If an Application Data Sheet (ADS) has been filed on the filing date of this application, it is incorporated by reference herein. Any applications claimed on the ADS for priority under 35 U.S.C. §§119, 120, 121, or 365(c), and any and all parent, grandparent, great-grandparent, etc. applications of such applications, are also incorporated by reference, including any priority claims made in those applications and any material incorporated by reference, to the extent such subject matter is not inconsistent herewith.
The present application is related to and/or claims the benefit of the earliest available effective filing date(s) from the following listed application(s) (the “Priority Applications”), if any, listed below (e.g., claims earliest available priority dates for other than provisional patent applications or claims benefits under 35 USC §119(e) for provisional patent applications, for any and all parent, grandparent, great-grandparent, etc. applications of the Priority Application(s)). In addition, the present application is related to the “Related Applications,” if any, listed below.
For purposes of the USPTO extra-statutory requirements, the present application claims benefit of priority of U.S. Provisional Patent Application No. 62/081,559 titled DEVICES, METHODS, AND SYSTEMS FOR INTEGRATING MULTIPLE USER VIDEO IMAGING ARRAY, naming Russell Hannigan as inventor, filed 18 Nov. 2014, which was filed within the twelve months preceding the filing date of the present application or is an application of which a currently co-pending application is entitled to the benefit of the filing date.
For purposes of the USPTO extra-statutory requirements, the present application claims benefit of priority of U.S. Provisional Patent Application No. 62/081,560 titled DEVICES, METHODS, AND SYSTEMS FOR IMPLEMENTATION OF MULTIPLE USER VIDEO IMAGING ARRAY (MUVIA), naming Russell Hannigan, Roderick A. Hyde, Muriel Y. Ishikawa, 3ric Johanson, Jordin T. Kare, Tony S. Pan, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, Jr., and Victoria Y. H. Wood, filed 18 Nov. 2014, which was filed within the twelve months preceding the filing date of the present application or is an application of which a currently co-pending application is entitled to the benefit of the filing date.
For purposes of the USPTO extra-statutory requirements, the present application claims benefit of priority of U.S. Provisional Patent Application No. 62/082,001 titled DEVICES, METHODS, AND SYSTEMS FOR INTEGRATING MULTIPLE USER ACCESS CAMERA ARRAY, naming Russell Hannigan, Ehren Bray, and 3ric Johanson as inventors, filed 19 Nov. 2014 which was filed within the twelve months preceding the filing date of the present application or is an application of which a currently co-pending application is entitled to the benefit of the filing date.
For purposes of the USPTO extra-statutory requirements, the present application claims benefit of priority of U.S. Provisional Patent Application No. 62/082,002 titled DEVICES, METHODS, AND SYSTEMS FOR INTEGRATING MULTIPLE USER VIDEO IMAGING ARRAY, naming Russell Hannigan, Ehren Bray, and 3ric Johanson as inventors, filed 19 Nov. 2014, which was filed within the twelve months preceding the filing date of the present application or is an application of which a currently co-pending application is entitled to the benefit of the filing date.
For purposes of the USPTO extra-statutory requirements, the present application claims benefit of priority of U.S. Provisional Patent Application No. 62/156,162 titled DEVICES, METHODS, AND SYSTEMS FOR INTEGRATING MULTIPLE USER VIDEO IMAGING ARRAY, naming Russell Hannigan, Ehren Bray, 3ric Johanson, and Phil Rustchman as inventors, filed 1 May 2015 which was filed within the twelve months preceding the filing date of the present application or is an application of which a currently co-pending application is entitled to the benefit of the filing date.
None as of the filing date.
The United States Patent Office (USPTO) has published a notice to the effect that the USPTO's computer programs require that patent applicants reference both a serial number and indicate whether an application is a continuation, continuation-in-part, or divisional of a parent application. Stephen G. Kunin, Benefit of Prior-Filed Application, USPTO Official Gazette Mar. 18, 2003. The USPTO further has provided forms for the Application Data Sheet which allow automatic loading of bibliographic data but which require identification of each application as a continuation, continuation-in-part, or divisional of a parent application. The present Applicant Entity (hereinafter “Applicant”) has provided above a specific reference to the application(s) from which priority is being claimed as recited by statute. Applicant understands that the statute is unambiguous in its specific reference language and does not require either a serial number or any characterization, such as “continuation” or “continuation-in-part,” for claiming priority to U.S. patent applications. Notwithstanding the foregoing, Applicant understands that the USPTO's computer programs have certain data entry requirements, and hence Applicant has provided designation(s) of a relationship between the present application and its parent application(s) as set forth above and in any ADS filed in this application, but expressly points out that such designation(s) are not to be construed in any way as any type of commentary and/or admission as to whether or not the present application contains any new matter in addition to the matter of its parent application(s).
If the listings of applications provided above are inconsistent with the listings provided via an ADS, it is the intent of the Applicant to claim priority to each application that appears in the Priority Applications section of the ADS and to each application that appears in the Priority Applications section of this application.
All subject matter of the Priority Applications and the Related Applications and of any and all parent, grandparent, great-grandparent, etc. applications of the Priority Applications and the Related Applications, including any priority claims, is incorporated herein by reference to the extent such subject matter is not inconsistent herewith.
This application is related to video imaging arrays that may be capable of handling multiple users.
In one or more various aspects, a method includes but is not limited to that which is illustrated in the drawings. In addition to the foregoing, other method aspects are described in the claims, drawings, and text forming a part of the disclosure set forth herein.
In one or more various aspects, one or more related systems may be implemented in machines, compositions of matter, or manufactures of systems, limited to patentable subject matter under 35 U.S.C. 101. The one or more related systems may include, but are not limited to, circuitry and/or programming for effecting the herein-referenced method aspects. The circuitry and/or programming may be virtually any combination of hardware, software, and/or firmware configured to effect the herein-referenced method aspects depending upon the design choices of the system designer, and limited to patentable subject matter under 35 USC 101.
The foregoing is a summary and thus may contain simplifications, generalizations, inclusions, and/or omissions of detail; consequently, those skilled in the art will appreciate that the summary is illustrative only and is NOT intended to be in any way limiting. Other aspects, features, and advantages of the devices and/or processes and/or other subject matter described herein will become apparent by reference to the detailed description, the corresponding drawings, and/or in the teachings set forth herein.
For a more complete understanding of embodiments, reference now is made to the following descriptions taken in connection with the accompanying drawings. The use of the same symbols in different drawings typically indicates similar or identical items, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here.
In accordance with 37 C.F.R. §1.84(h)(2),
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar or identical components or items, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here.
