteromonadales_12
CAGAACCGAGGTTCCG
chlorella_p1_12
CCTGTGTCCACTCTG
delta_1_12
CCCGGGCTTTCACAC



AGCTTCTAG

GAACTTCCCC

CTGACTTAAA





alteromonadales_13
AGAACCGAGGTTCCGA
chlorella_p1_13
GTCCGCCACTCATC
delta_1_13
GCTTCCTTCAGTGGTA



GCTTCTAGT

GCAATCTGGCA

CCGTCAACA





alteromonadales_14
GAAAAACAGAACCGAG
chlorella_p1_14
TCCGCCACTCATCGC
delta_1_14
AGGCGCCTGCATCCC



GTTCCGAGC

AATCTGGCAA

CGAAGGGTTT





alteromonadales_15
GAACCGAGGTTCCGAG
chlorella_p1_15
ACCTGTGTCCACTCT
delta_1_15
GGCGCCTGCATCCCC



CTTCTAGTA

GGAACTTCCC

GAAGGGTTTG





alteromonadales_16
CCGAGGTTCCGAGCTTC
chlorella_p1_16
GGCAAGCCAAATTG
delta_1_16
GCGCCTGCATCCCCG



TAGTAGAC

CATGCGTACGA

AAGGGTTTGC





alteromonadales_17
CGAGGTTCCGAGCTTCT
chlorella_p1_17
CTGGCAAGCCAAAT
delta_1_17
GCATCCCCGAAGGGT



AGTAGACA

TGCATGCGTAC

TTGCCCAACG





alteromonadales_18
AACCGAGGTTCCGAGCT
chlorella_p1_18
CCCGTCCGCCACTC
delta_1_18
ATCCCCGAAGGGTTT



TCTAGTAG

ATCGCAATCTG

GCCCAACGAC





alteromonadales_19
ACCGAGGTTCCGAGCTT
chlorella_p1_19
CACCTGTGTCCACTC
delta_1_19
CATCCCCGAAGGGTT



CTAGTAGA

TGGAACTTCC

TGCCCAACGA





alteromonadales_20
AACAGAACCGAGGTTC
chlorella_p1_20
ACCCGTCCGCCACT
delta_1_20
ACCTTAGGCGCCTGC



CGAGCTTCT

CATCGCAATCT

ATCCCCGAAG





alteromonadales_21
AAACAGAACCGAGGTT
chlorella_p1_21
CCACCTGTGTCCACT
delta_1_21
CCTTAGGCGCCTGCA



CCGAGCTTC

CTGGAACTTC

TCCCCGAAGG





alteromonadales_22
CCGAAGCCCCCTTTGGT
chlorella_p1_22
CACCCGTCCGCCAC
delta_1_22
TACCTTAGGCGCCTG



CCGTAGAC

TCATCGCAATC

CATCCCCGAA





alteromonadales_23
GAAGCCCCCTTTGGTCC
chlorella_p1_23
TCACCCGTCCGCCA
delta_1_23
ATACCTTAGGCGCCT



GTAGACAT

CTCATCGCAAT

GCATCCCCGA





alteromonadales_24
AAGCCCCCTTTGGTCCG
chlorella_p1_24
ACCACCTGTGTCCA
delta_1_24
CTTAGGCGCCTGCAT



TAGACATT

CTCTGGAACTT

CCCCGAAGGG





alteromonadales_25
CCACCTCAAGGCATGTT
chlorella_p1_25
CACCACCTGTGTCC
delta_1_25
CATACCTTAGGCGCC



CCCAAGCA

ACTCTGGAACT

TGCATCCCCG





polaribacters_1
GCCAGATGGCTGCTCAT
plastid_1_1
GGTCTCACGACTTG
delta_2_1
CTCCAGTCTTTCGATA



TGTCCATA

GCATCTCATTG

GGATTCCCG





polaribacters_2
TGCCAGATGGCTGCTCA
plastid_1_2
TCTCCCTAGGCAGG
delta_2_2
GGCCACCCTTGATCC



TTGTCCAT

TTTTTGACCTG

AAAAACCCGA





polaribacters_3
TTGCCAGATGGCTGCTC
plastid_1_3
CCACGTGGATTCGA
delta_2_3
AGGCCACCCTTGATC



ATTGTCCA

TACACGCAATG

CAAAAACCCG





polaribacters_4
CCAGATGGCTGCTCATT
plastid_1_4
ATGCACCACCTGTA
delta_2_4
AAGGGCACTCCAGTC



GTCCATAC

TGTGTCTGCCG

TTTCGATAGG





polaribacters_5
GTTGCCAGATGGCTGCT
plastid_1_5
CACCACCTGTATGT
delta_2_5
GAGGCCACCCTTGAT



CATTGTCC

GTCTGCCGAAG

CCAAAAACCC





polaribacters_6
TCCCTCAGCGTCAGTAC
plastid_1_6
AACACCACGTGGAT
delta_2_6
GAAGGGCACTCCAGT



ATACGTAG

TCGATACACGC

CTTTCGATAG





polaribacters_7
CCCTCAGCGTCAGTACA
plastid_1_7
ACCACCTGTATGTGT
delta_2_7
ACCCTAGCAAGCTAG



TACGTAGT

CTGCCGAAGC

AGTGTTCTCG





polaribacters_8
GTCCCTCAGCGTCAGTA
plastid_1_8
CTTCTCCCTAGGCAG
delta_2_8
CATGTAGAGGCCACC



CATACGTA

GTTTTTGACC

CTTGATCCAA





polaribacters_9
CAGATGGCTGCTCATTG
plastid_1_9
TGCACCACCTGTAT
delta_2_9
AGAGGCCACCCTTGA



TCCATACC

GTGTCTGCCGA

TCCAAAAACC





polaribacters_10
TTCGCATAGTGGCTGCT
plastid_1_10
ACACCACGTGGATT
delta_2_10
ACATGTAGAGGCCAC



CATTGTCC

CGATACACGCA

CCTTGATCCA





polaribacters_11
CGTCCCTCAGCGTCAGT
plastid_1_11
CCACCTGTATGTGTC
delta_2_11
TACATGTAGAGGCCA



ACATACGT

TGCCGAAGCA

CCCTTGATCC





polaribacters_12
AGACCCCCTACCTATCG
plastid_1_12
GCACCACCTGTATG
delta_2_12
CCCCGAAGGGCACTC



TTGCCATG

TGTCTGCCGAA

CAGTCTTTCG





polaribacters_13
CGCTTAGTCACTGAGCT
plastid_1_13
CACCACGTGGATTC
delta_2_13
CCCTAGCAAGCTAGA



AATGCCCA

GATACACGCAA

GTGTTCTCGT





polaribacters_14
TGTTGCCAGATGGCTGC
plastid_1_14
CTCACGACTTGGCA
delta_2_14
GCTTACATGTAGAGG



TCATTGTC

TCTCATTGTCC

CCACCCTTGA





polaribacters_15
GATTCGCTCCTATTCGC
plastid_1_15
CAGGTACACGTCAG
delta_2_15
GGGCACTCCAGTCTTT



ATAGTGGC

AAACTTCCTCC

CGATAGGAT





polaribacters_16
TCGTCCCTCAGCGTCAG
plastid_1_16
CTCCCTAGGCAGGT
delta_2_16
CCGAAGGGCACTCCA



TACATACG

TTTTGACCTGT

GTCTTTCGAT





polaribacters_17
TCGCTTAGTCACTGAGC
plastid_1_17
CGGTCTCACGACTT
delta_2_17
CGAAGGGCACTCCAG



TAATGCCC

GGCATCTCATT

TCTTTCGATA





polaribacters_18
TCGCATAGTGGCTGCTC
plastid_1_18
GACCAACTACTGAT
delta_2_18
AGGGCACTCCAGTCT



ATTGTCCA

CGTCACCTTGG

TTCGATAGGA





polaribacters_19
CAGACCCCCTACCTATC
plastid_1_19
GCTTCTCCCTAGGCA
delta_2_19
CCCGAAGGGCACTCC



GTTGCCAT

GGTTTTTGAC

AGTCTTTCGA





polaribacters_20
TTCGTCCCTCAGCGTCA
plastid_1_20
CACCTGTATGTGTCT
delta_2_20
CCAGTCTTTCGATAG



GTACATAC

GCCGAAGCAC

GATTCCCGGG





polaribacters_21
CTCTCTGTTGCCAGATG
plastid_1_21
CTGTATGTGTCTGCC
delta_2_21
TCCAGTCTTTCGATAG



GCTGCTCA

GAAGCACTTC

GATTCCCGG





polaribacters_22
GCAGATTCTATACGCGT
plastid_1_22
CATGCACCACCTGT
delta_2_22
GTCTTTCGATAGGATT



TACGCACC

ATGTGTCTGCC

CCCGGGATG





polaribacters_23
GGCAGATTCTATACGCG
plastid_1_23
AGGTACACGTCAGA
delta_2_23
CTTTCGATAGGATTCC



TTACGCAC

AACTTCCTCCC

CGGGATGTC





polaribacters_24
CACCTCTGACTTAATTG
plastid_1_24
TCGGTCTCACGACTT
delta_2_24
CAGTCTTTCGATAGG



ACCGCCTG

GGCATCTCAT

ATTCCCGGGA





polaribacters_25
CCTCTGACTTAATTGAC
plastid_1_25
CCTTCTACTTCGACT
delta_2_25
GGGCTCCCCGAAGGG



CGCCTGCG

CTACTCGAGC

CACTCCAGTC





desulfovibrionales_1
CCCGAGCATGCTGATCT
plastid_2_1
CAGGTAACGTCAGA
delta_3_1
GGCACAGAAAGGGTC



CGAATTAC

ACTTCCTCCCT

AACACTTCCT





desulfovibrionales_2
CACCCGAGCATGCTGAT
plastid_2_2
AGGTAACGTCAGAA
delta_3_2
TCGGCACAGAAAGGG



CTCGAATT

CTTCCTCCCTG

TCAACACTTC





desulfovibrionales_3
TCACCCGAGCATGCTGA
plastid_2_3
GGTAACGTCAGAAC
delta_3_3
CGGCACAGAAAGGGT



TCTCGAAT

TTCCTCCCTGA

CAACACTTCC





desulfovibrionales_4
TTCACCCGAGCATGCTG
plastid_2_4
TCAGGTAACGTCAG
delta_3_4
CTTCGGCACAGAAAG



ATCTCGAA

AACTTCCTCCC

GGTCAACACT





desulfovibrionales_5
GCACCCTCTAATTTCCT
plastid_2_5
CGCGTTAGCTATAAT
delta_3_5
CACTTTACTCTCCCGA



AGAGGTCC

ACCGCATGGG

CGAATCGGA





desulfovibrionales_6
AGGGCACCCTCTAATTT
plastid_2_6
AATACCGCATGGGT
delta_3_6
CCACTTTACTCTCCCG



CCTAGAGG

CGATACATGCG

ACGAATCGG





desulfovibrionales_7
GGGCACCCTCTAATTTC
plastid_2_7
CTGTATGTACGTTCC
delta_3_7
GCTTCGGCACAGAAA



CTAGAGGT

CGAAGGTGGT

GGGTCAACAC





desulfovibrionales_8
CCCTCTAATTTCCTAGA
plastid_2_8
CCTGTATGTACGTTC
delta_3_8
CTCTCCCGACGAATC



GGTCCCCT

CCGAAGGTGG

GGAATTTCTC





desulfovibrionales_9
ACCCTCTAATTTCCTAG
plastid_2_9
TCAGCCGCGAGCTC
delta_3_9
CCGACGAATCGGAAT



AGGTCCCC

CTCTCTAGGCA

TTCTCGTTCG





desulfovibrionales_10
ATTTCCTAGAGGTCCCC
plastid_2_10
ATACCGCATGGGTC
delta_3_10
GCCACTTTACTCTCCC



TGGATGTC

GATACATGCGA

GACGAATCG





desulfovibrionales_11
AGGGTACCGTCAAATGC
plastid_2_11
ACCTGTATGTACGTT
delta_3_11
AGCTTCGGCACAGAA



CTACCCTA

CCCGAAGGTG

AGGGTCAACA





desulfovibrionales_12
GAGGGTACCGTCAAAT
plastid_2_12
GCCGCGAGCTCCTC
delta_3_12
ACTCTCACGAGTTCG



GCCTACCCT

TCTAGGCAGAA

CTACCCTTTG





desulfovibrionales_13
GGGTACCGTCAAATGCC
plastid_2_13
GCGCCTTCCTCCAA
delta_3_13
TCTCCCGACGAATCG



TACCCTAT

ACGGTTAGAAT

GAATTTCTCG





desulfovibrionales_14
TTTCCTAGAGGTCCCCT
plastid_2_14
AGCCGCGAGCTCCT
delta_3_14
TAGCTTCGGCACAGA



GGATGTCA

CTCTAGGCAGA

AAGGGTCAAC





desulfovibrionales_15
TTCCTAGAGGTCCCCTG
plastid_2_15
CAGCCGCGAGCTCC
delta_3_15
CTCTCACGAGTTCGCT



GATGTCAA

TCTCTAGGCAG

ACCCTTTGT





desulfovibrionales_16
TGAGGGTACCGTCAAAT
plastid_2_16
CACCTGTATGTACGT
delta_3_16
GTGCTGGTTACACCC



GCCTACCC

TCCCGAAGGT

GAAGGCAATC





desulfovibrionales_17
CTCTAATTTCCTAGAGG
plastid_2_17
AATCAGCCGCGAGC
delta_3_17
CGCCACTTTACTCTCC



TCCCCTGG

TCCTCTCTAGG

CGACGAATC





desulfovibrionales_18
CACCCTCTAATTTCCTA
plastid_2_18
TAATCAGCCGCGAG
delta_3_18
CTCCCGACGAATCGG



GAGGTCCC

CTCCTCTCTAG

AATTTCTCGT





desulfovibrionales_19
GGCACCCTCTAATTTCC
plastid_2_19
ATCAGCCGCGAGCT
delta_3_19
CTTACTCTCACGAGTT



TAGAGGTC

CCTCTCTAGGC

CGCTACCCT





desulfovibrionales_20
CCTCTAATTTCCTAGAG
plastid_2_20
GGCGCCTTCCTCCA
delta_3_20
TGTGCTGGTTACACCC



GTCCCCTG

AACGGTTAGAA

GAAGGCAAT





desulfovibrionales_21
CAACCGTTATCCCCGTC
plastid_2_21
CCGCGAGCTCCTCTC
delta_3_21
CTCACGAGTTCGCTA



TTGAAGGT

TAGGCAGAAA

CCCTTTGTAC





desulfovibrionales_22
ATCAAAGGCTGTTCCAC
plastid_2_22
GCATGGGTCGATAC
delta_3_22
CTGTGCTGGTTACACC



CGTTGAGC

ATGCGACATCT

CGAAGGCAA





desulfovibrionales_23
TTGCTCGTTAGCTCGCC
plastid_2_23
CCGCATGGGTCGAT
delta_3_23
TCGCCACTTTACTCTC



GGCTTCGG

ACATGCGACAT

CCGACGAAT





desulfovibrionales_24
ATTGCTCGTTAGCTCGC
plastid_2_24
TACCGCATGGGTCG
delta_3_24
CCTGTGCTGGTTACAC



CGGCTTCG

ATACATGCGAC

CCGAAGGCA





desulfovibrionales_25
CCTAGAGGTCCCCTGGA
plastid_2_25
ACCGCATGGGTCGA
delta_3_25
GCTTACTCTCACGAGT



TGTCAAGC

TACATGCGACA

TCGCTACCC





aquaficae_1
AACCAGACGCTCCACCG
plastid_3_1
CACCGTCGTATATCT
altero_1_1
CCCACTTGGGCCAAT



GTTGTGCG

GACCGACGAT

CTAAAGGCGA





aquaficae_2
ACCAGACGCTCCACCGG
plastid_3_2
TTCACCGTCGTATAT
altero_1_2
ATCCCACTTGGGCCA



TTGTGCGG

CTGACCGACG

ATCTAAAGGC





aquaficae_3
AAACCAGACGCTCCACC
plastid_3_3
TCACCGTCGTATATC
altero_1_3
TCCCACTTGGGCCAA



GGTTGTGC

TGACCGACGA

TCTAAAGGCG





aquaficae_4
TGCCACTGTAGCGCCTG
plastid_3_4
GTAGCCGAGTTTCA
altero_1_4
CCACTTGGGCCAATC



TGTAGCCC

GGCTACAATCC

TAAAGGCGAG





aquaficae_5
TAAACCAGACGCTCCAC
plastid_3_5
TAGCCGAGTTTCAG
altero_1_5
CACTTGGGCCAATCT



CGGTTGTG

GCTACAATCCG

AAAGGCGAGA





aquaficae_6
GCCACTGTAGCGCCTGT
plastid_3_6
GACCTCATCCTCACC
altero_1_6
ACTTGGGCCAATCTA



GTAGCCCA

TTCCTCCAAT

AAGGCGAGAG





aquaficae_7
CCAGACGCTCCACCGGT
plastid_3_7
AGCCGAGTTTCAGG
altero_1_7
CTTGGGCCAATCTAA



TGTGCGGG

CTACAATCCGA

AGGCGAGAGC





aquaficae_8
CCACTGTAGCGCCTGTG
plastid_3_8
GCCGAGTTTCAGGC
altero_1_8
CTGTCAGTAACGTCA



TAGCCCAG

TACAATCCGAA

CAGCTAGCAG





aquaficae_9
GCATAAAGGGCATACT
plastid_3_9
CCGAGTTTCAGGCT
altero_1_9
ACAGAACCGAGGTTC



GACCTGACG

ACAATCCGAAC

CGAGCTTCTA





aquaficae_10
TTAAACCAGACGCTCCA
plastid_3_10
CTCCCGTAGGAGTC
altero_1_10
CAGAACCGAGGTTCC



CCGGTTGT

TGTTCCGTTCT

GAGCTTCTAG





aquaficae_11
CATTGCCCACGATTCCC
plastid_3_11
CCTCCCGTAGGAGT
altero_1_11
AGAACCGAGGTTCCG



CACTGCTG

CTGTTCCGTTC

AGCTTCTAGT





aquaficae_12
ATTGCCCACGATTCCCC
plastid_3_12
TCCCGTAGGAGTCT
altero_1_12
GAAAAACAGAACCGA



ACTGCTGC

GTTCCGTTCTA

GGTTCCGAGC





aquaficae_13
CCATTGCCCACGATTCC
plastid_3_13
CCCGTAGGAGTCTG
altero_1_13
GAACCGAGGTTCCGA



CCACTGCT

TTCCGTTCTAA

GCTTCTAGTA





aquaficae_14
GCCCATTGCCCACGATT
plastid_3_14
TGACCTCATCCTCAC
altero_1_14
CCGAGGTTCCGAGCT



CCCCACTG

CTTCCTCCAA

TCTAGTAGAC





aquaficae_15
CCCATTGCCCACGATTC
plastid_3_15
CTAAAGCATTCATC
altero_1_15
CGAGGTTCCGAGCTT



CCCACTGC

CTCCACGCGGT

CTAGTAGACA





aquaficae_16
CGCCCATTGCCCACGAT
plastid_3_16
CCTAAAGCATTCAT
altero_1_16
AACCGAGGTTCCGAG



TCCCCACT

CCTCCACGCGG

CTTCTAGTAG





aquaficae_17
TGCCCACGATTCCCCAC
plastid_3_17
CCCTAAAGCATTCA
altero_1_17
ACCGAGGTTCCGAGC



TGCTGCCC

TCCTCCACGCG

TTCTAGTAGA





aquaficae_18
ATTAAACCAGACGCTCC
plastid_3_18
ACCCTAAAGCATTC
altero_1_18
AACAGAACCGAGGTT



ACCGGTTG

ATCCTCCACGC

CCGAGCTTCT





aquaficae_19
TTGCCCACGATTCCCCA
plastid_3_19
ACATAAGGGGCATG
altero_1_19
AAACAGAACCGAGGT



CTGCTGCC

CTGACTTGACC

TCCGAGCTTC





aquaficae_20
GCCCACGATTCCCCACT
plastid_3_20
GTTCCGTTCTAAATC
altero_1_20
CCAACTGTTGTCCCCC



GCTGCCCC

CCAGTGTGGC

ACCTCAAGG





aquaficae_21
CAGACGCTCCACCGGTT
plastid_3_21
CATAAGGGGCATGC
altero_1_21
CCGGACTACGACGCA



GTGCGGGC

TGACTTGACCT

CTTTAAGTGA





aquaficae_22
GGCATAAAGGGCATAC
plastid_3_22
GCGGTATTGCTTGGT
altero_1_22
TGGGCCAATCTAAAG



TGACCTGAC

CAAGCTTTCG

GCGAGAGCCG





aquaficae_23
GCAGTTCGGAATGCCTT
plastid_3_23
CGGTATTGCTTGGTC
altero_1_23
GGGCCAATCTAAAGG



GCCGAAGT

AAGCTTTCGC

CGAGAGCCGA





aquaficae_24
CAGTTCGGAATGCCTTG
plastid_3_24
CACGCGGTATTGCTT
altero_1_24
TTGGGCCAATCTAAA



CCGAAGTT

GGTCAAGCTT

GGCGAGAGCC





aquaficae_25
CGCAGTTCGGAATGCCT
plastid_3_25
CATCCTCCACGCGG
altero_1_25
GGTTCCGAGCTTCTA



TGCCGAAG

TATTGCTTGGT

GTAGACATCG





bacilli_1
CACTCTGCTCCCGAAGG
plastid_4_1
CTTAAGCGCCGCCC
altero_2_1
TCTCACTTGGGCCTCT



AGAAGCCC

TCCGAATGGTT

CTTTGCGCC





bacilli_2
GTCACTCTGCTCCCGAA
plastid_4_2
CCTTAAGCGCCGCC
altero_2_2
CCCCTCGCAAAGGCA



GGAGAAGC

CTCCGAATGGT

AGTTCCCAAG





bacilli_3
CTGCTCCCGAAGGAGA
plastid_4_3
TACCTTAAGCGCCG
altero_2_3
CCCTCGCAAAGGCAA



AGCCCTATC

CCCTCCGAATG

GTTCCCAAGC





bacilli_4
TCACTCTGCTCCCGAAG
plastid_4_4
ACCTTAAGCGCCGC
altero_2_4
TCACTTGGGCCTCTCT



GAGAAGCC

CCTCCGAATGG

TTGCGCCGG





bacilli_5
TCTGCTCCCGAAGGAGA
plastid_4_5
AGCCCTACCTTAAG
altero_2_5
CTTGGGCCTCTCTTTG



AGCCCTAT

CGCCGCCCTCC

CGCCGGAGC





bacilli_6
TGCTCCCGAAGGAGAA
plastid_4_6
TTAAGCGCCGCCCT
altero_2_6
CGACATTCTTTAAGG



GCCCTATCT

CCGAATGGTTA

GGTCCGCTCC





bacilli_7
CTCTGCTCCCGAAGGAG
plastid_4_7
TAAGCGCCGCCCTC
altero_2_7
CACTTGGGCCTCTCTT



AAGCCCTA

CGAATGGTTAG

TGCGCCGGA





bacilli_8
GCTCCCGAAGGAGAAG
plastid_4_8
TAGCCCTACCTTAA
altero_2_8
CTCACTTGGGCCTCTC



