Analyte monitoring devices have been used as medical diagnostic devices to determine a level of analyte from a sample. One common application is glucose measurements. For example, an analyte monitoring device is used with a remote sensor to perform an analyte reading. The sensor may be configured for implantation (e.g., subcutaneous, venous, or arterial implantation) into a patient. The analyte monitoring device processes signals from the remote sensor to determine the concentration or level of analyte in the subcutaneous tissue and may display the current level of the analyte.
The invention is best understood from the following detailed description when read in conjunction with the accompanying drawings. It is emphasized that, according to common practice, the various features of the drawings are not to-scale. On the contrary, the dimensions of the various features are arbitrarily expanded or reduced for clarity. Included are the following:
Before the present inventions are described, it is to be understood that this invention is not limited to particular aspects described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included or excluded in the range, and each range where either, neither or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, some potential and preferred methods and materials are now described. All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited. It is understood that the present disclosure supersedes any disclosure of an incorporated publication to the extent there is a contradiction.
It must be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a program update” includes a plurality of such program updates and reference to “the program update” includes reference to one or more program updates and equivalents thereof known to those skilled in the art, and so forth.
Generally, embodiments of the present disclosure relate to in vivo methods and devices for detecting at least one analyte such as glucose in body fluid. Accordingly, embodiments include in vivo analyte sensors configured so that at least a portion of the sensor is positioned in the body of a user (e.g., within the ISF), to obtain information about at least one analyte of the body, e.g., transcutaneously positioned in user's body. In certain embodiments, an in vivo analyte sensor is coupled to an electronics unit that is maintained on the body of the user such as on a skin surface, where such coupling provides on body, in vivo analyte sensor electronics assemblies.
In certain embodiments, analyte information is communicated from a first device such as an on body electronics unit to a second analyte monitoring device which may include user interface features, including a display, and/or the like.
In many embodiments of the system, analyte information derived by the sensor/on body electronics (for example, on body electronics assembly) is made available in a user-usable or viewable form only when queried by the user such that the timing of data communication is selected by the user. The on-body electronics may take periodic measurement and record such data until an on-demand reading is taken by the user (e.g., the display device brought in close vicinity of the on-body electronics and sensor). Upon communication, the on-body electronics may communicate the recorded data for a set time period. For example, the on-body electronics may have 8 hours of memory in which it stores periodic measurements taken every 15 minutes. When an on-demand reading is taken, the entire 8 hours is transferred to the device. It should be appreciated that if the user does not take an on-demand reading for longer than 8 hours, some of the data may be lost.
Accordingly, in certain embodiments once a sensor electronics assembly is placed on the body so that at least a portion of the in vivo sensor is in contact with bodily fluid such as ISF and the sensor is electrically coupled to the electronics unit, sensor derived analyte information may be communicated from the on body electronics to a display device on-demand by powering on the display device, and executing a software algorithm stored in and accessed from a memory of the display device, to generate one or more request commands, control signal or data packet to send to the on body electronics. The software algorithm executed under, for example, the control of the microprocessor or application specific integrated circuit (ASIC) of the display device may include routines to detect the position of the on body electronics relative to the display device to initiate the transmission of the generated request command, control signal and/or data packet.
Display devices may also include programming stored in memory for execution by one or more microprocessors and/or ASICs to generate and transmit the one or more request command, control signal or data packet to send to the on body electronics in response to a user activation of an input mechanism on the display device such as depressing a button on the display device, triggering a soft button associated with the data communication function, and so on. The input mechanism may be alternatively or additionally provided on or in the on body electronics which may be configured for user activation. In certain embodiments, voice commands or audible signals may be used to prompt or instruct the microprocessor or ASIC to execute the software routine(s) stored in the memory to generate and transmit the one or more request command, control signal or data packet to the on body device. In the embodiments that are voice activated or responsive to voice commands or audible signals, on body electronics and/or display device includes a microphone, a speaker, and processing routines stored in the respective memories of the on body electronics and/or the display device to process the voice commands and/or audible signals. In certain embodiments, positioning the on body device and the display device within a predetermined distance (e.g., close proximity) relative to each other initiates one or more software routines stored in the memory of the display device to generate and transmit a request command, control signal or data packet.
Different types and/or forms and/or amounts of information may be sent for each on demand reading, including but not limited to one or more of current analyte level information (i.e., real time or the most recently obtained analyte level information temporally corresponding to the time the reading is initiated), rate of change of an analyte over a predetermined time period, rate of the rate of change of an analyte (acceleration in the rate of change), historical analyte information corresponding to analyte information obtained prior to a given reading and stored in memory of the assembly. Some or all of real time, historical, rate of change, rate of rate of change (such as acceleration or deceleration) information may be sent to a display device for a given reading. In certain embodiments, the type and/or form and/or amount of information sent to a display device may be preprogrammed and/or unchangeable (e.g., preset at manufacturing), or may not be preprogrammed and/or unchangeable so that it may be selectable and/or changeable in the field one or more times (e.g., by activating a switch of the system, etc). Accordingly, in certain embodiments, for each on demand reading, a display device will output a current (real time) sensor-derived analyte value (e.g., in numerical format), a current rate of analyte change (e.g., in the form of an analyte rate indicator such as a arrow pointing in a direction to indicate the current rate), and analyte trend history data based on sensor readings acquired by and stored in memory of on body electronics (e.g., in the form of a graphical trace). Additionally, the on skin or sensor temperature reading or measurement associated with each on demand reading may be communicated from the on body electronics to the display device. The temperature reading or measurement, however, may not be output or displayed on the display device, but rather, used in conjunction with a software routine executed by the display device to correct or compensate the analyte measurement output to the user on the display device.
As described, embodiments include in vivo analyte sensors and on body electronics that together provide body wearable sensor electronics assemblies (also referred to herein as a “patch”). In certain embodiments, in vivo analyte sensors are fully integrated with on body electronics (fixedly connected during manufacture), while in other embodiments they are separate but connectable post manufacture (e.g., before, during or after sensor insertion into a body). On body electronics may include an in vivo glucose sensor, electronics, battery, and antenna encased (except for the sensor portion that is for in vivo positioning) in a waterproof housing that includes or is attachable to an adhesive pad.
Embodiments include sensor insertion devices, which also may be referred to herein as sensor delivery units, or the like. Insertion devices may retain on body electronics assemblies completely in an interior compartment, i.e., an insertion device may be “pre-loaded” with on body electronics assemblies during the manufacturing process (e.g., on body electronics may be packaged in a sterile interior compartment of an insertion device). In such embodiments, insertion devices may form sensor assembly packages (including sterile packages) for pre-use or new on body electronics assemblies, and insertion devices configured to apply on body electronics assemblies to recipient bodies.
Embodiments include portable handheld display devices, as separate devices and spaced apart from an on body electronics assembly, that collects information from the assemblies and provide sensor derived analyte readings to users. Such devices may also be referred to as meters, readers, monitors, receivers, human interface devices, companions, or the like. Certain embodiments may include an integrated in vitro analyte meter. In certain embodiments, display devices include one or more wired or wireless communications ports such as USB, serial, parallel, or the like, configured to establish communication between a display device and another unit (e.g., on body electronics, power unit to recharge a battery, a PC, etc).
Compatible informatics software in certain embodiments include, for example, but not limited to stand alone or network connection enabled data management software program, resident or running on a display device, personal computer, a server terminal, for example, to perform data analysis, charting, data storage, data archiving and data communication as well as data synchronization. Informatics software in certain embodiments may also include software for executing field upgradable functions to upgrade firmware of a display device and/or on body electronics unit to upgrade the resident software on the display device and/or the on body electronics unit, e.g., with versions of firmware that include additional features and/or include software bugs or errors fixed, etc.
Embodiments may include a haptic feedback feature such as a vibration motor or the like, configured so that corresponding notifications (e.g., a successful on-demand reading received at a display device), may be delivered in the form of haptic feedback.
Embodiments include programming embedded on a computer readable medium, i.e., computer-based application software (may also be referred to herein as informatics software or programming or the like) that processes analyte information obtained from the system and/or user self-reported data. Application software may be installed on a host computer such as a mobile telephone, PC, an Internet-enabled human interface device such as an Internet-enabled phone, personal digital assistant, or the like, by a display device or an on body electronics unit. Informatics programming may transform data acquired and stored on a display device or on body unit for use by a user.
Embodiments of the subject disclosure are described primarily with respect to glucose monitoring devices and systems, and methods of glucose monitoring, for convenience only and such description is in no way intended to limit the scope of the disclosure. It is to be understood that the analyte monitoring system may be configured to monitor a variety of analytes at the same time or at different times.
For example, analytes that may be monitored include, but are not limited to, acetyl choline, amylase, bilirubin, cholesterol, chorionic gonadotropin, creatine kinase (e.g., CK-MB), creatine, DNA, fructosamine, glucose, glutamine, growth hormones, hormones, ketones, lactate, oxygen, peroxide, prostate-specific antigen, prothrombin, RNA, thyroid stimulating hormone, and troponin. The concentration of drugs, such as, for example, antibiotics (e.g., gentamicin, vancomycin, and the like), digitoxin, digoxin, drugs of abuse, theophylline, and warfarin, may also be monitored. In those embodiments that monitor more than one analyte, the analytes may be monitored at the same or different times, with a single sensor or with a plurality of sensors which may use the same on body electronics (e.g., simultaneously) or with different on body electronics.
As described in detail below, embodiments include devices, systems, kits and/or methods to monitor one or more physiological parameters such as, for example, but not limited to, analyte levels, temperature levels, heart rate, user activity level, over a predetermined monitoring time period. Also provided are methods of manufacturing. Predetermined monitoring time periods may be less than about 1 hour, or may include about 1 hour or more, e.g., about a few hours or more, e.g., about a few days of more, e.g., about 3 or more days, e.g., about 5 days or more, e.g., about 7 days or more, e.g., about 10 days or more, e.g., about 14 days or more, e.g., about several weeks, e.g., about 1 month or more. In certain embodiments, after the expiration of the predetermined monitoring time period, one or more features of the system may be automatically deactivated or disabled at the on body electronics assembly and/or display device.
For example, a predetermined monitoring time period may begin with positioning the sensor in vivo and in contact with a body fluid such as ISF, and/or with the initiation (or powering on to full operational mode) of the on body electronics. Initialization of on body electronics may be implemented with a command generated and transmitted by a display device in response to the activation of a switch and/or by placing the display device within a predetermined distance (e.g., close proximity) to the on body electronics, or by user manual activation of a switch on the on body electronics unit, e.g., depressing a button, or such activation may be caused by the insertion device, e.g., as described in U.S. patent application Ser. No. 12/698,129, filed on Feb. 1, 2010, and U.S. Provisional Application Nos. 61/238,646, 61/246,825, 61/247,516, 61/249,535, 61/317,243, 61/345,562, and 61/361,374, the disclosures of each of which are incorporated herein by reference for all purposes.
When initialized in response to a received command from a display device, the on body electronics retrieves and executes from its memory software routine to fully power on the components of the on body electronics, effectively placing the on body electronics in full operational mode in response to receiving the activation command from the display device. For example, prior to the receipt of the command from the display device, a portion of the components in the on body electronics may be powered by its internal power supply such as a battery while another portion of the components in the on body electronics may be in powered down or low power including no power, inactive mode, or all components may be in an inactive mode, powered down mode. Upon receipt of the command, the remaining portion (or all) of the components of the on body electronics is switched to active, fully operational mode.
Embodiments include transcutaneous sensors and also wholly implantable sensors and wholly implantable assemblies in which a single assembly including the analyte sensor and electronics are provided in a sealed housing (e.g., hermetically sealed biocompatible housing) for implantation in a user's body for monitoring one or more physiological parameters.
Exemplary analyte monitoring systems that relate to the present disclosure and that may be utilized in connection with the disclosed analyte measurement system include those described in U.S. Pat. Nos. 7,041,468; 5,356,786; 6,175,752; 6,560,471; 5,262,035; 6,881,551; 6,121,009; 7,167,818; 6,270,455; 6,161,095; 5,918,603; 6,144,837; 5,601,435; 5,822,715; 5,899,855; 6,071,391; 6,120,676; 6,143,164; 6,299,757; 6,338,790; 6,377,894; 6,600,997; 6,773,671; 6,514,460; 6,592,745; 5,628,890; 5,820,551; 6,736,957; 4,545,382; 4,711,245; 5,509,410; 6,540,891; 6,730,200; 6,764,581; 6,299,757; 6,461,496; 6,503,381; 6,591,125; 6,616,819; 6,618,934; 6,676,816; 6,749,740; 6,893,545; 6,942,518; 6,514,718; 5,264,014; 5,262,305; 5,320,715; 5,593,852; 6,746,582; 6,284,478; 7,299,082; U.S. Patent Application No. 61/149,639, entitled “Compact On-Body Physiological Monitoring Device and Methods Thereof”, U.S. patent application Ser. No. 11/461,725, filed Aug. 1, 2006, entitled “Analyte Sensors and Methods”; U.S. patent application Ser. No. 12/495,709, filed Jun. 30, 2009, entitled “Extruded Electrode Structures and Methods of Using Same”; U.S. Patent Application Publication No. US 2004/0186365; U.S. Patent Application Publication No. 2007/0095661; U.S. Patent Application Publication No. 2006/0091006; U.S. Patent Application Publication No. 2006/0025662; U.S. Patent Application Publication No. 2008/0267823; U.S. Patent Application Publication No. 2007/0108048; U.S. Patent Application Publication No. 2008/0102441; U.S. Patent Application Publication No. 2008/0066305; U.S. Patent Application Publication No. 2007/0199818; U.S. Patent Application Publication No. 2008/0148873; U.S. Patent Application Publication No. 2007/0068807; US patent Application Publication No. 2010/0198034; and U.S. provisional application No. 61/149,639 titled “Compact On-Body Physiological Monitoring Device and Methods Thereof”, the disclosures of each of which are incorporated herein by reference in their entirety.
Additional relevant subject matter is provided in the following disclosures: U.S. Provisional Application No. 61/498,142, filed Jun. 17, 2011; U.S. application Ser. Nos. 13/071,461, 13/071,487, and 13/071,497, which were both filed on Mar. 24, 2011, and Ser. No. 13/091,557 which was filed on Apr. 21, 2011; U.S. Patent Application Publication No. 2010/0081905, 2011/0021889, 2010/0230285, and 2011/0021889; and U.S. Pat. Nos. 6,736,957, 7,501,053 and 7,754,093; the disclosures of which are each incorporated by reference herein in their entirety and for all purposes.
Referring back to the
In certain embodiments, display 1122 and input component 1121 may be integrated into a single component, for example a display that can detect the presence and location of a physical contact touch upon the display such as a touch screen user interface. In such embodiments, the user may control the operation of display device 1120 by utilizing a set of pre-programmed motion commands, including, but not limited to, single or double tapping the display, dragging a finger or instrument across the display, motioning multiple fingers or instruments toward one another, motioning multiple fingers or instruments away from one another, etc. In certain embodiments, a display includes a touch screen having areas of pixels with single or dual function capacitive elements that serve as LCD elements and touch sensors.
Display device 1120 may be a dynamic color LCD display. In certain embodiments, display device 1120 may have preset and customizable options, including display resolution, quality and backlight options. Display device, in one embodiment, may have a dynamic color palette of up to 65,000 colors and include graphical displays from 256 color subsets of the 65,000 color dynamic display. In other embodiments, the LCD display may include a backlight, which may be an LED backlight. The LCD backlight may be preprogrammed to dim or shut off after certain periods of time of non-activity elapse. For example, in certain embodiments, the default time before the display shuts off may be 1 minute for most screens, including a dimming feature of the backlight after 15 seconds. In some embodiments, the time until display shut off or display dim may vary based on the current screen or mode of the device, e.g., an apply blood to test strip screen, as described herein below in more detail, may have a longer time out than the default 1 minute, e.g., 2 minutes. In other embodiments, the display does not dim or turn off unless a user manually commands the device to turn off the display.
Display device 1120 also includes data communication port 1123 for wired data communication with external devices such as remote terminal (personal computer) 1170, for example. Example embodiments of the data communication port 1123 include USB port, mini USB port, RS-232 port, Ethernet port, Firewire port, or other similar data communication ports configured to connect to the compatible data cables. Display device 1120 may also include an integrated in vitro glucose meter, including in vitro test strip port 1124 to receive an in vitro glucose test strip for performing in vitro blood glucose measurements.
Referring still to
As further shown in
Referring back to
After the positioning of on body electronics 1110 on the skin surface and analyte sensor 1101 in vivo to establish fluid contact with ISF (or other appropriate body fluid), on body electronics 1110 in certain embodiments is configured to wirelessly communicate analyte related data (such as, for example, data corresponding to monitored analyte level and/or monitored temperature data, and/or stored historical analyte related data) when on body electronics 1110 receives a command or request signal from display device 120. In certain embodiments, on body electronics 1110 may be configured to at least periodically broadcast real time data associated with monitored analyte level which is received by display device 1120 when display device 1120 is within communication range of the data broadcast from on body electronics 1110, i.e., it does not need a command or request from a display device to send information.
For example, display device 1120 may be configured to transmit one or more commands to on body electronics 1110 to initiate data transfer, and in response, on body electronics 1110 may be configured to wirelessly transmit stored analyte related data collected during the monitoring time period to display device 1120. Display device 1120 may in turn be connected to a remote terminal 1170 such as a personal computer and functions as a data conduit to transfer the stored analyte level information from the on body electronics 1110 to remote terminal 1170. In certain embodiments, the received data from the on body electronics 1110 may be stored (permanently or temporarily) in one or more memory of the display device 1120. In certain other embodiments, display device 1120 is configured as a data conduit to pass the data received from on body electronics 1110 to remote terminal 1170 that is connected to display device 1120.
Referring still to
Remote terminal 1170 in certain embodiments may include one or more computer terminals located at a physician's office or a hospital. For example, remote terminal 1170 may be located at a location other than the location of display device 1120. Remote terminal 1170 and display device 1120 could be in different rooms or different buildings. Remote terminal 1170 and display device 1120 could be at least about one mile apart, e.g., at least about 110 miles apart, e.g., at least about 1100 miles apart. For example, remote terminal 1170 could be in the same city as display device 1120, remote terminal 1170 could be in a different city than display device 1120, remote terminal 1170 could be in the same state as display device 1120, remote terminal 1170 could be in a different state than display device 1120, remote terminal 1170 could be in the same country as display device 1120, or remote terminal 1170 could be in a different country than display device 1120, for example. In certain embodiments, a separate, optional data communication/processing device such as data processing module 1160 may be provided in analyte monitoring system 1100. Data processing module 160 may include components to communicate using one or more wireless communication protocols such as, for example, but not limited to, infrared (IR) protocol, Bluetooth® protocol, Zigbee® protocol, and 802.11 wireless LAN protocol. Additional description of communication protocols including those based on Bluetooth® protocol and/or Zigbee® protocol can be found in U.S. Patent Publication No. 2006/0193375 incorporated herein by reference for all purposes. Data processing module 1160 may further include communication ports, drivers or connectors to establish wired communication with one or more of display device 1120, on body electronics 1110, or remote terminal 1170 including, for example, but not limited to USB connector and/or USB port, Ethernet connector and/or port, FireWire connector and/or port, or RS-232 port and/or connector.