Thus, in accordance with various embodiments, computationally implemented methods, systems, circuitry, articles of manufacture, ordered chains of matter, and computer program products are designed to, among other things, provide an interface for the environment illustrated in
The claims, description, and drawings of this application may describe one or more of the instant technologies in operational/functional language, for example as a set of operations to be performed by a computer. Such operational/functional description in most instances would be understood by one skilled the art as specifically-configured hardware (e.g., because a general purpose computer in effect becomes a special purpose computer once it is programmed to perform particular functions pursuant to instructions from program software).
Importantly, although the operational/functional descriptions described herein are understandable by the human mind, they are not abstract ideas of the operations/functions divorced from computational implementation of those operations/functions. Rather, the operations/functions represent a specification for the massively complex computational machines or other means. As discussed in detail below, the operational/functional language must be read in its proper technological context, i.e., as concrete specifications for physical implementations.
The logical operations/functions described herein are a distillation of machine specifications or other physical mechanisms specified by the operations/functions such that the otherwise inscrutable machine specifications may be comprehensible to the human mind. The distillation also allows one of skill in the art to adapt the operational/functional description of the technology across many different specific vendors' hardware configurations or platforms, without being limited to specific vendors' hardware configurations or platforms.
Some of the present technical description (e.g., detailed description, drawings, claims, etc.) may be set forth in terms of logical operations/functions. As described in more detail in the following paragraphs, these logical operations/functions are not representations of abstract ideas, but rather representative of static or sequenced specifications of various hardware elements. Differently stated, unless context dictates otherwise, the logical operations/functions will be understood by those of skill in the art to be representative of static or sequenced specifications of various hardware elements. This is true because tools available to one of skill in the art to implement technical disclosures set forth in operational/functional formats—tools in the form of a high-level programming language (e.g., C, java, visual basic), etc.), or tools in the form of Very high speed Hardware Description Language (“VHDL,” which is a language that uses text to describe logic circuits)—are generators of static or sequenced specifications of various hardware configurations. This fact is sometimes obscured by the broad term “software,” but, as shown by the following explanation, those skilled in the art understand that what is termed “software” is a shorthand for a massively complex interchaining/specification of ordered-matter elements. The term “ordered-matter elements” may refer to physical components of computation, such as assemblies of electronic logic gates, molecular computing logic constituents, quantum computing mechanisms, etc.
For example, a high-level programming language is a programming language with strong abstraction, e.g., multiple levels of abstraction, from the details of the sequential organizations, states, inputs, outputs, etc., of the machines that a high-level programming language actually specifies. See, e.g., Wikipedia, High-level programming language, http://en.wikipedia.org/wiki/High-level_programming_language (as of Jun. 5, 2012, 21:00 GMT). In order to facilitate human comprehension, in many instances, high-level programming languages resemble or even share symbols with natural languages. See, e.g., Wikipedia, Natural language, http://en.wikipedia.org/wiki/Natural_language (as of Jun. 5, 2012, 21:00 GMT).
It has been argued that because high-level programming languages use strong abstraction (e.g., that they may resemble or share symbols with natural languages), they are therefore a “purely mental construct.” (e.g., that “software”—a computer program or computer programming—is somehow an ineffable mental construct, because at a high level of abstraction, it can be conceived and understood in the human mind). This argument has been used to characterize technical description in the form of functions/operations as somehow “abstract ideas.” In fact, in technological arts (e.g., the information and communication technologies) this is not true.
The fact that high-level programming languages use strong abstraction to facilitate human understanding should not be taken as an indication that what is expressed is an abstract idea. In fact, those skilled in the art understand that just the opposite is true. If a high-level programming language is the tool used to implement a technical disclosure in the form of functions/operations, those skilled in the art will recognize that, far from being abstract, imprecise, “fuzzy,” or “mental” in any significant semantic sense, such a tool is instead a near incomprehensibly precise sequential specification of specific computational machines—the parts of which are built up by activating/selecting such parts from typically more general computational machines over time (e.g., clocked time). This fact is sometimes obscured by the superficial similarities between high-level programming languages and natural languages. These superficial similarities also may cause a glossing over of the fact that high-level programming language implementations ultimately perform valuable work by creating/controlling many different computational machines.
The many different computational machines that a high-level programming language specifies are almost unimaginably complex. At base, the hardware used in the computational machines typically consists of some type of ordered matter (e.g., traditional electronic devices (e.g., transistors), deoxyribonucleic acid (DNA), quantum devices, mechanical switches, optics, fluidics, pneumatics, optical devices (e.g., optical interference devices), molecules, etc.) that are arranged to form logic gates. Logic gates are typically physical devices that may be electrically, mechanically, chemically, or otherwise driven to change physical state in order to create a physical reality of Boolean logic.
Logic gates may be arranged to form logic circuits, which are typically physical devices that may be electrically, mechanically, chemically, or otherwise driven to create a physical reality of certain logical functions. Types of logic circuits include such devices as multiplexers, registers, arithmetic logic units (ALUs), computer memory, etc., each type of which may be combined to form yet other types of physical devices, such as a central processing unit (CPU)—the best known of which is the microprocessor. A modern microprocessor will often contain more than one hundred million logic gates in its many logic circuits (and often more than a billion transistors). See, e.g., Wikipedia, Logic gates, http://en.wikipedia.org/wiki/Logic_gates (as of Jun. 5, 2012, 21:03 GMT).
The logic circuits forming the microprocessor are arranged to provide a microarchitecture that will carry out the instructions defined by that microprocessor's defined Instruction Set Architecture. The Instruction Set Architecture is the part of the microprocessor architecture related to programming, including the native data types, instructions, registers, addressing modes, memory architecture, interrupt and exception handling, and external Input/Output. See, e.g., Wikipedia, Computer architecture, http://en.wikipedia.org/wiki/Computer_architecture (as of Jun. 5, 2012, 21:03 GMT).
The Instruction Set Architecture includes a specification of the machine language that can be used by programmers to use/control the microprocessor. Since the machine language instructions are such that they may be executed directly by the microprocessor, typically they consist of strings of binary digits, or bits. For example, a typical machine language instruction might be many bits long (e.g., 32, 64, or 128 bit strings are currently common). A typical machine language instruction might take the form “11110000101011110000111100111111” (a 32 bit instruction).