CCCTATCTC

GCGCCGCCCTC

TTTGCGCCG





bacilli_9
ACTCTGCTCCCGAAGGA
plastid_4_9
CTACCTTAAGCGCC
altero_2_9
ACTTGGGCCTCTCTTT



GAAGCCCT

GCCCTCCGAAT

GCGCCGGAG





bacilli_10
CCGAAGCCGCCTTTCAA
plastid_4_10
GCCCTACCTTAAGC
altero_2_10
CTACGACATTCTTTAA



TTTCGAAC

GCCGCCCTCCG

GGGGTCCGC





bacilli_11
CGTCCGCCGCTAACTTC
plastid_4_11
CCCTACCTTAAGCG
altero_2_11
CCGGACTACGACATT



ATAAGAGC

CCGCCCTCCGA

CTTTAAGGGG





bacilli_12
GTCCGCCGCTAACTTCA
plastid_4_12
CCTACCTTAAGCGC
altero_2_12
ATCTCACTTGGGCCTC



TAAGAGCA

CGCCCTCCGAA

TCTTTGCGC





bacilli_13
CCGCCGCTAACTTCATA
plastid_4_13
CTAGCCCTACCTTAA
altero_2_13
CCCCCTCGCAAAGGC



AGAGCAAG

GCGCCGCCCT

AAGTTCCCAA





bacilli_14
AGCCGAAGCCGCCTTTC
plastid_4_14
ACTAGCCCTACCTTA
altero_2_14
ACATTCTTTAAGGGG



AATTTCGA

AGCGCCGCCC

TCCGCTCCAC





bacilli_15
CTCCCGAAGGAGAAGC
plastid_4_15
AAGCGCCGCCCTCC
altero_2_15
TTGGGCCTCTCTTTGC



CCTATCTCT

GAATGGTTAGG

GCCGGAGCC





bacilli_16
CAGCCGAAGCCGCCTTT
plastid_4_16
CACTAGCCCTACCTT
altero_2_16
TCCCCCTCGCAAAGG



CAATTTCG

AAGCGCCGCC

CAAGTTCCCA





bacilli_17
CTGTCACTCTGCTCCCG
plastid_4_17
CGCCGCCCTCCGAA
altero_2_17
CCTCGCAAAGGCAAG



AAGGAGAA

TGGTTAGGCTA

TTCCCAAGCA





bacilli_18
GCCGAAGCCGCCTTTCA
plastid_4_18
GCGCCGCCCTCCGA
altero_2_18
GGGTCCGCTCCACAT



ATTTCGAA

ATGGTTAGGCT

CACTGTCTCG





bacilli_19
CCCGTCCGCCGCTAACT
plastid_4_19
GCCGCCCTCCGAAT
altero_2_19
ACGACATTCTTTAAG



TCATAAGA

GGTTAGGCTAA

GGGTCCGCTC





bacilli_20
CCGTCCGCCGCTAACTT
plastid_4_20
AGCGCCGCCCTCCG
altero_2_20
CATTCTTTAAGGGGTC



CATAAGAG

AATGGTTAGGC

CGCTCCACA





bacilli_21
CGCCGCTAACTTCATAA
plastid_4_21
ACGAGATTAGCTAG
altero_2_21
GACATTCTTTAAGGG



GAGCAAGC

CCTTCGCAGGT

GTCCGCTCCA





bacilli_22
CCCGAAGGAGAAGCCC
plastid_4_22
CCGCCCTCCGAATG
altero_2_22
AATCTCACTTGGGCCT



TATCTCTAG

GTTAGGCTAAC

CTCTTTGCG





bacilli_23
CGAAGGAGAAGCCCTA
plastid_4_23
CGCCCTCCGAATGG
altero_2_23
TAAGGGGTCCGCTCC



TCTCTAGGG

TTAGGCTAACG

ACATCACTGT





bacilli_24
CCGAAGGAGAAGCCCT
plastid_4_24
GCCCTCCGAATGGT
altero_2_24
ATCCCCCTCGCAAAG



ATCTCTAGG

TAGGCTAACGA

GCAAGTTCCC





bacilli_25
TGTCACTCTGCTCCCGA
plastid_4_25
TCACTAGCCCTACCT
altero_2_25
GGTCCGCTCCACATC



AGGAGAAG

TAAGCGCCGC

ACTGTCTCGC





crenarch_1_1
AGCCTGTACGTTGAGCG
plastid_5_1
CTCTACCCCTACCAT
colwel_1_1
TGCGCCACTCACGGA



TACAGATT

ACTCAAGCCT

TCAAGTCCAC





crenarch_1_2
CCTGTACGTTGAGCGTA
plastid_5_2
GACGTCGTCCTCCA
colwel_1_2
CTGCGCCACTCACGG



CAGATTTA

AATGGTTAGAC

ATCAAGTCCA





crenarch_1_3
GCCTGTACGTTGAGCGT
plastid_5_3
CCTTAGACGTCGTCC
colwel_1_3
GCTGCGCCACTCACG



ACAGATTT

TCCAAATGGT

GATCAAGTCC





crenarch_1_4
GAGCGTACAGATTTAAC
plastid_5_4
ACCTTAGACGTCGT
colwel_1_4
TAGCTGCGCCACTCA



CGAAAACT

CCTCCAAATGG

CGGATCAAGT





crenarch_1_5
TGAGCGTACAGATTTAA
plastid_5_5
CCTCTACCCCTACCA
colwel_1_5
GTTAGCTGCGCCACT



CCGAAAAC

TACTCAAGCC

CACGGATCAA





crenarch_1_6
CAGCCTGTACGTTGAGC
plastid_5_6
GCTAGTTCTCGCGA
colwel_1_6
CGTTAGCTGCGCCAC



GTACAGAT

ATTTGCGACTC

TCACGGATCA





crenarch_1_7
CCTTGTCACGAACCTCA
plastid_5_7
CCTCTCGGCATATG
colwel_1_7
GTGCGTTAGCTGCGC



AGTTCGAT

GGGATTTAGCT

CACTCACGGA





crenarch_1_8
CTTGTCACGAACCTCAA
plastid_5_8
GACTAACGGTGTTG
colwel_1_8
TGCGTTAGCTGCGCC



GTTCGATA

GGTATGACCAG

ACTCACGGAT





crenarch_1_9
TTGTCACGAACCTCAAG
plastid_5_9
ACTAACGGTGTTGG
colwel_1_9
TTAGCTGCGCCACTC



TTCGATAA

GTATGACCAGC

ACGGATCAAG





crenarch_1_10
CTGTACGTTGAGCGTAC
plastid_5_10
CCAACAGTTATTCCC
colwel_1_10
GCGTTAGCTGCGCCA



AGATTTAA

CTCCTAAGGG

CTCACGGATC





crenarch_1_11
GTCACGAACCTCAAGTT
plastid_5_11
CTCTCGGCATATGG
colwel_1_11
AGCTGCGCCACTCAC



CGATAACG

GGATTTAGCTG

GGATCAAGTC





crenarch_1_12
TTCCCTTGTCACGAACC
plastid_5_12
GCGCGAGCTCATCC
colwel_1_12
GCGGTATTGCTGCCCT



TCAAGTTC

TTAGGCAGTGT

CTGTACCTG





crenarch_1_13
TCACGAACCTCAAGTTC
plastid_5_13
CGCGAGCTCATCCTT
colwel_1_13
CGCGGTATTGCTGCC



GATAACGC

AGGCAGTGTA

CTCTGTACCT





crenarch_1_14
TGTCACGAACCTCAAGT
plastid_5_14
GCGAGCTCATCCTT
colwel_1_14
GGATCAAGTCCACGA



TCGATAAC

AGGCAGTGTAA

ACGGCTAGTT





crenarch_1_15
CTGCAGCACTGCATTGG
plastid_5_15
CACCTCTCGGCATAT
colwel_1_15
CGGATCAAGTCCACG



CCACAAGC

GGGGATTTAG

AACGGCTAGT





crenarch_1_16
GCAGCCTGTACGTTGAG
plastid_5_16
ACCTCTCGGCATAT
colwel_1_16
GCGCCACTCACGGAT



CGTACAGA

GGGGATTTAGC

CAAGTCCACG





crenarch_1_17
CACGAACCTCAAGTTCG
plastid_5_17
GCAGCCTACAATCC
colwel_1_17
ACGGATCAAGTCCAC



ATAACGCC

GAACTTGGACA

GAACGGCTAG





crenarch_1_18
TGTACGTTGAGCGTACA
plastid_5_18
GGCGCGAGCTCATC
colwel_1_18
CACGGATCAAGTCCA



GATTTAAC

CTTAGGCAGTG

CGAACGGCTA





crenarch_1_19
CGTTGAGCGTACAGATT
plastid_5_19
CGGCAGTCTCTCTA
colwel_1_19
CGCCACTCACGGATC



TAACCGAA

GAGATCCCAAT

AAGTCCACGA





crenarch_1_20
GTACGTTGAGCGTACAG
plastid_5_20
ATCACCGGCAGTCT
colwel_1_20
GCCACTCACGGATCA



ATTTAACC

CTCTAGAGATC

AGTCCACGAA





acido_1_15
ACCTCTTCTGGAGTCCC
margrpA_1_15
ACAACTGTATCCCG
altero_3_15
CTGTTGTCCCCCACGT



CGAAGGGA

AAGGATCCGCT

TTTGGCATA





acido_1_16
CACCTCTTCTGGAGTCC
margrpA_1_16
CAACTGTATCCCGA
altero_3_16
CTTGGGCTAATCAAA



CCGAAGGG

AGGATCCGCTG

ACGCGCAAGG





acido_1_17
CGGCAGTCCCCCCAAAG
margrpA_1_17
AACTGTATCCCGAA
altero_3_17
TCCCACTTGGGCTAAT



TCCCCGGC

GGATCCGCTGC

CAAAACGCG





acido_1_18
CCCCGAAGGGGCCTTAC
margrpA_1_18
AACAACTGTATCCC
altero_3_18
TTGGGCTAATCAAAA



CGCTCAAC

GAAGGATCCGC

CGCGCAAGGC





acido_1_19
CCTCTTCTGGAGTCCCC
margrpA_1_19
GTTAGCTCCGGTAC
altero_3_19
CCCACTTGGGCTAAT



GAAGGGAA

CGAAGGGGTCG

CAAAACGCGC





acido_1_20
GGCAGTCCCCCCAAAGT
margrpA_1_20
TTAGCTCCGGTACC
altero_3_20
TCACCGGCAGTCTCC



CCCCGGCA

GAAGGGGTCGA

CTATAGTTCC





acido_1_21
AGCCATGCAGCACCTCT
margrpA_1_21
GCGTTAGCTCCGGT
altero_3_21
TGGGCTAATCAAAAC



TCTGGAGT

ACCGAAGGGGT

GCGCAAGGCC





acido_1_22
CAGCCATGCAGCACCTC
margrpA_1_22
CGTTAGCTCCGGTA
altero_3_22
CCACTTGGGCTAATC



TTCTGGAG

CCGAAGGGGTC

AAAACGCGCA





acido_1_23
CCCCCGAAGGGGCCTTA
margrpA_1_23
TGCGTTAGCTCCGGT
altero_3_23
ATAGTTCCCGACATA



CCGCTCAA

ACCGAAGGGG

ACTCGCTGGC





acido_1_24
ACAGCCATGCAGCACCT
margrpA_1_24
TCCCTTACGACAGA
altero_3_24
CCATCGCTGGTTAGC



CTTCTGGA

CCTTTACGCTC

AACCCTTTGT





acido_1_25
CCGAAGGGGCCTTACCG
margrpA_1_25
ACTGTATCCCGAAG
altero_3_25
GGGCTAATCAAAACG



CTCAACTT

GATCCGCTGCA

CGCAAGGCCC





acido_2_1
GTCAACTCCCTCCACAC
margrpA_2_1
GCTGCCTTCGCATTT
gamma_1_1
CTAAAAGGTCAAGCC



CAAGTGTT

GACTTTCCTC

TCCCAACGGC





acido_2_2
GGTCAACTCCCTCCACA
margrpA_2_2
GGCTGCCTTCGCATT
gamma_1_2
ACTAAAAGGTCAAGC



CCAAGTGT

TGACTTTCCT

CTCCCAACGG





acido_2_3
GGGTCAACTCCCTCCAC
margrpA_2_3
AGGCTGCCTTCGCA
gamma_1_3
GAAGAGGCCCTCTTT



ACCAAGTG

TTTGACTTTCC

CCCTCTTAAG





acido_2_4
TCAACTCCCTCCACACC
margrpA_2_4
ACAACTGTGCTCCG
gamma_1_4
CACTAAAAGGTCAAG



AAGTGTTC

AAGAGCCCGCT

CCTCCCAACG





acido_2_5
GGGGTCAACTCCCTCCA
margrpA_2_5
TAACAACTGTGCTC
gamma_1_5
GCATGTATTAGGCCT



CACCAAGT

CGAAGAGCCCG

GCCGCCAACG





acido_2_6
AGGGGTCAACTCCCTCC
margrpA_2_6
AACAACTGTGCTCC
gamma_1_6
GGCTCCTCCAATAGT



ACACCAAG

GAAGAGCCCGC

GAGAGCTTTC





acido_2_7
CAACTCCCTCCACACCA
margrpA_2_7
GATACCATCTTCGG
gamma_1_7
AAGAGGCCCTCTTTC



AGTGTTCA

GTACTGCAGAC

CCTCTTAAGG





acido_2_8
AAGGGGTCAACTCCCTC
margrpA_2_8
TTAACAACTGTGCTC
gamma_1_8
CAAGAAGAGGCCCTC



CACACCAA

CGAAGAGCCC

TTTCCCTCTT





acido_2_9
GAAGGGGTCAACTCCCT
margrpA_2_9
CAACTGTGCTCCGA
gamma_1_9
TCAAGAAGAGGCCCT



CCACACCA

AGAGCCCGCTG

CTTTCCCTCT





acido_2_10
AACTCCCTCCACACCAA
margrpA_2_10
CAGAAGGCTGCCTT
gamma_1_10
TAGCTGCGCCACTAA



GTGTTCAT

CGCATTTGACT

AAGGTCAAGC





acido_2_11
ACTCCCTCCACACCAAG
margrpA_2_11
ACCATCTTCGGGTA
gamma_1_11
CAGGCTCCTCCAATA



TGTTCATC

CTGCAGACTTC

GTGAGAGCTT





acido_2_12
CTCCCTCCACACCAAGT
margrpA_2_12
TTGCGGTTAGGATA
gamma_1_12
CTCAGCGTCAGTATC



GTTCATCG

CCATCTTCGGG

AATCCAGGGG





acido_2_13
CAGTCCCCGTAGAGTTC
margrpA_2_13
CTTGCGGTTAGGAT
gamma_1_13
AAAGGTCAAGCCTCC



CCGCCATG

ACCATCTTCGG

CAACGGCTAG





acido_2_14
TCCCCGTAGAGTTCCCG
margrpA_2_14
CCTTGCGGTTAGGAT
gamma_1_14
GCGTTAGCTGCGCCA



CCATGACG

ACCATCTTCG

CTAAAAGGTC





acido_2_15
GTCCCCGTAGAGTTCCC
margrpA_2_15
CCATCTTCGGGTACT
gamma_1_15
GAGGCCCTCTTTCCCT



GCCATGAC

GCAGACTTCC

CTTAAGGCG





acido_2_16
AGTCCCCGTAGAGTTCC
margrpA_2_16
GGATACCATCTTCG
gamma_1_16
AGAGGCCCTCTTTCCC



CGCCATGA

GGTACTGCAGA

TCTTAAGGC





acido_2_17
GCAGTCCCCGTAGAGTT
margrpA_2_17
ACCTGCCTTACCTTA
gamma_1_17
CCCCCTCTATCGTACT



CCCGCCAT

AACAGCTCCC

CTAGCCTAT





acido_2_18
GGCAGTCCCCGTAGAGT
margrpA_2_18
CCTGCCTTACCTTAA
gamma_1_18
CCCCTCTATCGTACTC



TCCCGCCA

ACAGCTCCCT

TAGCCTATC





acido_2_19
CCGGCACGGAAGGGGT
margrpA_2_19
CCAGAAGGCTGCCT
gamma_1_19
TTCAAGAAGAGGCCC



CAACTCCCT

TCGCATTTGAC

TCTTTCCCTC





acido_2_20
ACGCGCTGGCAACTACG
margrpA_2_20
TGCGGTTAGGATAC
gamma_1_20
AGGCCCTCTTTCCCTC



GGTAAGGG

CATCTTCGGGT

TTAAGGCGT





acido_2_21
GACGCGCTGGCAACTAC
margrpA_2_21
CGAAGAGCCCGCTG
gamma_1_21
GCCCTCTTTCCCTCTT



GGGTAAGG

CATTATTTGGT

AAGGCGTAT





acido_2_22
TGACGCGCTGGCAACTA
margrpA_2_22
CCACCATGAATTCT
gamma_1_22
CCCTCTTTCCCTCTTA



CGGGTAAG

GCGTTCCTCTC

AGGCGTATG





acido_2_23
AGCTCCGGCACGGAAG
margrpA_2_23
CCTCCTTGCGGTTAG
gamma_1_23
CTCTTTCCCTCTTAAG



GGGTCAACT

GATACCATCT

GCGTATGCG





acido_2_24
GCTCCGGCACGGAAGG
margrpA_2_24
CATCTTCGGGTACTG
gamma_1_24
CCTCTTTCCCTCTTAA



GGTCAACTC

CAGACTTCCA

GGCGTATGC





acido_2_25
CTCCGGCACGGAAGGG
margrpA_2_25
CGGTTAGGATACCA
gamma_1_25
GGCCCTCTTTCCCTCT