In certain embodiments, control logic or microprocessors of on body electronics 1110 include software programs to determine future or anticipated analyte levels based on information obtained from analyte sensor 1101, e.g., the current analyte level, the rate of change of the analyte level, the acceleration of the analyte level change, and/or analyte trend information determined based on stored monitored analyte data providing a historical trend or direction of analyte level fluctuation as function time during monitored time period. Predictive alarm parameters may be programmed or programmable in display device 1120, or the on body electronics 1110, or both, and output to the user in advance of anticipating the user's analyte level reaching the future level. This provides the user an opportunity to take timely corrective action.
Information, such as variation or fluctuation of the monitored analyte level as a function of time over the monitored time period providing analyte trend information, for example, may be determined by one or more control logic or microprocessors of display device 1120, data processing module 160, and/or remote terminal 1170, and/or on body electronics 1110. Such information may be displayed as, for example, a graph (such as a line graph) to indicate to the user the current and/or historical and/or and predicted future analyte levels as measured and predicted by the analyte monitoring system 1100. Such information may also be displayed as directional arrows (for example, see trend or directional arrow display 1131) or other icon(s), e.g., the position of which on the screen relative to a reference point indicated whether the analyte level is increasing or decreasing as well as the acceleration or deceleration of the increase or decrease in analyte level. This information may be utilized by the user to determine any necessary corrective actions to ensure the analyte level remains within an acceptable and/or clinically safe range. Other visual indicators, including colors, flashing, fading, etc., as well as audio indicators including a change in pitch, volume, or tone of an audio output and/or vibratory or other tactile indicators may also be incorporated into the display of trend data as means of notifying the user of the current level and/or direction and/or rate of change of the monitored analyte level. For example, based on a determined rate of glucose change, programmed clinically significant glucose threshold levels (e.g., hyperglycemic and/or hypoglycemic levels), and current analyte level derived by an in vivo analyte sensor, the system 1100 may include an algorithm stored on computer readable medium to determine the time it will take to reach a clinically significant level and will output notification in advance of reaching the clinically significant level, e.g., 30 minutes before a clinically significant level is anticipated, and/or 20 minutes, and/or 10 minutes, and/or 5 minutes, and/or 3 minutes, and/or 1 minute, and so on, with outputs increasing in intensity or the like.
Referring again back to
Examples of smart phones include Windows®, Android™, iPhone® operating system, Palm® WebOS™, Blackberry® operating system, or Symbian® operating system based mobile telephones with data network connectivity functionality for data communication over an internet connection and/or a local area network (LAN). PDAs as described above include, for example, portable electronic devices including one or more microprocessors and data communication capability with a user interface (e.g., display/output unit and/or input unit, and configured for performing data processing, data upload/download over the internet, for example. In such embodiments, remote terminal 170 may be configured to provide the executable application software to the one or more of the communication devices described above when communication between the remote terminal 1170 and the devices are established.
In still further embodiments, executable software applications may be provided over-the-air (OTA) as an OTA download such that wired connection to remote terminal 1170 is not necessary. For example, executable applications may be automatically downloaded as software download to the communication device, and depending upon the configuration of the communication device, installed on the device for use automatically, or based on user confirmation or acknowledgement on the communication device to execute the installation of the application. The OTA download and installation of software may include software applications and/or routines that are updates or upgrades to the existing functions or features of data processing module 1160 and/or display device 1120.
Referring back to remote terminal 1170 of
In some aspects, the display device (also referred to herein as “analyte monitoring device” or simply “device”) is configured to receive a signal from a remote sensor using radio-frequency identification (RFID) technology.
This configuration may be used to provide glucose on demand capabilities, for example, in which case when a measurement reading is desired, the analyte monitoring device is brought within close vicinity of the implantable sensor. It should be appreciated that in other embodiments the wireless communication unit may communicate with the sensor using a different wireless communication technology than RFID. When within range, the device may be configured to verify that the sensor is the appropriate sensor that it has been configured to operate with. If not, the device ignores the sensor and does not initiate operation with the sensor. If so, the device initiates operation with the sensor.
The analyte monitoring device may perform a variety of functions, including for example: modifying the signals from the sensor using calibration data and/or measurements from a temperature probe (not shown); determining a level of an analyte in the interstitial fluid; determining a level of an analyte in the bloodstream based on the sensor measurements in the interstitial fluid; determining if the level, rate of change, and/or acceleration in the rate of change of the analyte exceeds or meets one or more threshold values; activating an alarm system if a threshold value is met or exceeded; evaluating trends in the level of an analyte based on a series of sensor signals; therapy management (e.g., determine a dose of a medication, etc.); and reduce noise or error contributions (e.g., through signal averaging or comparing readings from multiple electrodes); etc. The analyte monitoring device may be simple and perform only one or a small number of these functions or the analyte monitoring device may perform all or most of these functions.
Software for the Remote Device
In some aspects, the analyte monitoring device may be communicatively coupled to a remote data processing device for management purposes. Remote device may include, for example, a personal computer, laptop, PDA, cellular phone, smartphone, set-top box, etc. The remote device may include, for example, a control unit including any variety of processor, microprocessor, microcontroller, etc. The remote device may also include a memory unit comprising non-volatile memory and volatile memory.
The term “remote device” is used herein to represent any device that is external to the analyte monitoring device. The remote device may require software to fully communicate with the analyte monitoring device, manage data from the analyte monitoring device, modify settings on the analyte monitoring device, or otherwise operate with analyte monitoring device. This auto-assisting user interface software is referred to herein as “remote device software” or “RD software” or “data management software” to distinguish it from the user interface software running on the analyte monitoring device. The RD software may be obtained from one or more methods such as downloading from the web, CD-ROM, memory stick, etc. The RD software is generally discussed here and additional details regarding various flows and screens are provided later.
In some embodiments, the analyte monitoring device includes the RD software programs and/or applications to be run on the remote device. In some instances, the RD software may be configured to automatically launch when the analyte monitoring device is coupled to the computer. For example, the analyte monitoring device may include an installer program that is stored in non-volatile memory and executed when the analyte monitoring device is coupled to the remote device. The installer program may be executed when the user couples the analyte monitoring device to the remote device. The installer program may then initiate the launch of the RD software on the remote device.
In some embodiments, the RD software is not stored in non-volatile memory on the remote device. The RD software is stored on the analyte monitoring device and used to launch the RD software on the remote device is coupled to the analyte monitoring device.
In some embodiments, the RD software may be downloaded and stored in non-volatile memory on the remote device. For example, the RD software may be downloaded via a network connection (e.g., via an internet connection), by storage device (e.g., CD-ROM, memory stick, etc.), and/or downloaded from the analyte monitoring device. In some instances, the RD software is capable of being run even when the device is not coupled to the computer.
It should be understood that the RD software may be compatible with various hardware systems (e.g., PC, MAC) and various operating systems (e.g., Windows, MAC OS, Linux).
The analyte monitoring device may be communicatively coupled to the remote device via wired technologies. Example wired technologies may include, but are not limited to, the following technologies, or family of technologies: USB, FireWire, SPI, SDIO, RS-232 port, etc.
The analyte monitoring device may include, for example, a communication connector unit to permit wired communication and coupling to the remote device. The communication connector unit provides the capability to communicate with a remote device having an appropriate interface to operatively couple with the communication connector. In some embodiments, the communication connector is configured to communicate with a smartphone such as an iPhone or Blackberry.
The communication connector unit may be any variety of connection interfaces—e.g., male or female connection interfaces. Using USB as an example, the communication connector may be any of the variety of USB plugs or USB receptacles/ports. As USB receptacles are typically located on computer and other devices, a corresponding USB plug used as a communication connector unit will enable the analyte monitoring device to be plugged directly into the USB receptacle, avoiding the use of cables. In other instances, the appropriate USB receptacle may be used on the analyte monitoring device to enable communication using a USB cable (similar to many other devices such as digital cameras, cellular phones, smartphones, etc.).
It should be appreciated that the in some embodiments the analyte monitoring device may be communicably coupled to the remote device via wireless technology. In such instances, the analyte monitoring device may include corresponding transmitters, receivers, and/or transceivers. The analyte monitoring device may be configured to wirelessly communicate using a technology including, but not limited to, radio frequency (RF) communication, Zigbee® communication protocols, WiFi, infrared, wireless Universal Serial Bus (USB), Ultra Wide Band (UWB), Bluetooth® communication protocols, and cellular communication, such as code division multiple access (CDMA) or Global System for Mobile communications (GSM), etc.
The functionality of the RD software launched on the remote device may include a variety of functions relating to, for example, data acquisition; data management; management of features, settings, configurations, etc., of the analyte monitoring device; generation, saving, transmitting, and/or printing of reports, management of updates (e.g., field updates to device firmware and RD software); access to training content, web-based content, web-based marketing; etc.
The RD software may be launched on a remote device and used by the user (e.g., the patient) and/or a health care provider (HCP) (e.g., physician, hospital staff, etc.). For example, the HCP and/or patient may use the RD software on a remote device to analyze the patient data, view and print reports, view and change device settings, update device firmware and application software, etc.
In some instances, the RD software may initiate a comparison between the time date on the analyte monitoring device and that on the remote device and/or remote time server accessed via an internet connection from the remote device. The RD software may account for discrepancies and take action accordingly. For example, thresholds may be set (e.g., 5 minute difference) and if the threshold is reached, the analyte monitoring device prompts the user with a warning, question, indicator, etc., to acknowledge the discrepancy and/or remedy the discrepancy (e.g., adjust the time on one of the devices). In some instances, a similar comparison may be performed by the RD software to account for other discrepancies between the analyte monitoring device and remote device—e.g., discrepancies between data logs, data values, stored files, device and/or user interface configurations and settings, etc. The appropriate action can then be taken or requested.
Various defaults and customized configurations and settings may be established for generating, printing, saving, exporting, etc., reports. For example, the various formats for the report may be established (e.g., layout, style, themes, color, etc.); various file types to save the report as (e.g., PDF, Word document, Excel spreadsheet, etc. In some instances, for example, the RD software may provide the user with the ability to export tab-delimited text files or XML, exports of the meter data (e.g., including blood glucose, ketones, carbs, insulin, and event tags, etc.). In some instances, the RD software may enable the user to save, print, and/or export preferences, including favorite reports, target blood glucose ranges, auto save, auto print, color/black and white printing, device/software update settings for multiple devices, etc.
In some aspects, the RD software is used to control the configuration of the device and data from the device. This control may be utilized by the user and/or HCP. In some instances, the RD software shall provide access to one or more informative documents, trainings, tutorials, etc. For example, the RD software application may provide links or to manufacturer sponsored websites intended for any variety of purposes such as marketing and training content.
In some aspects, the RD software may include an update management function to help facilitate the detection, download, and installation of updates (e.g., firmware, informatics application updates, etc.) for the analyte meter device and/or the RD software. The updates may be detected and downloaded automatically in some instances (e.g., when an internet connection is active) and/or detected and downloaded upon user confirmation or request. In some instances, updates to the software shall also update its installation files stored on the device. Moreover, in some instances, when the device firmware is updated, required labeling/user documentation is also updated on the device. In some instances, when device firmware is updated, the existing device settings and testing history (e.g., blood glucose, insulin, carb data, etc.) is preserved.
In some aspects of the present disclosure, data management software may be loaded and launched on a remote data processing device to operate with a coupled analyte monitoring device. The data management software may include one or more GUI's for communicating with the analyte monitoring device. It should be appreciated a GUI may be used to represent one or more of graphical elements displayed on the display of the remote device for interfacing with the user. Thus, “graphical user interface” or “GUI” may encompass the entire display, an application window, pop-up windows, menus, progress and status bars, buttons, etc.
In some aspects of the present disclosure, the data management software provides a meter mode to provide access to settings and functions that are used to setup and control the analyte monitoring device. The data management software may also provide a meter setup mode to guide the user through the initial setup of the analyte monitoring device. The data management software may provide a reports mode to provide access to settings and function for creating, viewing, saving, and/or printing various reports. In addition, the data management software may provide a reports setup mode to guide a user through the initial reports setup and creation process. The data management software may also provide the function for users to export data from the analyte monitoring device—e.g., as a tab-delimited file or other spreadsheet-compatible format. In some instances, the data management software may provide functions for providing help documents, tutorials, etc. to the user. The data management software may provide functions for checking for software update and for acquiring updates. For example, checks may be automatically initiated and/or initiated by the user. In some instances, the software updates may be checked for and acquired via a network connection on the remote device.
Analyte monitoring device 1501 is shown removably coupled to remote device 1505 via communication connector unit 1422. Communication connector unit, for example, includes a USB plug which couples with a USB receptacle 1507 in remote device 1505. Remote device 1505 may include peripheral devices, such as printer, keyboard, monitor, CD drive, etc. Remote device 1505 may also include, as shown, a network interface 1530 which connects it to network 510. Remote device 1515 is also connected to network 1510 and may communicate with remote device 1505 via network 1510.
The following paragraphs describe system 1500 during operation, according to some embodiments. In some instances, the analyte monitoring device described is a glucose monitoring device which measures the glucose concentration level of a blood sample. It should be understood that the description applies equally to other analytes and to other forms of samples.
In use, analyte monitoring device 1501 receives a test strip 1525 for measuring an analyte level of a sample applied to test strip 1525. Test strip 1525 is received at strip port unit 1520. Analyte monitoring device 1501 performs a measurement computation on the sample and the user can view the measurement reading on, for example, a touchscreen display (not shown). The user may also be presented with a menu on the touchscreen display to view and select—e.g., menus for storing data, downloading data, performing bolus calculations based on the measurement, etc.
The user may couple the analyte monitoring device 1501 to remote device 505 (e.g., a personal computer) via a communication connector unit. For example, the user may decide to store the measurement data and then choose to download stored test data (including stored measurement readings) to a remote device 1505.
Analyte monitoring device 1501 may then be coupled to remote device 1505 via communication connector unit 1422. Communication connector unit 1422 may, for example, include a USB plug which couples to a USB receptacle 1507 on remote device 1505.
In some instances, the analyte monitoring device 1501 may be powered by the remote device 1505 when coupled via the communication connector unit 1422. In such case, the user would couple the analyte monitoring device 1501 to the remote device 1505 and then insert test strip 1525 into the strip port 1520 to take a measurement reading. In some instances, the analyte monitoring device includes its own power source, such as button or AAA-size batteries, for example, and is not powered by the remote device 1505.
In some instances, the analyte monitoring device may be “locked” or prevented from performing a test while coupled to the remote device 1505. For example, medical device regulations such as high voltage isolation testing may be required if the analyte monitoring device is configured to perform tests while coupled to a remote device. Thus, “locking” or preventing the analyte monitoring device from performing a test while coupled to the remote device allows the analyte monitoring device to not be subjected to the additional testing, if so desired.
In some aspects, the analyte monitoring device 1501 may initiate a user interface application (e.g., RD software) to execute on the analyte monitoring device, and/or the remote device 1505 when coupled to the remote device 1505. The user interface application may be stored in a memory unit on the analyte monitoring device 1501, for example. In some aspects, the user is not required to have previously loaded software on the remote device 1505 to operate with the analyte monitoring device 1501. In some aspects, the analyte monitoring device may be configured to initiate the user interface application automatically upon coupling to the remote device. It should be understood that the user interface application may be configured to be compatible with various hardware systems (e.g., PC, MAC) and various operating systems (e.g., Windows, MAC OS, Linux).
The user interface application may include, for example, diabetes management related applications. The user interface application may provide a variety of menus, selections, charts, alarms, reminders, visual indicators, etc. For example, the user may be presented with menus and options, such as whether to take a measurement reading, to view stored measurement readings, to store data, to download data, to perform bolus calculation based on the measurement, etc.
The user interface program may, for example, allow the user to perform the following steps: (1) generate a replica of the test data stored on the analyte monitoring device 1501, on the remote device 1505; and (2) synchronize test data from the analyte monitoring device 1501 to the database on the remote device 1505. Meter settings and/or user settings/preferences from the analyte monitoring device may also be included in the test data and synchronized with the remote device. Date and time for the remote device 1505 and analyte monitoring device 1501 may also be synched.
To read test data from the analyte monitoring device 1501 and write it to the remote device 1505, it is recognized herein that data in the remote device may be organized into tables, which may be organized into records, which may be broken down into predefined fields. Similarly, at some level data will be organized into records with a consistent field structure on the analyte monitoring device 1501. The user interface application may read test data from the analyte monitoring device and write it out to tables on the remote device 1505. The user interface application may also read data from table in the remote device 1505 and write them out to the analyte monitoring device 1501. Various types of data conversion may be used. For example, data residing in fields in the analyte monitoring device may be converted from the format it exists in the analyte monitoring device to a format compatible with the remote device, and vice versa. The logical structure of the records in the two systems may be different.
Remote device 1505 may include peripheral devices, such as printer, keyboard, monitor, CD drive, etc. Remote device 1505 includes a network interface which connects it to network 1510 (e.g., the internet). The user interface application may provide the user with the option to view test data on the monitor, to store test data on storage media (e.g., CD-ROM, memory card, etc.), further analyze and/or manipulate test data, transmit data to another device), and/or print out test data such as charts, reports, etc., on the printer.
As shown, remote device 1505 may also include a network interface 1530 (e.g., network interface card (NIC), modem, router, RF front end, etc.) used to connect the remote device 1505 to network 1510. For example, in some aspects, analyte monitoring device 1501 may couple via a USB connection to the remote device which may be a personal computer or laptop connected to the internet using a wireless modem and/or router. In some aspects, analyte monitoring device 1501 may couple via a micro USB connection to a remote device 1505 which is a smartphone having an RF front end to access a mobile network. The user interface application may provide a user interface for using the network connection of the remote device 1505—e.g., to forward test data to a physician, hospital, health provider, and/or other third party located at a second remote device 1515 on network 1510. Appropriate action may then be taken by the receiving party at the second remote device 1515.
Referring back to
In some aspects, the wireless communication unit may be used to communicate with a remote device as described above for the communication connector unit. In some aspects where the analyte monitoring device includes a communication connector unit, the wireless communication unit may replace or provide an optional channel of communication for the functions provided by the communication connector unit discussed above. Referring back to
In some aspects, the wireless communication module may be configured to communicate with a smartphone (e.g., iPhone, Blackberry, etc). It is typical for smartphones to include various wireless technologies such as Wi-Fi, infrared, Bluetooth®, etc.
In some aspects, the analyte monitoring device may be configured to wirelessly communicate via the wireless communication unit with a server device, e.g., using a common standard such as 802.11 or Bluetooth® RF protocol, or an IrDA infrared protocol. The server device could be another portable device, such as a Personal Digital Assistant (PDA) or notebook computer, or a larger device such as a desktop computer, appliance, etc. In some aspects, the server device has a display, such as a liquid crystal display (LCD), as well as an input device, such as buttons, a keyboard, mouse or touchscreen. With such an arrangement, the user can control the meter indirectly by interacting with the user interface(s) of the server device, which in turn interacts with the meter across a wireless link.