It is significant here that, although the machine language instructions are written as sequences of binary digits, in actuality those binary digits specify physical reality. For example, if certain semiconductors are used to make the operations of Boolean logic a physical reality, the apparently mathematical bits “1” and “0” in a machine language instruction actually constitute shorthand that specifies the application of specific voltages to specific wires. For example, in some semiconductor technologies, the binary number “1” (e.g., logical “1”) in a machine language instruction specifies around +5 volts applied to a specific “wire” (e.g., metallic traces on a printed circuit board) and the binary number “0” (e.g., logical “0”) in a machine language instruction specifies around −5 volts applied to a specific “wire.” In addition to specifying voltages of the machines' configuration, such machine language instructions also select out and activate specific groupings of logic gates from the millions of logic gates of the more general machine. Thus, far from abstract mathematical expressions, machine language instruction programs, even though written as a string of zeros and ones, specify many, many constructed physical machines or physical machine states.
Machine language is typically incomprehensible by most humans (e.g., the above example was just ONE instruction, and some personal computers execute more than two billion instructions every second). See, e.g., Wikipedia, Instructions per second, http://en.wikipedia.org/wiki/Instructions_per_second (as of Jun. 5, 2012, 21:04 GMT). Thus, programs written in machine language—which may be tens of millions of machine language instructions long—are incomprehensible. In view of this, early assembly languages were developed that used mnemonic codes to refer to machine language instructions, rather than using the machine language instructions' numeric values directly (e.g., for performing a multiplication operation, programmers coded the abbreviation “mult,” which represents the binary number “011000” in MIPS machine code). While assembly languages were initially a great aid to humans controlling the microprocessors to perform work, in time the complexity of the work that needed to be done by the humans outstripped the ability of humans to control the microprocessors using merely assembly languages.
At this point, it was noted that the same tasks needed to be done over and over, and the machine language necessary to do those repetitive tasks was the same. In view of this, compilers were created. A compiler is a device that takes a statement that is more comprehensible to a human than either machine or assembly language, such as “add 2+2 and output the result,” and translates that human understandable statement into a complicated, tedious, and immense machine language code (e.g., millions of 32, 64, or 128 bit length strings). Compilers thus translate high-level programming language into machine language.
This compiled machine language, as described above, is then used as the technical specification which sequentially constructs and causes the interoperation of many different computational machines such that humanly useful, tangible, and concrete work is done. For example, as indicated above, such machine language—the compiled version of the higher-level language—functions as a technical specification which selects out hardware logic gates, specifies voltage levels, voltage transition timings, etc., such that the humanly useful work is accomplished by the hardware.
Thus, a functional/operational technical description, when viewed by one of skill in the art, is far from an abstract idea. Rather, such a functional/operational technical description, when understood through the tools available in the art such as those just described, is instead understood to be a humanly understandable representation of a hardware specification, the complexity and specificity of which far exceeds the comprehension of most any one human. With this in mind, those skilled in the art will understand that any such operational/functional technical descriptions—in view of the disclosures herein and the knowledge of those skilled in the art—may be understood as operations made into physical reality by (a) one or more interchained physical machines, (b) interchained logic gates configured to create one or more physical machine(s) representative of sequential/combinatorial logic(s), (c) interchained ordered matter making up logic gates (e.g., interchained electronic devices (e.g., transistors), DNA, quantum devices, mechanical switches, optics, fluidics, pneumatics, molecules, etc.) that create physical reality representative of logic(s), or (d) virtually any combination of the foregoing. Indeed, any physical object which has a stable, measurable, and changeable state may be used to construct a machine based on the above technical description. Charles Babbage, for example, constructed the first computer out of wood and powered by cranking a handle.
Thus, far from being understood as an abstract idea, those skilled in the art will recognize a functional/operational technical description as a humanly-understandable representation of one or more almost unimaginably complex and time sequenced hardware instantiations. The fact that functional/operational technical descriptions might lend themselves readily to high-level computing languages (or high-level block diagrams for that matter) that share some words, structures, phrases, etc. with natural language simply cannot be taken as an indication that such functional/operational technical descriptions are abstract ideas, or mere expressions of abstract ideas. In fact, as outlined herein, in the technological arts this is simply not true. When viewed through the tools available to those of skill in the art, such functional/operational technical descriptions are seen as specifying hardware configurations of almost unimaginable complexity.
As outlined above, the reason for the use of functional/operational technical descriptions is at least twofold. First, the use of functional/operational technical descriptions allows near-infinitely complex machines and machine operations arising from interchained hardware elements to be described in a manner that the human mind can process (e.g., by mimicking natural language and logical narrative flow). Second, the use of functional/operational technical descriptions assists the person of skill in the art in understanding the described subject matter by providing a description that is more or less independent of any specific vendor's piece(s) of hardware.
The use of functional/operational technical descriptions assists the person of skill in the art in understanding the described subject matter since, as is evident from the above discussion, one could easily, although not quickly, transcribe the technical descriptions set forth in this document as trillions of ones and zeroes, billions of single lines of assembly-level machine code, millions of logic gates, thousands of gate arrays, or any number of intermediate levels of abstractions. However, if any such low-level technical descriptions were to replace the present technical description, a person of skill in the art could encounter undue difficulty in implementing the disclosure, because such a low-level technical description would likely add complexity without a corresponding benefit (e.g., by describing the subject matter utilizing the conventions of one or more vendor-specific pieces of hardware). Thus, the use of functional/operational technical descriptions assists those of skill in the art by separating the technical descriptions from the conventions of any vendor-specific piece of hardware.
In view of the foregoing, the logical operations/functions set forth in the present technical description are representative of static or sequenced specifications of various ordered-matter elements, in order that such specifications may be comprehensible to the human mind and adaptable to create many various hardware configurations. The logical operations/functions disclosed herein should be treated as such, and should not be disparagingly characterized as abstract ideas merely because the specifications they represent are presented in a manner that one of skill in the art can readily understand and apply in a manner independent of a specific vendor's hardware implementation.
Those having skill in the art will recognize that the state of the art has progressed to the point where there is little distinction left between hardware, software, and/or firmware implementations of aspects of systems; the use of hardware, software, and/or firmware is generally (but not always, in that in certain contexts the choice between hardware and software can become significant) a design choice representing cost vs. efficiency tradeoffs. Those having skill in the art will appreciate that there are various vehicles by which processes and/or systems and/or other technologies described herein can be effected (e.g., hardware, software, and/or firmware), and that the preferred vehicle will vary with the context in which the processes and/or systems and/or other technologies are deployed. For example, if an implementer determines that speed and accuracy are paramount, the implementer may opt for a mainly hardware and/or firmware vehicle; alternatively, if flexibility is paramount, the implementer may opt for a mainly software implementation; or, yet again alternatively, the implementer may opt for some combination of hardware, software, and/or firmware in one or more machines, compositions of matter, and articles of manufacture, limited to patentable subject matter under 35 USC 101. Hence, there are several possible vehicles by which the processes and/or devices and/or other technologies described herein may be effected, none of which is inherently superior to the other in that any vehicle to be utilized is a choice dependent upon the context in which the vehicle will be deployed and the specific concerns (e.g., speed, flexibility, or predictability) of the implementer, any of which may vary. Those skilled in the art will recognize that optical aspects of implementations will typically employ optically-oriented hardware, software, and or firmware.