GTCAACTCC

TCTTCGGGTAC

TAAGGCGTA





acido_3_1
CTCACGGCATTCGTCCC
OP10_1_1
CCGCTTGCACGGGC
gamma_2_1
TACCTGCTAGCAACC



ACTCGACA

AGTTCCGTAAG

AGGGATAGGG





acido_3_2
CGAGGTCCCCACGGTGT
OP10_1_2
CCCGCTTGCACGGG
gamma_2_2
CAGCATTACCTGCTA



CATGCGGT

CAGTTCCGTAA

GCAACCAGGG





acido_3_3
TCACCCTCACGGCATTC
OP10_1_3
CGCTTGCACGGGCA
gamma_2_3
TTACCTGCTAGCAAC



GTCCCACT

GTTCCGTAAGA

CAGGGATAGG





acido_3_4
AGGTCCCCACGGTGTCA
OP10_1_4
TCCCGCTTGCACGG
gamma_2_4
ACCTGCTAGCAACCA



TGCGGTAT

GCAGTTCCGTA

GGGATAGGGG





acido_3_5
GGACCGAGGTCCCCAC
OP10_1_5
GGGTGCAGACAATT
gamma_2_5
TCAGCATTACCTGCTA



GGTGTCATG

CAGGTGACTTG

GCAACCAGG





acido_3_6
CCGAGGTCCCCACGGTG
OP10_1_6
CTCCCGCTTGCACG
gamma_2_6
TCTCCCTGGAGTTCTC



TCATGCGG

GGCAGTTCCGT

AGCATTACC





acido_3_7
ACCCTCACGGCATTCGT
OP10_1_7
CCTCCCGCTTGCACG
gamma_2_7
GTCTCCCTGGAGTTCT



CCCACTCG

GGCAGTTCCG

CAGCATTAC





acido_3_8
ACCGAGGTCCCCACGGT
OP10_1_8
GCTTGCACGGGCAG
gamma_2_8
CAGTCTCCCTGGAGTT



GTCATGCG

TTCCGTAAGAG

CTCAGCATT





acido_3_9
CACCCTCACGGCATTCG
OP10_1_9
CGGGTGCAGACAAT
gamma_2_9
TCCCTGGAGTTCTCAG



TCCCACTC

TCAGGTGACTT

CATTACCTG





acido_3_10
GACCGAGGTCCCCACG
OP10_1_10
CCGTAAGAGTTCCC
gamma_2_10
CTCCCTGGAGTTCTCA



GTGTCATGC

GACTTTACGCT

GCATTACCT





acido_3_11
CCTCACGGCATTCGTCC
OP10_1_11
GCAGACAATTCAGG
gamma_2_11
GCAGTCTCCCTGGAG



CACTCGAC

TGACTTGACGG

TTCTCAGCAT





acido_3_12
TTCACCCTCACGGCATT
OP10_1_12
TCGGGTGCAGACAA
gamma_2_12
GGCAGTCTCCCTGGA



CGTCCCAC

TTCAGGTGACT

GTTCTCAGCA





acido_3_13
GAGGTCCCCACGGTGTC
OP10_1_13
CGTAAGAGTTCCCG
gamma_2_13
CCTGCTAGCAACCAG



ATGCGGTA

ACTTTACGCTG

GGATAGGGGT





acido_3_14
CCCTCACGGCATTCGTC
OP10_1_14
TTGCACGGGCAGTT
gamma_2_14
TGCTAGCAACCAGGG



CCACTCGA

CCGTAAGAGTT

ATAGGGGTTG





acido_3_15
GGTCCCCACGGTGTCAT
OP10_1_15
TCCGTAAGAGTTCC
gamma_2_15
CTGCTAGCAACCAGG



GCGGTATT

CGACTTTACGC

GATAGGGGTT





acido_3_16
GTCCCCACGGTGTCATG
OP10_1_16
GGCAGTTCCGTAAG
gamma_2_16
TAGCAACCAGGGATA



CGGTATTA

AGTTCCCGACT

GGGGTTGCGC





acido_3_17
GATTGTTCACCCTCACG
OP10_1_17
CTTGCACGGGCAGT
gamma_2_17
AGCAACCAGGGATAG



GCATTCGT

TCCGTAAGAGT

GGGTTGCGCT





acido_3_18
AGGACCGAGGTCCCCA
OP10_1_18
CGGGCAGTTCCGTA
gamma_2_18
CTCAGCATTACCTGCT



CGGTGTCAT

AGAGTTCCCGA

AGCAACCAG





acido_3_19
ATTGTTCACCCTCACGG
OP10_1_19
TGCACGGGCAGTTC
gamma_2_19
CTAGCAACCAGGGAT



CATTCGTC

CGTAAGAGTTC

AGGGGTTGCG





acido_3_20
TTGTTCACCCTCACGGC
OP10_1_20
ACGGGCAGTTCCGT
gamma_2_20
GCTAGCAACCAGGGA



ATTCGTCC

AAGAGTTCCCG

TAGGGGTTGC





acido_3_21
TGTTCACCCTCACGGCA
OP10_1_21
GCACGGGCAGTTCC
gamma_2_21
GCATTACCTGCTAGC



TTCGTCCC

GTAAGAGTTCC

AACCAGGGAT





acido_3_22
GGATTGTTCACCCTCAC
OP10_1_22
CACGGGCAGTTCCG
gamma_2_22
AGCATTACCTGCTAG



GGCATTCG

TAAGAGTTCCC

CAACCAGGGA





acido_3_23
CACGGCATTCGTCCCAC
OP10_1_23
GCAGTTCCGTAAGA
gamma_2_23
TCGCGAGTTGGCAGC



TCGACAGG

GTTCCCGACTT

CCTCTGTACG





acido_3_24
TCACGGCATTCGTCCCA
OP10_1_24
GGGCAGTTCCGTAA
gamma_2_24
CTCGCGAGTTGGCAG



CTCGACAG

GAGTTCCCGAC

CCCTCTGTAC





acido_3_25
GCTTTGATCGCAAGGAC
OP10_1_25
CCCCCTTACTCCCCA
gamma_2_25
CGCGAGTTGGCAGCC



CGAGGTCC

CACCTTAGAC

CTCTGTACGC





actino_1_1
AAACCTAGATCCGTCAT
OP3_1_1
ATCCAAGGGTGATA
gamma_3_1
TGCGACACCGAAGGG



CCCACACG

GGTCCTTACGG

CAACCCCCCC





actino_1_2
CAAACCTAGATCCGTCA
OP3_1_2
TCCAAGGGTGATAG
gamma_3_2
CTGCGACACCGAAGG



TCCCACAC

GTCCTTACGGA

GCAACCCCCC





actino_1_3
CACCACCTGTATAGGGC
OP3_1_3
CCAAGGGTGATAGG
gamma_3_3
GACTAGTTCCGAGTA



GCTAATGC

TCCTTACGGAT

TGTCAAGGGC





actino_1_4
ACCACCTGTATAGGGCG
OP3_1_4
TGTTCTCCCCTGCTG
gamma_3_4
GCTGCGACACCGAAG



CTAATGCA

ACAGGAGTTT

GGCAACCCCC





actino_1_5
CCACCTGTATAGGGCGC
OP3_1_5
TTGTTCTCCCCTGCT
gamma_3_5
AACGCGCTAGCTGCG



TAATGCAC

GACAGGAGTT

ACACCGAAGG





actino_1_6
CACCTGTATAGGGCGCT
OP3_1_6
CTTGTTCTCCCCTGC
gamma_3_6
TAACGCGCTAGCTGC



AATGCACA

TGACAGGAGT

GACACCGAAG





actino_1_7
GCACCACCTGTATAGGG
OP3_1_7
GTTCTCCCCTGCTGA
gamma_3_7
TTACTTAACCGCCAA



CGCTAATG

CAGGAGTTTA

CGCGCGCTTT





actino_1_8
AACCTAGATCCGTCATC
OP3_1_8
CATCCAAGGGTGAT
gamma_3_8
ACGCGCTAGCTGCGA



CCACACGC

AGGTCCTTACG

CACCGAAGGG





actino_1_9
TGCACCACCTGTATAGG
OP3_1_9
TCGACAGGTTATCC
gamma_3_9
TTAACGCGCTAGCTG



GCGCTAAT

CGAACCCTAGG

CGACACCGAA





actino_1_10
AGCCCTGAACTTTCACG
OP3_1_10
TTCGACAGGTTATCC
gamma_3_10
CGCGCTAGCTGCGAC



ACCGACTT

CGAACCCTAG

ACCGAAGGGC





actino_1_11
GCCCTGAACTTTCACGA
OP3_1_11
TTCTCCCCTGCTGAC
gamma_3_11
TACTTAACCGCCAAC



CCGACTTG

AGGAGTTTAC

GCGCGCTTTA





actino_1_12
GAGCCCTGAACTTTCAC
OP3_1_12
CCATCCAAGGGTGA
gamma_3_12
AGCTGCGACACCGAA



GACCGACT

TAGGTCCTTAC

GGGCAACCCC





actino_1_13
AGCGTCGATAGCGGCCC
OP3_1_13
TGATAGGTCCTTACG
gamma_3_13
CTTACTTAACCGCCA



AGTGAGCT

GATCCCCATC

ACGCGCGCTT





actino_1_14
GCGTCGATAGCGGCCCA
OP3_1_14
TCTCCCCTGCTGACA
gamma_3_14
ATCCGACTTACTTAAC



GTGAGCTG

GGAGTTTACA

CGCCAACGC





actino_1_15
CGTCGATAGCGGCCCAG
OP3_1_15
CGGATCCCCATCTTT
gamma_3_15
CGACTTACTTAACCG



TGAGCTGC

CCCTCATGTT

CCAACGCGCG





actino_1_16
CAGCGTCGATAGCGGCC
OP3_1_16
TCCTTGCCGGTTAGG
gamma_3_16
TCCGACTTACTTAACC



CAGTGAGC

CAACCTACTT

GCCAACGCG





actino_1_17
CCCTGAACTTTCACGAC
OP3_1_17
AGTGCGCACCGACC
gamma_3_17
CTTAACGCGCTAGCT



CGACTTGT

GAAGTCGGTGT

GCGACACCGA





actino_1_18
TGAGCCCTGAACTTTCA
OP3_1_18
CCAGTAATGCGCCT
gamma_3_18
ACTTACTTAACCGCC



CGACCGAC

TCGCGACTGGT

AACGCGCGCT





actino_1_19
ACCTAGATCCGTCATCC
OP3_1_19
AGAGTGCGCACCGA
gamma_3_19
GCGCTAGCTGCGACA



CACACGCG

CCGAAGTCGGT

CCGAAGGGCA





actino_1_20
CTCGGGCTATCCCAGTA
OP3_1_20
TCGAAAAGCACAGG
gamma_3_20
CCGACTTACTTAACC



ACTAAGGT

ACGTATCCGGT

GCCAACGCGC





actino_1_21
CCTCGGGCTATCCCAGT
OP3_1_21
CTGTGCTTCGAAAA
gamma_3_21
ACTTAACCGCCAACG



AACTAAGG

GCACAGGACGT

CGCGCTTTAC





actino_1_22
TCGATAGCGGCCCAGTG
OP3_1_22
CCTTAGAGTGCGCA
gamma_3_22
CATCCGACTTACTTAA



AGCTGCCT

CCGACCGAAGT

CCGCCAACG





actino_1_23
GTCGATAGCGGCCCAGT
OP3_1_23
GCCCTCCTTGCCGGT
gamma_3_23
TCTTCACACACGCGG



GAGCTGCC

TAGGCAACCT

CATTGCTAGA





actino_1_24
CGATAGCGGCCCAGTG
OP3_1_24
CTCCTTGCCGGTTAG
gamma_3_24
AGAACTTAACGCGCT



AGCTGCCTT

GCAACCTACT

AGCTGCGACA





actino_1_25
TCCTCGGGCTATCCCAG
OP3_1_25
CAGTAATGCGCCTT
gamma_3_25
ACTTAACGCGCTAGC



TAACTAAG

CGCGACTGGTG

TGCGACACCG





actino_2_1
CCGGTTTCCCCAAGTGC
OP9_1_1
GGGCAAGATAATGT
gamma_4_1
ACACCGAAAGGCAAA



AAGCACTT

CAAGTCCCGGT

CCCTCCCGAC





actino_2_2
CAAGCACTTGGTTCGTC
OP9_1_2
GCTGGCACATAATT
gamma_4_2
GACACCGAAAGGCAA



CCTCGACT

AGCCGGAGCTT

ACCCTCCCGA





actino_2_3
GCCGGTTTCCCCAAGTG
OP9_1_3
TGCTGGCACATAATT
gamma_4_3
CACCGAAAGGCAAAC



CAAGCACT

AGCCGGAGCT

CCTCCCGACA





actino_2_4
GCTTCGACACGGAAATC
OP9_1_4
CCCACTTACAGGGT
gamma_4_4
ACCGAAAGGCAAACC



GTGAACTG

AGATTACCCAC

CTCCCGACAT





actino_2_5
TTCGCCGGTTTCCCCAA
OP9_1_5
CCCCACTTACAGGG
gamma_4_5
CGACACCGAAAGGCA



GTGCAAGC

TAGATTACCCA

AACCCTCCCG





actino_2_6
CGACACGGAAATCGTG
OP9_1_6
CCCCCACTTACAGG
gamma_4_6
CCGAAAGGCAAACCC



AACTGATCC

GTAGATTACCC

TCCCGACATC





actino_2_7
GACACGGAAATCGTGA
OP9_1_7
CTGCTAACCTCATCA
gamma_4_7
GCGACACCGAAAGGC



ACTGATCCC

TCCCGAAGGA

AAACCCTCCC





actino_2_8
ACACGGAAATCGTGAA
OP9_1_8
TCTGCTAACCTCATC
gamma_4_8
CGAAAGGCAAACCCT



CTGATCCCC

ATCCCGAAGG

CCCGACATCT





actino_2_9
CGCCGGTTTCCCCAAGT
OP9_1_9
CTGCTGGCACATAA
gamma_4_9
GCTGCGACACCGAAA



GCAAGCAC

TTAGCCGGAGC

GGCAAACCCT





actino_2_10
ACGGAAATCGTGAACT
OP9_1_10
CCACTTACAGGGTA
gamma_4_10
AGCTGCGACACCGAA



GATCCCCAC

GATTACCCACG

AGGCAAACCC





actino_2_11
TCGCCGGTTTCCCCAAG
OP9_1_11
GACGGGCAAGATAA
gamma_4_11
TTGGCTAGCCATTGCT



TGCAAGCA

TGTCAAGTCCC

GGTTTGCAG





actino_2_12
CACGGAAATCGTGAACT
OP9_1_12
TCCCCCACTTACAG
gamma_4_12
TGGCTAGCCATTGCT



GATCCCCA

GGTAGATTACC

GGTTTGCAGC





actino_2_13
CGGTTTCCCCAAGTGCA
OP9_1_13
GCAGTCTGCCTAGA
gamma_4_13
GGATTGGCTAGCCAT



AGCACTTG

GTGCACTTGTA

TGCTGGTTTG





actino_2_14
AAGTGCAAGCACTTGGT
OP9_1_14
GCTGCTGGCACATA
gamma_4_14
GATTGGCTAGCCATT



TCGTCCCT

ATTAGCCGGAG

GCTGGTTTGC





actino_2_15
GTTCGCCGGTTTCCCCA
OP9_1_15
GGGTACCGTCAGGC
gamma_4_15
GGGATTGGCTAGCCA



AGTGCAAG

TTAAGGGTTTA

TTGCTGGTTT





actino_2_16
CGGAAATCGTGAACTG
OP9_1_16
CACTTACAGGGTAG
gamma_4_16
GGCTAGCCATTGCTG



ATCCCCACA

ATTACCCACGC

GTTTGCAGCC





actino_2_17
GCAAGCACTTGGTTCGT
OP9_1_17
GGCAGTCTGCCTAG
gamma_4_17
GAAAGGCAAACCCTC



CCCTCGAC

AGTGCACTTGT

CCGACATCTA





actino_2_18
CGTTCGCCGGTTTCCCC
OP9_1_18
GGTTATCCCCCACTT
gamma_4_18
CTGCGACACCGAAAG



AAGTGCAA

ACAGGGTAGA

GCAAACCCTC





actino_2_19
AAGCACTTGGTTCGTCC
OP9_1_19
GAGGGTTATCCCCC
gamma_4_19
TGCGACACCGAAAGG



CTCGACTT

ACTTACAGGGT

CAAACCCTCC





actino_2_20
GGTTTCCCCAAGTGCAA
OP9_1_20
GGGTTATCCCCCACT
gamma_4_20
AGGGATTGGCTAGCC



GCACTTGG

TACAGGGTAG

ATTGCTGGTT





actino_2_21
AGTGCAAGCACTTGGTT
OP9_1_21
GTCAGAGATAGACC
gamma_4_21
AAGGGATTGGCTAGC



CGTCCCTC

AGAAAGCCGCC

CATTGCTGGT





actino_2_22
CAAGTGCAAGCACTTGG
OP9_1_22
GGGGTACCGTCAGG
gamma_4_22
TAAGGGATTGGCTAG



TTCGTCCC

CTTAAGGGTTT

CCATTGCTGG





actino_2_23
CCGTTCGCCGGTTTCCC
OP9_1_23
AGGGTTATCCCCCA
gamma_4_23
TAGCTGCGACACCGA



CAAGTGCA

CTTACAGGGTA

AAGGCAAACC





actino_2_24
CCGTAGTTATCCCGGTG
OP9_1_24
CGGCAGTCTGCCTA
gamma_4_24
TTAGCTGCGACACCG



TACAGGGC

GAGTGCACTTG

AAAGGCAAAC





actino_2_25
CCTCAAGCCTTGCAGTA
OP9_1_25
CTCCGCATTATCTGC
gamma_4_25
GTTAGCTGCGACACC



TCGACTGC

GGCAGTCTGC

GAAAGGCAAA





bacter_1_1
GTTTCCGCGACTGTCAT
plancto_1_1
TGCAACACCTGTGC
gamma_5_1
CCACTAAGGGACAAA



TCCACGTT

AGGTCACACCC

TTCCCCCAAC





bacter_1_2
TTCCGCGACTGTCATTC
plancto_1_2
GCAACACCTGTGCA
gamma_5_2
CGCCACTAAGGGACA



CACGTTCG

GGTCACACCCG

AATTCCCCCA





bacter_1_3
ACGTTTCCGCGACTGTC
plancto_1_3
ATGCAACACCTGTG
gamma_5_3
GCCACTAAGGGACAA



ATTCCACG

CAGGTCACACC

ATTCCCCCAA





bacter_1_4
TTTCCGCGACTGTCATT
plancto_1_4
AACACCTGTGCAGG
gamma_5_4
CACTAAGGGACAAAT



CCACGTTC

TCACACCCGAA

TCCCCCAACG





bacter_1_5
CACGTTTCCGCGACTGT
plancto_1_5
CAACACCTGTGCAG
gamma_5_5
ACTAAGGGACAAATT



CATTCCAC

GTCACACCCGA

CCCCCAACGG





bacter_1_6
TCACGTTTCCGCGACTG
plancto_1_6
TGTGCAGGTCACAC
gamma_5_6
CTAAGGGACAAATTC



TCATTCCA

CCGAAGGTAAT

CCCCAACGGC





bacter_1_7
CGTTTCCGCGACTGTCA
plancto_1_7
GTGCAGGTCACACC
gamma_5_7
GCGCCACTAAGGGAC



TTCCACGT

CGAAGGTAATC

AAATTCCCCC





bacter_1_8
TGTCATTCCACGTTCGA
plancto_1_8
TGCAGGTCACACCC
gamma_5_8
GGTACCGTCAAGACG



GCCCAGGT

GAAGGTAATCA

CGCAGTTATT





bacter_1_9
CTGTCATTCCACGTTCG
plancto_1_9
CTGTGCAGGTCACA
gamma_5_9
AGGTACCGTCAAGAC



AGCCCAGG

CCCGAAGGTAA

GCGCAGTTAT





bacter_1_10
CCGCGACTGTCATTCCA
plancto_1_10
CCTGTGCAGGTCAC
gamma_5_10
TAGGTACCGTCAAGA



CGTTCGAG

ACCCGAAGGTA

CGCGCAGTTA





bacter_1_11
ACTGTCATTCCACGTTC
plancto_1_11
ACACCTGTGCAGGT
gamma_5_11
TGCGCCACTAAGGGA



GAGCCCAG

CACACCCGAAG

CAAATTCCCC





bacter_1_12
CGCGACTGTCATTCCAC
plancto_1_12
ACAGAGTTAGCCAG
gamma_5_12
TAAGGGACAAATTCC



GTTCGAGC

TGCTTCCTCTC

CCCAACGGCT





bacter_1_13
GCGACTGTCATTCCACG
plancto_1_13
ACCTGTGCAGGTCA
gamma_5_13
CTGTAGGTACCGTCA



TTCGAGCC

CACCCGAAGGT

AGACGCGCAG





bacter_1_14
CGACTGTCATTCCACGT
plancto_1_14
CATGCAACACCTGT
gamma_5_14
GTAGGTACCGTCAAG



TCGAGCCC

GCAGGTCACAC

ACGCGCAGTT





bacter_1_15
TCCGCGACTGTCATTCC
plancto_1_15
CACCTGTGCAGGTC
gamma_5_15
CTGCGCCACTAAGGG



ACGTTCGA

ACACCCGAAGG

ACAAATTCCC





bacter_1_16
GACTGTCATTCCACGTT
plancto_1_16
CACAGAGTTAGCCA
gamma_5_16
TGTAGGTACCGTCAA



CGAGCCCA

GTGCTTCCTCT

GACGCGCAGT





bacter_1_17
ATCACGTTTCCGCGACT
plancto_1_17
CAGAGTTAGCCAGT
gamma_5_17
TCTGTAGGTACCGTC



GTCATTCC

GCTTCCTCTCG

AAGACGCGCA





bacter_1_18
GTCATTCCACGTTCGAG
plancto_1_18
AGCCAGTGCTTCCTC
gamma_5_18
GTCCGCCACTCGACG



CCCAGGTA

TCGAGCTTAC

CCTGAAGAGC





bacter_1_19
ACGGTACCATCAGCACC
plancto_1_19
GCACAGAGTTAGCC
gamma_5_19
GCCACTCGACGCCTG



GATACACG

AGTGCTTCCTC

AAGAGCAAGC





bacter_1_20
GTACCATCAGCACCGAT
plancto_1_20
GGCCTAGCCCCTGC
gamma_5_20
GCTGCGCCACTAAGG



ACACGACC

ATGTCAAGCCT

GACAAATTCC





bacter_1_21
GGTACCATCAGCACCGA
plancto_1_21
GCAGGTCACACCCG
gamma_5_21
CACTCGGTTCCCGAA



TACACGAC

AAGGTAATCAG

GGCACCAAAC





bacter_1_22
CGGTACCATCAGCACCG
plancto_1_22
ACCGGCCTAGCCCC
gamma_5_22
CTTCTGTAGGTACCGT



ATACACGA

TGCATGTCAAG

CAAGACGCG





bacter_1_23
GATCACGTTTCCGCGAC
plancto_1_23
CAGGTCACACCCGA
gamma_5_23
CACTCGACGCCTGAA



TGTCATTC

AGGTAATCAGC

GAGCAAGCTC





bacter_1_24
TACGGTACCATCAGCAC
plancto_1_24
CCGGCCTAGCCCCT
gamma_5_24
CGCCACTCGACGCCT



CGATACAC

GCATGTCAAGC

GAAGAGCAAG





bacter_1_25
CACCGATACACGACCG
plancto_1_25
CGGCCTAGCCCCTG
gamma_5_25
GGACAAATTCCCCCA



GTGGTTTTT

CATGTCAAGCC

ACGGCTAGTT





bacter_2_1
GGATTTCTCCGGGCTAC
plancto_2_1
TCTCCGAAGAGCAC
gamma_6_1
AGCTGCGCCACCAAC



CTTCCGGT

TCTCCCCTTTC

CTCTTGAATG





bacter_2_2
CTCCGGGCTACCTTCCG
plancto_2_2
TACGACCGAGAAAC
gamma_6_2
CCAACCTCTTGAATG



GTAAAGGG

TGTGGGAGGTC

AGGCCGACGG





bacter_2_3
CGGATTTCTCCGGGCTA
plancto_2_3
ACCGAGAAACTGTG
gamma_6_3
TGCGCCACCAACCTC



CCTTCCGG

GGAGGTCCCTC

TTGAATGAGG





bacter_2_4
TCTCCGGGCTACCTTCC
plancto_2_4
CGACCGAGAAACTG
gamma_6_4
GCCACCAACCTCTTG



GGTAAAGG

TGGGAGGTCCC

AATGAGGCCG





bacter_2_5
TTCTCCGGGCTACCTTC
plancto_2_5
CTCCGAAGAGCACT
gamma_6_5
ACCAACCTCTTGAAT



CGGTAAAG

CTCCCCTTTCA

GAGGCCGACG





bacter_2_6
TTTCTCCGGGCTACCTT
plancto_2_6
GCCCGACCTTCCTCT
gamma_6_6
CTGCGCCACCAACCT



CCGGTAAA

GAGGTTTGGT

CTTGAATGAG





bacter_2_7
GATTTCTCCGGGCTACC
plancto_2_7
AAACTGTGGGAGGT
gamma_6_7
CAACCTCTTGAATGA



TTCCGGTA

CCCTCGATCCA

GGCCGACGGC





bacter_2_8
ATTTCTCCGGGCTACCT
plancto_2_8
TCCGAAGAGCACTC
gamma_6_8
GCGCCACCAACCTCT



TCCGGTAA

TCCCCTTTCAG

TGAATGAGGC





bacter_2_9
CCGGATTTCTCCGGGCT
plancto_2_9
GACCGAGAAACTGT
gamma_6_9
CGCCACCAACCTCTT



ACCTTCCG

GGGAGGTCCCT

GAATGAGGCC





bacter_2_10
TCCGGATTTCTCCGGGC
plancto_2_10
ACGACCGAGAAACT
gamma_6_10
CACCAACCTCTTGAA



TACCTTCC

GTGGGAGGTCC

TGAGGCCGAC





bacter_2_11
TCCGGGCTACCTTCCGG
plancto_2_11
GAAACTGTGGGAGG
gamma_6_11
GCTGCGCCACCAACC



TAAAGGGT

TCCCTCGATCC

TCTTGAATGA





bacter_2_12
ATCCGGATTTCTCCGGG
plancto_2_12
CTCTCCGAAGAGCA
gamma_6_12
CCACCAACCTCTTGA



CTACCTTC

CTCTCCCCTTT

ATGAGGCCGA





bacter_2_13
CTTTATGGATTAGCTCC
plancto_2_13
GCCTGGAGGTAGGT
gamma_6_13
TAGCTGCGCCACCAA



CCGTCGCT

ATCTACCTGTT

CCTCTTGAAT





bacter_2_14
ACTTTATGGATTAGCTC
plancto_2_14
TCCCGACGCTATTCC
gamma_6_14
AACCTCTTGAATGAG



CCCGTCGC

CAGCCTGGAG

GCCGACGGCT





bacter_2_15
CCGGGCTACCTTCCGGT
plancto_2_15
TTGGGCATTACCGC
gamma_6_15
AGAGGTCCACTTTGC



AAAGGGTA

CAGTTTCCCGA

CCCGAAGGGC





bacter_2_16
AATCCGGATTTCTCCGG
plancto_2_16
CCGAGAAACTGTGG
gamma_6_16
GAGGTCCACTTTGCC



GCTACCTT

GAGGTCCCTCG

CCGAAGGGCG





bacter_2_17
GCTACCTTCCGGTAAAG
plancto_2_17
TGAGCAGACCCATC
gamma_6_17
TCTTCAGGTAACGTC



GGTAGGTT

TCCAGGCGCCG

AATACGCGCG





bacter_2_18
GGCTACCTTCCGGTAAA
plancto_2_18
AACTGTGGGAGGTC
gamma_6_18
TTAGCTGCGCCACCA



GGGTAGGT

CCTCGATCCAG

ACCTCTTGAA





bacter_2_19
GGGCTACCTTCCGGTAA
plancto_2_19
CCCGACCTTCCTCTG
gamma_6_19
CAGAGGTCCACTTTG



AGGGTAGG

AGGTTTGGTC

CCCCGAAGGG





bacter_2_20
TAATCCGGATTTCTCCG
plancto_2_20
TGGGCATTACCGCC
gamma_6_20
AGGTCCACTTTGCCCC



GGCTACCT

AGTTTCCCGAC

GAAGGGCGT





bacter_2_21
CTACCTTCCGGTAAAGG
plancto_2_21
CGAGAAACTGTGGG
gamma_6_21
ACCTCTTGAATGAGG



GTAGGTTG

AGGTCCCTCGA

CCGACGGCTA





bacter_2_22
CGGGCTACCTTCCGGTA
plancto_2_22
GAGAAACTGTGGGA
gamma_6_22
CGCGCGGGTATTAAC