In some aspects, the wireless communication module is used to communicate with a remote sensor—e.g., a sensor configured for implantation into a patient or user. Examples of sensors for use in the analyte monitoring systems of the present disclosure are described in U.S. Pat. No. 6,175,752; and U.S. patent application Ser. No. 09/034,372, incorporated herein by reference. Additional information regarding sensors and continuous analyte monitoring systems and devices are described in U.S. Pat. Nos. 5,356,786; 6,175,752; 6,560,471; 5,262,035; 6,881,551; 6,121,009; 7,167,818; 6,270,455; 6,161,095; 5,918,603; 6,144,837; 5,601,435; 5,822,715; 5,899,855; 6,071,391; 6,120,676; 6,143,164; 6,299,757; 6,338,790; 6,377,894; 6,600,997; 6,773,671; 6,514,460; 6,592,745; 5,628,890; 5,820,551; 6,736,957; 4,545,382; 4,711,245; 5,509,410; 6,540,891; 6,730,100; 6,764,581; 6,299,757; 6,461,496; 6,503,381; 6,591,125; 6,616,819; 6,618,934; 6,676,816; 6,749,740; 6,893,545; 6,942,518; 6,514,718; 5,264,014; 5,262,305; 5,320,715; 5,593,852; 6,746,582; 6,284,478; 7,299,082; U.S. patent application Ser. No. 10/745,878, filed Dec. 26, 1003, entitled “Continuous Glucose Monitoring System and Methods of Use”; and U.S. Patent Application No. 61/149,639 entitled “Compact On-Body Physiological Monitoring Device and Methods Thereof”, the disclosures of each which are incorporated by reference herein.
In some aspects, the wireless communication unit 1423 is configured to receive a signal from a remote sensor using radio-frequency identification (RFID) technology. This configuration may be used to provide glucose on demand capabilities, in which case when a measurement reading is desired, the analyte monitoring device is brought within close vicinity of the implantable sensor. In some instances, RFID technology may be used in continuous glucose monitoring (CGM) applications.
The analyte monitoring device 1501 processes the signals from the on-skin sensor control unit 1610 to determine the concentration or level of analyte in the subcutaneous tissue and may display the current level of the analyte via display unit 1421. Furthermore, the sensor control unit 1610 and/or the analyte monitoring device 1501 may indicate to the patient, via, for example, an audible, visual, or other sensory-stimulating alarm, when the level of the analyte is at or near a threshold level. For example, if glucose is monitored then an alarm may be used to alert the patient to a hypoglycemic or hyperglycemic glucose level and/or to impending hypoglycemia or hyperglycemia.
The analyte monitoring device 1501 may perform a variety of functions, including for example: modifying the signals from the sensor 605 using calibration data and/or measurements from a temperature probe (not shown); determining a level of an analyte in the interstitial fluid; determining a level of an analyte in the bloodstream based on the sensor measurements in the interstitial fluid; determining if the level, rate of change, and/or acceleration in the rate of change of the analyte exceeds or meets one or more threshold values; activating an alarm system if a threshold value is met or exceeded; evaluating trends in the level of an analyte based on a series of sensor signals; therapy management (e.g., determine a dose of a medication, etc.); and reduce noise or error contributions (e.g., through signal averaging or comparing readings from multiple electrodes); etc. The analyte monitoring device may be simple and perform only one or a small number of these functions or the analyte monitoring device may perform all or most of these functions.
Analyte monitoring device 1501 may communicate with a remote device 505 via communication connector unit 1422, and/or wireless communication unit 1423, and/or a second wireless communication unit (not shown), as described earlier. It should also be understood that the analyte monitoring device may be configured with one or more wireless communication units.
User Interface for the Analyte Monitoring Device
In some aspects, the analyte monitoring device includes software used to perform various operation and functions with the device, such as, but not limited to, the functions described above. The device may include, for example, software instructions that are stored within a machine-readable storage medium (e.g., flash memory or other non-volatile memory) and executed by one or more general-purpose or special-purpose programmable microprocessors and/or microcontrollers, or other type of processing device. It should be appreciated that machine-readable storage medium may include any variety of non-volatile memory (e.g., Flash memory) or volatile memory (e.g., random access memory (RAM)), and may include one or more memory components.
In some aspects, the analyte monitoring device may include software that is used to provide the overall user interface for operation of the device and general user-experience with the device. The user interface may encompass graphical user interfaces (GUIs) that are displayed for a variety of features that may be provided by the device—e.g., Home screen, Glucose Reading screen, Logbook screen, Reader Summary screens, Reader Usage screens, etc. The user interface also encompasses screen navigation/flows for various operations that may be performed by the device—e.g., on-demand readings; activating a patch; replacing a patch; providing the status of a patch; notification of patch expiration; activating various information screens such as logbooks, summary screens, usage reports, etc.; creation of reports for display, communication, printing, etc.; etc.
It should be noted that the term “sensor” and “patch” are used herein to refer generally to the implanted sensor and on-body electronics together.
In some aspects of the present disclosure, the analyte monitoring device provides various graphical user interfaces (GUIs) or screens that are displayed on a display of the analyte monitoring device to assist the user with operation of the device or provide information to the user. It should be understood that the terms “graphical user interface”, “GUI”, “interface” and “screen” are used broadly herein to represent any graphical interface element displayed on the display, and are used interchangeably. For example, the graphical user interface may comprise a graphical icon, element, picture, video, text box, pop-up window, application window, home screen, etc.
Furthermore, it must be noted that the terms “graphical user interface”, “GUI”, “interface”, and “screen” are used broadly herein and may include plural referents unless the context clearly dictates otherwise. Therefore, for example, reference to a “Setup screen” may include one or more screens in the setup process, and reference to “the Setup screen” may include reference to one or more program updates and equivalents thereof known to those skilled in the art, and so forth.
Furthermore, it should be understood that one or more GUIs may be implemented for various features, functions and/or settings. Further, different GUIs may be combined in some instances without compromising the underlying principles of the disclosure. Still further, the term
The user may navigate through branches of various screens via trigger elements on the device. The trigger elements may be any variety of trigger elements—e.g., buttons, keys, toggle switches, wheels, arrows, etc. The trigger elements may be physical and tangible trigger elements located on the device (e.g., hardware buttons or keys on the housing or keyboard, etc.) and/or may be nontangible trigger elements (e.g., graphical user interface elements) displayed on the device. It should also be understood that the branches of navigation may be displayed on the home screen (e.g., as icons on the display) and triggered by corresponding physical and tangible trigger elements on the housing of keyboard.
In some embodiments, a touchscreen display is implemented, and the trigger elements are icons displayed on the touchscreen. The trigger element is activated by the user touching the corresponding trigger element (e.g., icon). It should be understood that icons are used broadly herein to represent any text, image, video, graphic, etc. For example, the trigger element may be suggestive of its function or feature—e.g., an image of a gear representing a trigger element for accessing the setup menu, an arrow keys, check boxes, toggle switches, buttons (e.g., with identifying text or image inside), etc.
Home Screen:
In some aspects of the present disclosure a Home screen is provided. The home screen or landing screen is displayed on the display of the analyte monitoring device and functions as a reference point or relative reference point to perform various functions or features on the device. From the home screen the user can navigate to any of the various GUI's to perform or access various functions and features of the device. For instance, the user can navigate to a screen enabling the user to access a logbook, setup menu, reminders, etc. From that point, the user may access additional features and functions related to the selected item.
Active Screens:
In some aspects of the present disclosure an Active screen is provided. The Active Screen (e.g., Scan Prompt screen) awaits the user to perform an on-demand reading or otherwise “ping”, “scan”, or “swipe” the sensor. It should be appreciated that the term “ping”, “scan”, and “swipe” are used interchangeably herein and refer broadly to bringing the analyte monitoring device in sufficiently close distance of the sensor to perform a communication (e.g., on-demand reading, sensor activation, etc.).
On-Demand Reader Screens:
In some aspects of the present disclosure, On-Demand Reader screens are provided to convey information pertaining to analyte readings (e.g., glucose levels). While embodiments are described in relation to on-demand glucose readings, it should be appreciated that other analytes may be implemented in other embodiments.
In some instances, the On-Demand Reader screens may include one or more of the following: a reading, trend symbol, trigger element for calculating insulin, trigger element for food intake, trigger element for adding notes, trigger element for switching between screens, patch status information, trail information, the current time, battery status, etc. The reading provides glucose levels for a current reading. The trend symbol provides trending information related to increasing or decreasing patterns of glucose levels. When activated, the trigger element for calculating insulin displays a screen for providing an insulin calculation for the user—e.g., based on the current glucose reading. When activated, the trigger element for food intake displays a screen for entering food intake and/or displaying food intake. When activated, the trigger element for notes displays a screen for entering notes and/or displaying previously entered notes. The trail information displays readings leading up to the current reading.
Some of the embodiments have a single screen layout in which all the information for the on-demand glucose reading is displayed on a single screen. Other embodiments include a dual screen layout which provides the information for the on-demand glucose reading over two screens. The user may switch between the two-screens with a trigger element such as an icon or box on the screen. In some instances, the user may be able to switch between screens by sliding a finger across the display of the device.
Reader Summary/Reports Screens:
In some aspects of the present disclosure, the analyte monitoring device displays summary screens that convey a collection of information associated with readings that have been performed.
Event Summary Views:
The Event Summary screen displays summarized information regarding the history of the user's readings.
Event Detail View:
The Event Detail screen displays a detailed view of the user's readings associated with an event—e.g., a hypoglycemic event.
Logbook Screen:
The Logbook screen displays recorded readings and associated data regarding the user's readings.
Usage Report:
The Usage Report screen displays the meter utilization to indicate user engagement. Any gaps in time (e.g., extended durations where the user did not take any readings) are recorded and shown in the Usage Report.
Personalization Picture:
In some embodiments, the analyte monitoring device includes a personalization screen that displays a personalized image—e.g., selected or uploaded by the user. The personalized screen may be displayed at specific times. For example, the personalized screen may be displayed after the device is powered on. Once the power up process is complete, the analyte monitoring device displays another screen, such as an active screen. In another embodiment, the home screen is displayed after the power up process.
Screen Qualities:
It should be appreciated that the analyte monitoring device may be implemented with different screen qualities—e.g., gray-scale and higher-resolution. In some embodiments, the analyte monitoring device may be capable of being operated in different screen qualities. For example, the analyte monitoring device may include a color touchscreen and be capable of being run in color mode or gray-scale mode.
The following paragraphs describe various navigation flows between user screens for performing various functions and features of the device.
Navigation Flows
The following paragraphs describe various navigation flows between user screens for performing various functions and features of the analyte monitoring device. For example, software or firmware implementing flows introduced herein may be stored on a machine-readable storage medium and may be executed by one or more general-purpose or special-purpose programmable microprocessors.
Hardware
An exemplary embodiment of a graphical user interface which may be utilized in connection with an analyte monitoring device (e.g., analyte reader device) as described herein and which functions to perform various hardware-related actions is provided.
Hardware—Power On Interface
At block 110, the device processor determines the presence of any errors in the hardware functionality of the device. Upon being powered on, if the device processor determines a hardware failure, such as the device is not working properly, the device will display a hardware error message as shown at block 111, such as those described herein below in the present application. If no hardware errors are detected, at block 112, it is determined if this is the first time the device is to be set up. If it is the first time, then a First Start procedure is initiated to begin the setup of the device, as shown at block 114. If it is determined that this is not a first time setup, then it is determined if the sensor has already been activated. If not activated, then the home screen is displayed, as shown at block 118. If already activated, then it is determined whether the sensor is expired, as shown at block 120. If the sensor is expired, it is determined if the sensor expiration message has been previously displayed, as shown at block 130. If so, then the home screen is displayed, as shown at block 134. If not, then a sensor expiration screen is displayed, as shown at block 132. In some instances, an audible notification may also be provided. The sensor expiration screen may also inform the use that a new sensor must be started to take a glucose reading. Once confirmed by the user, for example by pressing “ok”, the home screen is displayed on the device.
Referring back to block 120, if the sensor is not expired, then it is determined if the sensor is warming up, as shown by block 122. If not, then a prompt is displayed for a sensor scan. If the sensor is warming up, then a warm-up message screen is displayed that informs the user that the sensor is warming up, as shown at block 126. In some instances, such as shown, the warm-up message screen indicates the time remaining before the sensor can be used. An audible reminder may also be present, as shown. Once confirmed by the user, for example by pressing “ok”, the home screen is displayed on the device.
Go Home/Off Interface
Low Battery Interface
PC Link/Data Transfer Interface
Charging Battery Interface
If the device is disconnected from the charger (e.g., from the USB connection port), shown at 216, then the home screen continues to be displayed without the charging symbol or icon. This may be replaced by an icon or symbol indicating the current state of the battery life. In one embodiment, if the device is displaying any screen, including the home screen, it will remain on that screen when the charger is disconnected, and the predetermined timeout period will reset when the charger is disconnected.
Home Screen
An exemplary embodiment of a graphical user interface which may be utilized in connection with a reader as described herein and which functions to navigate the device in relation to the Home screen is provided.
Sensor Scan or System Check Interface
In addition, an insulin on board screen may be displayed when the corresponding icon is triggered at the home screen, as shown by block 236. The insulin on board screen provides information related to the estimated active insulin remaining in a user's body according to insulin data previously entered. Additional details may be provided when a corresponding icon is initiated from the insulin on board screen. In one embodiment, a timer counts down from time of dose for insulin duration as set in a calculator setup. In one embodiment, the insulin on board screen with active countdown appears if the insulin on board is enabled in the calculator setup and the insulin on board is calculated to be present. The icon shown provides a visual indication that reflects the amount of rapid-acting insulin estimated to be still in body—e.g., a percentage of the body-shaped icon filled corresponding to a percentage of the active insulin remaining in the body.
Also, a reminder screen may be displayed when the corresponding icon is triggered at the home screen, as shown by block 228. In one embodiment, when a reminder is set, the time at which the alarm will sound appears next to a reminders icon. If, for example, multiple reminders are active, the time shown is the time of the reminder that will sound soonest.
Expired/No Sensor Interface
Sensor Warming Up Interface
Sensor Near Expiration Interface
Sensor Life Display in Title Bar
Sensor Activation
An exemplary embodiment of a graphical user interface which may be utilized in connection with a reader as described herein and which functions activate the sensor is provided.
Upon completion of the scan, to start a pairing of the device and sensor, the device may check the sensor for errors, including an integrity check of the scan 268, a health check of the sensor 270 and an expiration of the sensor check 272. If the device determines that the scan failed, the device may display a screen indicating that a scan error occurred, as shown at block 269. If the device determines that the sensor in not functioning properly, the device may display a screen indicating to replace the sensor with a new sensor 271. If the scan succeeds and the sensor is found to be functioning, the device may check the expiration information of the sensor, and if expired, e.g., a user tried to continue use of an expired sensor, the device may display a sensor expired screen 273. From any of the scan error, replace sensor, and sensor expired screens, selecting “ok” may navigate the device back to the home screen 262 to start a new sensor again.
Referring to block 275, if the sensor has already been activated by another device, then a screen 276 indicating that the sensor is already paired with another device is displayed. Upon user confirmation, the home screen is displayed, as shown at block 277. In certain embodiments, when a sensor is already paired with another reader device, use of that sensor with the new reader device is not allowed.
In some instances, the device may include a masked mode that enables the user to take readings of a paired sensor, but does not display the resulting readings to the user, or otherwise limits the resulting data to the user. After a non-expired sensor has been successfully scanned, the device may display a masked mode screen to indicate a masked mode is currently enabled. For example, masked mode screen 279 indicates that the device will operate in the masked mode, unless otherwise changed. In some instances, the initial configuration may be set up by the doctor or other health care profession for the patient. In certain configurations, the masked mode may only be deactivated by a health care professional. If the device is not operating in a masked mode, or after the user confirms the masked mode, then a warm up message screen 280 is displayed that indicates that the sensor is warming up. The remaining time for warm up may also be displayed. If the user confirms the message, for example by selecting the “ok” icon, then the device may navigate back to the home screen 281 and the home screen is displayed and indicates the sensor is warming up—e.g., by showing the remaining time until the sensor is ready. If the user attempts to perform a sensor scan as shown by block 282—e.g., by selecting the check glucose icon, then the warm up message screen 281 is displayed again. In some instances, the home screen may be displayed after a predetermined time showing the warm up message or the device will automatically navigate to the home screen 283 after the sensor is ready. In certain embodiments, the device will not display a message screen showing “0 minutes” remaining.
Sensor Scan and Results
Exemplary embodiment of a graphical user interfaces which may be utilized in connection with a reader as described herein and which function to scan and to provide results are provided.
Sensor Scan Interface
In the embodiment shown, an icon or trigger element is provided on screen 302 for going to the home screen 303. If selected by the user, the home screen 303 is displayed. From the home screen 303, the user may initiate a sensor scan thereafter and return to the scan prompt screen 302.
Upon the start of the scan, the device waits (e.g., 15 seconds) for the scan to complete, as shown by blocks 304 and 305. If the wait period elapses and the scan is not yet complete, the device may display a screen informing the user that the scan has timed out 306. Upon completion of the scan, the device may perform an integrity check of the scan 307. If the device determines that the scan failed, the device may display a screen indicating that a scan error occurred, as shown at block 308 and instruct the user to scan the sensor again.
If the sensor is a new inactive sensor, as shown at block 309, then a new sensor detected screen 310 is shown and indicates that the sensor is a new sensor. Screen 310 provides the user with an option to start the new sensor or not. If the user elects to start the new sensor, then the device initiates the sensor activation process, as shown by block 312. If the user elects to not start the new sensor, then the device displays the home screen, as shown by block 311.
If the device determines that the current sensor is inactive, as shown at block 313, then a check sensor screen 314 is displayed and indicates that there may be a problem with the sensor. The check sensor screen 314, in some embodiments, may suggest to the user to check if the sensor is loose or has fallen out. If the sensor is loose, the loose sensor should be removed and a new sensor shall be paired. If the sensor is correctly applied, then the sensor is scanned again.
Referring to block 315, if the sensor has already been activated by another device, then a screen 316 indicating that the sensor is already paired with another device is displayed. Upon user confirmation, the home screen is displayed. In certain embodiments, when a sensor is already paired with another reader device, use of that sensor with the new reader device is not allowed.
The device may check the expiration information of the sensor as shown at block 317, and if expired, e.g., a user tried to reuse an expired sensor, the device may display a sensor expired screen 318. From any of the scan error, replace sensor, and sensor expired screens, selecting “ok” may navigate the device back to the home screen to start a new sensor again.