In some implementations described herein, logic and similar implementations may include software or other control structures. Electronic circuitry, for example, may have one or more paths of electrical current constructed and arranged to implement various functions as described herein. In some implementations, one or more media may be configured to bear a device-detectable implementation when such media hold or transmit device detectable instructions operable to perform as described herein. In some variants, for example, implementations may include an update or modification of existing software or firmware, or of gate arrays or programmable hardware, such as by performing a reception of or a transmission of one or more instructions in relation to one or more operations described herein. Alternatively or additionally, in some variants, an implementation may include special-purpose hardware, software, firmware components, and/or general-purpose components executing or otherwise invoking special-purpose components. Specifications or other implementations may be transmitted by one or more instances of tangible transmission media as described herein, optionally by packet transmission or otherwise by passing through distributed media at various times.
Alternatively or additionally, implementations may include executing a special-purpose instruction sequence or invoking circuitry for enabling, triggering, coordinating, requesting, or otherwise causing one or more occurrences of virtually any functional operations described herein. In some variants, operational or other logical descriptions herein may be expressed as source code and compiled or otherwise invoked as an executable instruction sequence. In some contexts, for example, implementations may be provided, in whole or in part, by source code, such as C++, or other code sequences. In other implementations, source or other code implementation, using commercially available and/or techniques in the art, may be compiled/implemented/translated/converted into a high-level descriptor language (e.g., initially implementing described technologies in C or C++ programming language and thereafter converting the programming language implementation into a logic-synthesizable language implementation, a hardware description language implementation, a hardware design simulation implementation, and/or other such similar mode(s) of expression). For example, some or all of a logical expression (e.g., computer programming language implementation) may be manifested as a Verilog-type hardware description (e.g., via Hardware Description Language (HDL) and/or Very High Speed Integrated Circuit Hardware Descriptor Language (VHDL)) or other circuitry model which may then be used to create a physical implementation having hardware (e.g., an Application Specific Integrated Circuit). Those skilled in the art will recognize how to obtain, configure, and optimize suitable transmission or computational elements, material supplies, actuators, or other structures in light of these teachings.
Those skilled in the art will recognize that it is common within the art to implement devices and/or processes and/or systems, and thereafter use engineering and/or other practices to integrate such implemented devices and/or processes and/or systems into more comprehensive devices and/or processes and/or systems. That is, at least a portion of the devices and/or processes and/or systems described herein can be integrated into other devices and/or processes and/or systems via a reasonable amount of experimentation. Those having skill in the art will recognize that examples of such other devices and/or processes and/or systems might include—as appropriate to context and application—all or part of devices and/or processes and/or systems of (a) an air conveyance (e.g., an airplane, rocket, helicopter, etc.), (b) a ground conveyance (e.g., a car, truck, locomotive, tank, armored personnel carrier, etc.), (c) a building (e.g., a home, warehouse, office, etc.), (d) an appliance (e.g., a refrigerator, a washing machine, a dryer, etc.), (e) a communications system (e.g., a networked system, a telephone system, a Voice over IP system, etc.), (f) a business entity (e.g., an Internet Service Provider (ISP) entity such as Comcast Cable, Qwest, Southwestern Bell, etc.), or (g) a wired/wireless services entity (e.g., Sprint, Cingular, Nextel, etc.), etc.
In certain cases, use of a system or method may occur in a territory even if components are located outside the territory. For example, in a distributed computing context, use of a distributed computing system may occur in a territory even though parts of the system may be located outside of the territory (e.g., relay, server, processor, signal-bearing medium, transmitting computer, receiving computer, etc. located outside the territory).
A sale of a system or method may likewise occur in a territory even if components of the system or method are located and/or used outside the territory. Further, implementation of at least part of a system for performing a method in one territory does not preclude use of the system in another territory
In a general sense, those skilled in the art will recognize that the various embodiments described herein can be implemented, individually and/or collectively, by various types of electro-mechanical systems having a wide range of electrical components such as hardware, software, firmware, and/or virtually any combination thereof, limited to patentable subject matter under 35 U.S.C. 101; and a wide range of components that may impart mechanical force or motion such as rigid bodies, spring or torsional bodies, hydraulics, electro-magnetically actuated devices, and/or virtually any combination thereof. Consequently, as used herein “electro-mechanical system” includes, but is not limited to, electrical circuitry operably coupled with a transducer (e.g., an actuator, a motor, a piezoelectric crystal, a Micro Electro Mechanical System (MEMS), etc.), electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of memory (e.g., random access, flash, read only, etc.)), electrical circuitry forming a communications device (e.g., a modem, communications switch, optical-electrical equipment, etc.), and/or any non-electrical analog thereto, such as optical or other analogs (e.g., graphene based circuitry). Those skilled in the art will also appreciate that examples of electro-mechanical systems include but are not limited to a variety of consumer electronics systems, medical devices, as well as other systems such as motorized transport systems, factory automation systems, security systems, and/or communication/computing systems. Those skilled in the art will recognize that electro-mechanical as used herein is not necessarily limited to a system that has both electrical and mechanical actuation except as context may dictate otherwise.
In a general sense, those skilled in the art will recognize that the various aspects described herein which can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, and/or any combination thereof can be viewed as being composed of various types of “electrical circuitry.” Consequently, as used herein “electrical circuitry” includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of memory (e.g., random access, flash, read only, etc.)), and/or electrical circuitry forming a communications device (e.g., a modem, communications switch, optical-electrical equipment, etc.). Those having skill in the art will recognize that the subject matter described herein may be implemented in an analog or digital fashion or some combination thereof.
Those skilled in the art will recognize that at least a portion of the devices and/or processes described herein can be integrated into an image processing system. Those having skill in the art will recognize that a typical image processing system generally includes one or more of a system unit housing, a video display device, memory such as volatile or non-volatile memory, processors such as microprocessors or digital signal processors, computational entities such as operating systems, drivers, applications programs, one or more interaction devices (e.g., a touch pad, a touch screen, an antenna, etc.), control systems including feedback loops and control motors (e.g., feedback for sensing lens position and/or velocity; control motors for moving/distorting lenses to give desired focuses). An image processing system may be implemented utilizing suitable commercially available components, such as those typically found in digital still systems and/or digital motion systems.