AAGGGTAG

GGTCCCTCGAT

CGCACGCTTT





bacter_2_23
TTAATCCGGATTTCTCC
plancto_2_23
CAGCCTGGAGGTAG
gamma_6_23
CTTCAGGTAACGTCA



GGGCTACC

GTATCTACCTG

ATACGCGCGG





bacter_2_24
TTTATGGATTAGCTCCC
plancto_2_24
AGCCCGACCTTCCTC
gamma_6_24
TCAGAGGTCCACTTT



CGTCGCTG

TGAGGTTTGG

GCCCCGAAGG





bacter_2_25
TACCTTCCGGTAAAGGG
plancto_2_25
AATAGTGAGCAGAC
gamma_6_25
ACGCGCGGGTATTAA



TAGGTTGC

CCATCTCCAGG

CCGCACGCTT





bacter_3_1
GGCTCCTCGCCGTATCA
plancto_3_1
CGCAGTGCCTCAGT
gamma_7_1
GTCCTCCGTAGTTAG



TCGAAATT

TAAGCTCAGGC

ACTAGCCACT





bacter_3_2
CAACCTTGCCAATCACT
plancto_3_2
GCAGTGCCTCAGTT
gamma_7_2
CGTCCTCCGTAGTTAG



CCCCAGGT

AAGCTCAGGCA

ACTAGCCAC





bacter_3_3
CTTGCCAATCACTCCCC
plancto_3_3
CAACTCTGAGGGAG
gamma_7_3
ACCGTCCTCCGTAGTT



AGGTGGAT

TACCCTCAGAG

AGACTAGCC





bacter_3_4
CAGGTAAGGCTCCTCGC
plancto_3_4
GTCAACTCTGAGGG
gamma_7_4
CCGTCCTCCGTAGTTA



CGTATCAT

AGTACCCTCAG

GACTAGCCA





bacter_3_5
AGGCTCCTCGCCGTATC
plancto_3_5
TATGTTTTCCTACGC
gamma_7_5
GACCGTCCTCCGTAG



ATCGAAAT

CGTTCGCCGC

TTAGACTAGC





bacter_3_6
AACCTTGCCAATCACTC
plancto_3_6
GCAGAAAGAGGAAA
gamma_7_6
TGACCGTCCTCCGTA



CCCAGGTG

CCTCCTCCCGC

GTTAGACTAG





bacter_3_7
ACCTTGCCAATCACTCC
plancto_3_7
AACTCTGAGGGAGT
gamma_7_7
CTGCAGGTAACGTCA



CCAGGTGG

ACCCTCAGAGA

AGTACTCACC





bacter_3_8
TCAACCTTGCCAATCAC
plancto_3_8
TCAACTCTGAGGGA
gamma_7_8
TATTAGGGGTAAGCC



TCCCCAGG

GTACCCTCAGA

TTCCTCCCTG





bacter_3_9
GGTAAGGCTCCTCGCCG
plancto_3_9
CTATGTTTTCCTACG
gamma_7_9
TGCAGGTAACGTCAA



TATCATCG

CCGTTCGCCG

GTACTCACCC





bacter_3_10
TCCGCCTACCCCAACTA
plancto_3_10
TCCTATGTTTTCCTA
gamma_7_10
GCAGGTAACGTCAAG



TACTCTAG

CGCCGTTCGC

TACTCACCCG





bacter_3_11
TTCAACCTTGCCAATCA
plancto_3_11
CCTATGTTTTCCTAC
gamma_7_11
TTCCCCGGGTTGTCCC



CTCCCCAG

GCCGTTCGCC

CCACTCATG





bacter_3_12
CCCAGGTAAGGCTCCTC
plancto_3_12
ACTCTGAGGGAGTA
gamma_7_12
TCCCCGGGTTGTCCCC



GCCGTATC

CCCTCAGAGAT

CACTCATGG





bacter_3_13
AGGTAAGGCTCCTCGCC
plancto_3_13
ACGCAGTGCCTCAG
gamma_7_13
CCCCGGGTTGTCCCCC



GTATCATC

TTAAGCTCAGG

ACTCATGGG





bacter_3_14
CCAATCACTCCCCAGGT
plancto_3_14
TGTCAACTCTGAGG
gamma_7_14
TTTCCCCGGGTTGTCC



GGATTACC

GAGTACCCTCA

CCCACTCAT





bacter_3_15
CCTTGCCAATCACTCCC
plancto_3_15
ATGTTTTCCTACGCC
gamma_7_15
CCCGGGTTGTCCCCC



CAGGTGGA

GTTCGCCGCT

ACTCATGGGT





bacter_3_16
GTAAGGCTCCTCGCCGT
plancto_3_16
AACGCAGTGCCTCA
gamma_7_16
CCGGGTTGTCCCCCA



ATCATCGA

GTTAAGCTCAG

CTCATGGGTA





bacter_3_17
CCGCCTACCCCAACTAT
plancto_3_17
CAGTGCCTCAGTTA
gamma_7_17
CTCACCCGTATTAGG



ACTCTAGA

AGCTCAGGCAT

GGTAAGCCTT





bacter_3_18
CCAGGTAAGGCTCCTCG
plancto_3_18
CTGTCAACTCTGAG
gamma_7_18
ACCCGTATTAGGGGT



CCGTATCA

GGAGTACCCTC

AAGCCTTCCT





bacter_3_19
AAGGCTCCTCGCCGTAT
plancto_3_19
CTCTGAGGGAGTAC
gamma_7_19
ACTCACCCGTATTAG



CATCGAAA

CCTCAGAGATT

GGGTAAGCCT





bacter_3_20
GCCAATCACTCCCCAGG
plancto_3_20
TCTGTCAACTCTGAG
gamma_7_20
GTCAAGTACTCACCC



TGGATTAC

GGAGTACCCT

GTATTAGGGG





bacter_3_21
TAAGGCTCCTCGCCGTA
plancto_3_21
GGAGTACCCTCAGA
gamma_7_21
TCACCCGTATTAGGG



TCATCGAA

GATTTCATCCC

GTAAGCCTTC





bacter_3_22
GCCCAGGTAAGGCTCCT
plancto_3_22
CAAACGCAGTGCCT
gamma_7_22
CCCGTATTAGGGGTA



CGCCGTAT

CAGTTAAGCTC

AGCCTTCCTC





bacter_3_23
CATTCCGCCTACCCCAA
plancto_3_23
CTCTGTCAACTCTGA
gamma_7_23
GTACTCACCCGTATTA



CTATACTC

GGGAGTACCC

GGGGTAAGC





bacter_3_24
CAATCACTCCCCAGGTG
plancto_3_24
ACAGCAGAAAGAGG
gamma_7_24
CACCCGTATTAGGGG



GATTACCT

AAACCTCCTCC

TAAGCCTTCC





bacter_3_25
CCGCCGGAACTTTGATC
plancto_3_25
CTGAGGGAGTACCC
gamma_7_25
TACTCACCCGTATTAG



ATCAAGAG

TCAGAGATTTC

GGGTAAGCC





flavo_1_1
CTCAGACACCAAGGTCC
plancto_4_1
ACTACCTAATATCG
gamma_8_1
CGCGAGCTCATCCAT



AAACAGCT

CATCGGCCGCT

CAGCACAAGG





flavo_1_2
CAGACACCAAGGTCCA
plancto_4_2
CAACTACCTAATAT
gamma_8_2
TCATCCATCAGCACA



AACAGCTAG

CGCATCGGCCG

AGGTCCGAAG





flavo_1_3
CACTCAGACACCAAGGT
plancto_4_3
AACTACCTAATATC
gamma_8_3
CTCATCCATCAGCAC



CCAAACAG

GCATCGGCCGC

AAGGTCCGAA





flavo_1_4
GCTTAGCCACTCAGACA
plancto_4_4
CCAACTACCTAATA
gamma_8_4
GCTCATCCATCAGCA



CCAAGGTC

TCGCATCGGCC

CAAGGTCCGA





flavo_1_5
ACTCAGACACCAAGGTC
plancto_4_5
ACGTTCCGATGTATT
gamma_8_5
ACGCGAGCTCATCCA



CAAACAGC

CCTACCCCGT

TCAGCACAAG





flavo_1_6
CTTAGCCACTCAGACAC
plancto_4_6
TACGTTCCGATGTAT
gamma_8_6
CATCCATCAGCACAA



CAAGGTCC

TCCTACCCCG

GGTCCGAAGA





flavo_1_7
TACCGTCAAGCTTGGTA
plancto_4_7
GTACGTTCCGATGTA
gamma_8_7
GACGCGAGCTCATCC



CACGTACC

TTCCTACCCC

ATCAGCACAA





flavo_1_8
GTACCGTCAAGCTTGGT
plancto_4_8
CTACCTAATATCGC
gamma_8_8
GCGAGCTCATCCATC



ACACGTAC

ATCGGCCGCTC

AGCACAAGGT





flavo_1_9
GCCACTCAGACACCAA
plancto_4_9
CGTTCCGATGTATTC
gamma_8_9
TCCATCAGCACAAGG



GGTCCAAAC

CTACCCCGTT

TCCGAAGATC





flavo_1_10
TTAGCCACTCAGACACC
plancto_4_10
GTTTCCACCCACTAA
gamma_8_10
CGACGCGAGCTCATC



AAGGTCCA

TCCGTGCATG

CATCAGCACA





flavo_1_11
ACCGTCAAGCTTGGTAC
plancto_4_11
TTCCACCCACTAATC
gamma_8_11
CATCAGCACAAGGTC



ACGTACCA

CGTGCATGTC

CGAAGATCCC





flavo_1_12
CCACTCAGACACCAAG
plancto_4_12
TCCACCCACTAATCC
gamma_8_12
CCCTCTAATGGGCAG



GTCCAAACA

GTGCATGTCA

ATTCTCACGT





flavo_1_13
AGCCACTCAGACACCA
plancto_4_13
CCACCCACTAATCC
gamma_8_13
CCGACGCGAGCTCAT



AGGTCCAAA

GTGCATGTCAA

CCATCAGCAC





flavo_1_14
TAGCCACTCAGACACCA
plancto_4_14
GGCAGTAAACCTTT
gamma_8_14
CCCCTCTAATGGGCA



AGGTCCAA

GGTCTCTCGAC

GATTCTCACG





flavo_1_15
CCGTCAAGCTTGGTACA
plancto_4_15
GGTACGTTCCGATGT
gamma_8_15
CCCCCTCTAATGGGC



CGTACCAA

ATTCCTACCC

AGATTCTCAC





flavo_1_16
CGCTTAGCCACTCAGAC
plancto_4_16
TGCGAGCGTCATGA
gamma_8_16
CGAGCTCATCCATCA



ACCAAGGT

ATGTTTCCACC

GCACAAGGTC





flavo_1_17
TCGCTTAGCCACTCAGA
plancto_4_17
GCGAGCGTCATGAA
gamma_8_17
CCATCAGCACAAGGT



CACCAAGG

TGTTTCCACCC

CCGAAGATCC





flavo_1_18
CGTCAAGCTTGGTACAC
plancto_4_18
GAGCGTCATGAATG
gamma_8_18
CCTCTAATGGGCAGA



GTACCAAG

TTTCCACCCAC

TTCTCACGTG





flavo_1_19
CAGCTAGTAACCATCGT
plancto_4_19
CGAGCGTCATGAAT
gamma_8_19
CCCAGGTTATCCCCCT



TTACCGGC

GTTTCCACCCA

CTAATGGGC





flavo_1_20
GCCATAGCTAGAGACTA
plancto_4_20
CAGTTATGCCCCAG
gamma_8_20
TCCGACGCGAGCTCA



TGGGGGAT

TGAATCGCCTT

TCCATCAGCA





flavo_1_21
TGCCATAGCTAGAGACT
plancto_4_21
TCAGTTATGCCCCA
gamma_8_21
GAGCTCATCCATCAG



ATGGGGGA

GTGAATCGCCT

CACAAGGTCC





flavo_1_22
ATGCCATAGCTAGAGAC
plancto_4_22
AGTTATGCCCCAGT
gamma_8_22
TTCCCCAGGTTATCCC



TATGGGGG

GAATCGCCTTC

CCTCTAATG





flavo_1_23
TTCGCTTAGCCACTCAG
plancto_4_23
GTCAGTTATGCCCC
gamma_8_23
TCCCCAGGTTATCCCC



ACACCAAG

AGTGAATCGCC

CTCTAATGG





flavo_1_24
AGCTAGTAACCATCGTT
plancto_4_24
GTTATGCCCCAGTG
gamma_8_24
CCCCAGGTTATCCCCC



TACCGGCG

AATCGCCTTCG

TCTAATGGG





flavo_1_25
GTCAAGCTTGGTACACG
plancto_4_25
CTCCACTGGATGTTC
gamma_8_25
ATCCCCCTCTAATGG



TACCAAGG

CATTCACCTC

GCAGATTCTC





flavo_2_1
TACAGTACCGTCAGAGC
alpha_1_1
CCGGCCCCTTGCGG
gamma_9_1
CCTGTCCATCGGTTCC



TCTACACG

GAAGAAAGCCA

CGAAGGCAC





flavo_2_2
TCTTACAGTACCGTCAG
alpha_1_2
CACCTGTGCACCGG
gamma_9_2
CTGTCCATCGGTTCCC



AGCTCTAC

CCCCTTGCGGG

GAAGGCACC





flavo_2_3
TTACAGTACCGTCAGAG
alpha_1_3
GCACCTGTGCACCG
gamma_9_3
TGTCCATCGGTTCCCG



CTCTACAC

GCCCCTTGCGG

AAGGCACCA





flavo_2_4
GCATACTCATCTCTTAC
alpha_1_4
CTGTGCACCGGCCC
gamma_9_4
CAGCACCTGTCCATC



CGCCGAAG

CTTGCGGGAAG

GGTTCCCGAA





flavo_2_5
CATACTCATCTCTTACC
alpha_1_5
ACCTGTGCACCGGC
gamma_9_5
AGCACCTGTCCATCG



GCCGAAGC

CCCTTGCGGGA

GTTCCCGAAG





flavo_2_6
ACAGTACCGTCAGAGCT
alpha_1_6
CCTGTGCACCGGCC
gamma_9_6
ACCTGTCCATCGGTTC



CTACACGT

CCTTGCGGGAA

CCGAAGGCA





flavo_2_7
CAGTACCGTCAGAGCTC
alpha_1_7
AGCACCTGTGCACC
gamma_9_7
GTCCATCGGTTCCCG



TACACGTA

GGCCCCTTGCG

AAGGCACCAA





flavo_2_8
CTTACAGTACCGTCAGA
alpha_1_8
CGGCCCCTTGCGGG
gamma_9_8
CACCTGTCCATCGGTT



GCTCTACA

AAGAAAGCCAT

CCCGAAGGC





flavo_2_9
TACTCATCTCTTACCGC
alpha_1_9
GCACCGGCCCCTTG
gamma_9_9
CCTCCCTCTCTCGCAC



CGAAGCTT

CGGGAAGAAAG

TCTAGCCTT





flavo_2_10
ATACTCATCTCTTACCG
alpha_1_10
CACCGGCCCCTTGC
gamma_9_10
GCACCTGTCCATCGG



CCGAAGCT

GGGAAGAAAGC

TTCCCGAAGG





flavo_2_11
CTCATCTCTTACCGCCG
alpha_1_11
ACCGGCCCCTTGCG
gamma_9_11
GCAGCACCTGTCCAT



AAGCTTTA

GGAAGAAAGCC

CGGTTCCCGA





flavo_2_12
CGCCCAGTGGCTGCTCT
alpha_1_12
TGTGCACCGGCCCC
gamma_9_12
ACCTCCCTCTCTCGCA



CTGTCTAT

TTGCGGGAAGA

CTCTAGCCT





flavo_2_13
CCAGTGGCTGCTCTCTG
alpha_1_13
GTGCACCGGCCCCT
gamma_9_13
CTCCCTCTCTCGCACT



TCTATACC

TGCGGGAAGAA

CTAGCCTTC





flavo_2_14
CCCAGTGGCTGCTCTCT
alpha_1_14
TGCACCGGCCCCTT
gamma_9_14
TCTCTCGCACTCTAGC



GTCTATAC

GCGGGAAGAAA

CTTCCAGTA





flavo_2_15
TCGCCCAGTGGCTGCTC
alpha_1_15
CAGCACCTGTGCAC
gamma_9_15
TCGCACTCTAGCCTTC



TCTGTCTA

CGGCCCCTTGC

CAGTATCGG





flavo_2_16
GCCCAGTGGCTGCTCTC
alpha_1_16
TTGCGGGAAGAAAG
gamma_9_16
CTCGCACTCTAGCCTT



TGTCTATA

CCATCTCTGGC

CCAGTATCG





flavo_2_17
GACTCCGATCCGAACTG
alpha_1_17
GGCCCCTTGCGGGA
gamma_9_17
TACCTCCCTCTCTCGC



TGATATAG

AGAAAGCCATC

ACTCTAGCC





flavo_2_18
AGAACGCATACTCATCT
alpha_1_18
CCTTGCGGGAAGAA
gamma_9_18
CTCTCGCACTCTAGCC



CTTACCGC

AGCCATCTCTG

TTCCAGTAT





flavo_2_19
GAACGCATACTCATCTC
alpha_1_19
GCAGCACCTGTGCA
gamma_9_19
CCCTCTCTCGCACTCT



TTACCGCC

CCGGCCCCTTG

AGCCTTCCA





flavo_2_20
CACGTAGAGCGGTTTCT
alpha_1_20
TGCGGGAAGAAAGC
gamma_9_20
TGCAGCACCTGTCCA



TCCTGTAT

CATCTCTGGCG

TCGGTTCCCG





flavo_2_21
GTCCTGTCACACTACAT
alpha_1_21
AAAGCCATCTCTGG
gamma_9_21
ACTCCGTGGTAATCG



TTAAGCCC

CGATCATACCG

CCCTCCCGAA





flavo_2_22
ACTCATCTCTTACCGCC
alpha_1_22
GCCCCTTGCGGGAA
gamma_9_22
TCCATCGGTTCCCGA



GAAGCTTT

GAAAGCCATCT

AGGCACCAAT





flavo_2_23
CCCCTATCTATCGTAGC
alpha_1_23
AACAGCAAGCTGCC
gamma_9_23
TCACTCCGTGGTAATC



CATGGTGT

CAACGGCTAGC

GCCCTCCCG





flavo_2_24
CCCTATCTATCGTAGCC
alpha_1_24
CATGCAGCACCTGT
gamma_9_24
TCCCTCTCTCGCACTC



ATGGTGTG

GCACCGGCCCC

TAGCCTTCC





flavo_2_25
CCTATCTATCGTAGCCA
alpha_1_25
GCAAGCTGCCCAAC
gamma_9_25
CCTCTCTCGCACTCTA



TGGTGTGC

GGCTAGCATCC

GCCTTCCAG





flavo_3_1
CTGTCACCTAACATTTA
alpha_2_1
GTGACCCAGAAAGT
gamma_10_1
CGCAGGCACATCCGA



AGCCCTGG

TGCCTTCGCAT

TAGCGAGAGC





flavo_3_2
CCGTCAAGCTTTCTCAC
alpha_2_2
GTATTCACCGCGAC
gamma_10_2
ACGCAGGCACATCCG



GAGAAAGT

GCGCTGATTCG

ATAGCGAGAG





flavo_3_3
ACCGTCAAGCTTTCTCA
alpha_2_3
CGTATTCACCGCGA
gamma_10_3
GCGGCTTCGCGGCCC



CGAGAAAG

CGCGCTGATTC

TCTGTACTTG





flavo_3_4
CTCTGACTTATTTGTCC
alpha_2_4
TATTCACCGCGACG
gamma_10_4
CGGCTTCGCGGCCCT



ACCTACGG

CGCTGATTCGC

CTGTACTTGC





flavo_3_5
CCTCTGACTTATTTGTC
alpha_2_5
ACGTATTCACCGCG
gamma_10_5
GGCTTCGCGGCCCTCT



CACCTACG

ACGCGCTGATT

GTACTTGCC





flavo_3_6
GTACCGTCAAGCTTTCT
alpha_2_6
GGAACGTATTCACC
gamma_10_6
CGCGGCTTCGCGGCC



CACGAGAA

GCGACGCGCTG

CTCTGTACTT





flavo_3_7
GAGGCAGATTGTATACG
alpha_2_7
CCGGGAACGTATTC
gamma_10_7
GCTTCGCGGCCCTCTG



CGATACTC

ACCGCGACGCG

TACTTGCCA





flavo_3_8
TCTATCGTAGCCTAGGT
alpha_2_8
CGGGAACGTATTCA
gamma_10_8
CACTACTGGGTAGTTT



GTGCCGTT

CCGCGACGCGC

CCTACGCGT





flavo_3_9
CCCCTATCTATCGTAGC
alpha_2_9
GGGAACGTATTCAC
gamma_10_9
CCACTACTGGGTAGT



CTAGGTGT

CGCGACGCGCT

TTCCTACGCG





flavo_3_10
ATCTATCGTAGCCTAGG
alpha_2_10
AACGTATTCACCGC
gamma_10_10
CCCCACTACTGGGTA



TGTGCCGT

GACGCGCTGAT

GTTTCCTACG





flavo_3_11
CCCTATCTATCGTAGCC
alpha_2_11
GAACGTATTCACCG
gamma_10_11
CCCACTACTGGGTAG



TAGGTGTG

CGACGCGCTGA

TTTCCTACGC





flavo_3_12
TATCTATCGTAGCCTAG
alpha_2_12
CCCGGGAACGTATT
gamma_10_12
CCCCCACTACTGGGT



GTGTGCCG

CACCGCGACGC

AGTTTCCTAC





flavo_3_13
CCTATCTATCGTAGCCT
alpha_2_13
ATTCACCGCGACGC
gamma_10_13
ACTACCGGGTAGTTT



AGGTGTGC

GCTGATTCGCG

CCTACGCGTT





flavo_3_14
CTATCTATCGTAGCCTA
alpha_2_14
CCGCGACGCGCTGA
gamma_10_14
CACTACCGGGTAGTT



GGTGTGCC

TTCGCGATTAC

TCCTACGCGT





flavo_3_15
CTATCGTAGCCTAGGTG
alpha_2_15
CACCGCGACGCGCT
gamma_10_15
ACCGGGTAGTTTCCT



TGCCGTTA

GATTCGCGATT

ACGCGTTACT





flavo_3_16
TATCGTAGCCTAGGTGT
alpha_2_16
CGCGACGCGCTGAT
gamma_10_16
CCACTACCGGGTAGT



GCCGTTAC

TCGCGATTACT

TTCCTACGCG





flavo_3_17
CTTATTTGTCCACCTAC
alpha_2_17
TCACCGCGACGCGC
gamma_10_17
CCCCACTACCGGGTA



GGACCCTT

TGATTCGCGAT

GTTTCCTACG





flavo_3_18
ACTTATTTGTCCACCTA
alpha_2_18
ACCGCGACGCGCTG
gamma_10_18
CCGGGTAGTTTCCTAC



CGGACCCT

ATTCGCGATTA

GCGTTACTC





flavo_3_19
GACTTATTTGTCCACCT
alpha_2_19
GCGACGCGCTGATT
gamma_10_19
CCCACTACCGGGTAG