If the device determines that the sensor in not functioning properly, the device may display a screen indicating to replace the sensor with a new sensor 271. If the scan succeeds and the sensor is found to be functioning, the device determines whether the sensor is to expire within a predetermined amount of time, such as within the next 3 days, as shown at block 321. It should be appreciated that the amount of time may vary in other embodiments, and in one embodiment check to see if the sensor is expired. It should also be appreciated that the predetermined amount of time may be preprogrammed in manufacturing, and/or set within the settings, etc. If at block 321, it is determined that the sensor is expiring within the predetermined amount of time, then a sensor near expiration screen 322 is displayed to indicate the sensor is close to expiring. The remaining time until the sensor expires may be displayed, for example. In certain embodiments, the remaining time message is displayed after the first scan of the day for the last three days of the sensor life and the screen is shown after every scan for the last 8 hours before sensor expiration. The screen showing the remaining time until sensor expiration may be displayed as days remaining, when the length of time is 2 days or more, hours remaining, when the length of time is between 2 hours and 1 day, and minutes remaining, when the length of time is less than an hour, wherein the time remaining is rounded up as described above in conjunction with
If at block 321, it is determined that the sensor is not expiring within the predetermined amount of time, then it is determined whether the sensor battery is low, as represented at block 325. If the battery is low, then at block 326, the device indicates that the battery is low—e.g., via a low battery screen, or a low battery icon, etc. In some instances, a reading is not taken, and no results are shown for the scan.
If the battery is not low, then at block 327, it is determined if the skin temperature is too hot or cold—e.g., using a “safe” range of temperatures. The sensor may provide the temperature data to the device. If the temperature is determined to be too hot or cold, then the device displays the resulting reading and indicates that the sensor temperature was too hot or too cold, respectively, as shown at block 328. If the skin temperature is not too hot or cold, then it is determined whether the quality of the data is acceptable, as shown at block 329. If the data quality checks fail, the device may display a sensor error screen 330, informing the user that the glucose reading is unavailable. In certain embodiments, the device may suggest to the user to rescan after a predetermined waiting period, such as 10 minutes. Upon selection by the user of the “ok” confirmation element, the device may navigate back to the home screen 331.
As shown at block 332, it is determined whether the resulting reading is out of range. If the sensor is out of range, then it is determined if a high or low glucose condition has occurred. For example, a target range or acceptable range may be preset by the manufacturer or customizable by the user. If a high or low condition is present, then the user is taken to the Sensor Results screen, as shown at block 333, and the high or low condition may be indicated on the Sensor Results screen (e.g., via a message, icon, etc.) along with the sensor results.
Referring back to block 332, if it is determined that the sensor is not out of range, then it is determined if the glucose level was a high or low glucose level 334. For example, a high or low glucose level may be preset by the manufacturer or customizable by the user. If a high or low glucose level is present, then the user is taken to the Sensor Results screen, as shown at block 335, and the sensor results may be displayed. If a high or low condition is not present, then it is determined whether a high or low condition is projected, as shown at block 336. A high or low condition may be projected, for example, by trends in the measurement readings. If a high or low condition is projected, then the user is taken to the Sensor Results screen and the projected high or low condition is indicated on the Sensor Results screen along with the sensor results, as shown at block 337.
In some instances, the device is programmed such that the skin temperature test takes priority over other test conditions (e.g., out-of-range test, high/low glucose test, projected high/low glucose test, etc.) that may occur simultaneously.
Consecutive Scans Interface
An exemplary embodiment of a graphical user interface which may be utilized in connection with a reader as described herein and which functions to provide navigation when consecutive scans are present is provided.
Two Scans within Predetermined Period of Time
In some aspects, the analyte reader device is programmed to perform specific navigations when the device is scanned multiple times within a predetermined period of time.
Device Timeout at the Suggest Dose Screen from BG Result
In some aspects, the analyte reader device is programmed to return to a saved suggested dose screen if the reader is powered off or leaves a “Calculator/Suggested Dose” screen when a dose has been calculated but not logged, and the device is powered back on or another scan is attempted within a predetermined period of time.
Suggested Dose from BG Result Logged
In some aspects of the present disclosure, after a first scan and calculated insulin dose logged, the device is programmed to prevent a second scan within a predetermined period of time from a first scan. The user will not be able to perform the second scan, but will be able to view the Logbook.
Sensor Results Interface
In some aspects of the present disclosure, a graphical user interface is provided that may be utilized in connection with a reader as described herein and which functions generally to provide sensor results.
Results
In one embodiment, graph 389b does not display if the current glucose value is unavailable. Instead, a screen indicating that the glucose results are unavailable is displayed.
In one embodiment, graph 389b displays the past resulting readings for a given time period. The total time period may be sectionalized into a first predetermined period of time 389d, and a second predetermined period of time 389f The second predetermined period 389f is subsequent to the first predetermined period of time 389d and includes more recent readings than the first predetermined period of time 389d. For example, in the embodiment shown, at time 10:23 pm, graph 389b displays readings in a first predetermined time period 389d of 8 hours (e.g., 2 pm to 10 pm), and also displays more recent readings within the second predetermined time period 389f of 1 hour (e.g., 10 pm to 11 pm). As graph 389b is displayed at 10:23 pm, readings for the last 23 minutes (e.g., 10 pm to 10:23 pm) are shown in the second predetermined time period 389f. As subsequent readings are taken, graph 389b will track the readings within the second predetermined time period 389f. Once subsequent readings are taken for the entire second predetermined period of time 389f, the entire plot of readings is shifted in time by the second predetermined period of time 389f (e.g., 1 hour). In other words, once subsequent readings are obtained up to 11 pm, the plot of readings from 3 pm to 11 pm will shift to the first predetermined period of time 389d, and the second predetermined time period 389f will begin without any readings and start to track subsequent readings between 11 pm and 12 pm. Once subsequent readings are obtained up to 12 pm, then entire plot of readings is again shifted by the second predetermined period of time 389f (e.g., 1 hour), and the process repeats.
In one embodiment, when scanning is first started and no data has been obtained for the graph 389b, the graph 389b is not displayed until the device has obtained sensor readings for at least the first predetermined period of time 389d (e.g., 8 hours).
Thus, graph 389b begins with readings for at least the entire first predetermined period of time 389d. For example, in one embodiment, this threshold time period is equal to the first predetermined period of time 389d. In another embodiment, the threshold time period is longer than the first predetermined period of time such that sensor readings have been obtained for part or all of the second predetermined period of time.
It is appreciated that in other embodiments, a template of the graph may be displayed at first, but no sensor readings are shown on the graph until the device has obtained sensor readings for at least the first predetermined period of time 389d.
Non-Actionable Reading
Results—Masked Mode
Sensor Temperature (Too Hot/Too Cold)
Out of Range High/Low Readings
The predetermined upper threshold reading value may be determined based on a predetermined number (e.g., 500 mg/dL), or may be determined relative to a predetermined “acceptable” range of readings to display (e.g., 40 mg/dL to 500 mg/dL), or with respect to a target range (e.g., 350 mg/dL over the target range), etc.
Screen 412 may also include a graph 412b of sensor readings that also indicates a target range 412D. Screen 412 provides a trigger element 412c for providing additional information, warning, instructions, etc., regarding the out of range and high sensor reading. For example, when the user touches the touch-sensitive button 412c, another screen 414 is displayed to provide additional details or information, such as that the glucose level is out of range high, that a high glucose level may be dangerous, and that the user should check again later and treat as recommended by their health care professional. Upon user confirmation (e.g., via selection of the “OK” button) the user is taken back to screen 412.
The predetermined lower threshold reading value may be determined based on a predetermined number (e.g., 40 mg/dL), or may be determined relative to a determined “acceptable” range of readings to display (e.g., 40 mg/dL to 500 mg/dL), or with respect to a target range (e.g., 20 mg/dL below the target range), etc.
Screen 416 may also include a graph 416b of sensor readings that also indicates a target range 416D. Screen 416 provides a trigger element 416c for providing additional information, warning, instructions, etc., regarding the out of range and low sensor reading. For example, when the user touches the touch-sensitive button 416c, another screen 418 is displayed to provide additional details or information, such as that the glucose level is out of range low, that a low glucose level may be dangerous, and that the user should check again later and treat as recommended by their health care professional. Upon user confirmation (e.g., via selection of the “OK” button) the user is taken back to screen 416.
High/Low Sensor Readings
The predetermined upper threshold reading value may be determined based on a predetermined number (e.g., 240 mg/dL), or may be determined relative to a predetermined range of readings (e.g., 70 mg/dL to 240 mg/dL), or with respect to a target range (e.g., 120 mg/dL over the target range), etc.
Screen 422 may also include a graph 422b of sensor readings that also indicates a target range 422d. In addition, screen 422 may include a distinguishing element 422f for identifying the high reading on the graph 422b—e.g., in the embodiment shown, an encircled dot 422f Screen 422 may also include other trigger elements, such as a trigger element 422e for initiating the Notes interface.
The predetermined lower threshold reading value may be determined based on a predetermined number (e.g., 70 mg/dL), or may be determined relative to a predetermined range of readings (e.g., 70 mg/dL to 240 mg/dL), or with respect to a target range (e.g., 10 mg/dL below the target range), etc.
Screen 426 may also include a graph 426b of sensor readings that also indicates a target range 426d. In addition, screen 426 may include a distinguishing element 426f for identifying the low reading on the graph 426b—e.g., in the embodiment shown, an encircled dot 426f. Screen 426 may also include other trigger elements, such as a trigger element 426e for initiating the Notes interface.
Projected High/Low Sensor Readings
Projected high glucose readings may be based on the projected glucose level of the user within a predetermined upcoming period of time—e.g., within the next 15 minutes. The predetermined upper threshold reading value may be determined based on a predetermined number (e.g., 240 mg/dL), or may be determined relative to a predetermined range of readings (e.g., 70 mg/dL to 240 mg/dL), or with respect to a target range (e.g., 120 mg/dL over the target range), etc.
Screen 432 may also include a graph 432b of sensor readings that also indicates a target range 432d. In addition, screen 432 may include a distinguishing element 432f for identifying the projected high reading on the graph 432b—e.g., in the embodiment shown, an encircled dot 432f. Screen 432 may also include other trigger elements, such as a trigger element 432e for initiating the Notes interface.
Projected low glucose readings may be based on the projected glucose level of the user within a predetermined upcoming period of time—e.g., within the next 15 minutes. The predetermined lower threshold reading value may be determined based on a predetermined number (e.g., 70 mg/dL), or may be determined relative to a predetermined range of readings (e.g., 70 mg/dL to 240 mg/dL), or with respect to a target range (e.g., 10 mg/dL below the target range), etc.
Screen 436 may also include a graph 436b of sensor readings that also indicates a target range 436d. In addition, screen 436 may include a distinguishing element 436f for identifying the projected low reading on the graph 436b—e.g., in the embodiment shown, an encircled dot 436f. Screen 436 may also include other trigger elements, such as a trigger element 436e for initiating the Notes interface.
Blood Glucose Test & Results
In some aspects of the present disclosure, a graphical user interface is provided that may be utilized in connection with a reader as described herein and which functions generally to provide perform an analyte test and provide test results.
Blood Glucose Strip Test Interface
If at block 448, it is determined that a USB connection is not established, then it is determined if the inserted test strip is a blood glucose test strip or a ketone test strip, as shown at block 452. The test strip may include an identifying element, such as a specific contact configuration, to enable the device to identify what type of test strip it is. If it is determined that the test strip is a ketone test strip, then the device initiates the Ketone Test interface to perform a ketone test measurement, as shown by block 454. If, on the other hand, the test strip is determined to be a blood glucose test strip, then it is determined if the device temperature is outside of the device's operating range, as represented by block 456 and reference path F.
If it is determined that the temperature is above or below the device's operating range, then the in certain embodiments, the port light is turned off and a Strip/Hardware Error screen 458 indicating that the operating temperature is too hot or too cold is displayed.
If at block 456, it is determined that the temperature is within the device's operating range, then the strip is checked for errors, including checking the strip for damage or incompatibility, as shown at block 460, or a check to see if blood was applied to the strip too soon or the strip was used, as shown at block 464. If the device determines the strip is damaged, incompatible or already used, the display may navigate to a Strip/Hardware Error screen 462, 466.
If there are no determined strip errors, an Add Blood interface 468 is displayed to indicate that blood may be applied to the test strip. If the test strip is removed at this point, as shown by block 470, then the port light turns off and the Home screen is displayed, as represented by block 471. If at screen 468, blood is applied to the test strip, as shown by block 472, then it is determined if there was sufficient blood applied to accurately perform a test measurement, as shown by block 474. It should be appreciated that the timing of this determination may vary. If not enough blood is present, then the Strip/Hardware Errors interface is displayed to indicate that not enough blood was applied or that there was an error, as shown by block 476.
If it is determined that sufficient blood has been applied to the test strip, then the port light turns off, as shown by block 478, and a test measurement is performed. A Waiting interface 480 may be displayed while the test measurement is being performed. At block 482, it is determined if the results are ready. If ready, then the Strips Test Results screen 486 is displayed to indicate the resulting reading. If not ready (e.g., after a predetermined timeout period), then the Strip/Hardware Errors screen 484 is displayed to indicate that there was an error in the measurement. In certain embodiments, the device may also perform a low batter test prior to displaying the results as described above in conjunction with
Looking ahead to
Blood Glucose Strip Test Results Interface
In some aspects of the present disclosure, a graphical user interface is provided that may be utilized in connection with a reader as described herein and which functions generally to provide blood glucose strip test results.
Results Screen
For analyte monitoring devices with an active insulin calculator, Screen 492 may be provided, for example, after a test strip measurement has been successfully performed. The example Results BG screen 492 is shown to include a test strip measurement 492a and various analyte and device related information, such as indicator elements for a blood glucose strip test 492b, current time 492d, battery life 492e, etc. A trigger element 492c for navigating to the Notes interface is also provided to take the user to the Notes screen as shown by block 494. A trigger element 492f for navigating to an Insulin Calculation interface is also provided as shown by block 496 to provide a calculated insulin dose based on the test measurement 492a. In certain embodiments, the Insulin Calculation interface may be an Advanced Calculator interface or an Easy Calculator interface, based upon the current settings of the device, as described in further detail below. It should be appreciated that other combinations of these, and other, features and trigger elements may be included in other embodiments.
Control Solution Screen
Reader Temperature Warning (Too Hot/Too Cold) Screen
Results BG Temp High1/Low1 screen 508 is an example interface that is displayed when a test measurement is available, but also indicates to the user that the device temperature is either high or low, such as with respect to a predetermined “safe” range of temperatures. For example, screen 508 displays the resulting test measurement 508a and also displays a warning message and/or icon 502b indicating a high or low device temperature. Icon 502b also serves as a trigger element for providing additional information regarding the high or low device temperature. For example, when the user touches the touch-sensitive button 502b, another screen 512 or 510 is displayed to provide additional details or information, such as that the device temperature is too low or too high, respectively, and that the user should try again later. In one embodiment, the device is programmed such that the temperature error takes precedence over other notifications that may be implemented.
Out of Range High/Low Screen
The predetermined upper threshold reading value may be determined based on a predetermined number (e.g., 500 mg/dL), or may be determined relative to a predetermined “acceptable” range of readings to display (e.g., 20 mg/dL to 500 mg/dL), or with respect to a target range (e.g., 350 mg/dL over the target range), etc.
Screen 516 provides a trigger element 516 for providing additional information, warning, instructions, etc., regarding the out of range and high measurement reading. For example, when the user touches the touch-sensitive button 516b, another screen 518 is displayed to provide additional details or information, such as that the glucose level is out of range high, that a high glucose level may be dangerous, and that the user should check again later and treat as recommended by their health care professional. Upon user confirmation (e.g., via selection of the “OK” button) the user is taken back to screen 516.
The predetermined lower threshold reading value may be determined based on a predetermined number (e.g., 20 mg/dL), or may be determined relative to a determined “acceptable” range of readings to display (e.g., 20 mg/dL to 500 mg/dL), or with respect to a target range (e.g., 40 mg/dL below the target range), etc.
Screen 520 provides a trigger element 520a for providing additional information, warning, instructions, etc., regarding the out of range and low measurement reading. For example, when the user touches the touch-sensitive button 520b, another screen 522 is displayed to provide additional details or information, such as that the glucose level is out of range low, that a low glucose level may be dangerous, and that the user should check again later and treat as recommended by their health care professional. Upon user confirmation (e.g., via selection of the “OK” button) the user is taken back to screen 520.
High/Low Glucose Screen
The predetermined upper threshold reading value may be determined based on a predetermined number (e.g., 240 mg/dL), or may be determined relative to a predetermined range of readings (e.g., 70 mg/dL to 240 mg/dL), or with respect to a target range (e.g., 120 mg/dL over the target range), etc.
Screen 526 may also include an indicator element (e.g., icon, symbol, etc.) 526b that indicates that the measurement reading pertains to a blood glucose strip test. In the embodiment shown, a symbol of a blood drop 526b is used. Screen 526 may also include other trigger elements, such as a trigger element 526e for initiating the Notes interface.
The predetermined lower threshold reading value may be determined based on a predetermined number (e.g., 70 mg/dL), or may be determined relative to a predetermined range of readings (e.g., 70 mg/dL to 240 mg/dL), or with respect to a target range (e.g., 10 mg/dL below the target range), etc.
Screen 530 may also include an indicator element (e.g., icon, symbol, etc.) 530b that indicates that the measurement reading pertains to a blood glucose strip test. In the embodiment shown, a symbol of a blood drop 530b is used. Screen 530 may also include other trigger elements, such as a trigger element 530e for initiating the Notes interface.
Masked Mode
When the device is in masked mode, the results of a blood glucose control solution test or blood glucose test strip results may be masked on the display.
Ketone Test & Results
In some aspects of the present disclosure, a graphical user interface is provided that may be utilized in connection with a reader as described herein and which functions generally to provide perform a ketone strip test measurement and provide test results.
Ketone Strip Test Interface
If at block 542, it is determined that a USB connection is not established, then it is determined if the inserted test strip is a blood glucose test strip or a ketone test strip, as shown at block 546. The test strip may include an identifying element, such as a specific contact configuration, to enable the device to identify what type of test strip it is. If it is determined that the test strip is a blood glucose test strip, then the device initiates the Blood Glucose Strip Test interface to perform a blood glucose test measurement, as shown by block 548. If, on the other hand, the test strip is determined to be a ketone test strip, then it is determined if the device temperature is outside of the device's operating range, as represented by block 550 and reference path H. If it is determined that the temperature is above or below the device's operating range, then the port light is turned off, and a Strip/Hardware Error screen 551 indicating that the operating temperature is too hot or too cold is displayed.
If at block 550, it is determined that the temperature is within the device's operating range, then the strip is checked for errors, including checking the strip for damage or incompatibility, as shown at block 552, or a check to see if blood was applied to the strip too soon or the strip was used, as shown at block 554. If the device determines the strip is damaged, incompatible or already used, the display may navigate to a Strip/Hardware Error screen 553, 555.
If there are no determined strip errors, a P K Add Blood interface 556 is displayed to indicate that blood may be applied to the test strip. If the test strip is removed at this point, as shown by block 558, then the port light turns off and the Home screen is displayed, as represented by block 560. If at screen 556, blood is applied to the test strip, as shown by block 564, then it is determined if there was sufficient blood applied to accurately perform a test measurement, as shown by block 566 and reference path I. It should be appreciated that the timing of this determination may vary. If not enough blood is present, then the Strip/Hardware Errors interface is displayed to indicate that not enough blood was applied or that there was an error, as shown by block 568.