Those skilled in the art will recognize that at least a portion of the devices and/or processes described herein can be integrated into a data processing system. Those having skill in the art will recognize that a data processing system generally includes one or more of a system unit housing, a video display device, memory such as volatile or non-volatile memory, processors such as microprocessors or digital signal processors, computational entities such as operating systems, drivers, graphical user interfaces, and applications programs, one or more interaction devices (e.g., a touch pad, a touch screen, an antenna, etc.), and/or control systems including feedback loops and control motors (e.g., feedback for sensing position and/or velocity; control motors for moving and/or adjusting components and/or quantities). A data processing system may be implemented utilizing suitable commercially available components, such as those typically found in data computing/communication and/or network computing/communication systems.
Those skilled in the art will recognize that at least a portion of the devices and/or processes described herein can be integrated into a mote system. Those having skill in the art will recognize that a typical mote system generally includes one or more memories such as volatile or non-volatile memories, processors such as microprocessors or digital signal processors, computational entities such as operating systems, user interfaces, drivers, sensors, actuators, applications programs, one or more interaction devices (e.g., an antenna USB ports, acoustic ports, etc.), control systems including feedback loops and control motors (e.g., feedback for sensing or estimating position and/or velocity; control motors for moving and/or adjusting components and/or quantities). A mote system may be implemented utilizing suitable components, such as those found in mote computing/communication systems. Specific examples of such components entail such as Intel Corporation's and/or Crossbow Corporation's mote components and supporting hardware, software, and/or firmware.
For the purposes of this application, “cloud” computing may be understood as described in the cloud computing literature. For example, cloud computing may be methods and/or systems for the delivery of computational capacity and/or storage capacity as a service. The “cloud” may refer to one or more hardware and/or software components that deliver or assist in the delivery of computational and/or storage capacity, including, but not limited to, one or more of a client, an application, a platform, an infrastructure, and/or a server The cloud may refer to any of the hardware and/or software associated with a client, an application, a platform, an infrastructure, and/or a server. For example, cloud and cloud computing may refer to one or more of a computer, a processor, a storage medium, a router, a switch, a modem, a virtual machine (e.g., a virtual server), a data center, an operating system, a middleware, a firmware, a hardware back-end, a software back-end, and/or a software application. A cloud may refer to a private cloud, a public cloud, a hybrid cloud, and/or a community cloud. A cloud may be a shared pool of configurable computing resources, which may be public, private, semi-private, distributable, scaleable, flexible, temporary, virtual, and/or physical. A cloud or cloud service may be delivered over one or more types of network, e.g., a mobile communication network, and the Internet.
As used in this application, a cloud or a cloud service may include one or more of infrastructure-as-a-service (“IaaS”), platform-as-a-service (“PaaS”), software-as-a-service (“SaaS”), and/or desktop-as-a-service (“DaaS”). As a non-exclusive example, IaaS may include, e.g., one or more virtual server instantiations that may start, stop, access, and/or configure virtual servers and/or storage centers (e.g., providing one or more processors, storage space, and/or network resources on-demand, e.g., EMC and Rackspace). PaaS may include, e.g., one or more software and/or development tools hosted on an infrastructure (e.g., a computing platform and/or a solution stack from which the client can create software interfaces and applications, e.g., Microsoft Azure). SaaS may include, e.g., software hosted by a service provider and accessible over a network (e.g., the software for the application and/or the data associated with that software application may be kept on the network, e.g., Google Apps, SalesForce). DaaS may include, e.g., providing desktop, applications, data, and/or services for the user over a network (e.g., providing a multi-application framework, the applications in the framework, the data associated with the applications, and/or services related to the applications and/or the data over the network, e.g., Citrix). The foregoing is intended to be exemplary of the types of systems and/or methods referred to in this application as “cloud” or “cloud computing” and should not be considered complete or exhaustive.
One skilled in the art will recognize that the herein described components (e.g., operations), devices, objects, and the discussion accompanying them are used as examples for the sake of conceptual clarity and that various configuration modifications are contemplated. Consequently, as used herein, the specific exemplars set forth and the accompanying discussion are intended to be representative of their more general classes. In general, use of any specific exemplar is intended to be representative of its class, and the non-inclusion of specific components (e.g., operations), devices, and objects should not be taken limiting.
The herein described subject matter sometimes illustrates different components contained within, or connected with, different other components. It is to be understood that such depicted architectures are merely exemplary, and that in fact many other architectures may be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being “operably connected”, or “operably coupled,” to each other to achieve the desired functionality, and any two components capable of being so associated can also be viewed as being “operably couplable,” to each other to achieve the desired functionality. Specific examples of operably couplable include but are not limited to physically mateable and/or physically interacting components, and/or wirelessly interactable, and/or wirelessly interacting components, and/or logically interacting, and/or logically interactable components.
To the extent that formal outline headings are present in this application, it is to be understood that the outline headings are for presentation purposes, and that different types of subject matter may be discussed throughout the application (e.g., device(s)/structure(s) may be described under process(es)/operations heading(s) and/or process(es)/operations may be discussed under structure(s)/process(es) headings; and/or descriptions of single topics may span two or more topic headings). Hence, any use of formal outline headings in this application is for presentation purposes, and is not intended to be in any way limiting.
Throughout this application, examples and lists are given, with parentheses, the abbreviation “e.g.,” or both. Unless explicitly otherwise stated, these examples and lists are merely exemplary and are non-exhaustive. In most cases, it would be prohibitive to list every example and every combination. Thus, smaller, illustrative lists and examples are used, with focus on imparting understanding of the claim terms rather than limiting the scope of such terms.
With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations are not expressly set forth herein for sake of clarity.
One skilled in the art will recognize that the herein described components (e.g., operations), devices, objects, and the discussion accompanying them are used as examples for the sake of conceptual clarity and that various configuration modifications are contemplated. Consequently, as used herein, the specific exemplars set forth and the accompanying discussion are intended to be representative of their more general classes. In general, use of any specific exemplar is intended to be representative of its class, and the non-inclusion of specific components (e.g., operations), devices, and objects should not be taken limiting.
Although one or more users maybe shown and/or described herein, e.g., in
In some instances, one or more components may be referred to herein as “configured to,” “configured by,” “configurable to,” “operable/operative to,” “adapted/adaptable,” “able to,” “conformable/conformed to,” etc. Those skilled in the art will recognize that such terms (e.g. “configured to”) generally encompass active-state components and/or inactive-state components and/or standby-state components, unless context requires otherwise.