ACGGACCC

CGCGATTACTA

TTTCCTACGC





flavo_3_20
TGACTTATTTGTCCACC
alpha_2_20
TTCACCGCGACGCG
gamma_10_20
TACCGGGTAGTTTCCT



TACGGACC

CTGATTCGCGA

ACGCGTTAC





flavo_3_21
CTGACTTATTTGTCCAC
alpha_2_21
TCCTCAGTGTCAGTA
gamma_10_21
CCCCCACTACCGGGT



CTACGGAC

GTGACCCAGA

AGTTTCCTAC





flavo_3_22
AGATTGTATACGCGATA
alpha_2_22
CCCAGAAAGTTGCC
gamma_10_22
CTACCGGGTAGTTTCC



CTCACCCG

TTCGCATTTGG

TACGCGTTA





flavo_3_23
GATTGTATACGCGATAC
alpha_2_23
AGTGCGGGCTCATC
gamma_10_23
CTGTTGTCCCCCACTA



TCACCCGT

TTTCGGCGTAT

CTGGGTAGT





flavo_3_24
TCTTCGGGCTATTCCCT
alpha_2_24
AAGTGCGGGCTCAT
gamma_10_24
CTAGCTAATCTCACG



AGTATGAG

CTTTCGGCGTA

CAGGCACATC





flavo_3_25
CTTCGGGCTATTCCCTA
alpha_2_25
GTGCGGGCTCATCTT
gamma_10_25
CAACTAGCTAATCTC



GTATGAGG

TCGGCGTATA

ACGCAGGCAC





flavo_4_1
CAGGAGATATTCCCATA
alpha_3_1
CACCTGTATCCAATC
gamma_11_1
GCTTTCCCCCGTAGG



CTATGGGG

CACCCGAAGT

ATATATGCGG





flavo_4_2
TCAAACTCCCACACGTG
alpha_3_2
ACCTGTATCCAATCC
gamma_11_2
CTTTCCCCCGTAGGAT



GGAGTGGT

ACCCGAAGTG

ATATGCGGT





flavo_4_3
CAAACTCCCACACGTGG
alpha_3_3
CCTGTATCCAATCCA
gamma_11_3
TGCTTTCCCCCGTAGG



GAGTGGTT

CCCGAAGTGA

ATATATGCG





flavo_4_4
GTCAAACTCCCACACGT
alpha_3_4
GCACCTGTATCCAA
gamma_11_4
CTGCTTTCCCCCGTAG



GGGAGTGG

TCCACCCGAAG

GATATATGC





flavo_4_5
GGAGATATTCCCATACT
alpha_3_5
GGCAGTTCCTTCAA
gamma_11_5
CCTGCTTTCCCCCGTA



ATGGGGCA

AGTTCCCACCA

GGATATATG





flavo_4_6
AGGAGATATTCCCATAC
alpha_3_6
AGCACCTGTATCCA
gamma_11_6
CCCTGCTTTCCCCCGT



TATGGGGC

ATCCACCCGAA

AGGATATAT





flavo_4_7
CGTCAAACTCCCACACG
alpha_3_7
CGGCAGTTCCTTCA
gamma_11_7
CTCACTCAGGCTCATC



TGGGAGTG

AAGTTCCCACC

AAATAGCGC





flavo_4_8
AAACTCCCACACGTGGG
alpha_3_8
CAGCACCTGTATCC
gamma_11_8
CCCCTGCTTTCCCCCG



AGTGGTTC

AATCCACCCGA

TAGGATATA





flavo_4_9
CTGGGCTATTCCCCTCC
alpha_3_9
CCGGCAGTTCCTTCA
gamma_11_9
GTGTCAGTATCGAGC



AAAAGGTA

AAGTTCCCAC

CAGTCAGTCG





flavo_4_10
CCGTCAAACTCCCACAC
alpha_3_10
GCAGCACCTGTATC
gamma_11_10
TCAGTGTCAGTATCG



GTGGGAGT

CAATCCACCCG

AGCCAGTCAG





flavo_4_11
CTTAACCACTCAGCCCT
alpha_3_11
TGCAGCACCTGTAT
gamma_11_11
AGTGTCAGTATCGAG



TAATCGGG

CCAATCCACCC

CCAGTCAGTC





flavo_4_12
GTTTCCCTGGGCTATTC
alpha_3_12
TCACCGGCAGTTCCT
gamma_11_12
TGTCAGTATCGAGCC



CCCTCCAA

TCAAAGTTCC

AGTCAGTCGC





flavo_4_13
GCTTAACCACTCAGCCC
alpha_3_13
CTTACAAATCCGCCT
gamma_11_13
CAGTGTCAGTATCGA



TTAATCGG

ACGCTCGCTT

GCCAGTCAGT





flavo_4_14
AACTCCCACACGTGGGA
alpha_3_14
ATGCAGCACCTGTA
gamma_11_14
CTCAGTGTCAGTATC



GTGGTTCT

TCCAATCCACC

GAGCCAGTCA





flavo_4_15
ACCGTCAAACTCCCACA
alpha_3_15
CGGGCCCATCCAAT
gamma_11_15
TCCCCTGCTTTCCCCC



CGTGGGAG

AGCGCATAAAG

GTAGGATAT





flavo_4_16
CCACACGTGGGAGTGGT
alpha_3_16
GGGCCCATCCAATA
gamma_11_16
CCCCACCAACTAGCT



TCTTCCTC

GCGCATAAAGC

AATCTCACTC





flavo_4_17
AGTTTCCCTGGGCTATT
alpha_3_17
GCGGGCCCATCCAA
gamma_11_17
CCTCAGTGTCAGTATC



CCCCTCCA

TAGCGCATAAA

GAGCCAGTC





flavo_4_18
TTAACCACTCAGCCCTT
alpha_3_18
ACTTACAAATCCGC
gamma_11_18
GTCCCCTGCTTTCCCC



AATCGGGC

CTACGCTCGCT

CGTAGGATA





flavo_4_19
CACGTGGGAGTGGTTCT
alpha_3_19
CGCGGGCCCATCCA
gamma_11_19
TCAGTATCGAGCCAG



TCCTCTGT

ATAGCGCATAA

TCAGTCGCCT





flavo_4_20
CACACGTGGGAGTGGTT
alpha_3_20
GGCCCATCCAATAG
gamma_11_20
GTATCGAGCCAGTCA



CTTCCTCT

CGCATAAAGCT

GTCGCCTTCG





flavo_4_21
ACACGTGGGAGTGGTTC
alpha_3_21
CACCGGCAGTTCCTT
gamma_11_21
AGTATCGAGCCAGTC



TTCCTCTG

CAAAGTTCCC

AGTCGCCTTC





flavo_4_22
CGCTTAACCACTCAGCC
alpha_3_22
ACCGGCAGTTCCTTC
gamma_11_22
TATCGAGCCAGTCAG



CTTAATCG

AAAGTTCCCA

TCGCCTTCGC





flavo_4_23
ACGTGGGAGTGGTTCTT
alpha_3_23
AACTTACAAATCCG
gamma_11_23
ATCGAGCCAGTCAGT



CCTCTGTA

CCTACGCTCGC

CGCCTTCGCC





flavo_4_24
TTTCCCTGGGCTATTCC
alpha_3_24
CGCATAAAGCTTTCT
gamma_11_24
GTCAGTATCGAGCCA



CCTCCAAA

CCCGAAGGAC

GTCAGTCGCC





flavo_4_25
TTCCCTGGGCTATTCCC
alpha_3_25
CATGCAGCACCTGT
gamma_11_25
CAGTATCGAGCCAGT



CTCCAAAA

ATCCAATCCAC

CAGTCGCCTT





flavo_5_1
CGTCAACAGTTCACACG
roseo_1_1
CTCTGGAATCCGCG
gamma_12_1
CACTACCTGGTAGAT



TGAACCTT

ACAAGTATGTC

TCCTACGCGT





flavo_5_2
ACAGTACCGTCAACAGT
roseo_1_2
TGCCCCTATAAATA
gamma_12_2
CCACTACCTGGTAGA



TCACACGT

GTTGGCGCACC

TTCCTACGCG





flavo_5_3
CCGTCAACAGTTCACAC
roseo_1_3
CCCTATAAATAGTTG
gamma_12_3
CCCACTACCTGGTAG



GTGAACCT

GCGCACCACC

ATTCCTACGC





flavo_5_4
CAGTACCGTCAACAGTT
roseo_1_4
CCCCTATAAATAGTT
gamma_12_4
AACTGTTGTCCCCCAC



CACACGTG

GGCGCACCAC

TACCTGGTA





flavo_5_5
TACAGTACCGTCAACAG
roseo_1_5
GCCCCTATAAATAG
gamma_12_5
CAACTGTTGTCCCCCA



TTCACACG

TTGGCGCACCA

CTACCTGGT





flavo_5_6
ACCGTCAACAGTTCACA
roseo_1_6
CGTGGTTGGCTGCC
gamma_12_6
CCAACTGTTGTCCCCC



CGTGAACC

CCTATAAATAG

ACTACCTGG





flavo_5_7
CTACAGTACCGTCAACA
roseo_1_7
CTGCCCCTATAAAT
gamma_12_7
CCCCACTACCTGGTA



GTTCACAC

AGTTGGCGCAC

GATTCCTACG





flavo_5_8
TACCGTCAACAGTTCAC
roseo_1_8
CCGTGGTTGGCTGC
gamma_12_8
CGGTATTGCAACCCT



ACGTGAAC

CCCTATAAATA

CTGTACGCCC





flavo_5_9
AGTACCGTCAACAGTTC
roseo_1_9
TGGCTGCCCCTATA
gamma_12_9
ACTGTTGTCCCCCACT



ACACGTGA

AATAGTTGGCG

ACCTGGTAG





flavo_5_10
GTACCGTCAACAGTTCA
roseo_1_10
GGCTGCCCCTATAA
gamma_12_10
TCCAACTGTTGTCCCC



CACGTGAA

ATAGTTGGCGC

CACTACCTG





flavo_5_11
CCTACAGTACCGTCAAC
roseo_1_11
GGAATCCGCGACAA
gamma_12_11
CCCCCACTACCTGGT



AGTTCACA

GTATGTCAAGG

AGATTCCTAC





flavo_5_12
TCCTACAGTACCGTCAA
roseo_1_12
GCTGCCCCTATAAA
gamma_12_12
GCGGTATTGCAACCC



CAGTTCAC

TAGTTGGCGCA

TCTGTACGCC





flavo_5_13
CCGAAGAAAAAGATGT
roseo_1_13
ACCGTGGTTGGCTG
gamma_12_13
GCGGTATCGCAACCC



TTCCACCCC

CCCCTATAAAT

TCTGTACGTT





flavo_5_14
CTCAGACCGCAATTAGT
roseo_1_14
CCATCTCTGGAATCC
gamma_12_14
TCTATCAGTTTGGGGT



CCGAACAG

GCGACAAGTA

GCAGTTCCC





flavo_5_15
TAGCCACTCAGACCGCA
roseo_1_15
ATAGTTGGCGCACC
gamma_12_15
GTCTATCAGTTTGGG



ATTAGTCC

ACCTTCGGGTA

GTGCAGTTCC





flavo_5_16
TTAGCCACTCAGACCGC
roseo_1_16
GGAATCCATCTCTG
gamma_12_16
CTGTTGTCCCCCACTA



AATTAGTC

GAATCCGCGAC

CCTGGTAGA





flavo_5_17
ACTCAGACCGCAATTAG
roseo_1_17
TACCGTGGTTGGCTG
gamma_12_17
CTATCAGTTTGGGGT



TCCGAACA

CCCCTATAAA

GCAGTTCCCA





flavo_5_18
AGATGTTTCCACCCCTG
roseo_1_18
GAATCCGCGACAAG
gamma_12_18
CTGTTGCTAACGTCAC



TCAAACTG

TATGTCAAGGG

AGCTAAGGG





flavo_5_19
CAGACCGCAATTAGTCC
roseo_1_19
TCCATCTCTGGAATC
gamma_12_19
CAGTTTGGGGTGCAG



GAACAGCT

CGCGACAAGT

TTCCCAGGTT





flavo_5_20
GCCACTCAGACCGCAAT
roseo_1_20
ATCCATCTCTGGAAT
gamma_12_20
AGTTTGGGGTGCAGT



TAGTCCGA

CCGCGACAAG

TCCCAGGTTG





flavo_5_21
CACTCAGACCGCAATTA
roseo_1_21
TAGTTGGCGCACCA
gamma_12_21
TTCCAACTGTTGTCCC



GTCCGAAC

CCTTCGGGTAG

CCACTACCT





flavo_5_22
CTTAGCCACTCAGACCG
roseo_1_22
CCTACCGTGGTTGG
gamma_12_22
TATCAGTTTGGGGTG



CAATTAGT

CTGCCCCTATA

CAGTTCCCAG





flavo_5_23
AGCCACTCAGACCGCA
roseo_1_23
CTACCGTGGTTGGCT
gamma_12_23
CGGTATCGCAACCCT



ATTAGTCCG

GCCCCTATAA

CTGTACGTTC





flavo_5_24
TCAGACCGCAATTAGTC
roseo_1_24
ACGTCGTCCACACC
gamma_12_24
CCCCACCAACTAACT



CGAACAGC

TTCCTCCGGCT

AATCTCACGC





flavo_5_25
ACTTTCGCTTAGCCACT
roseo_1_25
GACGTCGTCCACAC
gamma_12_25
GTCAGCGACTAGCAA



CAGACCGC

CTTCCTCCGGC

GCTAGTCCTG





flavo_6_1
AGTGCCGGAGTTAAGCC
roseo_2_1
GTCACCGGGTCACC
gamma_13_1
CGCCACTGAAAGACA



CCTGCATT

GAAGTGAAAAC

TTGTCTCCCA





flavo_6_2
GTGCCGGAGTTAAGCCC
roseo_2_2
ACCGGGTCACCGAA
gamma_13_2
GCGCCACTGAAAGAC



CTGCATTT

GTGAAAACCAG

ATTGTCTCCC





flavo_6_3
CAGTGCCGGAGTTAAGC
roseo_2_3
CACCGGGTCACCGA
gamma_13_3
TGCGCCACTGAAAGA



CCCTGCAT

AGTGAAAACCA

CATTGTCTCC





flavo_6_4
TGCCGGAGTTAAGCCCC
roseo_2_4
TCACCGGGTCACCG
gamma_13_4
TGTCAGTACAGATCC



TGCATTTC

AAGTGAAAACC

AGGAGGCCGC





flavo_6_5
AGTTAAGCCCCTGCATT
roseo_2_5
TGTCACCGGGTCAC
gamma_13_5
GTGTCAGTACAGATC



TCACCACT

CGAAGTGAAAA

CAGGAGGCCG





flavo_6_6
GCAGTGCCGGAGTTAA
roseo_2_6
CCGGGTCACCGAAG
gamma_13_6
CTGCGCCACTGAAAG



GCCCCTGCA

TGAAAACCAGA

ACATTGTCTC





flavo_6_7
GTTAAGCCCCTGCATTT
roseo_2_7
AGATCTCTCTGGCG
gamma_13_7
CTTGGCTCCAAAAGG



CACCACTG

GTCCCGGGATG

CACACTCTCA





flavo_6_8
GGCAGTGCCGGAGTTA
roseo_2_8
ACCAGATCTCTCTG
gamma_13_8
GAGAGCTTCAAGAGA



AGCCCCTGC

GCGGTCCCGGG

GGCCCTCTTT





flavo_6_9
TGGCAGTGCCGGAGTTA
roseo_2_9
AACCAGATCTCTCT
gamma_13_9
CGAGAGCTTCAAGAG



AGCCCCTG

GGCGGTCCCGG

AGGCCCTCTT





flavo_6_10
GAGTTAAGCCCCTGCAT
roseo_2_10
AAACCAGATCTCTC
gamma_13_10
GCGAGAGCTTCAAGA



TTCACCAC

TGGCGGTCCCG

GAGGCCCTCT





flavo_6_11
GCCGGAGTTAAGCCCCT
roseo_2_11
TCTCTGGCGGTCCCG
gamma_13_11
TAGCGAGAGCTTCAA



GCATTTCA

GGATGTCAAG

GAGAGGCCCT





flavo_6_12
ATGGCAGTGCCGGAGTT
roseo_2_12
ATCTCTCTGGCGGTC
gamma_13_12
AGAGCTTCAAGAGAG



AAGCCCCT

CCGGGATGTC

GCCCTCTTTC





flavo_6_13
TTAAGCCCCTGCATTTC
roseo_2_13
GATCTCTCTGGCGGT
gamma_13_13
AGCGAGAGCTTCAAG



ACCACTGA

CCCGGGATGT

AGAGGCCCTC





flavo_6_14
GGAGTTAAGCCCCTGCA
roseo_2_14
CAGATCTCTCTGGC
gamma_13_14
GTCAGTACAGATCCA



TTTCACCA

GGTCCCGGGAT

GGAGGCCGCC





flavo_6_15
CGGAGTTAAGCCCCTGC
roseo_2_15
TCTGGCGGTCCCGG
gamma_13_15
TCAGTACAGATCCAG



ATTTCACC

GATGTCAAGGG

GAGGCCGCCT





flavo_6_16
CCCTGCATTTCACCACT
roseo_2_16
CTCTGGCGGTCCCG
gamma_13_16
CAGTACAGATCCAGG



GACTTATC

GGATGTCAAGG

AGGCCGCCTT





flavo_6_17
CAATGGCAGTGCCGGA
roseo_2_17
CCAGATCTCTCTGGC
gamma_13_17
AGTACAGATCCAGGA



GTTAAGCCC

GGTCCCGGGA

GGCCGCCTTC





flavo_6_18
TCAATGGCAGTGCCGGA
roseo_2_18
TCTCTCTGGCGGTCC
gamma_13_18
GCTGCGCCACTGAAA



GTTAAGCC

CGGGATGTCA

GACATTGTCT





flavo_6_19
CCTTACGGTCACCGACT
roseo_2_19
CTCTCTGGCGGTCCC
gamma_13_19
GAGCTTCAAGAGAGG



TCAGGCAC

GGGATGTCAA

CCCTCTTTCT





flavo_6_20
CCGGAGTTAAGCCCCTG
roseo_2_20
CTGGCGGTCCCGGG
gamma_13_20
TCTTGGCTCCAAAAG



CATTTCAC

ATGTCAAGGGT

GCACACTCTC





flavo_6_21
AATGGCAGTGCCGGAG
roseo_2_21
ACCTGTCACCGGGT
gamma_13_21
AGTGTCAGTACAGAT



TTAAGCCCC

CACCGAAGTGA

CCAGGAGGCC





flavo_6_22
TATCAATGGCAGTGCCG
roseo_2_22
CCTGTCACCGGGTC
gamma_13_22
GGCCCTCTTTCTCCCT



GAGTTAAG

ACCGAAGTGAA

TAGGAGGTA





flavo_6_23
GTATCAATGGCAGTGCC
roseo_2_23
CTGTCACCGGGTCA
gamma_13_23
AGCTTCAAGAGAGGC



GGAGTTAA

CCGAAGTGAAA

CCTCTTTCTC





flavo_6_24
CCCCTGCATTTCACCAC
roseo_2_24
CGGGTCACCGAAGT
gamma_13_24
AGCTGCGCCACTGAA



TGACTTAT

GAAAACCAGAT

AGACATTGTC





flavo_6_25
TAAGCCCCTGCATTTCA
roseo_2_25
AAAACCAGATCTCT
gamma_13_25
CGAGAGCATCAAGAG



CCACTGAC

CTGGCGGTCCC

AGGCCCTCTT





flavo_7_1
TCTTACAGTACCGTCAC
roseo_3_1
GCCGCTACACCCGA
gamma_14_1
GGCGGTCAACTTACT



CAGACTAC

AGGTGCCGCTC

ACGTTAGCTG





flavo_7_2
CTTACAGTACCGTCACC
roseo_3_2
CTACACCCGAAGGT
gamma_14_2
CCAGGCGGTCAACTT



AGACTACA

GCCGCTCGACT

ACTACGTTAG





flavo_7_3
CGTCACCAGACTACACG
roseo_3_3
GCTACACCCGAAGG
gamma_14_3
GCGGTCAACTTACTA



TAGTCCTT

TGCCGCTCGAC

CGTTAGCTGC





flavo_7_4
GTACCGTCACCAGACTA
roseo_3_4
CCGCTACACCCGAA
gamma_14_4
CAGGCGGTCAACTTA



CACGTAGT

GGTGCCGCTCG

CTACGTTAGC





flavo_7_5
CCGTCACCAGACTACAC
roseo_3_5
CGCTACACCCGAAG
gamma_14_5
CCCAGGCGGTCAACT



GTAGTCCT

GTGCCGCTCGA

TACTACGTTA





flavo_7_6
TACCGTCACCAGACTAC
roseo_3_6
CGCCGCTACACCCG
gamma_14_6
CCGAGGGCACTGCTT



ACGTAGTC

AAGGTGCCGCT

CATTACAAAG





flavo_7_7
ACCGTCACCAGACTACA
roseo_3_7
CCGCCGCTACACCC
gamma_14_7
CGAGGGCACTGCTTC



CGTAGTCC

GAAGGTGCCGC

ATTACAAAGC





flavo_7_8
TTACAGTACCGTCACCA
roseo_3_8
TACACCCGAAGGTG
gamma_14_8
TCCCGAGGGCACTGC



GACTACAC

CCGCTCGACTT

TTCATTACAA





flavo_7_9
GTCACCAGACTACACGT
roseo_3_9
TCCGCCGCTACACC
gamma_14_9
CCCGAGGGCACTGCT



AGTCCTTA

CGAAGGTGCCG

TCATTACAAA





flavo_7_10
TACAGTACCGTCACCAG
roseo_3_10
ACACCCGAAGGTGC
gamma_14_10
CCCCAGGCGGTCAAC



ACTACACG

CGCTCGACTTG

TTACTACGTT





flavo_7_11
ACAGTACCGTCACCAGA
roseo_3_11
GTCCGCCGCTACAC
gamma_14_11
TCCCCAGGCGGTCAA



CTACACGT

CCGAAGGTGCC

CTTACTACGT





flavo_7_12
AACTTTCACCCCTGACT
roseo_3_12
ACCCGAAGGTGCCG
gamma_14_12
CTCCCGAGGGCACTG



TAACAGCC

CTCGACTTGCA

CTTCATTACA





flavo_7_13
CAGTACCGTCACCAGAC
roseo_3_13
CACCCGAAGGTGCC
gamma_14_13
CTCCCCAGGCGGTCA



TACACGTA

GCTCGACTTGC

ACTTACTACG





flavo_7_14
CCGGTCGTCAGCAAGA
roseo_3_14
CGTCCGCCGCTACA
gamma_14_14
GCTCCCGAGGGCACT



GCAAGCTCC

CCCGAAGGTGC

GCTTCATTAC





flavo_7_15
ACTTTCACCCCTGACTT
roseo_3_15
CACCTGGTCTCTTAC
gamma_14_15
TCTTGGCTCCCGAGG



AACAGCCC

GAGAAAACCG

GCACTGCTTC





flavo_7_16
CCCTGACTTAACAGCCC
roseo_3_16
CCAGGAGTTTTGGA
gamma_14_16
GGCTCCCGAGGGCAC