If it is determined that sufficient blood has been applied to the test strip, then a Waiting interface 570 is displayed while a test measurement is being performed. At block 572, it is determined if the results are ready. If ready, then the Strips Test Results screen 576 is displayed to indicate the resulting reading. If not ready (e.g., after a predetermined timeout period), then the Strip/Hardware Errors screen 574 is displayed to indicate that there was an error in calculating a measurement. In certain embodiments, the device may also perform a low battery test prior to displaying the results as described above in conjunction with
Ketone Strip Test Results Interface
In some aspects of the present disclosure, a graphical user interface is provided that may be utilized in connection with a reader as described herein and which functions generally to provide ketone strip test results.
Results Screen
A trigger element 580c for navigating to the Notes interface is also provided to take the user to the Notes screen as shown by block 582. It should be appreciated that other combinations of these, and other, features and trigger elements may be included in other embodiments.
In one embodiment, the insulin calculator is enabled if the setting is enabled and if both of the following are met: 1) the ketone test has been performed within a predetermined period of time (e.g., 15 minutes) of successful strip test or another predetermined period of time (e.g., 3 minutes) of a successful sensor test; and 2) insulin was not logged with that recent glucose test. Unless both conditions are met, the insulin calculator button is not provided.
Control Solution Screen
Reader Temperature Warning (Too Hot/Too Cold) Screen
Results Ketone Temp High1/Low1 screen 594 is an example interface that is displayed when a ketone test measurement is available, but also indicates to the user that the device temperature is either high or low, such as with respect to a predetermined “safe” range of temperatures. For example, screen 594 displays the resulting test measurement 594a and also displays a warning message and/or icon 594b indicating a high or low device temperature. Icon 502b also serves as a trigger element for providing additional information regarding the high or low device temperature. For example, when the user touches the touch-sensitive button 502b, another screen 598 or 596 is displayed to provide additional details or information, such as that the device temperature is too low or too high, respectively, and that the user should try again later.
Out of Range High Screen
The predetermined upper threshold reading value may be determined based on a predetermined number, or may be determined relative to a predetermined “acceptable” range of readings to display, or with respect to a target range, etc.
Screen 602 provides a trigger element 602b for providing additional information, warning, instructions, etc., regarding the out of range and high ketone measurement reading. For example, when the user touches the touch-sensitive button 602b, another screen 604 is displayed to provide additional details or information, such as that the ketone level is out of range high, that a high ketone level may be dangerous, and that the user should check again later and treat as recommended by their health care professional. Upon user confirmation (e.g., via selection of the “OK” button) the user is taken back to screen 602.
High Ketones Screen
The predetermined upper threshold reading value may be determined based on a predetermined number, or may be determined relative to a predetermined range of readings, or with respect to a target range, etc.
In the embodiment shown, after a high ketone reading is obtained, screen 608 is displayed and the measurement reading 608a is shown. In addition to showing the sensor reading 608a, screen 608 includes a trigger element 608c for indicating the high ketone reading and for accessing additional information, warning, instructions, etc., regarding the high measurement reading. For example, when the user touches the touch-sensitive button 608c, another screen 610 or 612 is displayed to provide additional details or information about the high reading, such as that the ketone level is high, that a high ketone level may be dangerous, and that the user should check again later and treat as recommended by their health care professional. In the embodiment shown, screen 610 is displayed if the ketone reading is between a predetermined range (e.g., 0.6 to 1.5) and the second screen 612 is displayed if the ketone reading is between a high predetermined range (e.g., 1.6 to 8).
Screen 608 may also include an indicator element (e.g., icon, symbol, etc.) 608b that indicates that the measurement reading pertains to a strip test measurement (e.g., ketone test strip measurement). In the embodiment shown, a symbol of a blood drop 608b is used. Screen 608 may also include other trigger elements, such as a trigger element 608e for initiating the Notes interface.
Masked Mode
When the device is in masked mode, the results of a Ketone control solution test or Ketone test strip results may be masked on the display.
Notes Interface
An exemplary embodiment of a graphical user interface which may be utilized in connection with a Reader as described herein and which facilitates a Notes procedure 3000 for entering notes into the logbook is provided. This graphical user interface is now described in greater detail with reference to
A graphical user interface which facilitates the Notes procedure 3000 of the reader may include two different notes interfaces; a first notes interface for embodiments where the insulin calculator is disabled 3002, and a second notes interface for embodiments where the insulin calculator is enabled 3004. The Note (Insulin Calculator Disabled) Interface 3002, shown in
The selection of notes may be saved by touching the “OK” touchscreen button 3024, which saves the selection of user-selectable notes and returns the graphical user interface to the previous screen. If the “OK” touchscreen button 3024 is pressed without changing the selection of user-selectable notes, then the previous selection of user-selectable notes is retained and saved.
In some embodiments, the amount of rapid-acting insulin, long-acting insulin, food, exercise, and medication may be entered by touching the numerical input touchscreen button (e.g., the “1 2 3” touchscreen button) associated with the desired selection. In some cases, the numerical input touchscreen button may not be displayed if the corresponding touchscreen checkbox is not checked, and may only be displayed if the corresponding touchscreen checkbox is checked. For example, when rapid-acting insulin checkbox 3008 is unchecked, the numerical input touchscreen button 3026 for rapid-acting insulin is not displayed. When the rapid-acting insulin checkbox is checked 3022, the numerical input touchscreen button 3026 for rapid-acting insulin is displayed and may be selected.
The amount of rapid-acting insulin may be entered by pressing the numerical input touchscreen button 3026 associated with the rapid-acting insulin note selection. Pressing the numerical input touchscreen button 3026 for rapid-acting insulin will cause a numerical input screen 3028 for rapid acting insulin (e.g., the “Enter Rapid-Acting Insulin” screen) to be displayed, as shown by reference path (J) (see
Numerical values for food may be entered by pressing the numerical input touchscreen button 3040 (e.g., the “1 2 3” touchscreen button) associated with the food selection on the “Add to Logbook” screen 3006. Pressing the numerical input touchscreen button 3040 for food will cause a numerical input screen 3042 for carbohydrates to be displayed (e.g., the “Enter Carbs” screen), as shown by reference path (J) (see
In certain embodiments, instead of entering the amount of food as grams of carbs, the amount of food may be entered as servings of carbs, as shown in
Referring back to the numerical input screen 3042 for the amount (e.g., grams) of carbs (see
As indicated above, a second notes interface may be provided for embodiments where the insulin calculator is enabled 3004. The Note (Insulin Calculator Enabled) Interface 3004, shown in
In the Note (Insulin Calculator Enabled) Interface 3004, the insulin on board and rapid-acting insulin calculator features of the graphical user interface are enabled. For instance, in the Note (Insulin Calculator Enabled) Interface 3004, rather than displaying a numerical input touchscreen button for rapid-acting insulin, a calculator touchscreen button 3058 is displayed with the rapid-acting insulin selection. Pressing the calculator touchscreen button 3058 will cause the graphical user interface to display the Insulin on Board Interface 3060 (see
In certain embodiments, the Notes—From Logbook Entry Interface 3064 may be displayed from the Logbook Entry screen if the “add or edit notes” touchscreen button is pressed. The Notes—From Logbook Entry Interface 3064 begins with the display of an “Add to Logbook” screen 3066. This “Add to Logbook” screen 3066 includes a list of several different user-selectable notes that may be entered into the Logbook, similar to user-selectable notes described above. In certain embodiments, the “Add to Logbook” screen 3066 of the Notes—From Logbook Entry Interface 3064 does not include a user-selectable note for rapid-acting insulin or food. The other default notes (e.g., long-acting insulin, exercise, medication) and custom notes may still be available for selection by the user as desired.
Insulin on Board Interface
As described above, pressing the calculator touchscreen button 3058 from the “Add to Logbook” screen 3056 of the Notes (Insulin Calculator Enabled) Interface 3004, will cause the graphical user interface to display the Insulin on Board Interface 3060 (see
In certain embodiments, a user's insulin on board information is used in the calculation of a recommended rapid-acting insulin dosage amount if the user's most recent insulin dose was administered within a certain time period. In some instances, the insulin calculator may be partially locked out if the difference between the current time and the time the most recent rapid-acting insulin was administered is less than a lock out time period (e.g., the most recent insulin dose was administered within a preceding lockout time period, such as within the past 2 hours). During the lockout time period, the insulin calculator may be programmed to only calculate a meal bolus and may not calculate an additional correction bolus 3084. During the lockout time period, the insulin calculator may not include insulin on board into the calculation of a meal bolus.
If the difference between the current time and the time the most recent insulin bolus was administered is greater than a threshold time period (e.g., the lockout time period) and less than the duration of insulin action, then the insulin calculator may be programmed to include the user's IOB into the calculation of the recommended rapid-acting insulin dosage amount 3086. In the time period between the end of the lockout time period and the end of the user's duration of insulin action, the insulin calculator may be programmed to determine the recommended rapid-acting insulin dosage amount based on the determined analyte concentration and the insulin on board information. For instance, in the time period between the end of the lockout time period and the end of the user's duration of insulin action, the insulin calculator may be programmed to subtract the user's IOB from the rapid-acting insulin dosage based upon the current glucose concentration level to determine the recommended rapid-acting insulin dosage amount.
In certain instances, if the difference between the current time and the time the most recent insulin bolus was administered is greater than the user's duration of insulin action, then the insulin calculator will not include insulin on board into the calculation of a recommended rapid-acting insulin dosage amount 3088. In the time period after the user's duration of insulin action has expired (and before the next dose of insulin is administered), the insulin calculator may assume the user's insulin on board is zero. In the time period after the user's duration of insulin action has expired (and before the next dose of insulin is administered), the insulin calculator may be programmed to determine the rapid-acting insulin dosage amount based on the determined glucose concentration (without including the insulin on board information).
Regarding
On the numerical input screen 3096, once the desired amount of rapid-acting insulin has been entered, the “Next” touchscreen button 3110 may be pressed to advance the graphical user interface to a time input screen 3114, as shown by reference path (M) (see
Regarding
The time input screen 3114 also includes a “?” touchscreen button 3122, which, when pressed, provides a help screen 3106 that includes additional instructions to the user as described above and as indicated by reference path (K). The time input screen includes a “Back” touchscreen button 3124, which, when pressed, returns the display to the numerical input screen 3096 as shown by reference path (L). Once the desired time since the last unlogged rapid-acting insulin dose has been entered on the time input screen 3114, the “Next” touchscreen button 3126 may be pressed to advance the graphical user interface to the next screen in the Insulin on Board Interface, such as screen 3128. Pressing the “Next” touchscreen button will save the entered rapid-acting insulin dose with a time stamp reflecting the time calculated based on the interval since the dose was taken as indicated by the user in the previous time input screen 3114. Screen 3128 informs the user that the entered dose of rapid-acting insulin will be used in the calculation of the user's suggested insulin dose, and that the next screen will allow the user to enter what the user plans to eat. Screen 3128 includes a “Back” touchscreen button 3130, which, when pressed, returns the display to the time input screen 3114. Screen 3128 includes a “Next” touchscreen button 3132, which, when pressed, causes the graphical user interface to display the Insulin Calculator Interface 3062 (see
Insulin Calculator Interface
An Insulin Calculator Interface 3062 begins with the display of an “Enter Carbs” screen (see
For example, the amount of carbs may be entered as grams of carbs on the “Enter Carbs” (grams) screen 3200. The “Enter Carbs” (grams) screen 3200 initially displays no value (e.g., “−−”or “0” is displayed), however, the grams of carbs may be adjusted by pressing the up arrow 3202 (e.g., “+”) touchscreen button or the down arrow 3204 (e.g., “−”) touchscreen button to increase or decrease, respectively, the grams of carbs as desired, as shown by reference path (T) (see
In certain embodiments, the amount of carbs may be entered as servings of carbs on the “Enter Carbs” (servings) screen 3216. The “Enter Carbs” (servings) screen 3216 initially displays no value (e.g., “−−” or “0” or “0.0” is displayed), however, the servings of carbs may be adjusted by pressing the up arrow 3218 (e.g., “+”) touchscreen button or the down arrow 3220 (e.g., “−”) touchscreen button to increase or decrease, respectively, the servings of carbs as desired, as shown by reference path (T) (see
In certain embodiments, the amount of carbs may be entered by meal on the “Enter Carbs” (meal) screen 3232. The “Enter Carbs” (meal) screen 3232 displays a list of meals, such as breakfast, lunch, dinner, or no meal. Each selection includes a corresponding touchscreen radio button. For example, to select the “Dinner” meal, the touchscreen radio button 3234 associated with the “Dinner” selection may be pressed. The “Enter Carbs” (meal) screen 3232 includes a “Back” touchscreen button 3238, which, when pressed, returns the display to the Results screen. The “Enter Carbs” (meal) screen 3232 includes a “Next” touchscreen button 3236, which, when pressed, may advance the graphical user interface to the “Double Check” screen 3240 via reference path (Z), as shown in
The “Double Check” screen 3240 (see
Referring again to
Referring to
Referring to
Referring to
Referring to
If the insulin calculator of the Reader determines that no insulin dose is suggested, the Insulin Calculation Interface 3212 will be displayed as No Suggested Dose screen 3298, which displays information indicating that based on the user's current glucose level, no rapid-acting insulin is being suggested. The No Suggested Dose screen includes a “Back” touchscreen button 3300, which, when pressed, returns the user to the prior “Enter “Carbs” screen (e.g., the “Enter Carbs” (grams) screen 3200, or the “Enter Carbs” (servings) screen 3216) via reference path (R). The No Suggested Dose screen 3298 includes a “Next” touchscreen button 3302, which, when pressed, advances the graphical user interface to Suggested Dose screen 3304. Suggested Dose screen 3304 begins by displaying a suggested does of insulin 3306 as 0 units of insulin. The suggested dose of insulin may be adjusted in 1 unit or 0.5 insulin unit increments, depending on the Reader settings, by pressing the up arrow 3308 (e.g., “+”) touchscreen button or the down arrow 3310 (e.g., “−”) touchscreen button to increase or decrease, respectively, the suggested dose of insulin as desired. If the suggested dose of insulin is adjusted by the user from its initial value, the amount of units increased or decreased by the user will be shown below the suggested insulin dose 3306. If the user adjustment of the suggested dose of insulin is calculated to reduce the user's blood glucose below the target range, then the graphical user interface will display a warning screen 3292 that displays a caution to the user that the insulin dose entered may take the user's blood glucose lower than the user's target range and put the user at risk for a low glucose event (see
Suggested Dose screens 3262, 3276, 3290 and 3304 include a “Dose details” touchscreen button 3294 (e.g., an “i” touchscreen button), which, when pressed, causes graphical user interface to display Dose Details Interface via reference path (X) (see
Dose Details Interface 3296 is shown in
The Dose Details screen includes a down arrow touchscreen button 3336, which, when pressed, advances the Dose Details screen to the second page of the Dose Details screen via reference path (B1) (see
Reminders Interface
An exemplary embodiment of a graphical user interface which may be utilized in connection with a Reader as described herein and which facilitates a Reminders procedure 3400 for setting reminders is provided. This graphical user interface is now described in greater detail with reference to
The Reminder Interface 3400, shown in
Referring to
For example, on the Remind Me screen 3408, the type of reminder may be selected by pressing the Reminder Type touchscreen button 3410. The reminder selection touchscreen button 3410 displays the currently selected reminder type, which has a default value of “Check Glucose”. The Reminder Type touchscreen button 3410, when pressed, advances the graphical user interface to the Reminder Type screen 3412 via reference path (K1) (see
On the Remind Me screen 3408, the schedule of the reminder may be selected by pressing the Repeat touchscreen button 3426. The Repeat touchscreen button 3426 displays the currently selected schedule for the reminder, which has a default value of “Daily”, indicating that the reminder will be repeated daily at the selected time. The Repeat touchscreen button 3426, when pressed, advances the graphical user interface to the Reminder Schedule screen 3428 via reference path (N1) (see
On the Remind Me screen 3408, the time of the reminder may be selected by pressing the Time touchscreen button 3450. The Time touchscreen button 3450 displays the currently set time for the reminder, which has a default value of 12:00 am, indicating that the reminder will be activated at the selected time. The Time touchscreen button 3450, when pressed, advances the graphical user interface to the Reminder Time screen 3452 via reference path (P1) (see
Referring to
Referring to
The Reminders List screen includes an “Add New” touchscreen button 3476, which, when pressed, advances the graphical user interface to the Remind Me screen 3408 via reference path (F1), from which a new reminder may be setup as desired, as described above. The Reminders List screen includes a “Done” touchscreen button 3478, which, when pressed, returns the graphical user interface to the Home Screen 3402.
Receive Reminders Interface
An exemplary embodiment of a graphical user interface which may be utilized in connection with a Reader as described herein and which facilitates a Receive Reminder procedure 3500 for receiving reminders is provided. This graphical user interface is now described in greater detail with reference to
The Receive Reminder Interface 3500, shown in
When the time/triggering event of the reminder is reached, a Reminder screen is 3502 displayed (
If the Reminder sound is set to on, a beep sounds with appearance of any reminders screen. If a reminder is ignored, the reminder will appear on the screen with the next power on (whether by hardware button or strip insertion). If multiple reminders are active, the reminder screens will stack up with the most recent reminder showing first. The reminder screens will require dismissal one by one. If daily repeated reminders have been missed, once a new day's reminder is current, the previous day's reminder for that time is no longer active and is not part of the stack-up of reminder screens.
The Reminder screen 3502 includes a “Snooze 15 min” touchscreen button 3510, which, when pressed, sets the active reminder to re-active in 15 minutes, and returns the graphical user interface to the next active reminder or, if there are no other active reminders, to the previously displayed screen before the reminder was activated. The Reminder screen 3502 also includes an “OK” touchscreen button 3512, which, when pressed cancels the active reminder and returns the graphical user interface to the next active reminder or, if there are no other active reminders, returns the graphical user interface to the Home Screen. In the Reader powers off automatically due to a timeout while displaying the Reminder screen, the reminder that was active when the Reader timed-out will be displayed again the next time the Reader is powered on.
Reader Summaries
In some aspects of the present disclosure, the analyte monitoring device may be programmed with software to provide summaries of information and data related to obtain readings. The software provides an interface to view and manage features related to generated reports. Different types of summaries may be generated. For example,
An exemplary embodiment of a graphical user interface which may be utilized in connection with a reader as described herein and which functions to provide the user with summaries of information and data related to obtained readings.
Summaries Menu Interface
When one of the options are selected, it is determined if sensor data is present, as shown at block 628. If no data is present, a No Sensor Data screen 630 is displayed to indicate to the user that no sensor data is available for the summary. In one embodiment, the all summaries except for logbook include sensor data only (e.g., glucose data obtained from the sensor). If the device includes only strip data and insufficient sensor data, then the No Sensor Data screen is still provided when a summary option is selected.
If sensor data is provided, then the corresponding screen for the selected summary option is displayed, as represented by reference path T1. From the selected summary screen, the user can navigate back to the menu options screens 622, 624 to select another menu option if desired, as shown by reference path S1.