Referring now to
Generally, although not necessarily required, a MUVIA system may include one or more of a user device (e.g., hereinafter interchangeably referred to as a “client device,” in recognition that a user may not necessarily be a human, living, or organic”), a server, and an image sensor array. A “server” in the context of this application may refer to any device, program, or module that is not directly connected to the image sensor array or to the client device, including any and all “cloud” storage, applications, and/or processing.
For example, in an embodiment, e.g., as shown in
Referring now to
User device 5200 may be, but is not limited to, a wearable device (e.g., glasses, goggles, headgear, a watch, clothing), an implant (e.g., a retinal-implant display), a computer of any kind (e.g., a laptop computer, desktop computer, mainframe, server, etc.), a tablet or other portable device, a phone or other similar device (e.g., smartphone, personal digital assistant), a personal electronic device (e.g., music player, CD player), a home appliance (e.g., a television, a refrigerator, or any other so-called “smart” device), a piece of office equipment (e.g., a copier, scanner, fax device, etc.), a camera or other camera-like device, a video game system, an entertainment/media center, or any other electrical equipment that has a functionality of presenting an image (whether visual or by other means, e.g., a screen, but also other sensory stimulating work).
User device 5200 may be capable of presenting an image, which, for purposes of clarity and conciseness will be referred to as displaying an image, although communication through forms other than generating light waves through the visible light spectrum, although the image is not required to be presented at all times or even at all. For example, in an embodiment, user device 5200 may receive images from server 4000 (or directly from the image sensor array 3200, as will be discussed herein), and may store the images for later viewing, or for processing internally, or for any other reason.
Referring again to
In an embodiment, the user selection accepting module may accept a selection of a particular thing—e.g., a building, an animal, or any other object whose representation is present on the screen. Moreover, a user may use a text box to “search” the image for a particular thing, and processing, done at the user device 5200 or at the server 4000, may determine the image and the zoom level for viewing that thing. The search for a particular thing may include a generic search, e.g., “search for people,” or “search for penguins,” or a more specific search, e.g., “search for the Space Needle,” or “search for the White House.” The search for a particular thing may take on any known contextual search, e.g., an address, a text string, or any other input.
In an embodiment, the “user selection” facilitated by the user selection accepting module 5210 may not involve a user at all. For example, in an embodiment, e.g., in a security embodiment, the user selection may be handled completely by machine, and may include “select any portion of the image with movement,” or “select any portion of the image in which a person is recognized,” or “select any portion of the image in which a particular person, e.g., a person on the FBI most wanted list” is recognized.
Referring again to
Referring again to
Referring now to
Referring again to
Referring again to
Referring now to
Referring again to
Referring now to
Image sensor array 3200 may include one or more image sensors that may, in an embodiment, be statically pointed at a particular object or scene. Image sensor array 3200 may be a single image sensor, or more commonly, may be a group of individual image sensors 3201 that are combined to create a larger field of view. For example, in an embodiment, ten megapixel sensors may be used for each individual image sensor 3201. With twelve of these sensors, the effective field of view, loss-less zoom, and so forth may be increased substantially. These numbers are for example only, and any number of sensors and/or megapixel image sensor capacities may be used.
The use of many individual sensors may create a very large number of pixels captured for each exposure of the image sensor array 3200. Thus, these pixels are transmitted via a higher bandwidth communication 3505 to the array local storage and processing module 3300. In an embodiment, array local storage and processing module 3300 is integrated into the image sensor array. In another embodiment, the array local storage and processing module 3300 is separate from, but directly connected to (e.g., via a USB 3.0 cable) to the image sensor array 3200. It is noted that “higher bandwidth communication 3505” does not require a specific amount of bandwidth, but only that the bandwidth for this communication is relatively higher than the bandwidth communication from the array local processing module 3300 to the remote server, which may be, but is not required to be, located further away temporally.
It is noted that, because of the large number of pixels captured by image sensor array 3200, mechanical changes to the image sensor array are not generally required, although such mechanical changes are not excluded from these embodiments. For example, because the array has a very large field of view, with very high resolution, “pan” and “zoom” functions may be handled optically, rather than by mechanically changing the focal point of the lenses or by physically pointing the array at a different location. This may reduce the complexity required of the device, and also may improve the speed at which different views may be generated by the image sensor array 3200.
Referring again to
After the pixels to be kept are identified, the other pixels that are not to be kept are removed, e.g., decimated at unused pixel decimation module 3330. In an embodiment, these pixels are simply discarded, e.g., not stored in a long-term memory, that is removed to a digital trash 3317. In another embodiment, some or all of these pixels are stored in a local memory, e.g., local memory 3315. From here, these pixels may be transmitted to various locations at off-peak times, may be kept for image processing by the array local processing module 3300, or may be subject to other manipulations or processing separate from the user requests.
Referring again to
It is noted that more pixels than what are specifically requested by the user may be transmitted, in certain embodiments. For example, the array local processing module 3300 may send pixels that border the user's requested area, but are outside the user's requested area. In an embodiment, as will be discussed herein, those pixels may be sent at a different resolution or using a different kind of compression. In another embodiment, the additional pixels may merely be sent the same as the requested pixels. In still another embodiment, server 4000 may expand the user requested areas, so that array local processing module 3300 may send only the requested pixels, but the requested pixels cover more area than what the user originally requested. These additional pixels may be transmitted and “cached” by the server or local device, which may be used to decrease latency times, in a process that will be discussed more herein.
Referring now to
Referring back to
Referring again to
Referring now to
For example, in an embodiment, referring to
Referring now to
Referring again to
Referring now to
Referring again to
Referring now to
Referring now to
Image sensor array 3200 may include one or more image sensors that may, in an embodiment, be statically pointed at a particular object or scene. Image sensor array 3200 may be a single image sensor, or more commonly, may be a group of individual image sensors 3201 that are combined to create a larger field of view. For example, in an embodiment, ten megapixel sensors may be used for each individual image sensor 3201. With twelve of these sensors, the effective field of view, loss-less zoom, and so forth may be increased substantially. These numbers are for example only, and any number of sensors and/or megapixel image sensor capacities may be used.
The use of many individual sensors may create a very large number of pixels captured for each exposure of the image sensor array 3200. Thus, these pixels are transmitted via a higher bandwidth communication 3505 to the array local storage and processing module 3400. In an embodiment, array local storage and processing module 3400 is integrated into the image sensor array. In another embodiment, the array local storage and processing module 3400 is separate from, but directly connected to (e.g., via a USB 3.0 cable) to the image sensor array 3200. It is noted that “higher bandwidth communication 3505” does not require a specific amount of bandwidth, but only that the bandwidth for this communication is relatively higher than the bandwidth communication from the array local processing module 3400 to the remote server, which may be, but is not required to be, located further away temporally.