GCCTACGG

GGCCGTTCCAG

TGCTTCATTA





flavo_7_17
TCGCTTGGCCGCTCAGA
roseo_3_17
ACCTGGTCTCTTACG
gamma_14_17
TATCTTGGCTCCCGAG



TCGAAATC

AGAAAACCGG

GGCACTGCT





flavo_7_18
CGCTTGGCCGCTCAGAT
roseo_3_18
CCGGATCTCTCCGG
gamma_14_18
ACTCCCCAGGCGGTC



CGAAATCC

CGGTCCAGGGA

AACTTACTAC





flavo_7_19
TTCGCTTGGCCGCTCAG
roseo_3_19
CCCGAAGGTGCCGC
gamma_14_19
ATCTTGGCTCCCGAG



ATCGAAAT

TCGACTTGCAT

GGCACTGCTT





flavo_7_20
TTTCGCTTGGCCGCTCA
roseo_3_20
ACCAGGAGTTTTGG
gamma_14_20
TACTACGTTAGCTGC



GATCGAAA

AGGCCGTTCCA

GCCACTGAGA





flavo_7_21
GCTTGGCCGCTCAGATC
roseo_3_21
CAGGAGTTTTGGAG
gamma_14_21
GTATCTTGGCTCCCGA



GAAATCCA

GCCGTTCCAGG

GGGCACTGC





flavo_7_22
CTTGGCCGCTCAGATCG
roseo_3_22
CCGAAGGTGCCGCT
gamma_14_22
CTTGGCTCCCGAGGG



AAATCCAA

CGACTTGCATG

CACTGCTTCA





flavo_7_23
TTGGCCGCTCAGATCGA
roseo_3_23
CCGTCCGCCGCTAC
gamma_14_23
TGGCTCCCGAGGGCA



AATCCAAA

ACCCGAAGGTG

CTGCTTCATT





flavo_7_24
GGCTATCCCTTAGTGTA
roseo_3_24
AAACCGGATCTCTC
gamma_14_24
ACTACGTTAGCTGCG



AGGCAGAT

CGGCGGTCCAG

CCACTGAGAA





flavo_7_25
GGGCTATCCCTTAGTGT
roseo_3_25
CCTGGTCTCTTACGA
gamma_14_25
TTGGCTCCCGAGGGC



AAGGCAGA

GAAAACCGGA

ACTGCTTCAT





flavo_8_1
GCCGAAATACGGTACTA
roseo_4_1
CGTACCATCTCTGGT
gamma_15_1
TCCGTAGAAGTCCGG



CGGGGCAT

AGTAGCACAG

GCCGTGTCTC





flavo_8_2
GATGCCGAAATACGGT
roseo_4_2
CCATCTCTGGTAGTA
gamma_15_2
CCGTAGAAGTCCGGG



ACTACGGGG

GCACAGGATG

CCGTGTCTCA





flavo_8_3
ATGCCGAAATACGGTAC
roseo_4_3
GTACCATCTCTGGTA
gamma_15_3
CGTAGAAGTCCGGGC



TACGGGGC

GTAGCACAGG

CGTGTCTCAG





flavo_8_4
TGCCGAAATACGGTACT
roseo_4_4
CTGGTAGTAGCACA
gamma_15_4
GTAGAAGTCCGGGCC



ACGGGGCA

GGATGTCAAGG

GTGTCTCAGT





flavo_8_5
ACCGTATAACGATGCCG
roseo_4_5
TGGTAGTAGCACAG
gamma_15_5
TTCCGTAGAAGTCCG



AAATACGG

GATGTCAAGGG

GGCCGTGTCT





flavo_8_6
CCGTATAACGATGCCGA
roseo_4_6
GAAGGGAACGTACC
gamma_15_6
CTTCCGTAGAAGTCC



AATACGGT

ATCTCTGGTAG

GGGCCGTGTC





flavo_8_7
CGATGCCGAAATACGGT
roseo_4_7
CCTTAGAGAAGGGC
gamma_15_7
TAGAAGTCCGGGCCG



ACTACGGG

ATATTCCCACG

TGTCTCAGTC





flavo_8_8
CCGAAATACGGTACTAC
roseo_4_8
GGTAGTAGCACAGG
gamma_15_8
ACTGCTGCCTTCCGTA



GGGGCATT

ATGTCAAGGGT

GAAGTCCGG





flavo_8_9
ACGATGCCGAAATACG
roseo_4_9
GGGAACGTACCATC
gamma_15_9
CATGCAGTCGAGTTC



GTACTACGG

TCTGGTAGTAG

CAGACTGCAA





flavo_8_10
AACGATGCCGAAATAC
roseo_4_10
GGAACGTACCATCT
gamma_15_10
CCTCGAGCTATCCCCC



GGTACTACG

CTGGTAGTAGC

TCCATTGGG





flavo_8_11
CGAAGGAAAAGTCATC
roseo_4_11
CGAAGGGAACGTAC
gamma_15_11
AGAAGTCCGGGCCGT



TCTGACCCT

CATCTCTGGTA

GTCTCAGTCC





flavo_8_12
CGAAATACGGTACTACG
roseo_4_12
CCGAAGGGAACGTA
gamma_15_12
TCCTCGAGCTATCCCC



GGGCATTA

CCATCTCTGGT

CTCCATTGG





flavo_8_13
CCGAAGGAAAAGTCAT
roseo_4_13
CGTCCCCGAAGGGA
gamma_15_13
CTCGAGCTATCCCCCT



CTCTGACCC

ACGTACCATCT

CCATTGGGT





flavo_8_14
GTCATCTCTGACCCTGT
roseo_4_14
CCCCGAAGGGAACG
gamma_15_14
TCATGCAGTCGAGTT



CAATATGC

TACCATCTCTG

CCAGACTGCA





flavo_8_15
CCCGAAGGAAAAGTCA
roseo_4_15
GTCCCCGAAGGGAA
gamma_15_15
CCTTCCGTAGAAGTC



TCTCTGACC

CGTACCATCTC

CGGGCCGTGT





flavo_8_16
TACAAGGCAGGTTCCAT
roseo_4_16
GCGTCCCCGAAGGG
gamma_15_16
GCGCCACTGGATAAA



ACGCGGTG

AACGTACCATC

TCCAACGGCT





flavo_8_17
GGCTTTAACCGTATAAC
roseo_4_17
ACTGCGTCCCCGAA
gamma_15_17
TGCGCCACTGGATAA



GATGCCGA

GGGAACGTACC

ATCCAACGGC





flavo_8_18
CTGGGCTATTCCCCTGT
roseo_4_18
CTGCGTCCCCGAAG
gamma_15_18
TTCCTCGAGCTATCCC



ACAAGGCA

GGAACGTACCA

CCTCCATTG





flavo_8_19
GAAGGAAAAGTCATCT
roseo_4_19
CCCGAAGGGAACGT
gamma_15_19
GTTCCAGACTGCAAT



CTGACCCTG

ACCATCTCTGG

TCGGACTACG





flavo_8_20
GCCCGAAGGAAAAGTC
roseo_4_20
TGCGTCCCCGAAGG
gamma_15_20
CCAGCTCGCGCTTTG



ATCTCTGAC

GAACGTACCAT

GCAACCGTTT





flavo_8_21
GTACAAGGCAGGTTCCA
roseo_4_21
CTTAGAGAAGGGCA
gamma_15_21
TCGAGCTATCCCCCTC



TACGCGGT

TATTCCCACGC

CATTGGGTA





flavo_8_22
TGTACAAGGCAGGTTCC
roseo_4_22
GAAGGGCGCGCTCG
gamma_15_22
GCTGCGCCACTGGAT



ATACGCGG

ACTTGCATGTA

AAATCCAACG





flavo_8_23
CCTGGGCTATTCCCCTG
roseo_4_23
CACTGCGTCCCCGA
gamma_15_23
CGCCACTGGATAAAT



TACAAGGC

AGGGAACGTAC

CCAACGGCTA





flavo_8_24
ACAAGGCAGGTTCCATA
roseo_4_24
TCACTGCGTCCCCG
gamma_15_24
CTGCGCCACTGGATA



CGCGGTGC

AAGGGAACGTA

AATCCAACGG





flavo_8_25
GGCAGGTTCCATACGCG
roseo_4_25
TCCCCGAAGGGAAC
gamma_15_25
TTTCCTCGAGCTATCC



GTGCGCAC

GTACCATCTCT

CCCTCCATT





flavo_9_1
ATTCCGCCTACTTCAAT
roseo_5_1
GTCACTATGTCCCG
gamma_16_1
TTTAAGGGTTTGGCTC



ACAACTCA

AAGGAAAGCCT

CAGCTCGCG





flavo_9_2
TTCCGCCTACTTCAATA
roseo_5_2
CCGAAGGAAAGCCT
gamma_16_2
TTTTAAGGGTTTGGCT



CAACTCAA

GATCTCTCAGG

CCAGCTCGC





flavo_9_3
TATTCCGCCTACTTCAA
roseo_5_3
TGTCACTATGTCCCG
gamma_16_3
TTAAGGGTTTGGCTCC



TACAACTC

AAGGAAAGCC

AGCTCGCGC





flavo_9_4
TCCGCCTACTTCAATAC
roseo_5_4
TCCCGAAGGAAAGC
gamma_16_4
GTTTTAAGGGTTTGGC



AACTCAAG

CTGATCTCTCA

TCCAGCTCG





flavo_9_5
CATATTCCGCCTACTTC
roseo_5_5
TCACTATGTCCCGA
gamma_16_5
CACGCGGTATACCTG



AATACAAC

AGGAAAGCCTG

GATCAGGGTT





flavo_9_6
CCGCCTACTTCAATACA
roseo_5_6
CCCGAAGGAAAGCC
gamma_16_6
ACACGCGGTATACCT



ACTCAAGA

TGATCTCTCAG

GGATCAGGGT





flavo_9_7
CGCCTACTTCAATACAA
roseo_5_7
CTGTCACTATGTCCC
gamma_16_7
CTTCCTCCGGGTTTCA



CTCAAGAT

GAAGGAAAGC

CCCGGCAGT





flavo_9_8
GAACTCAAGGTCCCGA
roseo_5_8
GTCCCGAAGGAAAG
gamma_16_8
TCCTCCGGGTTTCACC



ACAGCTAGT

CCTGATCTCTC

CGGCAGTCT





flavo_9_9
TCAGAACTCAAGGTCCC
roseo_5_9
GCCTGATCTCTCAG
gamma_16_9
CTTCACACACGCGGT



GAACAGCT

GTTGTCATAGG

ATACCTGGAT





flavo_9_10
ACTCAAGGTCCCGAACA
roseo_5_10
TGACTGACTAATCC
gamma_16_10
CACACGCGGTATACC



GCTAGTAT

GCCTACGTACG

TGGATCAGGG





flavo_9_11
GATGCCTATCAATAATA
roseo_5_11
CTGACTGACTAATC
gamma_16_11
ACACACGCGGTATAC



CCATGAGG

CGCCTACGTAC

CTGGATCAGG





flavo_9_12
AGAACTCAAGGTCCCG
roseo_5_12
CGAAGGAAAGCCTG
gamma_16_12
CACACACGCGGTATA



AACAGCTAG

ATCTCTCAGGT

CCTGGATCAG





flavo_9_13
CTCAAGGTCCCGAACAG
roseo_5_13
CACTATGTCCCGAA
gamma_16_13
CCTTCCTCCGGGTTTC



CTAGTATC

GGAAAGCCTGA

ACCCGGCAG





flavo_9_14
AACTCAAGGTCCCGAAC
roseo_5_14
GCACCTGTCACTAT
gamma_16_14
TTCCTCCGGGTTTCAC



AGCTAGTA

GTCCCGAAGGA

CCGGCAGTC





flavo_9_15
CAGAACTCAAGGTCCCG
roseo_5_15
CCTGTCACTATGTCC
gamma_16_15
CCTCCGGGTTTCACCC



AACAGCTA

CGAAGGAAAG

GGCAGTCTC





flavo_9_16
CTCAGAACTCAAGGTCC
roseo_5_16
CTATGTCCCGAAGG
gamma_16_16
TTCACACACGCGGTA



CGAACAGC

AAAGCCTGATC

TACCTGGATC





flavo_9_17
TCAAGGTCCCGAACAGC
roseo_5_17
ATGTCCCGAAGGAA
gamma_16_17
CGCCTTCCTCCGGGTT



TAGTATCC

AGCCTGATCTC

TCACCCGGC





flavo_9_18
GCTCAGAACTCAAGGTC
roseo_5_18
AGCACCTGTCACTA
gamma_16_18
CTCCGGGTTTCACCCG



CCGAACAG

TGTCCCGAAGG

GCAGTCTCC





flavo_9_19
CTACATATTCCGCCTAC
roseo_5_19
CAGCACCTGTCACT
gamma_16_19
GCGGTATACCTGGAT



TTCAATAC

ATGTCCCGAAG

CAGGGTTGCC





flavo_9_20
GCCTACTTCAATACAAC
roseo_5_20
CCTCCGAAGAGGTT
gamma_16_20
CGGTATACCTGGATC



TCAAGATG

AGCGCACGGCC

AGGGTTGCCC





flavo_9_21
TACACGTAAGGCTTATT
roseo_5_21
TCCGCTGCCTCCTCC
gamma_16_21
GGTATACCTGGATCA



CTTCCTGT

GAAGAGGTTA

GGGTTGCCCC





flavo_9_22
CACGTAAGGCTTATTCT
roseo_5_22
CCGCTGCCTCCTCCG
gamma_16_22
TCTTCACACACGCGG



TCCTGTAT

AAGAGGTTAG

TATACCTGGA





flavo_9_23
ACACGTAAGGCTTATTC
roseo_5_23
TGTCCCGAAGGAAA
gamma_16_23
TCACACACGCGGTAT



TTCCTGTA

GCCTGATCTCT

ACCTGGATCA





flavo_9_24
CTTAGCCGCTCAGAACT
roseo_5_24
CACCTGTCACTATGT
gamma_16_24
GCCTTCCTCCGGGTTT



CAAGGTCC

CCCGAAGGAA

CACCCGGCA





flavo_9_25
CGCTCAGAACTCAAGGT
roseo_5_25
GCAGCACCTGTCAC
gamma_16_25
CGCGGTATACCTGGA



CCCGAACA

TATGTCCCGAA

TCAGGGTTGC





flavo_10_1
CGCTTAGCCACTCATCT
roseo_6_1
CGATAAAACCTAGT
gamma_17_1
GGCTCCTCCAATAGT



AACCAATG

CTCCTAGGCGG

GACCGGTCCG





flavo_10_2
CTTTCGCTTAGCCACTC
roseo_6_2
CCGAGGCTATTCCG
gamma_17_2
AGGCTCCTCCAATAG



ATCTAACC

AAGCAAAAGGT

TGACCGGTCC





flavo_10_3
ACACGTCGGAGTGTTTC
roseo_6_3
CCCGAGGCTATTCC
gamma_17_3
CAGGCTCCTCCAATA



TTCCTGTA

GAAGCAAAAGG

GTGACCGGTC





flavo_10_4
CCCGTGCGCCACTCGTC
roseo_6_4
AAAACCTAGTCTCC
gamma_17_4
CATGTATTAGGCCTG



ATCTGGTG

TAGGCGGTCAG

CCGCCAACGT





flavo_10_5
ACCCGTGCGCCACTCGT
roseo_6_5
AAACCTAGTCTCCT
gamma_17_5
GCTCCTCCAATAGTG



CATCTGGT

AGGCGGTCAGA

ACCGGTCCGA





flavo_10_6
CACCCGTGCGCCACTCG
roseo_6_6
TCCCGAGGCTATTCC
gamma_17_6
GCAGGCTCCTCCAAT



TCATCTGG

GAAGCAAAAG

AGTGACCGGT





flavo_10_7
TACAACCCGTAGGGCTT
roseo_6_7
CTAGTCTCCTAGGC
gamma_17_7
CGCCTGAGAGCAAGC



TCATCCTG

GGTCAGAGGAT

TCCCATCGTT





flavo_10_8
ACAACCCGTAGGGCTTT
roseo_6_8
AACCTAGTCTCCTA
gamma_17_8
ACGCCTGAGAGCAAG



CATCCTGC

GGCGGTCAGAG

CTCCCATCGT





flavo_10_9
AACCCGTAGGGCTTTCA
roseo_6_9
CCTAGTCTCCTAGGC
gamma_17_9
GCCTGAGAGCAAGCT



TCCTGCAC

GGTCAGAGGA

CCCATCGTTT





flavo_10_10
CAGTTTACAACCCGTAG
roseo_6_10
TAGTCTCCTAGGCG
gamma_17_10
GACGCCTGAGAGCAA



GGCTTTCA

GTCAGAGGATG

GCTCCCATCG





flavo_10_11
CAACCCGTAGGGCTTTC
roseo_6_11
CCTCTCAAACCAGC
gamma_17_11
AATCCTACGCAGGCT



ATCCTGCA

TACTGATCGCA

CCTCCAATAG





flavo_10_12
TTACAACCCGTAGGGCT
roseo_6_12
TCCTCTCAAACCAG
gamma_17_12
GCATGTATTAGGCCT



TTCATCCT

CTACTGATCGC

GCCGCCAACG





flavo_10_13
AGCAGTTTACAACCCGT
roseo_6_13
CTCTCAAACCAGCT
gamma_17_13
CTAATCCTACGCAGG



AGGGCTTT

ACTGATCGCAG

CTCCTCCAAT





flavo_10_14
GCAGTTTACAACCCGTA
roseo_6_14
CTCAAACCAGCTAC
gamma_17_14
GCTAATCCTACGCAG



GGGCTTTC

TGATCGCAGAC

GCTCCTCCAA





flavo_10_15
AAGCAGTTTACAACCCG
roseo_6_15
CAGCTACTGATCGC
gamma_17_15
CGACGCCTGAGAGCA



TAGGGCTT

AGACTTGGTAG

AGCTCCCATC





flavo_10_16
CACGTCGGAGTGTTTCT
roseo_6_16
CCAGCTACTGATCG
gamma_17_16
CCTGAGAGCAAGCTC



TCCTGTAT

CAGACTTGGTA

CCATCGTTTC





flavo_10_17
TGCGCCACTCGTCATCT
roseo_6_17
CCATGCAGCACCTG
gamma_17_17
CTCCTCCAATAGTGA



GGTGCAAG

TCACTCTGTAT

CCGGTCCGAA





flavo_10_18
CCGTGCGCCACTCGTCA
roseo_6_18
CATGCAGCACCTGT
gamma_17_18
ATCCTACGCAGGCTC



TCTGGTGC

CACTCTGTATC

CTCCAATAGT





flavo_10_19
GCGCCACTCGTCATCTG
roseo_6_19
AACCAGCTACTGAT
gamma_17_19
CGCAGGCTCCTCCAA



GTGCAAGC

CGCAGACTTGG

TAGTGACCGG





flavo_10_20
CGTGCGCCACTCGTCAT
roseo_6_20
ACCAGCTACTGATC
gamma_17_20
AGCTAATCCTACGCA



CTGGTGCA

GCAGACTTGGT

GGCTCCTCCA





flavo_10_21
GTGCGCCACTCGTCATC
roseo_6_21
GCCATGCAGCACCT
gamma_17_21
TCGACGCCTGAGAGC



TGGTGCAA

GTCACTCTGTA

AAGCTCCCAT





flavo_10_22
GTTTACAACCCGTAGGG
roseo_6_22
AGTTTCCCGAGGCT
gamma_17_22
CTGAGAGCAAGCTCC



CTTTCATC

ATTCCGAAGCA

CATCGTTTCC





flavo_10_23
TTTACAACCCGTAGGGC
roseo_6_23
GTTTCCCGAGGCTAT
gamma_17_23
TGTATTAGGCCTGCC



TTTCATCC

TCCGAAGCAA

GCCAACGTTC





flavo_10_24
GCACCCGTGCGCCACTC
roseo_6_24
GGCGGTCAGAGGAT
gamma_17_24
TGCATGTATTAGGCCT



GTCATCTG

GTCAAGGGTTG

GCCGCCAAC





flavo_10_25
GCGAAGTGGCTGCTCTC
roseo_6_25
AGGCGGTCAGAGGA
gamma_17_25
CGCCACCGGTATTCCT



TGTACCGG

TGTCAAGGGTT

CAGAATATC





flavo_11_1
GTACAAGTACTTTATGC
alpha_4_1
CGACAGGCATGCCT
gamma_19_1
GAGGTTGCGACCCTT



TGCCCCTC

GCCAACAACTA

TGTCCTTCCC





flavo_11_2
CCGCCGGAGCTTTTCTT
alpha_4_2
CCGACAGGCATGCC
gamma_19_2
GCGAGGTTGCGACCC



AAAAACTC

TGCCAACAACT

TTTGTCCTTC





flavo_11_3
CGGTCGCCATCAAAGTA
alpha_4_3
ACCGACAGGCATGC
gamma_19_3
CGAAACCTTTCAAGA



CAAGTACT

CTGCCAACAAC

AGAGGGCTCC





flavo_11_4
CCGGTCGCCATCAAAGT
alpha_4_4
GACAGGCATGCCTG
gamma_19_4
AAAGTGGTGAGCGCC



ACAAGTAC

CCAACAACTAG

CAGATAAGCT





flavo_11_5
CGTCCCTCAGCGTCAGT
alpha_4_5
CCGTCTGCCACTATA
gamma_19_5
TGAGCGCCCAGATAA



TAATTGTT

TCGTTCGACT

GCTACCCACT





flavo_11_6
TACAAGTACTTTATGCT
alpha_4_6
CACCGACAGGCATG
gamma_19_6
CAAAGTGGTGAGCGC



GCCCCTCG

CCTGCCAACAA

CCAGATAAGC





flavo_11_7
CACGCGGCATCGCTGGA
alpha_4_7
CCCGTCTGCCACTAT
gamma_19_7
GTGGTGAGCGCCCAG



TCAGAGTT

ATCGTTCGAC

ATAAGCTACC





flavo_11_8
TCGTCCCTCAGCGTCAG
alpha_4_8
CAGGCATGCCTGCC
gamma_19_8
AGTGGTGAGCGCCCA



TTAATTGT

AACAACTAGCT

GATAAGCTAC





flavo_11_9
TCACGCGGCATCGCTGG
alpha_4_9
ACAGGCATGCCTGC
gamma_19_9
GTGAGCGCCCAGATA



ATCAGAGT

CAACAACTAGC

AGCTACCCAC





flavo_11_10
TGCCAGTATCAAAGGCA
alpha_4_10
TCACCGACAGGCAT
gamma_19_10
GGTGAGCGCCCAGAT



GTTCTACC

GCCTGCCAACA

AAGCTACCCA





flavo_11_11
ACAAGTACTTTATGCTG
alpha_4_11
GCATGCCTGCCAAC
gamma_19_11
TGGTGAGCGCCCAGA



CCCCTCGA

AACTAGCTCTC

TAAGCTACCC





flavo_11_12
GTACATCGAACAGCTAG
alpha_4_12
GGCATGCCTGCCAA
gamma_19_12
AAGTGGTGAGCGCCC



TGACCATC

CAACTAGCTCT

AGATAAGCTA





flavo_11_13
GCCAGTATCAAAGGCA
alpha_4_13
CACCCGTCTGCCACT
gamma_19_13
CGCCCAGATAAGCTA