In certain embodiments, event indicators may only be applied to glucose values after a glucose reading has been taken, either via the glucose sensor or a test strip reading. Event details may be input logged or added as notes associated with glucose values or glucose events; such as high or low glucose levels. In certain embodiments, event details may be imported from another source (e.g., electronic diary or log) and stored in a memory device.
In the embodiment shown, trigger elements 632c (e.g., left and right arrows) are also provided to enable the user to navigate forwards and backwards to another day or 24-hour time period. For example, the user could navigate to the next day after Wednesday using the right arrow, or go to the previous day by selecting the left arrow.
Screen 634 also includes an average glucose value 634b for the time period of data. For example, the average glucose reading for all readings obtained over the last 7 days was 119 mg/dL. Screen 634 also includes a trigger element 634c (e.g., an arrow icon) for changing the different time period of obtained data. For example, if the user selects the right arrow icon 634c, the user is taken to AVG GLUC02 screen 636, which similarly displays a bar graph 636a and average glucose value 636b, but for a different time period, such as the last 14 days as shown. Similarly, screen 636 also includes trigger elements 634c for again increasing the time period. In this way, the user can change to AVG GLUC03 screen 638, which similarly displays a bar graph 638a and average glucose value 638b, but for a different time period, such as the last 30 days as shown. Similarly, the user can change to AVG GLUC04 screen 640, which similarly displays a bar graph 640a and average glucose value 640b, but for a different time period, such as the last 90 days as shown. Trigger elements 634c enable the user to navigate forwards and backwards between screens 634, 636, 638, 640 to change the time periods as desired. From any of the screens, user confirmation (e.g., by selecting the “ok” button) will take the user back to the options menu interface 622, 624.
Summaries Menu—Masked Mode Interface
Logbook Interface
An exemplary embodiment of a graphical user interface which may be utilized in connection with a Reader as described herein and which facilitates a Logbook procedure 3600 for displaying, adding and/or editing logbook entries is provided. This graphical user interface is now described in greater detail with reference to
The Logbook Interface 3600, shown in
Referring to
In some instances, the Logbook List screen may display a logged ketone level 3614. The logged ketone level 3614 may be displayed as a number corresponding to the user's ketone level in mmol/L. In some instances, the Logbook List screen may display a logged glucose control solution test level 3616. The logged glucose control solution test level 3616 may be displayed as a number corresponding to the glucose control solution level in mg/dL. The glucose control solution test level 3616 may be associated with a corresponding control solution icon (e.g., a picture of a bottle of control solution). In some instances, the Logbook List screen may display a logged ketone control solution test level 3704. The logged ketone control solution test level 3704 may be displayed as a number corresponding to the ketone control solution level in mmol/L. The ketone control solution test level 3704 may be associated with a corresponding control solution icon (e.g., a picture of a bottle of control solution). In some instances, the Logbook List screen may display a logged temperature error 3618. The temperature error may be a low temperature error associated with a low temperature error icon (e.g., a picture of a blue thermometer), or a high temperature error associated with a high temperature error icon (e.g., a picture of a red thermometer). In some instances, the Logbook List screen may display a logged masked reading 3620. The logged masked reading may be associated with a masked reading icon (e.g., a checkmark icon). The Logbook List screen 3604 includes an “OK” touchscreen button 3622, which, when pressed, returns the graphical user interface to the previous screen displayed before entering the Logbook Interface 3600 (e.g., the Consecutive Scans Interface (see
Each logbook entry on the Logbook List screen 3604 is a touchscreen button. Pressing a logbook entry on the Logbook List screen 3604 advances the graphical user interface to the Individual Logbook Entry screen 3624 associated with the selected logbook entry via reference path (W1) (see
If a logged glucose level is selected from the Logbook List screen 3604, the glucose level individual logbook entry screen 3626 is displayed. The glucose level individual logbook entry screen 3626 includes one or more of the following information: the date and time 3628 of the logged glucose level; the glucose reading 3630 in mg/dL; the amount of carbs 3632 (if any); an meal icon 3634 indicating whether the logged glucose reading was pre-meal or post-meal (e.g., a whole apple icon for pre-meal readings or a eaten apple icon for post-meal readings); a suggested insulin dose 3636 (if any) and/or a suggested insulin dose icon 3638 (e.g., a syringe icon); notes 3640 that were associated with the logged glucose reading (if any); a glucose level trend arrow 3642 (e.g., an upward or a downward trend arrow), as appropriate; an non-actionable icon 3644 indicating that the glucose reading is non-actionable; a high glucose level warning 3646 (as text and/or a warning icon); a low glucose level warning 3648 (as text and/or a warning icon); an masked icon 3650 indicating that the glucose reading is masked (e.g., a checkmark icon); suggested insulin dose details (e.g., amount of carbs 3652, suggested insulin dose 3654, IOB 3656, user adjustments to the suggested insulin dose 3658); a low temperature error warning 3660 (e.g., as text and/or a low temperature warning icon 3666, such as a blue thermometer icon); a high temperature error warning 3662 (e.g., as text and/or a high temperature warning icon 3668, such as a red thermometer icon); an icon indicating that the glucose reading was obtained via test strip or via sensor (e.g., a drop of blood icon 3664 for readings obtained via test strip); a sensor low temperature error warning 3670 (e.g., as text and/or a sensor low temperature warning icon 3672, such as a blue thermometer); and a sensor high temperature error warning 3674 (e.g., as text and/or a sensor high temperature warning icon 3676, such as a blue thermometer icon).
If notes are associated with the logged glucose reading and the notes will not all fit on one screen, the Individual Logbook Entry screen 3626 may include a down arrow 3678 (see
If a logged ketone level is selected from the Logbook List screen 3604, the ketone level individual logbook entry screen 3698 is displayed, which displays the logged ketone reading in mmol/L. If a logged glucose control solution test is selected from the Logbook List screen 3604, the glucose control solution test level individual logbook entry screen 3700 is displayed, which displays the logged glucose control solution test reading in mg/dL. If a logged ketone control solution test is selected from the Logbook List screen 3604, the ketone control solution test level individual logbook entry screen 3702 is displayed, which displays the logged ketone control solution test reading in mmol/L.
Additional Individual Logbook Entry screens include an unlogged dose of rapid-acting insulin,
The Individual Logbook Entry screen 3626 includes an “OK” touchscreen button 3706, which, when pressed, returns the graphical user interface to the Logbook List screen 3604 via reference path (X1).
Strip/Hardware Errors Interface
An exemplary embodiment of a graphical user interface which may be utilized in connection with a Reader as described herein and which facilitates a procedure for displaying strip/hardware errors 3710 is provided. This graphical user interface is now described in greater detail with reference to
The Strip/Hardware Errors Interface 3710, shown in
In certain embodiments, the Strip/Hardware Errors Interface 3710 may display an “Error 2” screen 3714 if the Reader may not be functioning properly. The “Error 2” screen 3714 may display a message indicating that the Reader may not be functioning properly and that the user should turn off the Reader and try again. The “Error 2” screen 3714 may also display a message indicating that if this message appears again, the user should call Customer Service.
In certain embodiments, the Strip/Hardware Errors Interface 3710 may display an “Error 3” screen 3716 if the test strip may not be working properly or if the user's glucose may be too low. The “Error 3” screen 3716 may display a message indicating that the test strip may not be working properly or the user's glucose may be too low. The “Error 3” screen 3716 may also display a message indicating that low glucose can be dangerous and that the user should check their glucose again with a new strip and treat as recommended by the user's health care professional. The “Error 3” screen 3716 may also display a message indicating that if this message appears again, the user should call Customer Service.
In certain embodiments, the Strip/Hardware Errors Interface 3710 may display an “Error 4” screen 3718 if the test strip may not be working properly or if the user's glucose/ketones may be too high. The “Error 4” screen 3718 may display a message indicating that the test strip may not be working properly or the user's glucose/ketones may be too high. The “Error 4” screen 3718 may also display a message indicating that high glucose/ketones can be dangerous and that the user should check their glucose or ketones again with a new strip and treat as recommended by the user's health care professional. The “Error 4” screen 3718 may also display a message indicating that if this message appears again, the user should call Customer Service.
In certain embodiments, the Strip/Hardware Errors Interface 3710 may display an “Error 5” screen 3720 if blood may have been applied to the test strip too soon or the test strip may have already been used. The “Error 5” screen 3720 may display a message indicating that blood may have been applied to the test strip too soon or the test strip may have already been used. The “Error 5” screen 3720 may also display a message indicating that the user should check their glucose again with a new strip. The “Error 5” screen 3720 may also display a message indicating that if this message appears again, the user should call Customer Service.
In certain embodiments, the Strip/Hardware Errors Interface 3710 may display an “Error 7” screen 3722 if the test strip may be damaged, used, or unrecognizable be the Reader. The “Error 7” screen 3722 may display a message indicating that the test strip may be damaged, used, or unrecognizable be the Reader. The “Error 7” screen 3722 may also display a message indicating that the user should check their glucose again with a new strip. The “Error 7” screen 3722 may also display a message indicating that if this message appears again, the user should call Customer Service.
In certain embodiments, the Strip/Hardware Errors Interface 3710 may display an “Error 9” screen 3724 if the Reader is not working properly. The “Error 9” screen 3724 may display a message indicating that the Reader is not working properly. The “Error 9” screen 3724 may also display a message indicating that the user should turn off the Reader and try again. The “Error 9” screen 3724 may also display a message indicating that if this message appears again, the user should call Customer Service.
The error screens include an “OK” touchscreen button 3726, which, when pressed, returns the graphical user interface to the Home Screen. In certain embodiments, pressing the “OK” touchscreen button 3726 from either the “Error 2” screen 3714 or the “Error 9” screen 3724 will cause the Reader display to turn off. The Reader may be activated by inserting a test strip or by pressing the hardware power button.
System Time Loss
Upon restart of the device after a system time loss, a time recovery display screen may be displayed.
Setup
An exemplary embodiment of a graphical user interface which may be utilized in connection with a reader as described herein and which facilitates a Setup procedure 2000 is provided. This graphical user interface is now described in greater detail with reference to
First Start Interface
A graphical user interface which facilitates a Setup procedure 2000 of the reader may include a First Start Interface 2001. First Start Interface 2001 begins with the display of an introduction screen 2002, e.g., for approximately 3 seconds. This introduction screen 2002 may include text and/or graphics designed to identify the manufacturer of the reader and/or the graphical user interface, e.g., the introduction screen 2002 may include the FreeStyle® butterfly trademark depicted in
Language Selection
Following display of the introduction screen 2002, one or more Language Selection Screens 2003 are provided. In one embodiment, there is no default selection and the “OK” touch-screen button 2004 appears only after a language selection has been made, e.g., by touching the empty circle 2006 next to the language to be selected. The language selection options may be displayed in alphabetical order. If the list of language selection options includes more than 4 languages, the list may be scrolled as necessary to view the list using scroll touch-screen buttons 2005. The language list may be minimized by region and the order of language selection may be modified at a later time.
Date Selection
Once the language selection has been made by pressing an empty circle 2006 next to a language to be selected followed by the “OK” touch-screen button 2004, a First Date Selection Screen 2008 is displayed. This is depicted in
Clock Style Selection
The user may move to the next screen in the graphical user interface Setup procedure 2000 by pressing touchscreen “next” button 2015, which causes First Clock Style Selection Screen 2016 to be displayed. At this stage, a user may return to the First Date Selection Screen 2008 by pressing touch-screen “back” button 2018 if desired. First Clock Style Selection Screen 2016 provides a prompt 2017 to select a clock style, e.g., 12-hour (am/pm) or 24-hour by touching the empty circle 2019 next to the clock style to be selected. Note that
Time Selection
The user may move to the next screen in the graphical user interface Setup procedure 2000 by pressing touchscreen “next” button 2020, which causes First Time Selection Screen 2021 to be displayed. At this stage, a user may return to the First Clock Style Selection Screen 2016 by pressing touch-screen “back” button 2022 if desired. First Time Selection Screen 2021 provides a prompt 2023 to enter the current time. As depicted in
Target Glucose Range Selection
Once the current time has been entered on First Time Selection Screen 2021, the user can move to the next screen in the Setup procedure 2000 by pressing touchscreen “next” button 2029, which causes First Target Range Selection Screen 2033 to be displayed. This is depicted in
First Home Button
Once the target glucose range has been entered on First Target Range Selection Screen 2033, the user can move to the next screen in the Setup procedure 2000 by pressing touchscreen “next” button 2042, which causes First Home Button (BTTN) Screen 2043 to be displayed. The First Home Button (BTTN) Screen 2043 includes a prompt describing the function of the home button of the reader. For example, the prompt may be a text prompt which states “While using the Reader, press the button to return to the home screen” or the equivalent. This text may be provided with a graphical depiction of the location of the home button on the reader as shown in
Arrow Description Screen
Pressing the touchscreen “next” button 2045 displayed on the First Home Button Screen 2043 results in the display of Arrow Description Screen 2046, which includes a description of various trending arrows utilized by the graphical user interface to convey glucose trend information. For example, the Arrow Description Screen 2046 may display a text prompt which states “When you scan your Sensor an arrow will indicate your recent glucose trend” or the equivalent. This text prompt may be followed by various arrows and associated descriptions of the trending information conveyed thereby. For example, a first arrow 2047 pointing straight up may indicate that the user's glucose level is “Rising quickly”, a second arrow 2048 pointing up and to the right at an approximately 45 degree angle may indicate that the user's glucose level is “Rising” or the equivalent, a third arrow 2049 pointing straight to the right may indicate that the user's glucose level is “Stable” or the equivalent, a fourth arrow 2050 pointing down and to the right at an approximately 45 degree angle may indicate that the user's glucose level is “Falling” or the equivalent, and a fifth arrow 2051 may indicate that the user's glucose level is “Falling quickly” or the equivalent. At this stage, the user may return to the First Home Button Screen 2043 by pressing touchscreen “back” button 2052 if desired.
Charge Description Screen
Pressing the touchscreen “next” button 2053 displayed on Arrow Description Screen 2046 results in the display of Charge Description Screen 2054. Charge Description Screen 2054 provides a text prompt reminding the user to recharge the reader on a regular basis. For example, Charge Description Screen 2054 may display the text prompt “Recharge the Reader regularly” or the equivalent. Charge Description Screen 2054 may also display a graphic demonstrating to the user how to connect the reader to a power source for recharging purposes. At this stage, the user may return to the Arrow Description Screen 2046 by pressing touchscreen “back” button 2055 if desired. Charge Description Screen 2054 also includes a touchscreen “done” button 2056, which, when pressed, completes the First Start Interface 2001. At this point, a sensor activation procedure may be implemented.
Settings Interface
A graphical user interface which facilitates a Setup procedure 2000 may include a Settings Interface 2057 which includes a Settings Menu 2058 which may be displayed on the reader. Settings Menu 2058 includes a first settings screen 2059, a second settings screen 2060, and a third settings screen 2061. First settings screen 2059 includes the following menu items: “Sounds”, “Target Range”, and “Control Solution Test.” Each of these menu items is represented by a corresponding touchscreen button (touchscreen buttons 2062, 2063 and 2064 respectively). Second settings screen 2060 includes the following menu items: “Time & Date”, “Display Brightness”, and “Language”. Each of these menu items is represented by a corresponding touchscreen button (touchscreen buttons 2065, 2066 and 2067 respectively). Finally, third settings screen 261 includes the following menu items: “System Status”, “Calculator Settings”, “Reader Basics”, and “Professional Options”. Each of these menu items is represented by a corresponding touchscreen button (touchscreen buttons 2068, 2069, 2070 and 2071 respectively). Touchscreen scroll buttons 2072, 2073, 2074 and 2075 may be used as appropriate to scroll between the first, second and third settings screens.
Sounds
Pressing touchscreen button 2062 (“Sounds”) results in the display of sound settings screen 2076. This is depicted in
Target Range
Pressing touchscreen button 2063 (“Target Range”) results in the display of Target Range settings screen 2083. This is depicted in
Display Brightness
Pressing touchscreen button 2066 (“Display Brightness”) results in the display of Display Brightness settings screen 2095. This is depicted in
Control Solution Test
Pressing touchscreen button 2064 (“Control Solution Test”) results in the display of an “Insert Test Strip” (or the equivalent) prompt 2099 and initiates a Control Solution Test protocol as shown in flow-diagram 2100. This is depicted in
Time & Date
Pressing touchscreen button 2065 (“Time & Date”) results in the display of Time & Date settings screen 2110. This is depicted in
Pressing touchscreen time button 2112 results in the display of a Set Time 122114 or a Set Time 242115 screen. The Set Time 122114 screen includes a first touchscreen up-arrow 2118 and a first touchscreen down-arrow 2119 for adjusting the hour increments of time 2122. Set Time 12 screen 2114 also includes a second touchscreen up-arrow 2120 and a second touchscreen down-arrow 2121 for adjusting the minute increments of time 2122. The Set Time 24 screen 2115 includes a first touchscreen up-arrow 2123 and a first touchscreen down-arrow 2124 for adjusting the hour increments of time 2127. Set Time 24 screen 2115 also includes a second touchscreen up-arrow 2125 and a second touchscreen down-arrow 2126 for adjusting the minute increments of time 2127. The user can toggle between the Set Time 122114 and the Set Time 242115 screen by use of touchscreen toggle buttons 2115 and 2116 as appropriate. In addition, the Set Time 122114 and the Set Time 242115 screens include touchscreen “OK” buttons 2128 and 2129 respectively for accepting the entered time.
Pressing touchscreen date button 2113 results in the display of Set Date screen 2130. Set Date screen 2130 includes a touchscreen up-arrow button 2131 and a touchscreen down-arrow button 2132 for adjusting the day of the factory set date 2133. Set Date screen 2130 also includes touchscreen “OK” button 2134 for accepting the entered time.
Time & Date settings screen 2110 also includes touchscreen “done” button 2135, which, when pressed, returns the user to the Settings Menu 2058 via reference path (H2) 2136.
Language Settings
Pressing touchscreen button 2067 (“Language”) results in the display of one or more Language Setting screens 2137. This is depicted in
Calculator Settings
Pressing touchscreen button 2069 (“Calculator Settings”) results in the display of Calculator Setting screens 2141. This is depicted in
Pressing touchscreen button 2070 (“Reader Basics”) results in the display of the First Start Interface First Home Button screen 2043 discussed previously herein. This is depicted in
Professional Options
As shown in
Pressing the touchscreen button for the Masked Mode option initiates a Masked Mode interface 2156 which is discussed elsewhere herein.
Pressing the touchscreen button for the Dose Increment option initiates a Dose Increment interface 2157. The Dose Increment interface 2157 allows the HCP to change the dose increment setting. The dose increment setting applies to both rapid-acting and long-acting insulin dosages. In one embodiment, the default value is 0.5 unit. However, the any other suitable increment value such as 0.1 unit, 0.2 unit, or some other suitable increment, for example, can be used. The dose increment is the minimum amount of insulin that can be logged, which may be displayed on the device as shown at 2158. Pressing the “done” button returns to the Professional Options screen 2154.