It is noted that, because of the large number of pixels captured by image sensor array 3200, mechanical changes to the image sensor array are not generally required, although such mechanical changes are not excluded from these embodiments. For example, because the array has a very large field of view, with very high resolution, “pan” and “zoom” functions may be handled optically, rather than by mechanically changing the focal point of the lenses or by physically pointing the array at a different location. This may reduce the complexity required of the device, and also may improve the speed at which different views may be generated by the image sensor array 3200.
Referring again to
After the pixels to be kept are identified, the other pixels that are not to be kept are removed, e.g., decimated at unused pixel decimation module 3430. In an embodiment, these pixels are simply discarded, e.g., not stored in a long-term memory, that is removed to a digital trash 3417. In another embodiment, some or all of these pixels are stored in a local memory, e.g., local memory 3415. From here, these pixels may be transmitted to various locations at off-peak times, may be kept for image processing by the array local processing module 3400, or may be subject to other manipulations or processing separate from the user requests.
Referring gain to
Referring again to
Referring again to
Referring now to
Following the arrow of data flow to the right and upward from module 4160 of server 4160, the requested user images arrive at user device 5510, user device 5520, and user device 5530, as shown in
Referring now to
Referring again to
In an embodiment, target selection reception module 5610 may include an audible target selection module 5614 which may be configured to allow the user to select a target using audible commands, without requiring physical interaction with a device.
Referring again to
Referring now to
Referring again to
In an embodiment, server 4000 may perform processing on the selected target data, and/or on image data that is received, in order to create a request that is to be transmitted to the image sensor array. For example, in the given example, the selected target data is a football player. The server 4000, that is, selected target identification module 4220 may perform image recognition on one or more images captured from the image sensor array to determine a “sector” of the entire scene that contains the selected target. In another embodiment, the selected target identification module 4220 may use other, external sources of data to determine where the target is. In yet another embodiment, the selected target data was selected by the user from the scene displayed by the image sensor array, so such processing may not be necessary.
Referring again to
Referring now to
Referring now to
The use of many individual sensors may create a very large number of pixels captured for each exposure of the image sensor array 3200. Thus, these pixels are transmitted via a higher bandwidth communication 3505 to the array local storage and processing module 3500. In an embodiment, array local storage and processing module 3500 is integrated into the image sensor array. In another embodiment, the array local storage and processing module 3500 is separate from, but directly connected to (e.g., via a USB 3.0 cable) to the image sensor array 3200. It is noted that “higher bandwidth communication 3505” does not require a specific amount of bandwidth, but only that the bandwidth for this communication is relatively higher than the bandwidth communication from the array local processing module 3500 to the remote server, which may be, but is not required to be, located further away temporally.
It is noted that, because of the large number of pixels captured by image sensor array 3200, mechanical changes to the image sensor array are not generally required, although such mechanical changes are not excluded from these embodiments. For example, because the array has a very large field of view, with very high resolution, “pan” and “zoom” functions may be handled optically, rather than by mechanically changing the focal point of the lenses or by physically pointing the array at a different location. This may reduce the complexity required of the device, and also may improve the speed at which different views may be generated by the image sensor array 3200.
Referring again to
After the pixels to be kept are identified, the other pixels that are not to be kept are removed, e.g., decimated at unused pixel decimation module 3530. In an embodiment, these pixels are simply discarded, e.g., not stored in a long-term memory, that is removed to a digital trash 3517. In another embodiment, some or all of these pixels are stored in a local memory, e.g., local memory 3515. From here, these pixels may be transmitted to various locations at off-peak times, may be kept for image processing by the array local processing module 3500, or may be subject to other manipulations or processing separate from the user requests. In an embodiment, unused pixel decimation module may include or communicate with a lower resolution module 3514, which may, in some embodiments, be used to transmit a lower-resolution version of more of the image (e.g., an entire scene, or more of the field of view surrounding the target) to the server 4000, so that the server 4000 may accurately determine which images are required to capture the target selected by the user.
Referring again to
Referring now again to
Referring again to
Referring again to
Referring now again to
Referring again to
Referring again to
In an embodiment, image selection reception module 5710 may include an audible target selection module 5714 which may be configured to allow the user to select a target using audible commands, without requiring physical interaction with a device.
Referring again to
Referring now to
Referring again to
Referring again to
Referring again to
Referring now to
Image sensor array 3200 may include one or more image sensors that may, in an embodiment, be statically pointed at a particular object or scene. Image sensor array 3200 may be a single image sensor, or more commonly, may be a group of individual image sensors 3201 that are combined to create a larger field of view. For example, in an embodiment, ten megapixel sensors may be used for each individual image sensor 3201. With twelve of these sensors, the effective field of view, loss-less zoom, and so forth may be increased substantially. These numbers are for example only, and any number of sensors and/or megapixel image sensor capacities may be used.
The use of many individual sensors may create a very large number of pixels captured for each exposure of the image sensor array 3200. Thus, these pixels are transmitted via a higher bandwidth communication 3605 to the array local storage and processing module 3600. In an embodiment, array local storage and processing module 3600 is integrated into the image sensor array. In another embodiment, the array local storage and processing module 3600 is separate from, but directly connected to (e.g., via a USB 3.0 cable) to the image sensor array 3200. It is noted that “higher bandwidth communication 3605” does not require a specific amount of bandwidth, but only that the bandwidth for this communication is relatively higher than the bandwidth communication from the array local processing module 3600 to the remote server, which may be, but is not required to be, located further away temporally.
It is noted that, because of the large number of pixels captured by image sensor array 3200, mechanical changes to the image sensor array are not generally required, although such mechanical changes are not excluded from these embodiments. For example, because the array has a very large field of view, with very high resolution, “pan” and “zoom” functions may be handled optically, rather than by mechanically changing the focal point of the lenses or by physically pointing the array at a different location. This may reduce the complexity required of the device, and also may improve the speed at which different views may be generated by the image sensor array 3200.
Referring again to
After the pixels to be kept are identified, the other pixels that are not to be kept are removed, e.g., decimated at unused pixel decimation module 3630. In an embodiment, these pixels are simply discarded, e.g., not stored in a long-term memory, that is removed to a digital trash 3617. In another embodiment, some or all of these pixels are stored in a local memory, e.g., local memory 3615. From here, these pixels may be transmitted to various locations at off-peak times, may be kept for image processing by the array local processing module 3600, or may be subject to other manipulations or processing separate from the user requests. In an embodiment, unused pixel decimation module may include or communicate with a lower resolution module 3614, which may, in some embodiments, be used to transmit a lower-resolution version of more of the image (e.g., an entire scene, or more of the field of view surrounding the target) to the server 4000, so that the server 4000 may accurately determine which images are required to capture the target selected by the user.