GTTCTACCG

ATATCGTTCG

CCCACTTCTT





flavo_11_14
TTCGTCCCTCAGCGTCA
alpha_4_14
ACCCGTCTGCCACT
gamma_19_14
GCGCCCAGATAAGCT



GTTAATTG

ATATCGTTCGA

ACCCACTTCT





flavo_11_15
CAAGTACTTTATGCTGC
alpha_4_15
GTCACCGACAGGCA
gamma_19_15
GCGAAACCTTTCAAG



CCCTCGAC

TGCCTGCCAAC

AAGAGGGCTC





flavo_11_16
CGCCGGTCGCCATCAAA
alpha_4_16
AGGCATGCCTGCCA
gamma_19_16
AGCGCCCAGATAAGC



GTACAAGT

ACAACTAGCTC

TACCCACTTC





flavo_11_17
TCGCCGGTCGCCATCAA
alpha_4_17
CTCACCCGTCTGCCA
gamma_19_17
ACAAAGTGGTGAGCG



AGTACAAG

CTATATCGTT

CCCAGATAAG





flavo_11_18
GCCGGTCGCCATCAAAG
alpha_4_18
TCACCCGTCTGCCAC
gamma_19_18
CACAAAGTGGTGAGC



TACAAGTA

TATATCGTTC

GCCCAGATAA





flavo_11_19
TTCGCCGGTCGCCATCA
alpha_4_19
CATGCCTGCCAACA
gamma_19_19
CGAGGTTGCGACCCT



AAGTACAA

ACTAGCTCTCA

TTGTCCTTCC





flavo_11_20
CGTTCGCCGGTCGCCAT
alpha_4_20
CCTGCCAACAACTA
gamma_19_20
GAGCGCCCAGATAAG



CAAAGTAC

GCTCTCATCGT

CTACCCACTT





flavo_11_21
GTTCGCCGGTCGCCATC
alpha_4_21
CGTCACCGACAGGC
gamma_19_21
CGCGAGGTTGCGACC



AAAGTACA

ATGCCTGCCAA

CTTTGTCCTT





flavo_11_22
TACCTATCGGAGCTTAG
alpha_4_22
CTCGGTATTCCGCTA
gamma_19_22
GACGCCTAAGAGCAA



GTGAGCCG

ACCTCTCCTG

GCTCTTATCG





flavo_11_23
TATCGGAGCTTAGGTGA
alpha_4_23
ACTCACCCGTCTGCC
gamma_19_23
TCACAAAGTGGTGAG



GCCGTTAC

ACTATATCGT

CGCCCAGATA





flavo_11_24
CCCTGACTTAACAAACA
alpha_4_24
GCGTCACCGACAGG
gamma_19_24
GCAGGCTCATCTGAT



GCCTGCGG

CATGCCTGCCA

AGCGAAACCT





flavo_11_25
ACCGTTGAGCGGTAGG
alpha_4_25
TACTCACCCGTCTGC
gamma_19_25
CGACGCCTAAGAGCA



ATTTCACCC

CACTATATCG

AGCTCTTATC





flavo_12_1
CGTCTTCCTGCACGCTG
wolbach_1_1
GCCAGGACTTCTTCT
gamma_20_1
CCACTAAGGGACAAA



CATGGCTG

GTGAGTACCG

TTCCCCCAAC





flavo_12_2
CCGTCTTCCTGCACGCT
wolbach_1_2
AGCCAGGACTTCTT
gamma_20_2
CGCCACTAAGGGACA



GCATGGCT

CTGTGAGTACC

AATTCCCCCA





flavo_12_3
GTCTTCCTGCACGCTGC
wolbach_1_3
CCAGGACTTCTTCTG
gamma_20_3
GCCACTAAGGGACAA



ATGGCTGG

TGAGTACCGT

ATTCCCCCAA





flavo_12_4
CTTCCTGCACGCTGCAT
wolbach_1_4
CGGAGTTAGCCAGG
gamma_20_4
CACTAAGGGACAAAT



GGCTGGAT

ACTTCTTCTGT

TCCCCCAACG





flavo_12_5
TTCCTGCACGCTGCATG
wolbach_1_5
CCGGCCGAACCGAC
gamma_20_5
ACTAAGGGACAAATT



GCTGGATC

CCTATCCCTTC

CCCCCAACGG





flavo_12_6
GCCGTCTTCCTGCACGC
wolbach_1_6
ACGGAGTTAGCCAG
gamma_20_6
CTAAGGGACAAATTC



TGCATGGC

GACTTCTTCTG

CCCCAACGGC





flavo_12_7
TCTTCCTGCACGCTGCA
wolbach_1_7
GGAGTTAGCCAGGA
gamma_20_7
GCGCCACTAAGGGAC



TGGCTGGA

CTTCTTCTGTG

AAATTCCCCC





flavo_12_8
CACGCTGCATGGCTGGA
wolbach_1_8
CAGGACTTCTTCTGT
gamma_20_8
GGTACCGTCAAGACG



TCAGAGTT

GAGTACCGTC

CGCAGTTATT





flavo_12_9
GGCCGTCTTCCTGCACG
wolbach_1_9
GGCACGGAGTTAGC
gamma_20_9
AGGTACCGTCAAGAC



CTGCATGG

CAGGACTTCTT

GCGCAGTTAT





flavo_12_10
TGCCCACCTTTTACCAC
wolbach_1_10
CACGGAGTTAGCCA
gamma_20_10
TAGGTACCGTCAAGA



CGGAGTTT

GGACTTCTTCT

CGCGCAGTTA





flavo_12_11
ATGCCCACCTTTTACCA
wolbach_1_11
TGGCACGGAGTTAG
gamma_20_11
TGCGCCACTAAGGGA



CCGGAGTT

CCAGGACTTCT

CAAATTCCCC





flavo_12_12
CACACGTGGACAGATTT
wolbach_1_12
GCACGGAGTTAGCC
gamma_20_12
TAAGGGACAAATTCC



CTTCCTGT

AGGACTTCTTC

CCCAACGGCT





flavo_12_13
GAAGACTCGCTCTTCCT
wolbach_1_13
CGCCTCAGCGTCAG
gamma_20_13
CTGTAGGTACCGTCA



CGCGGAGT

ATTTGAACCAG

AGACGCGCAG





flavo_12_14
CATGCCCACCTTTTACC
wolbach_1_14
GCGCCTCAGCGTCA
gamma_20_14
GTAGGTACCGTCAAG



ACCGGAGT

GATTTGAACCA

ACGCGCAGTT





flavo_12_15
CCGGCTTTGAAGACTCG
wolbach_1_15
CTGGCACGGAGTTA
gamma_20_15
CTGCGCCACTAAGGG



CTCTTCCT

GCCAGGACTTC

ACAAATTCCC





flavo_12_16
CCACACGTGGACAGATT
wolbach_1_16
CTGCTGGCACGGAG
gamma_20_16
TGTAGGTACCGTCAA



TCTTCCTG

TTAGCCAGGAC

GACGCGCAGT





flavo_12_17
TTTGAAGACTCGCTCTT
wolbach_1_17
GCTGGCACGGAGTT
gamma_20_17
TCTGTAGGTACCGTC



CCTCGCGG

AGCCAGGACTT

AAGACGCGCA





flavo_12_18
GGCTTTGAAGACTCGCT
wolbach_1_18
TGCTGGCACGGAGT
gamma_20_18
GCTGCGCCACTAAGG



CTTCCTCG

TAGCCAGGACT

GACAAATTCC





flavo_12_19
CTTTGAAGACTCGCTCT
wolbach_1_19
CGCGCCTCAGCGTC
gamma_20_19
CTTCTGTAGGTACCGT



TCCTCGCG

AGATTTGAACC

CAAGACGCG





flavo_12_20
TGAAGACTCGCTCTTCC
wolbach_1_20
GCCTTCGCGCCTCA
gamma_20_20
TCTTCTGTAGGTACCG



TCGCGGAG

GCGTCAGATTT

TCAAGACGC





flavo_12_21
GACCGGCTTTGAAGACT
wolbach_1_21
GCCTCAGCGTCAGA
gamma_20_21
GGACAAATTCCCCCA



CGCTCTTC

TTTGAACCAGA

ACGGCTAGTT





flavo_12_22
CGGCTTTGAAGACTCGC
wolbach_1_22
TCGCGCCTCAGCGT
gamma_20_22
GACAAATTCCCCCAA



TCTTCCTC

CAGATTTGAAC

CGGCTAGTTG





flavo_12_23
GCTTTGAAGACTCGCTC
wolbach_1_23
CATGCAACACCTGT
gamma_20_23
AGCTGCGCCACTAAG



TTCCTCGC

GTGAAACCCGG

GGACAAATTC





flavo_12_24
ACCGGCTTTGAAGACTC
wolbach_1_24
GACTTTGCAGCCCA
gamma_20_24
CGTTACGCACCCGTC



GCTCTTCC

TTGTAGCCACC

CGCCACTCGA





flavo_12_25
TCGTACAGTACCGTCAA
wolbach_1_25
CGACTTTGCAGCCC
gamma_20_25
TCGCGTTAGCTGCGC



CTACCCAC

ATTGTAGCCAC

CACTAAGGGA





flavo_13_1
CGCCGGTCGTCAGCATA
rickett_1_1
TCTCTGCGATCCGCG
gamma_21_1
TCGTCAGCGCAGAGC



GCAAGCTA

ACCACCATGT

AAGCTCCGCC





flavo_13_2
AGGTCGCTCCTCACGGT
rickett_1_2
ATCTCTGCGATCCGC
gamma_21_2
CTCGTCAGCGCAGAG



AACGAACT

GACCACCATG

CAAGCTCCGC





flavo_13_3
GGTCGCTCCTCACGGTA
rickett_1_3
GTCAGTTGTAGCCC
gamma_21_3
ACTCGTCAGCGCAGA



ACGAACTT

AGATGACCGCC

GCAAGCTCCG





flavo_13_4
TAGGTCGCTCCTCACGG
rickett_1_4
CAGTTGTAGCCCAG
gamma_21_4
AGCAAGCTCCGCCTG



TAACGAAC

ATGACCGCCTT

TTACCGTTCG





flavo_13_5
AGGACGCATAGTCATCT
rickett_1_5
TCAGTTGTAGCCCA
gamma_21_5
GTCAGCGCAGAGCAA



TGTACCCA

GATGACCGCCT

GCTCCGCCTG





flavo_13_6
CCTCACGGTAACGAACT
rickett_1_6
CGTCAGTTGTAGCC
gamma_21_6
GAGCAAGCTCCGCCT



TCAGGCAC

CAGATGACCGC

GTTACCGTTC





flavo_13_7
TCGCCCAGTGGCTGCTC
rickett_1_7
GTTGTAGCCCAGAT
gamma_21_7
CAAGCTCCGCCTGTT



ATTGTCCA

GACCGCCTTCG

ACCGTTCGAC





flavo_13_8
CGTTCGCCGGTCGTCAG
rickett_1_8
AGTTGTAGCCCAGA
gamma_21_8
GCTCCGCCTGTTACCG



CATAGCAA

TGACCGCCTTC

TTCGACTTG





flavo_13_9
GTCGCTCCTCACGGTAA
rickett_1_9
CATCTCTGCGATCCG
gamma_21_9
CTGGGCTTTCACATCC



CGAACTTC

CGACCACCAT

GACTGACCG





flavo_13_10
GTCGCCCAGTGGCTGCT
rickett_1_10
GCGTCAGTTGTAGC
gamma_21_10
CTTTTGCAAGCCACTC



CATTGTCC

CCAGATGACCG

CCATGGTGT





flavo_13_11
TAGGACGCATAGTCATC
rickett_1_11
AGCATCTCTGCGAT
gamma_21_11
TCTTTTGCAAGCCACT



TTGTACCC

CCGCGACCACC

CCCATGGTG





flavo_13_12
ACCAGTATCAAAGGCA
rickett_1_12
GCATCTCTGCGATCC
gamma_21_12
CTTCTTTTGCAAGCCA



GTTCCATCG

GCGACCACCA

CTCCCATGG





flavo_13_13
TCCTCACGGTAACGAAC
rickett_1_13
TTGTAGCCCAGATG
gamma_21_13
TTTTGCAAGCCACTCC



TTCAGGCA

ACCGCCTTCGC

CATGGTGTG





flavo_13_14
CTAGGTCGCTCCTCACG
rickett_1_14
AGCGTCAGTTGTAG
gamma_21_14
TTTGCAAGCCACTCCC



GTAACGAA

CCCAGATGACC

ATGGTGTGA





flavo_13_15
CTCCTCACGGTAACGAA
rickett_1_15
CCACTAACTAATTG
gamma_21_15
CCTCAGCGTCAGTATT



CTTCAGGC

GAGCAAGCCCC

GCTCCAGAA





flavo_13_16
CCGTTCGCCGGTCGTCA
rickett_1_16
GCCACTAACTAATT
gamma_21_16
GGGCTTTCACATCCG



GCATAGCA

GGAGCAAGCCC

ACTGACCGTG





flavo_13_17
GTTCGCCGGTCGTCAGC
rickett_1_17
CAAGCCCCAATTAG
gamma_21_17
CTTTCACATCCGACTG



ATAGCAAG

TCCGTTCGACT

ACCGTGCCG





flavo_13_18
CTCACGGTAACGAACTT
rickett_1_18
CCGTCTTGCTTCCCT
gamma_21_18
GGCTTTCACATCCGA



CAGGCACT

CTGTAAACAC

CTGACCGTGC





flavo_13_19
TCGCTCCTCACGGTAAC
rickett_1_19
CCGTCTGCCACTAA
gamma_21_19
CACTCGTCAGCGCAG



GAACTTCA

CTAATTGGAGC

AGCAAGCTCC





flavo_13_20
GGTCGCCCAGTGGCTGC
rickett_1_20
CTCTGCGATCCGCG
gamma_21_20
GCTTTCACATCCGACT



TCATTGTC

ACCACCATGTC

GACCGTGCC





flavo_13_21
CGGCATAGCTGGTTCAG
rickett_1_21
GCAAGCCCCAATTA
gamma_21_21
TCAGCGCAGAGCAAG



AGTTGCCT

GTCCGTTCGAC

CTCCGCCTGT





flavo_13_22
GGCATAGCTGGTTCAGA
rickett_1_22
AGCAAGCCCCAATT
gamma_21_22
CGTCAGCGCAGAGCA



GTTGCCTC

AGTCCGTTCGA

AGCTCCGCCT





flavo_13_23
CGCGGCATAGCTGGTTC
rickett_1_23
TGTAGCCCAGATGA
gamma_21_23
AGAGCAAGCTCCGCC



AGAGTTGC

CCGCCTTCGCC

TGTTACCGTT





flavo_13_24
GCGGCATAGCTGGTTCA
rickett_1_24
GAGCAAGCCCCAAT
gamma_21_24
AGCTCCGCCTGTTACC



GAGTTGCC

TAGTCCGTTCG

GTTCGACTT





flavo_13_25
GCATAGCTGGTTCAGAG
rickett_1_25
GAAGAAAAGCATCT
gamma_21_25
CAGAGCAAGCTCCGC



TTGCCTCC

CTGCGATCCGC

CTGTTACCGT





flavo_14_1
GTGCAAGCACTCCTGTT
alpha_5_1
ACCAAAGCCCTGTG
verru_1_1
CCCCGAGATTTCACA



ACCCCTCG

GGCCCTAGCAG

CCTCACACAT





flavo_14_2
AGTGCAAGCACTCCTGT
alpha_5_2
CACCAAAGCCCTGT
verru_1_2
CCCGAGATTTCACAC



TACCCCTC

GGGCCCTAGCA

CTCACACATC





flavo_14_3
GCAAGCACTCCTGTTAC
alpha_5_3
CCAAAGCCCTGTGG
verru_1_3
TCACACCTCACACAT



CCCTCGAC

GCCCTAGCAGC

CTATCCGCCT





flavo_14_4
TGCAAGCACTCCTGTTA
alpha_5_4
ACCCTATGGTAGAT
verru_1_4
CACCTCACACATCTAT



CCCCTCGA

CCCCACGCGTT

CCGCCTACG





flavo_14_5
CAAGCACTCCTGTTACC
alpha_5_5
CACCCTATGGTAGA
verru_1_5
TTCACACCTCACACAT



CCTCGACT

TCCCCACGCGT

CTATCCGCC





flavo_14_6
AAGCACTCCTGTTACCC
alpha_5_6
GCACCCTATGGTAG
verru_1_6
ACACCTCACACATCT



CTCGACTT

ATCCCCACGCG

ATCCGCCTAC





flavo_14_7
AGCACTCCTGTTACCCC
alpha_5_7
CCGCACCCTATGGT
verru_1_7
CACACCTCACACATC



TCGACTTG

AGATCCCCACG

TATCCGCCTA





flavo_14_8
GCACTCCTGTTACCCCT
alpha_5_8
CGCACCCTATGGTA
verru_1_8
GCCCCGAGATTTCAC



CGACTTGC

GATCCCCACGC

ACCTCACACA





flavo_14_9
TGCTACACGTAGCAGTG
alpha_5_9
TATTCCGCACCCTAT
verru_1_9
ACCTCACACATCTATC



TTTCTTCC

GGTAGATCCC

CGCCTACGC





flavo_14_10
CCCGTGCGCCGGTCGTC
alpha_5_10
ATTCCGCACCCTATG
verru_1_10
AGCCCCGAGATTTCA



AGCGAGTG

GTAGATCCCC

CACCTCACAC





flavo_14_11
TCGTCAGCGAGTGCAAG
alpha_5_11
TCCGCACCCTATGGT
verru_1_11
CTCCCGAAGGATAGC



CACTCCTG

AGATCCCCAC

TCACGTACTT





flavo_14_12
TGCGCCGGTCGTCAGCG
alpha_5_12
CGCACCAGCTTCGG
verru_1_12
CTGCCTCCCGAAGGA



AGTGCAAG

GTTGATCCAAC

TAGCTCACGT





flavo_14_13
CGGTCGTCAGCGAGTGC
alpha_5_13
TTCCGCACCCTATGG
verru_1_13
GGCTATGAACCTCCTT



AAGCACTC

TAGATCCCCA

GTTGCTCCT





flavo_14_14
CCGTGCGCCGGTCGTCA
alpha_5_14
CCACCAAAGCCCTG
verru_1_14
CCTCCCGAAGGATAG



GCGAGTGC

TGGGCCCTAGC

CTCACGTACT





flavo_14_15
GCGCCGGTCGTCAGCGA
alpha_5_15
CCCTATGGTAGATC
verru_1_15
CCCGAAGGATAGCTC



GTGCAAGC

CCCACGCGTTA

ACGTACTTCG





flavo_14_16
GGTCGTCAGCGAGTGCA
alpha_5_16
CCTATGGTAGATCC
verru_1_16
TCCCGAAGGATAGCT



AGCACTCC

CCACGCGTTAC

CACGTACTTC





flavo_14_17
GCCGGTCGTCAGCGAGT
alpha_5_17
GCGCACCAGCTTCG
verru_1_17
GAGGCTATGAACCTC



GCAAGCAC

GGTTGATCCAA

CTTGTTGCTC





flavo_14_18
GTCAGCGAGTGCAAGC
alpha_5_18
GCACCAGCTTCGGG
verru_1_18
GACGCTGCCTCCCGA



ACTCCTGTT

TTGATCCAACT

AGGATAGCTC





flavo_14_19
CCGGTCGTCAGCGAGTG
alpha_5_19
AGCGCACCAGCTTC
verru_1_19
AGGCTATGAACCTCC



CAAGCACT

GGGTTGATCCA

TTGTTGCTCC





flavo_14_20
TCAGCGAGTGCAAGCA
alpha_5_20
CTATGGTAGATCCC
verru_1_20
GCCTCCCGAAGGATA



CTCCTGTTA

CACGCGTTACG

GCTCACGTAC





flavo_14_21
CGTGCGCCGGTCGTCAG
alpha_5_21
GCCACCAAAGCCCT
verru_1_21
CGCTGCCTCCCGAAG



CGAGTGCA

GTGGGCCCTAG

GATAGCTCAC





flavo_14_22
CGCCGGTCGTCAGCGAG
alpha_5_22
CACCAGCTTCGGGT
verru_1_22
TGCCTCCCGAAGGAT



TGCAAGCA

TGATCCAACTC

AGCTCACGTA





flavo_14_23
GTGCGCCGGTCGTCAGC
alpha_5_23
TAGCGCACCAGCTT
verru_1_23
ACGCTGCCTCCCGAA



GAGTGCAA

CGGGTTGATCC

GGATAGCTCA





flavo_14_24
CGTCAGCGAGTGCAAG
alpha_5_24
CAAAGCCCTGTGGG
verru_1_24
GCTGCCTCCCGAAGG



CACTCCTGT

CCCTAGCAGCT

ATAGCTCACG





flavo_14_25
GTCGTCAGCGAGTGCAA
alpha_5_25
CGCCACCAAAGCCC
verru_1_25
AGGACGCTGCCTCCC



GCACTCCT

TGTGGGCCCTA

GAAGGATAGC





flavo_15_1
GGCGTACTCCCCAGGTG
alpha_6_1
GCGCCACTAACCCC
verru_2_1
CGTCGCATGTTCACA



CATCACTT

GAAGCTTCGTT

CTTTCGTGCA





flavo_15_2
CTCCCCAGGTGCATCAC
alpha_6_2
CTTCTTGCGAGTAGC
verru_2_2
CTACCCTAACTTTCGT



TTAATACT

TGCCCACTGT

CCATGAGCG





flavo_15_3
GCGTACTCCCCAGGTGC
alpha_6_3
CCCAGCTTGTTGGG
verru_2_3
ACCCTAACTTTCGTCC



ATCACTTA

CCATGAGGACT

ATGAGCGTC





flavo_15_4
CGGCGTACTCCCCAGGT
alpha_6_4
ATCTTCTTGCGAGTA
verru_2_4
GCGTCGCATGTTCAC



GCATCACT

GCTGCCCACT

ACTTTCGTGC





flavo_15_5
ACTCCCCAGGTGCATCA
alpha_6_5
TCTTCTTGCGAGTAG
verru_2_5
CAAGTGTTCCCTTCTC



CTTAATAC

CTGCCCACTG

CCCTCCAGT





flavo_15_6
CGTACTCCCCAGGTGCA
alpha_6_6
TAGCCCAGCTTGTTG
verru_2_6
TACACCAAGTGTTCC



TCACTTAA

GGCCATGAGG

CTTCTCCCCT





flavo_15_7
CCGGCGTACTCCCCAGG
alpha_6_7
GCCACTAACCCCGA
verru_2_7
CCAAGTGTTCCCTTCT



TGCATCAC

AGCTTCGTTCG

CCCCTCCAG





flavo_15_8
GTACTCCCCAGGTGCAT
alpha_6_8
GTAGCCCAGCTTGTT
verru_2_8
ACACCAAGTGTTCCC



CACTTAAT

GGGCCATGAG

TTCTCCCCTC





flavo_15_9
GCCGGCGTACTCCCCAG
alpha_6_9
CGCCACTAACCCCG
verru_2_9
CGCTACACCAAGTGT



GTGCATCA

AAGCTTCGTTC

TCCCTTCTCC





flavo_15_10
GAAGAGAAGGCCTGTTT
alpha_6_10
TTCTTGCGAGTAGCT
verru_2_10
CACCAAGTGTTCCCTT