Pressing the touchscreen button for the Insulin Calculator option initiates an Insulin Calculator Start interface 2159 which is discussed in greater detail below.
Professional Options screen 2154 also includes a touchscreen “OK” button 2159, which, when pressed, returns the user to the Settings Menu 2058 via reference path (J2) 2147.
System Status
Pressing touchscreen button 2068 (“System Status”) initiates a System Status Interface 2160. This aspect of the graphical user interface is discussed in greater detail below.
System Status Interface
A graphical user interface which facilitates a Setup procedure 2000 may include a System Status Interface 2160 which includes a System Status menu 2161, which may be displayed on the reader. System Status menu 2161 includes the following items: “System Info”, “Self-Test”, “Touchscreen Test”, and “Error Log”, which can be selected by touching corresponding touchscreen buttons 2162, 2163, 2164, and 2165 respectively. System Status menu 2161 includes a touchscreen “OK” button 2169, which, when pressed, returns the user to the Settings Interface 2057.
Pressing the touchscreen button 2162 for System Info results in display of System Info screen 2166, which may display information such as reader serial no., reader software no., reader hardware no., sensor ID, sensor software no., sensor count, strip count, date of last scan, last reset, and the like. This is depicted in
Pressing the touchscreen button 2163 for Self-Test results in display of Self-Test screen 2171 and initiation of a self-diagnostics protocol. This is depicted in
Pressing the touchscreen button for Sound Test results in display of a Sound Test screen. Sound Test screen may display a prompt indicating, e.g., “If you do not hear a series of tones and vibrations, contact Customer Service.” Sound Test screen may include a “next” button which, when pressed, may navigate to the next settings test. Sound Test screen may include a “back” button which, when pressed, returns the user to the System Status menu 1261.
Pressing the touchscreen button 2164 for Touchscreen Test results in display of Touch Sense Test screen 2178. This is depicted in
Pressing the touchscreen button 2165 for Error Log results in display of an Error Log Empty screen 2182 or an Error Log screen 2184. This is depicted in
Masked Mode Interface
An exemplary embodiment of a graphical user interface which may be utilized in connection with a reader as described herein and which functions to enable the operation of the analyte monitoring device in a masked mode.
Professional Options screen 2502 includes a Masked Mode option 2504 for navigating to a Masked Mode interface 2510 that enables activation or deactivation of the Masked Mode. Examples of other options include an Insulin Calculator option 2508 for navigating to an interface for activating or deactivating the insulin calculator. A System Reset Option 2502 is also included to reset the option to a default setting.
Masked Mode interface 2510 includes an activation icon, symbol, trigger element, etc., that may be selected to activate the Masked Mode. Masked Mode interface 2510 may also provide additional information about the Masked Mode to inform the user of its use. Masked Mode interface 2510 also includes trigger element 2514a for navigating back to the Professional Options screen 2502. Trigger element 2514b takes the user to a screen for setting a reminder to take a sensor reading, as shown by reference path T2.
Upon selection of trigger element 2514b, Masked Rem screen 2516 is displayed to enable setting the device to provide reminders to the user to perform a reading. For example, element 2518 may be selected to activate or deactivate the reminder feature on the device. Additional information may also be provided to inform the user of the reminder option. If the reminder is “off” and the user selects trigger element 2520a takes the user back to the Professional Options screen 2502. If the reminder is “on” and the user selects trigger element 2520b, then a Masked REM-Time screen 2522 is displayed to enable the user to set times for initiating a reminder. Once the time is set, the user can select trigger element 2522b to trigger the Masked Complete (Comp) screen 2524 which indicates that the Masked Mode is activated. In some embodiments, the Masked Mode reminder is set for a predetermined time period, e.g., a number of hours, e.g., 8 hours, 12 hours, 24 hours, etc. In some embodiments, if the user runs a manual scan prior to the upcoming reminder, the reminder timer period automatically resets. In certain embodiments, the device includes a reminder delay option, such that upon activation of the reminder in Masked Mode, the user has the option of delaying the reminder for a preset length of time. Upon user confirmation of the trigger element 2524, the device navigates back to the Professional Options screen 2502.
Calculator Start Interface
A graphical user interface which facilitates a Setup procedure 2000 may include a Calculator Start Interface 2186 as mentioned previously herein. Calculator Start Interface 2186 may be initiated by pressing the touchscreen button for the Insulin Calculator 2157 option located on the Professional Options screen 2154. Pressing the touchscreen button for the Insulin Calculator 2157 option results in a calculator On/Off status determination. If the calculator is On, reference path (X2) 2187 is initiated, which results in display of a Calculation Edit screen 2188. Calculation Edit screen 2188 includes a touchscreen “Turn Off Calculator” button 2189. Pressing the “Turn Off Calculator” button 2189 results in display of a Calculation Off screen 2190, which provides a prompt indicating that the insulin calculator is turned off. In this case, the calculator button will no longer be available when checking glucose levels. The Calculation Off screen 2190 includes a touchscreen “done” button, which, when pressed, initiates reference path (V2) 2192, which returns the user to the Professional Options screen 2154.
Calculation Edit screen 2188 also includes a touchscreen “Change Calculator Settings” button 2193. Pressing the touchscreen “Change Calculator Settings” button 2193 results in initiation of reference path (B3) 2194 discussed in greater detail below. Calculation Edit screen 2188 also includes a touchscreen “back” button 2195, which, when pressed, initiates reference path (W2) 2196 which returns the user to the Professional Options screen 2154.
As discussed above, pressing the touchscreen button for the Insulin Calculator 2157 option results in a calculator On/Off status determination. If the calculator is Off, a I Take screen 2197 is displayed. The I Take screen 2197 includes a prompt, “Does your patient take rapid-acting (short acting) insulin at meals?” The I Take screen 2197 also includes empty circles 2198 which may be pressed so as to indicate a Yes or No answer to the above prompt. Note that
Reference path (B3) 2194 and reference path (Z2) 2200 result in display of Calculation Type 01 screen 2201 or a Calculation Type 02 screen 2202 depending on whether an “Easy” or “Advanced” Setup Option is selected respectively using touchscreen toggle element 2203. The “Easy” Setup Option is utilized for patients who start with a fixed dose of rapid-acting insulin at meals while the “Advanced” Setup Option is utilized for patients who count carbs (in grams or servings) to adjust their rapid-acting insulin dose at meals. Calculation Type 01 screen 2201 and Calculation Type 02 screen 2202 each include a touchscreen “back” button 2204 and a touchscreen “next” button 2205. Pressing “back” button 2204 returns the user to I Take 2197 via reference path (Y2) 2206 if I Take 2197 was the previously viewed screen. Pressing “back” button 2204 returns the user to Calculation Edit 2188 via reference path (A3) 2207 if Calculation Edit 2188 was the previously viewed screen. Touching touchscreen “next” button 2205 initiates reference path D3 2208 or E3 2209 depending on whether the Easy or Advanced Setup option is selected respectively.
Reference path D3 2208 results in display of a Calculation Steps EZ screen 2210, including the following prompts: “This setup has two parts: 1) Enter each of your patient's meal-time insulin doses; and 2) Enter your patient's correction settings.” Calculation Steps EZ screen 2210 includes a touchscreen “back” button 2211 and a touchscreen “next” button 2212. Pressing touchscreen “back” button 2211 returns the user to Calculation Type 01 screen 2201 and Calculation Type 02 screen 2202 via reference path (C3) 2213. Pressing touchscreen “next” button 2212 results in initiation of an Easy Calculation Setup interface 2214 described in greater detail below.
Reference path E3 2209 results in display of a Calculation Steps Advanced screen 2215, including the following prompts: “This setup has two parts: 1) Enter your patient's meal-time insulin settings; and 2) Enter your patient's correction settings.” Calculation Steps Advanced screen 2215 includes a touchscreen “back” button 2216 and a touchscreen “next” button 2217. Pressing touchscreen “back” button 2216 returns the user to Calculation Type 01 screen 2201 and Calculation Type 02 screen 2202 via reference path (C3) 2213. Pressing touchscreen “next” button 2217 results in display of a Food Units 01 screen 2218. Food Units 01 screen 2218 includes a prompt “Enter food by:” and includes two options “Grams of carbs” and “Servings” which can be selected by pressing one of corresponding empty circles 2219. Note that
Easy Calculation Setup Interface
Easy Calculation Setup interface 2214 is described with reference to
Correction Target screen 2234 includes first up and down-arrows (2235 and 2236) for adjusting a low target, e.g., 70 mg/dL, of the target glucose range 2237; and second up and down-arrows (2238 and 2239) for adjusting a high target, e.g., 130 mg/dL of the target glucose range 2237. Correction Target screen 2234 includes a touchscreen “?” button 2240, which, when pressed, initiates a reference path (H3) 2241. Reference path H3 2241 results in display of a screen 2242 including the prompt: “Target is the desired glucose value if extra rapid-acting insulin is needed to correct high glucose reading.” Pressing the touchscreen “next” button from the Correction Target screen 2234 results in display of a Correction Factor screen 2243. Correction Factor screen 2243 includes up and down-arrows 2244 for adjusting the insulin correction factor 2245. If the set Correction Factor scrolls below 1, a No Correction screen 2249 is displayed with the prompt “No correction insulin”. Correction Factor screen 2243 includes a touchscreen “?” button 2246, which, when pressed, initiates a reference path (I3) 2247. Reference path I3 2247 results in display of a screen 2248 including the prompt: “The Reader uses this value to determine how many units of rapid-acting insulin is needed to lower high glucose to a target value or range.” Pressing the touchscreen “next” button from the Correction Factor screen 2243 screen results in initiation of an Insulin On Board (JOB) Setup interface 2250, which is described in greater detail below.
Advanced Calculation Setup Interface
Advanced Calculation Setup interface 2222 is described with reference to
Pressing the touchscreen “by time of day” button 2254 results in display of a CR Time List screen 2255. CR Time List screen 2255 includes touchscreen buttons 2256 which may be used to select a time period, e.g., morning, midday, evening, or night for the correction factor 2253. Pressing one of touchscreen buttons 2256 results in display of a CR Time screen 2257, which includes touchscreen up and down-arrows 2258 for adjusting correction factor 2253 by time of day. CR Time screen 2257 includes a touchscreen “OK” button 2259, which, when pressed, results in selection of the displayed correction factor 2253 by time of day and returns the user to the CR Time List screen 2255. Time List screen 2255 includes a touchscreen “back” button 2260 for returning to the Set Carb Ratio screen 2251 and a touchscreen “done” button 2261 for indicating completion of the correction factor 2253 by time of day setup and, in some embodiments, for initiating the Correction Setup interface 2268, discussed in greater detail below.
Set Carb Ratio screen 2251 and CR Time List screen 2255 each include a touchscreen “?” button 2264, which, when pressed, results in display of a Carb Ratio information screen 2265. Carb Ratio information screen 2265 displays a prompt indicating “Carbohydrate ratio is the amount of carbohydrates that 1 unit of insulin will cover.” Pressing the touchscreen “OK” button 2266 from Carb Ratio information screen 2265 returns the user to the Set Carb Ratio screen 2251 or the CR Time List screen 2255 as appropriate.
Set Carb Ratio screen 2251 includes a touchscreen “back” button 2262 and a touchscreen “done” button 2263. Pressing touchscreen “back” button 2262 returns the user to the Calculation Start interface 2186 as described previously herein via reference path (J3) 2267. Pressing touchscreen “done” button 2263 initiates a Correction Setup interface 2268 via reference path (K3) 2269.
Initiation of Advanced Calculation Setup interface 2222 with “By servings” selected on screen 2218 results in display of a Servings Definition screen 2270. Servings Definition screen 2270 includes touchscreen up and down-arrows 2271 for adjusting servings definition 2272 (e.g., 1 serving=10.0 grams carbs). Servings Definition screen 2270 also includes a touchscreen “back” button 2273 and a touchscreen “next” button 2274. Pressing touchscreen “back” button 2273 returns the user to the Calculation Start interface 2186 as described previously herein. Pressing touchscreen “next” button 2274 results in display of a Set Carb Ratio Servings screen 2275. Set Carb Ratio Servings screen 2275 includes touchscreen up and down-arrows 2276 for adjusting servings ratio 2277 (e.g., For 1 serving: 1.5 units insulin). Set Carb Ratio Servings screen 2275 also includes a touchscreen “by time of day” button 2278.
Pressing the touchscreen “by time of day” button 2278 results in display of a CR Servings Time List screen 2279. CR Servings Time List screen 2279 includes touchscreen buttons 2280 which may be used to select a time period, e.g., morning, midday, evening, or night for the servings ratio 2277. Pressing one of touchscreen buttons 2280 results in display of a CR Servings Time screen 2281, which includes touchscreen up and down-arrows 2282 for adjusting servings ratio 2277 by time of day. CR Servings Time screen 2281 includes a touchscreen “OK” button 2283, which, when pressed, results in selection of the displayed servings ratio 2277 by time of day and returns the user to the CR Servings Time List screen 2279. CR Servings Time List screen 2279 includes a touchscreen “back” button 2284 for returning to the Set Carb Ratio Servings screen 2275 and a touchscreen “done” button 2285 for initiating the Correction Setup interface 2268, discussed in greater detail below.
Set Carb Ratio Servings screen 2275 includes a touchscreen “back” button 2286 and a touchscreen “next” button 2287. Pressing touchscreen “back” button 2286 returns the user to the Servings Definition screen 2270. Pressing touchscreen “next” button 2287 results in initiation of the Correction Setup interface 2268, discussed in greater detail below.
Servings Definition screen 2270, Set Carb Ratio Servings screen 2275, and CR Servings Time List screen 2279 each include a touchscreen “?” button 2288, which, when pressed, results in display of a Servings Ratio information screen 2289 via reference path (L3) 2290. Servings Ratio information screen 2289 displays a prompt indicating “Servings ratio is the amount of insulin that will cover 1 serving” or the equivalent. Pressing the touchscreen “OK” button 2291 from Servings Ratio information screen 2289 returns the user to the Servings Definition screen 2270, Set Carb Ratio Servings screen 2275, or CR Servings Time List screen 2279 as appropriate.
Correction Setup Interface
Correction Setup interface 2268 is described with reference to
When the “To a single target” option is selected on screen 2292, pressing the touchscreen “next” button 2295 results in display of a Correction Target screen 2296. Correction Target screen 2296 includes touchscreen up and down-arrows 2297 for adjusting correction target 2298 (e.g., 100 mg/dL). Correction Target screen 2296 also includes a touchscreen “by time of day” button 2299. Pressing the touchscreen “by time of day” button 2299 results in initiation of reference pathway (P3) 2300, discussed in greater detail below. Correction Target screen 2296 also includes touchscreen “back” button 2301 and touchscreen “next” button 2302. Pressing touchscreen “back” button 2301 returns the user to Target Type screen 2292. Pressing touchscreen “next” button 2302 results in initiation of reference path (O3) 2303, discussed in greater detail below.
When the “To a target range” option is selected on screen 2292, pressing the touchscreen “next” button 2295 results in display of a Correction Target Range screen 2304. Correction Target Range screen 2304 includes first touchscreen up and down-arrows 2305A for adjusting the low end (e.g., 70 mg/dL) of correction target range 2306. Correction Target Range screen 2304 also includes second touchscreen up and down-arrows 2305B for adjusting the high end (e.g., 130 mg/dL) of correction target range 2306. Correction Target Range screen 2304 also includes a touchscreen “by time of day” button 2307. Pressing the touchscreen “by time of day” button 2307 results in initiation of reference pathway (M3) 2308, discussed in greater detail below. Correction Target Range screen 2304 also includes touchscreen “back” button 2309 and touchscreen “next” button 2310. Pressing touchscreen “back” button 2309 returns the user to Target Type screen 2292. Pressing touchscreen “next” button 2310 results in initiation of reference path (O3) 2303, discussed in greater detail below. Target Type screen 2292, includes a touchscreen “?” button 2311, which, when pressed, displays a target information screen 2312, including a prompt indicating that “The calculator can determine how much insulin is needed to bring the glucose to either a single number or within a range” or the equivalent. Pressing the touchscreen “OK” button 2313 returns the user to the Target Type screen 2292.
Each of Correction Target screen 2296, and Correction Target Range screen 2304 includes a touchscreen “?” button 2314, which, when pressed, displays a target information screen 2315, including a prompt indicating that “The correction target setting allows you to set a glucose target that will adjust your patient's insulin dose if their glucose readings is above or below the target” or the equivalent. Pressing the touchscreen “OK” button 2316 returns the user to the Correction Target screen 2296 or the Correction Target Range screen 2304 as appropriate.
As discussed above, pressing the touchscreen “by time of day” button 2299 on screen 2296 results in initiation of reference pathway (P3) 2300. Initiation of reference pathway (P3) 2300 results in display of Target Time List screen 2317, which includes touchscreen buttons 2318 for selecting a time of day (e.g., morning, midday, evening or night) for correction target 2298. Pressing one of touchscreen buttons 2318 results in display of a Target Time screen 2319. Target Time screen 2319 includes touchscreen up and down-arrows 2320 for adjusting correction target 2298 for the selected time of day. Target Time screen 2319 also includes touchscreen “OK” button 2320 for accepting the adjusted correction target 2298 for the selected time of day and returning the user to Target Time List screen 2317. Target Time List screen 2317 includes a touchscreen “back” button 2321 and a touchscreen “done” button 2322. Pressing touchscreen “back” button 2321 initiates reference pathway (Q3) 2323, which returns the user to the Correction Target screen 2296. Pressing touchscreen “done” button 2322 initiates reference path (S3) 2324, discussed in greater detail below.
As discussed above, pressing the touchscreen “by time of day” button 2307 on screen 2304 results in initiation of reference pathway (M3) 2308. Initiation of reference pathway (M3) 2308 results in display of Target Range Time List screen 2325, which includes touchscreen buttons 2326 for selecting a time of day (e.g., morning, midday, evening or night) for correction target range 2306. Pressing one of touchscreen buttons 2326 results in display of a Target Range Time screen 2327. Target Range Time screen 2327 includes first touchscreen up and down-arrows 2328 for adjusting the low end of correction target range 2306 for the selected time of day. Target Range Time screen 2327 includes second touchscreen up and down-arrows 2329 for adjusting the high end of correction target range 2306 for the selected time of day. Target Range Time screen 2327 also includes touchscreen “OK” button 2330 for accepting the adjusted correction target range 2306 for the selected time of day and returning the user to Target Range Time List screen 2325. Target Range Time List screen 2325 includes a touchscreen “back” button 2331 and a touchscreen “done” button 2332. Pressing touchscreen “back” button 2331 initiates reference pathway (N3) 2333, which returns the user to the Correction Target Range screen 2304. Pressing touchscreen “done” button 2332 initiates reference path (S3) 2324, discussed in greater detail below.
Each of Target Time List screen 2317 and Target Range Time List screen 2325 includes a touchscreen “OK” button 2334, which, when pressed, results in display of target information screen 2315, including a prompt indicating that “The correction target setting allows you to set a glucose target that will adjust your patient's insulin dose if their glucose readings is above or below the target” or the equivalent. Pressing the touchscreen “OK” button 2316 returns the user to the Target Time List screen 2317 or the Target Range Time List screen 2325 as appropriate.