Referring again to
It is noted that more pixels than what are specifically requested by the user may be transmitted, in certain embodiments. For example, the array local processing module 3600 may send pixels that border the user's requested area, but are outside the user's requested area. In an embodiment, as will be discussed herein, those pixels may be sent at a different resolution or using a different kind of compression. In another embodiment, the additional pixels may merely be sent the same as the requested pixels. In still another embodiment, server 4000 may expand the user requested areas, so that array local processing module 3600 may send only the requested pixels, but the requested pixels cover more area than what the user originally requested. These additional pixels may be transmitted and “cached” by the server or local device, which may be used to decrease latency times, in a process that will be discussed more herein.
Referring now again to
Referring now again to
In an embodiment, as shown in
Referring now to
Referring now to
In an embodiment, user device 5800 may have a field of view 5810, as shown in
Referring now to
Referring now to
As shown in
Referring now to
Referring now to
Referring again to
Referring now to
Referring again to
Referring now to
Referring again to
Referring again to
In an embodiment, the “user selection” facilitated by the user selection accepting module 5910 may not involve a user at all. For example, in an embodiment, e.g., in a security embodiment, the user selection may be handled completely by machine, and may include “select any portion of the image with movement,” or “select any portion of the image in which a person is recognized,” or “select any portion of the image in which a particular person, e.g., a person on the FBI most wanted list” is recognized.
Referring again to
Referring again to
Referring now to
Referring again to
Referring now to
After the pixels to be kept are identified, the other pixels that are not to be kept are removed, e.g., decimated at unused pixel decimation module 3730. In an embodiment, these pixels are simply discarded, e.g., not stored in a long-term memory, that is removed to a digital trash 3717. In another embodiment, some or all of these pixels are stored in a local memory, e.g., local memory 3715. From here, these pixels may be transmitted to various locations at off-peak times, may be kept for image processing by the array local processing module 3700, or may be subject to other manipulations or processing separate from the user requests, as described in previous embodiments. In an embodiment, unused pixel decimation module 3730 may be used to transmit a lower-resolution version of more of the image (e.g., an entire scene, or more of the field of view surrounding the target) to the server 4000, so that the server 4000 may accurately determine which images are required to fulfill the request of the user.
Referring again to
It is noted that more pixels than what are specifically requested by the user may be transmitted, in certain embodiments. For example, the array local processing module 3700 may send pixels that border the user's requested area, but are outside the user's requested area. In an embodiment, as will be discussed herein, those pixels may be sent at a different resolution or using a different kind of compression. In another embodiment, the additional pixels may merely be sent the same as the requested pixels. In still another embodiment, server 4000 may expand the user requested areas, so that array local processing module 3700 may send only the requested pixels, but the requested pixels cover more area than what the user originally requested. These additional pixels may be transmitted and “cached” by the server or local device, which may be used to decrease latency times, in a process that will be discussed more herein.
Referring now again to
In an embodiment, server 4000 also may include advertisement insertion module 4560. Advertisement insertion module 4560 may insert an advertisement into the received image. The advertisement may be based one or more of the contents of the image, a characteristic of a user or the user device, or a setting of the advertisement server component 7700 (see, e.g.,
Referring again to
Referring again to
Referring now to
Referring again to
Referring again to
Referring again to
Referring again to
While particular aspects of the present subject matter described herein have been shown and described, it will be apparent to those skilled in the art that, based upon the teachings herein, changes and modifications may be made without departing from the subject matter described herein and its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the true spirit and scope of the subject matter described herein. It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.).
It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to claims containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations).
Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that typically a disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms unless context dictates otherwise. For example, the phrase “A or B” will be typically understood to include the possibilities of “A” or “B” or “A and B.”
With respect to the appended claims, those skilled in the art will appreciate that recited operations therein may generally be performed in any order. Also, although various operational flows are presented in a sequence(s), it should be understood that the various operations may be performed in other orders than those which are illustrated, or may be performed concurrently. Examples of such alternate orderings may include overlapping, interleaved, interrupted, reordered, incremental, preparatory, supplemental, simultaneous, reverse, or other variant orderings, unless context dictates otherwise. Furthermore, terms like “responsive to,” “related to,” or other past-tense adjectives are generally not intended to exclude such variants, unless context dictates otherwise.
This application may make reference to one or more trademarks, e.g., a word, letter, symbol, or device adopted by one manufacturer or merchant and used to identify and/or distinguish his or her product from those of others. Trademark names used herein are set forth in such language that makes clear their identity, that distinguishes them from common descriptive nouns, that have fixed and definite meanings, or, in many if not all cases, are accompanied by other specific identification using terms not covered by trademark. In addition, trademark names used herein have meanings that are well-known and defined in the literature, or do not refer to products or compounds for which knowledge of one or more trade secrets is required in order to divine their meaning. All trademarks referenced in this application are the property of their respective owners, and the appearance of one or more trademarks in this application does not diminish or otherwise adversely affect the validity of the one or more trademarks. All trademarks, registered or unregistered, that appear in this application are assumed to include a proper trademark symbol, e.g., the circle R or bracketed capitalization (e.g., [trademark name]), even when such trademark symbol does not explicitly appear next to the trademark. To the extent a trademark is used in a descriptive manner to refer to a product or process, that trademark should be interpreted to represent the corresponding product or process as of the date of the filing of this patent application.
Throughout this application, the terms “in an embodiment,” ‘in one embodiment,” “in some embodiments,” “in several embodiments,” “in at least one embodiment,” “in various embodiments,” and the like, may be used. Each of these terms, and all such similar terms should be construed as “in at least one embodiment, and possibly but not necessarily all embodiments,” unless explicitly stated otherwise. Specifically, unless explicitly stated otherwise, the intent of phrases like these is to provide non-exclusive and non-limiting examples of implementations of the invention. The mere statement that one, some, or may embodiments include one or more things or have one or more features, does not imply that all embodiments include one or more things or have one or more features, but also does not imply that such embodiments must exist. It is a mere indicator of an example and should not be interpreted otherwise, unless explicitly stated as such.
Those skilled in the art will appreciate that the foregoing specific exemplary processes and/or devices and/or technologies are representative of more general processes and/or devices and/or technologies taught elsewhere herein, such as in the claims filed herewith and/or elsewhere in the present application.
Number | Date | Country | |
---|---|---|---|
62081559 | Nov 2014 | US | |
62081560 | Nov 2014 | US | |
62082001 | Nov 2014 | US | |
62082002 | Nov 2014 | US | |
62156162 | May 2015 | US |