CCAAGCCG

GCCCACTGTC

CTCCCCTCC





flavo_15_11
CAACAGCGAGTGATGA
alpha_6_11
TAGCATCTTCTTGCG
verru_2_11
GCTACACCAAGTGTT



TCGTTTACG

AGTAGCTGCC

CCCTTCTCCC





flavo_15_12
GCATGCCCATCTCATAC
alpha_6_12
AGCATCTTCTTGCGA
verru_2_12
CTACACCAAGTGTTC



CGAAAAAC

GTAGCTGCCC

CCTTCTCCCC





flavo_15_13
TTGTAATCTGCTCCGAA
alpha_6_13
GCCCAGCTTGTTGG
verru_2_13
AGTGTTCCCTTCTCCC



GAGAAGGC

GCCATGAGGAC

CTCCAGTAC





flavo_15_14
CGCCGGTCGTCAGCAAA
alpha_6_14
CACTAACCCCGAAG
verru_2_14
AAGTGTTCCCTTCTCC



AGCAAGCT

CTTCGTTCGAC

CCTCCAGTA





flavo_15_15
AAGAGAAGGCCTGTTTC
alpha_6_15
CATCTTCTTGCGAGT
verru_2_15
ACCAAGTGTTCCCTTC



CAAGCCGG

AGCTGCCCAC

TCCCCTCCA





flavo_15_16
GCCGGTCGTCAGCAAA
alpha_6_16
TGTAGCCCAGCTTGT
verru_2_16
GCTACCCTAACTTTCG



AGCAAGCTT

TGGGCCATGA

TCCATGAGC





flavo_15_17
TGCCGGCGTACTCCCCA
alpha_6_17
AGCCCAGCTTGTTG
verru_2_17
GTTCCCTTCTCCCCTC



GGTGCATC

GGCCATGAGGA

CAGTACTCT





flavo_15_18
GCGCCGGTCGTCAGCAA
alpha_6_18
CCACTAACCCCGAA
verru_2_18
GTGTTCCCTTCTCCCC



AAGCAAGC

GCTTCGTTCGA

TCCAGTACT





flavo_15_19
CGAAGAGAAGGCCTGT
alpha_6_19
GCATCTTCTTGCGAG
verru_2_19
TGTTCCCTTCTCCCCT



TTCCAAGCC

TAGCTGCCCA

CCAGTACTC





flavo_15_20
CCAACAGCGAGTGATG
alpha_6_20
GTGTAGCCCAGCTT
verru_2_20
CCGCTACACCAAGTG



ATCGTTTAC

GTTGGGCCATG

TTCCCTTCTC





flavo_15_21
GGAGTATTAATCCCCGT
alpha_6_21
TGCGCCACTAACCC
verru_2_21
TTCCCTTCTCCCCTCC



TTCCAGGG

CGAAGCTTCGT

AGTACTCTA





flavo_15_22
TGGAGTATTAATCCCCG
alpha_6_22
CTCAAGCACCAAGT
verru_2_22
GGCGTCGCATGTTCA



TTTCCAGG

GCCCGAACAGC

CACTTTCGTG





flavo_15_23
TCCCCGTTTCCAGGGGC
alpha_6_23
CCAGCTTGTTGGGC
verru_2_23
CGCTACCCTAACTTTC



TATCCTCC

CATGAGGACTT

GTCCATGAG





flavo_15_24
TGCGCCGGTCGTCAGCA
alpha_6_24
ACTAACCCCGAAGC
verru_2_24
CCCTAACTTTCGTCCA



AAAGCAAG

TTCGTTCGACT

TGAGCGTCA





flavo_15_25
AACAGCGAGTGATGAT
alpha_6_25
TCTTGCGAGTAGCTG
verru_2_25
ACCGCTACACCAAGT



CGTTTACGG

CCCACTGTCA

GTTCCCTTCT









The Chip-SIP method was applied to San Francisco Bay water collected at the Berkeley Calif. pier, incubated in the presence of 200 uM 15N ammonium for 24 hours and sampled over this time. An array designed to target marine microorganisms was designed using ARB software; where each row on the array represents a series of probes designed to hybridize to a different taxon (microbial species).


A collected environmental water sample was analyzed by Chip-SIP. In particular San Francisco Bay water was collected at the Berkeley pier, and incubated with 200 uM 15N ammonium for 24 hours. An array designed to target marine microorganisms was designed using built with ARB software.


To construct the network diagram of FIG. 10B, taxa with HCEs having standard errors not overlapping with zero and with >30 permil enrichment were included (all others were discarded) using Cytoscape software (17). For analyses of marine bacterial genomic information, genomes of marine bacterial isolates were selected in the Joint Genome Institute's Integrated Microbial Genomes (IM-G) database and word-searched for the presence of amino acid, fatty acid, and nucleoside transporters and extracellular nucleases. Results are summarized in Table 2.













TABLE 2






Amino acid
Extracellular
Nucleoside
Fatty acid


Genome
transport
nuclease
transport
transport








Agreia sp. PHSC20C1

Y
N
N
N



Algoriphagus sp. PR1

Y
N
Y
Y



Aurantimonas sp. SI85-9A1

Y
N
N
N



Bacillus sp. B14905

Y
N
Y
N



Bacillus sp. NRRL B-14911

Y
N
Y
N



Bacillus sp. SG-1

Y
Y
Y
N



Beggiatoa sp. PS

Y
N
N
Y



Bermanella marisrubri

Y
N
N
Y



Blastopirellula marina DSM 3645

Y
Y
N
N



Caminibacter mediatlanticus TB-2

Y
N
N
N



Candidatus Blochmannia

Y
N
N
N



pennsylvanicus BPEN




Candidatus Pelagibacter ubique

Y
N
N
N


HTCC1002



Carnobacterium sp. AT7

Y
N
Y
Y



Congregibacter litoralis KT71

Y
N
Y
N



Croceibacter atlanticus HTCC2559

Y
Y
Y
N



Cyanothece sp. CCY 0110

Y
N
Y
N



Dokdonia donghaensis MED134

Y
Y
Y
N



Erythrobacter litoralis HTCC2594

Y
N
Y
Y



Erythrobacter sp. NAP1

Y
N
N
N



Erythrobacter sp. SD-21

Y
N
Y
N



Finegoldia magna ATCC 29328

Y
N
N
N



Flavobacteria bacterium BAL38

Y
N
N
Y



Flavobacteria bacterium BBFL7

N
Y
N
N



Flavobacteriales bacterium ALC-1

Y
N
Y
N



Flavobacteriales bacterium

Y
N
Y
N


HTCC2170



Fulvimarina pelagi HTCC2506

Y
N
N
Y



Hoeflea phototrophica DFL-43

Y
N
N
Y



Hydrogenivirga sp. 128-5-R1-1

Y
N
N
N



Idiomarina baltica OS145

Y
Y
N
Y



Janibacter sp. HTCC2649

Y
Y
N
N



Kordia algicida OT-1

Y
Y
N
Y



Labrenzia aggregata IAM 12614

Y
N
N
N



Leeuwenhoekiella blandensis

Y
N
Y
N


MED217



Lentisphaera araneosa HTCC2155

Y
N
N
Y



Limnobacter sp. MED105

Y
N
N
Y



Loktanella vestfoldensis SKA53

Y
N
N
N



Lyngbya sp. PCC 8106

Y
Y
Y
N


marine gamma proteobacterium
Y
Y
Y
Y


HTCC2080


marine gamma proteobacterium
Y
N
N
N


HTCC2143


marine gamma proteobacterium
Y
N
N
N


HTCC2148


marine gamma proteobacterium
Y
N
N
N


HTCC2207



Marinobacter algicola DG893

Y
Y
N
Y



Marinobacter sp. ELB17

Y
N
N
Y



Marinomonas sp. MED121

Y
Y
N
N



Mariprofundus ferrooxydans PV-1

Y
N
N
Y



Methylophilales bacterium

N
N
N
N


HTCC2181



Microscilla marina ATCC 23134

Y
Y
Y
N



Moritella sp. PE36

Y
Y
Y
Y



Neptuniibacter caesariensis

Y
N
N
N



Nisaea sp. BAL199

Y
N
N
Y



Nitrobacter sp. Nb-311A

Y
N
N
N



Nitrococcus mobilis Nb-231

Y
N
N
N



Nodularia spumigena CCY9414

Y
N
N
N



Oceanibulbus indolifex HEL-45

Y
N
Y
Y



Oceanicaulis alexandrii HTCC2633

Y
N
N
N



Oceanicola batsensis HTCC2597

Y
Y
N
N



Oceanicola granulosus HTCC2516

Y
Y
Y
N



Parvularcula bermudensis

Y
Y
Y
N


HTCC2503



Pedobacter sp. BAL39

Y
N
N
Y



Pelotomaculum thermopropionicum

Y
N
N
N


SI



Phaeobacter gallaeciensis 2.10

Y
N
N
N



Phaeobacter gallaeciensis BS107

Y
N
N
N



Photobacterium angustum S14

Y
Y
Y
Y



Photobacterium profundum 3TCK

Y
Y
Y
Y



Photobacterium sp. SKA34

Y
Y
Y
Y



Planctomyces maris DSM 8797

Y
Y
N
N



Plesiocystis pacifica SIR-1

Y
N
Y
Y



Polaribacter irgensii 23-P

Y
Y
Y
N



Polaribacter sp. MED152

Y
Y
Y
N



Prochlorococcus marinus AS9601

N
N
N
N



Prochlorococcus marinus MIT 9211

Y
N
N
N



Prochlorococcus marinus MIT 9301

N
N
N
N



Prochlorococcus marinus MIT 9303

Y
N
N
N



Prochlorococcus marinus MIT 9515

Y
N
N
N



Prochlorococcus marinus NATL1A

Y
N
N
N



Pseudoalteromonas sp. TW-7

Y
N
Y
Y



Pseudoalteromonas tunicata D2

Y
N
Y
Y



Psychroflexus torquis ATCC

Y
Y
N
N


700755



Psychromonas sp. CNPT3

Y
N
N
Y



Reinekea sp. MED297

Y
Y
N
N



Rhodobacterales bacterium

Y
Y
Y
N


HTCC2150



Rhodobacterales bacterium

Y
N
N
N


HTCC2654



Rhodobacterales sp. HTCC2255

Y
N
Y
N



Roseobacter litoralis Och 149

Y
N
N
N



Roseobacter sp. AzwK-3b

Y
N
N
N



Roseobacter sp. CCS2

Y
Y
N
N



Roseobacter sp. MED193

Y
N
N
N



Roseobacter sp. SK209-2-6

Y
N
Y
N



Roseovarius nubinhibens ISM

Y
N
N
N



Roseovarius sp. 217

Y
Y
Y
Y



Roseovarius sp. HTCC2601

Y
N
Y
N



Roseovarius sp. TM1035

Y
N
N
N



Sagittula stellata E-37

Y
Y
N
N



Shewanella benthica KT99

Y
Y
N
Y



Sphingomonas sp. SKA58

Y
N
Y
Y



Sulfitobacter sp. EE-36

Y
N
N
N



Sulfitobacter sp. NAS-14.1

Y
N
N
N



Synechococcus sp. BL107

Y
N
N
N



Synechococcus sp. RS9916

Y
N
N
N



Synechococcus sp. RS9917

Y
N
N
N



Synechococcus sp. WH 5701

Y
N
N
N



Synechococcus sp. WH 7805

Y
N
N
N



Ulvibacter sp. SCB49

Y
Y
N
Y



Vibrio alginolyticus 12G01

Y
Y
Y
Y



Vibrio campbellii AND4

Y
N
Y
Y



Vibrio harveyi HY01

Y
N
Y
Y



Vibrio shilonii AK1

Y
Y
Y
Y



Vibrio sp. MED222

Y
Y
Y
Y



Vibrio splendidus 12B01

Y
Y
Y
Y



Vibrionales bacterium SWAT-3

Y
Y
Y
Y









For phylogenetic relationships the global 16S rRNA phylogeny in the Greengenes database (18) was opened in ARB (19) and all taxa except the targets of the array analysis were removed with the taxon pruning function.


As evident in the hybridization patterns measured (FIG. 10A) and in NanoSIMS enrichment data measured on this ITO array, different taxa incorporated ammonia at different rates during the experiment. These experiments show that different marine microbial taxa are present at different time points, and that different taxa incorporated ammonia at different times and to differing degrees. This set of data further demonstrates that the Chip-SIP method can be used to characterized complex mixtures of nucleic acids


In a similar experiment, where isotopically labeled nucleic acids, amino acids, and fatty acids were added as microbial substrates, Chip-SIP was able to identify substrate specialist and generalist taxa (FIG. 10B), based on the organisms that took up all three substrates into their RNA (generalists), versus those that only took up one of the possible substrates (specialists).


The results illustrated in FIG. 10B show that different marine microbial taxa have different substrate use patterns in an environmental water sample analyzed by Chip-SIP. This demonstrates that the Chip-SIP method can be used to quantitatively characterized the substrate uptake patterns of complex microbial communities.


Example 7
Chip-SIP and Related Manufacture and Use

A functionalized microarray was manufactured comprising a defined plurality of single-strand DNA molecules that have been chemically synthesized on the surface of a standard glass microscope slide. Importantly, the latter has been coated with a conductive layer consisting of inorganic indium-tin-oxide (16) between 300 and 1500 angstroms in thickness—such glass microscope slides are commercially available from Sigma Chemical Company, St. Louis, Mo. The ITO surface is treated with a linker molecule to provide a starting point for DNA synthesis.


Such linker molecules contain a chemical group that reacts specifically with the ITO surface, e.g. silanes, phosphonates and the like; as well as a chemical group that provides a starting point for DNA synthesis, e.g. hydroxyl (—OH), amino (—NH2) and the like. These functionalized glass microscope slides are placed in a Maskless Array Synthesizer (MAS) unit; the MAS is programmed to synthesize a plurality of unique single-strand DNA molecules each within a feature size between 13-15 micron2. Subsequent hybridization with complementary single strand oligonucleotides containing stable isotopes, e.g. C13 and N15, results in double-stranded molecular assemblies labeled with stable isotopes. The latter can be detected and quantified by secondary mass spectrometry or SIMS as described herein.


In summary, in several embodiments, polymer arrays are described that are suitable to perform quantitative and qualitative detection as well as sorting of a target molecules and related devices methods and systems.


The examples set forth above are provided to give those of ordinary skill in the art a complete disclosure and description of how to make and use the embodiments of the compositions, systems and methods of the disclosure, and are not intended to limit the scope of what the inventors regard as their disclosure. All patents and publications mentioned in the specification are indicative of the levels of skill of those skilled in the art to which the disclosure pertains.


The entire disclosure of each document cited (including patents, patent applications, journal articles, abstracts, laboratory manuals, books, or other disclosures) in the Background, Summary, Detailed Description, and Examples is hereby incorporated herein by reference. All references cited in this disclosure are incorporated by reference to the same extent as if each reference had been incorporated by reference in its entirety individually.


Further, the sequence listing annexed herewith in computer readable form forms integral part of this description and is incorporated herein by reference in its entirety.


It is to be understood that the disclosures are not limited to particular compositions or biological systems, which can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting. As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. The term “plurality” includes two or more referents unless the content clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the disclosure pertains.


When a Markush group or other grouping is used herein, all individual members of the group and all combinations and possible subcombinations of the group are intended to be individually included in the disclosure. Every combination of components or materials described or exemplified herein can be used to practice the disclosure, unless otherwise stated. One of ordinary skill in the art will appreciate that methods, device elements, and materials other than those specifically exemplified can be employed in the practice of the disclosure without resort to undue experimentation. All art-known functional equivalents, of any such methods, device elements, and materials are intended to be included in this disclosure. Whenever a range is given in the specification, for example, a temperature range, a frequency range, a time range, or a composition range, all intermediate ranges and all subranges, as well as, all individual values included in the ranges given are intended to be included in the disclosure. Any one or more individual members of a range or group disclosed herein can be excluded from a claim of this disclosure. The disclosure illustratively described herein suitably can be practiced in the absence of any element or elements, limitation or limitations which is not specifically disclosed herein.


Although any methods and materials similar or equivalent to those described herein can be used in the practice for testing of the products, methods and system of the present disclosure, exemplary appropriate materials and methods are described herein.


A number of embodiments of the disclosure have been described. The specific embodiments provided herein are examples of useful embodiments of the disclosure and it will be apparent to one skilled in the art that the disclosure can be carried out using a large number of variations of the functionalized platforms, arrays, compositions, methods steps, and systems set forth in the present description. As will be obvious to one of skill in the art, methods and devices useful for the present methods can include a large number of optional composition and processing elements and steps.


It will be understood that various modifications may be made without departing from the spirit and scope of the present disclosure. Accordingly, other embodiments are within the scope of the following claims.


REFERENCES



  • 1. F. J. Stadermann, R. M. Walker, E. Zinner, Meteoritics & Planetary Science 34, A111 (July, 1999).

  • 2. C. Lechene et al., Journal of biology 5, 20 (2006).

  • 3. S. Behrens et al., Applied and environmental microbiology 74, 3143 (May, 2008).

  • 4. S. Radajewski, P. Ineson, N. R. Parekh, J. C. Murrell, Nature 403, 646 (2000).

  • 5. M. Manefield, A. S. Whiteley, R. I. Griffiths, M. J. Bailey, Appl. Environ. Microbiol. 68, 5367 (2002).

  • 6. O. Uhlík, K. Jecná, M. B. Leigh, M. Macková, T. Macek, Sci. Total Environ. 407, 3611 (2009).

  • 7. S. L. Addison, I. R. McDonald, G. Lloyd-Jones, J. Microbiol. Methods 80, 70 (2010).

  • 8. H. T. S. Boschker et al., Nature 392, 801 (1998).

  • 9. S. Behrens et al., Appl. Environ. Microbiol. 74, 3143 (May 15, 2008).

  • 10. C. C. Ouverney, J. A. Fuhrman, Appl. Environ. Microbiol. 65, 1746 (Apr. 1, 1999, 1999).

  • 11. J. Adamczyk et al., Appl. Environ. Microbiol. 69, 6875 (Nov. 1, 2003, 2003).

  • 12. E. L. Brodie et al., Proceedings of the National Academy of Sciences 104, 299 (Jan. 2, 2007, 2007).

  • 13. E. L. Brodie et al., Appl. Environ. Microbiol. 72, 6288 (Sep. 1, 2006, 2006).

  • 14. T. DeSantis et al., Microbial Ecology 53, 371 (2007).

  • 15. S. Singh-Gasson et al., Nat. Biotech. 17, 974 (1999).

  • 16. C. Lechene et al., Journal of Biology (2006) 5:20, published on line at the http://page jbiol.com/content/5/6/20.

  • 17. M. S. Cline et al., Integration of biological networks and gene expression data using Cytoscape. Nat. Protocols 2, 2366 (2007).

  • 18. T. Z. DeSantis et al., Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB. Appl. Environ. Microbiol. 72, 5069 (2006).

  • 19. W. Ludwig et al., ARB: a software environment for sequence data. Nucl. Acids Res. 32, 1363 (2004).


Claims
  • 1. A method for quantitative detection of a target, the method comprising, labeling the target with a SIMS detectable label to provide a SIMS labeled target, the SIMS labeled target capable of binding a polymer of a polymer array comprising the polymer presented on a platform;contacting the SIMS labeled target with the polymer array for a time and under condition to allow binding of the SIMS labeled target molecule to the polymer array; andperforming SIMS detection of the polymer array following the contacting to detect the SIM labeled target bound to the polymer array,
  • 2. A method to detect a target in a sample, the method comprising: exposing the sample to a label detectable by Secondary Ion Mass Spectrometry (SIMS label) for a time and under condition to allow binding of the SIMS label with the target;contacting the polymer array with the sample following the exposing to allow binding of a SIMS labeled target with a polymer array comprising a polymer presented on a platform; andperforming Secondary Ion Mass Spectrometry on the polymer array following the contacting to detect the SIM labeled target bound to the polymer array,
  • 3. The method of claim 1 or 2, wherein the SIMS label is a stable isotope.
  • 4. The method of claim 1 or 2, wherein the polymer is a probe nucleic acid, the target is a target nucleic acids and the contacting is performed to allow specific hybridization of the probe nucleic acid with the target nucleic acid.
  • 5. A system for detection of a target, the system comprising a functionalized platform comprising a substrate coated with an electrically conductive layer attaching a functionalized linker molecule; anda label detectable by Secondary Ion Mass Spectrometry (SIMS label)
  • 6. The system of claim 5, further comprising the polymer array configured for detection of a target attached to a polymer on the polymer array through the SIMS label.
  • 7. The system of claim 5, wherein the electrically conductive layer comprises a metal oxide.
  • 8. The system of claim 7, wherein the metal oxide is ITO.
  • 9. The system of claim 8, wherein ITO comprises about 90% In2O3 and about 10% SnO2 by weight.
  • 10. The system of claim 9, wherein the substrate is glass, quartz, silica or plastic.
  • 11. The system of claim 5, wherein the polymer is a nucleic acid.
  • 12. The system of claim 5, wherein the SIMS label is 13C or 15N.
  • 13. The system of claim 5, wherein the polymer array is comprised in a biochip.
  • 14. A functionalized platform comprising a substrate, andan electrically conductive layer,whereinthe substrate is coated with the electrically conductive layer and the electrically conductive layer attaches an a functionalized linker molecule comprising an organosilane compound presenting an organosilane functional group,the platform is configured to be associated, during operation, with a polymer array configured for detection of a target attached to a polymer on the polymer array, through a label attached to the target, the label detectable by Secondary Ion Mass Spectrometry.
  • 15. A polymer array configured to allow detection of a target attached to the polymer through a label attached to the target, the polymer array comprising a polymer attached to a platform,
  • 16. The polymer array of claim 15, wherein the polymer is a polynucleotide or a polypeptide.
  • 17. The polymer array of claim 15, wherein the polymer is DNA.
  • 18. The polymer array of claim 15, wherein the polymer is spotted on the platform.
  • 19. A bio-chip comprising the polymer array of claim 15.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application No. 61/302,535 entitled “Using Phylogenetic Probes For Quantification Of Stable Isotope Labeling And Microbial Community Analysis” filed on Feb. 8, 2010, docket IB-2774P1 and with U.S. Provisional Application No. 61/302,827 entitled “Chip-SIP: Quantification of Nucleic Acid Stable Isotope Labeling with Biopolymer Microarrays and Secondary Ionization Mass Spectrometry (SIMS)” filed on Feb. 9, 2010, with docket number IL-12105, each of which is incorporated herein by reference in its entirety. The present application may also be related to U.S. application Ser. No. 12/366,476 entitled “ ”Functionalized platform for arrays configured for optical detection of targets and related arrays, methods and systems” filed on Feb. 5, 2009 with docket IL-11703, and to U.S. application Ser. No. ______, entitled “Using Phylogenetic Probes For Quantification Of Stable Isotope Labeling And Microbial Community Analysis” filed on Feb. 8, 2011 with docket IB-2774, each of which is herein also incorporated by reference in its entirety.

STATEMENT OF GOVERNMENT INTEREST

The United States Government has rights in this invention pursuant to Contract No. DE-AC52-07NA27344 between the United States Department of Energy and Lawrence Livermore National Security, LLC for the operation of Lawrence Livermore National Laboratory

Provisional Applications (2)
Number Date Country
61302535 Feb 2010 US
61302827 Feb 2010 US