As discussed above, pressing touchscreen “next” button 2302 or 2310 initiates reference path (O3) 2303. Similarly, pressing “done” button 2322 or 2332 initiates reference path (S3) 2324. Reference paths (O3) 2303 and (S3) 2324 both result in display of a Set Correction Factor screen 2335. Set Correction Factor screen 2335 includes touchscreen up and down-arrows 2336 for adjusting insulin correction factor 2337 (e.g., 1 u insulin for 10 mg/dL). Set Correction Factor screen 2335 also includes a touchscreen “By time of day” button 2338, which, when pressed, results in display of a Correction Factor Time List screen 2339. Correction Factor Time List screen 2339 includes touchscreen buttons 2340 for selecting a time of day (e.g., morning, midday, evening or night) for correction factor 2337.
Pressing one of touchscreen buttons 2340 results in display of a Correction Factor by Time screen 2341. Correction Factor by Time screen 2341 includes touchscreen up and down-arrows 2342 for adjusting correction factor 2337 for the selected time of day. Correction Factor by Time screen 2341 also includes a touchscreen “OK” button 2343 for accepting the adjusted correction factor 2337 for the selected time of day and returning the user to Correction Factor Time List screen 2339.
Correction Factor Time List screen 2339 includes a touchscreen “back” button 2344 and a touchscreen “done” button 2345. Pressing touchscreen “back” button 2344 returns the user to the Set Correction Factor screen 2335. Pressing touchscreen “done” button 2345 initiates an Insulin On Board (IOB) interface 2346, discussed in greater detail below.
Set Correction Factor screen 2335 includes a touchscreen “back” button 2347 and a touchscreen “next” button 2348. Pressing touchscreen “back” button 2347 initiates reference path (T3) 2348 or (R3) 2347, respectively, depending on whether the optional “target by time of day” format has been selected or not. Pressing touchscreen “next” button 2348 initiates the Insulin On Board (IOB) interface 2346. Reference path (R3) 2347 returns the user to the Correction Target Range screen 2304 or the Correction Target screen 2296 as appropriate. Reference path (T3) 2348 returns the user to the Target Range Time List screen 2325 or the Target Time List screen 2317 as appropriate.
Each of Set Correction Factor screen 2335 and Correction Factor Time List screen 2339 includes a touchscreen “?” button 2349, which, when pressed, results in display of informational screen 2350. Informational screen 2350 displays a prompt indicating “The Reader uses this value to determine how many units of rapid-acting insulin is needed to lower high glucose to a target value or range” or the equivalent. Informational screen 2350 also includes a touchscreen “OK” button 2351 for returning the user to Set Correction Factor screen 2335 or Correction Factor Time List screen 2339 as appropriate.
Insulin On Board (IOB) Setup Interface
The Insulin On Board (JOB) Setup interface 2346 is described with reference to
IOB Ask screen 2357 displays a prompt indicating “Do you want the Active Insulin symbol to be displayed on the Home screen?” or equivalent. IOB Ask screen 2357 includes a Yes and a No option, one of which may be selected by pressing one of the corresponding empty circles 2361 associated with the option. Note that
Calculation Done screen 2364 includes a prompt indicating that setup is complete and may include a prompt indicating “When checking glucose, the insulin calculator will now be available” or equivalent. Calculation Done screen 2364 also includes a touchscreen “back” button 2368 and a touchscreen “done” button 2369. Pressing touchscreen “back” button 2368 returns the user to IOB Ask screen 2357. Pressing touchscreen “done” button 2369 returns the user to the reader Home Screen as described herein.
Save Changes Interface
A Save Changes interface 2370 operates to remind the user to save changes in the event a strip is inserted 2371 into the reader or the Home button is pressed 2372 before a sequence is completed. In the event a strip is inserted 2371 into the reader, reference path (U3) 2373 is initiated. Reference path (U3) 2373 results in display of a reminder prompt 2374 to the user. A Save Changes screen 2375 is displayed which includes a prompt indicating “Do you want to save your changes?” or equivalent. Save Changes screen 2375 includes a touchscreen “Yes” button 2376 and a touchscreen “No” button 2377. If the “No” button 2377 is pressed or a selection is not made in 10 seconds the settings return to their previous values. If the “Yes” button 2376 is pressed, the new settings are saved. In either case, either a Blood Glucose Strip Test interface or a Ketone Strip Test interface is initiated as appropriate based on the identity of the inserted test strip.
Reference path (V3) 2378 results in display of a reminder prompt 2379 to the user. A Save Changes screen 2380 is displayed which includes a prompt indicating “Do you want to save your changes?” or equivalent. Save Changes screen 2380 includes a touchscreen “Yes” button 2381 and a touchscreen “No” button 2382. If the “No” button 2382 is pressed, the settings return to their previous values. If the “Yes” button 2381 is pressed, the new settings are saved. In either case, the user is returned to the Home screen as described herein.
Additional Information Regarding Data Management Software
Additional information for the Auto Assist Software is provided in the following paragraphs and figures. It should be appreciated that the example interface flows are exemplary and should not be interpreted as limiting.
Application Startup
Referring back to block 4004, if the RD software is already installed on the remote device, then it is determined if the RD software is currently running. If so, then the user is taken to the Reader Landing screen at block 4026.
If the RD software is not currently running, then it is determined if an auto-launch is enabled to automatically launch the RD software if the analyte monitoring device is coupled to the remote device, as shown at block 4020. If the auto-launch is enabled, then the RD software is launched on the remote device. If the auto-launch is not enabled, then the user may manually launch the software when desired, as shown at block 4022.
When the RD software is launched, the software may automatically perform or ask to determine if updates to the software are available, as represented by block 4034. The RD software may, for example, access a server via the internet to determine what updates are currently available, and then compare the version of the software and any previous updates to see if any additional updates are missing. If new updates are not available, then the RD software application continues with the Data Management Startup process to enable the user to use the RD software, as represented at block 4036.
If new updates are available, then the Reader Landing screen is displayed, as shown at block 4026. If the user elects not to run the update routines at this time, the RD software application continues with the Data Management Startup process to enable the user to use the RD software, as represented at block 4036. If the user elects to install the updates, then the update routines are run, as shown at block 4024, before continuing on with the Data Management Startup process at block 4036
If instead of starting at block 4002, the user launches RD software already installed on a remote device, as shown at block 4028, then it is determined if the analyte monitoring device is coupled to the remote device, as shown at block 4030. If the reader device is not connected, then a Reader Welcome screen is displayed to assist the user as the RD software is running, as shown at block 4032. If the reader is coupled to the remote device, then it is determined if any updates are available as shown and discussed for block 4034.
Referring back to block 4042, if sensor reading data is on the reader device, then the data may be downloaded to the remote device, either automatically or upon user confirmation, as shown by block 4054. At block 4054, it is determined if the reader device and remote device are out of sync. If so, then the Reader Out of Sync screen is displayed. If no out of sync, then it is determined if it is the first time creating reports on the remote device, as shown at block 4058, If so, then a Guided Reports Setup—Welcome screen is displayed, as shown at block 4060, to assist the user with setting up reports. If it is not the first time creating reports on the remote device, then it is determined if a quick print feature is enabled to allow quick display and/or printing of predetermined or pre-customized reports. If the quick printing feature is not enabled, then the user is taken to a Generate Reports screen to enable the user to generate reports, as shown at block 4068.
Reader Mode
Block 4082 represents a Reader Landing screen, wherein details regarding the Reader may be accessed.
As shown in
At block 4084, the user is taken to a Profile screen.
Referring back to
At block 4084, the user is taken to a Custom Notes screen where the user can view, edit, and/or delete notes from the Reader device. These notes can be default notes or customized notes by the user.
At block 4086, the user is taken to a Reminders screen where the user can view, edit, and/or delete reminders from the Reader device. The reminders may be provided to remind the user to check glucose readings, take insulin, etc.
At block 4088, the user is taken to a Professional Options screen where the user can access restricted features that should only be accessed by trained health care professionals (HCP). A password or code only given to the HCP's may be required to access the settings. Example features that may be restricted are the activation and setting of an insulin calculation feature, a masked mode operation of the device, the resetting of the system and/or settings on the device, etc.
Insulin Calculator Setup Interface:
An exemplary embodiment of a graphical user interface which may be utilized in connection with Health Management Software for a Reader as described herein and which facilitates a procedure for inputting the insulin calculator settings via the Health Management Software is provided. This graphical user interface is now described in greater detail with reference to
In some cases, the Health Management Software for the Reader may include programming for two or more types of medication dosage calculators. During setup of the Health Management Software, the Health Management Software may prompt the user and/or the health care professional to select a type of medication dosage calculator (e.g., insulin bolus calculator). The initial selection of the type of medication dosage calculator may be changed as desired by the user or the health care professional. In certain embodiments, the two or more types of medication dosage calculators include two types of bolus calculators. For instance, the two types of bolus calculators can include an easy bolus calculator and an advanced bolus calculator.
By “easy calculator”, “easy bolus calculator”, “simple bolus calculator”, “easy insulin calculator” or “simple insulin calculator” is meant a bolus calculator that includes basic features for determining a recommended medication dosage amount, such as a recommended insulin dosage amount. For example, an easy bolus calculator may include algorithms configured to determine a recommended medication dosage amount based on a fixed medication dosage amount. In these instances, the easy bolus calculator may be appropriate for a user that administers a fixed medication dosage amount (e.g., a fixed insulin dosage amount) for each meal. In some embodiments, the easy bolus calculator only takes into account the fixed medication dosage amount when recommending the medication dosage amount to the user, and thus functions as a reminder and/or log for the fixed medication dosage amount.
The insulin calculator setup procedure begins on the Insulin Calculator Interface Setup screen 3800, where the user can select an Insulin Calculator On/Off toggle button 3802 to turn the insulin calculator on or off. When the Insulin Calculator On/Off toggle button is selected into the “On” position, the insulin calculator is activated and may be set up as described below. The desired type of insulin calculator (e.g., easy or advanced calculator) can be selected by selecting the insulin calculator selection box 3804, which allows the selection of “Easy” to activate the easy insulin calculator, and “Advanced” to activate the advanced insulin calculator.
If the user selects the “Easy” selection in the insulin calculator selection box 3804, the Insulin Calculator Setup Interface screen 3800 displays the set up options for the easy bolus calculator. Set up for the easy bolus calculator is shown in
In certain embodiments, the easy bolus calculator may determine a recommended medication dosage amount (e.g., a recommended rapid-acting insulin dosage amount) based on information, such as, but not limited to, a fixed medication dosage amount, a target blood glucose range (e.g., correction target), and an insulin sensitivity (e.g., correction factor). In some instances, the easy bolus calculator may also include information, such as the patient's insulin on board, in the determination of a recommended medication dosage amount. For example, a fixed medication dosage amount may be entered by meal (e.g., breakfast, lunch and dinner).
The Insulin Calculator Setup Interface screen 3800 includes amount entry boxes for each meal. A fixed medication dosage amount may be entered into the breakfast amount entry box 3806, the lunch amount entry box 3808 and the dinner amount entry box 3810 as units of insulin. In some embodiments, the correction target range may be entered. The Insulin Calculator Setup Interface screen 3800 includes correction target range amount entry boxes for the minimum target range value 3812 and the maximum target range value 3814. In some embodiments, the Insulin Calculator Setup Interface screen 3800 includes a correction factor amount entry box 3816 in which the insulin sensitivity (e.g., correction factor) may be entered as 1 unit per X mg/dL, where X is the amount entered for the correction factor. In some embodiments, the Insulin Calculator Setup Interface screen 3800 includes radio buttons for enabling or disabling insulin calculator trend correction by selecting either the trend correction enabled radio button 3818 or the trend correction disabled radio button 3820, respectively.
If the user selects the “Advanced” selection in the insulin calculator selection box 3824, the Insulin Calculator Setup Interface screen 3822 displays the set up options for the advanced bolus calculator. Set up for the advanced bolus calculator is shown in
By “advanced calculator”, “advanced bolus calculator” or “advanced insulin calculator” is meant a bolus calculator that includes additional information, such as, but not limited to, the amount of carbohydrates consumed, the carbohydrate ratio, a target blood glucose range (e.g., correction target), and an insulin sensitivity (e.g., correction factor), in determining a recommended medication dosage amount (e.g., a recommended insulin dosage amount). For example, rather than using a fixed medication dosage amount for each meal as in the easy calculator, the advanced bolus calculator may use dose determination information entered by the user, such as the amount of carbohydrates consumed, to determine a recommended medication dosage amount. The advanced bolus calculator may also include additional dose determination information into the determination of the recommended medication dosage amount, such as but not limited to, a patient's the current blood glucose level, an amount of exercise, a target analyte concentration (e.g., a target blood glucose range), an insulin sensitivity (e.g., correction factor), a duration of insulin action, a carbohydrate ratio, and insulin on board information, such as an administered medication dose time information, an administered dose frequency information over a predetermined time period, and an administered medication dose amount.
The Insulin Calculator Setup Interface screen 3822 includes an “Enter Food By” selection box 3826, which, when selected, allows the user to set the insulin calculator to enter food by grams of carbs or by servings. If “Grams of Carbs” is selected in the “Enter Food By” selection box 3826, then Insulin Calculator Setup Interface screen 3822 displays the set up options for the advanced bolus calculator by grams of carbs.
In some embodiments, the carbohydrate ratio may be entered. The Insulin Calculator Setup Interface screen 3822 includes a carbohydrate ratio amount entry box 3828 for entering the amount of the user's carbohydrate ratio as 1 unit per X grams of carbs, where X is the amount entered. In some embodiments, the correction target range may be entered. The Insulin Calculator Setup Interface screen 3822 includes correction target range amount entry boxes for the minimum target range value 3832 and the maximum target range value 3834. In some instances, the correction target may be entered as a single target value rather than a target range by selecting “Single Target” (not shown) from the correction target selection box 3830. In some embodiments, the Insulin Calculator Setup Interface screen 3822 includes a correction factor amount entry box 3836 in which the insulin sensitivity (e.g., correction factor) may be entered as 1 unit per X mg/dL, where X is the amount entered for the correction factor. In some embodiments, the Insulin Calculator Setup Interface screen 3822 includes radio buttons for enabling or disabling insulin calculator trend correction by selecting either the trend correction enabled radio button 3838 or the trend correction disabled radio button 3840, respectively.
In certain instances, the carbohydrate ratio, the target range, and/or the correction factor may be entered by time of day, as shown in
If the carbohydrate ratio “By Time of Day” checkbox 3842 is selected, Insulin Calculator Setup Interface screen 3848 displays the time of day settings for the carbohydrate ratio (see
If the correction target range “By Time of Day” checkbox 3844 is selected, Insulin Calculator Setup Interface screen 3848 displays the time of day settings for the target range (see
If the correction factor “By Time of Day” checkbox 3846 is selected, Insulin Calculator Setup Interface screen 3848 displays the time of day settings for the correction factor (see
The Insulin Calculator Setup Interface screen 3882 includes an “Enter Food By” selection box 3884, which, when selected, allows the user to set the insulin calculator to enter food by grams of carbs or by servings (see
Insulin Calculator Setup Interface screen 3882 displays the time of day settings for the carbohydrate ratio (see
Insulin Calculator Setup Interface screen 3882 displays the time of day settings for the target range (see
Insulin Calculator Setup Interface screen 3882 displays the time of day settings for the correction factor (see
Masked Mode Setup Interface:
The Professional Options screen also enables the Masked Mode setup to be viewed and set on the remote device. The setup screen provided functions similar to the Masked Mode setup discussed earlier, except that the setup takes place via the RD software application.
Reset System:
The Professional Options screen also enables the user reset settings of the Reader device. The Reset System interface may permit reset of all settings at once, and/or permit the user to selectively reset specific setting on the device.
Referring back to
Thus, from the menu 5058 of trigger elements for initiating various Reader Mode screens, which remains on the various Reader Mode screens to enable quick reference and access to those screens, the user is able to navigate to the desired Reader Mode screen. Once the settings are viewed, edited, or deleted, the user can save the setting to the reader, as shown by reference path X3. At block 4096, a Reader Status screen is displayed to indicate to the user that a save is in progress. In block 4098, a Progress screen is shown to indicate a save to the reader, and after the save the user is taken to a Reader Landing—Settings saved screen to indicate that the save was successful, as shown by block 4100.
If changes to any settings in menu 5058 are cancelled, as shown by reference path Y3, or the user navigates away, as shown by reference path A4, then the user is taken to a warming Alert screen to alert the user that changes will be lost, as shown at 4102 via reference path Z3. If changes are cancelled, then the user is navigated back to the Reader Landing screen 4082. If the user elects to save the changes, then to blocks 4096 and 4098 as previous described. If the user elects to not save the settings, then the user is taken to the Reader Landing—Setting saved screen 4100.
From the Backups screen, the user can save a backup file, as shown at block 4104. Progress screen 4106 is displayed while the save is in progress. If the save should be cancelled before complete, then the user is taken back to the Backups screen 4108.
If the save is determined to be not valid, as shown at block 4105, then the user is taken to an Alert screen 4110 to indicate to the user that a save is not valid. For example, if the filename already exists, then the user can elect to either save it and overwrite the previous file, and will be taken to the Progress screen 4106. If the user elects not to save it, then the user is then back to the Backups screen 4112.
From the Backups screen at block 4094, the user can select a backup file to restore, as shown by block 4114 and reference path C4. Once the backup file is selected the user is taken to a Progress screen 4116 that indicates that the backup file is being processed. If the processing of the backup file is determined to not be valid or encounters an error, then the Alert screen 4120 is displayed to indicate that there was an error with the backup file (e.g., that the file is damaged). The user is then taken back to the Backups screen, as shown by block 4122. If the processing of the backup file is valid, then the Restore Reader Setting is displayed to indicate that the Reader settings are being restored to the settings on the backup file. If the restore should be cancelled, then the user is taken back to the Backups screen, as shown by block 4126. If the restore is not cancelled, then the user is taken to either a Reader Status screen 4128, or to a Progress screen 4130 and Backups screen 4132, similarly as described above.
Out of Sync Flow
If the Reader is coupled to the remote device and determined to be out of sync with the remote device, then the Reader Out of Sync screen at 5102 is initiated, as shown by block 5102. An Alert screen is displayed to alert the user of the sync and ask if the user wishes to synch the Reader with the remote device. The user is also taken to the Alert screen at 5106 from the General Reader Settings screen when it is determined that the two devices are out of sync, as shown by block 5104.
If the user elects to sync the two devices, then a Reader Status screen at 5108 and Progress screen at 5110 are displayed while the update is in progress. When the update is complete, the user is taken back to the Reader Landing—Reader updated screen, as shown at block 5112.
Guided Reader Setup Flow
When a new Reader that has never been used is connected to the remote device, the user is guided through the initial setup of that Reader in a step-by-step fashion. Along the way, basic Reader configuration settings such as name, patient ID, date, time, and language are collected for the purpose of initializing the Reader. In one embodiment, the patient name and ID are optional settings while the date, time, and language options must be set to complete the setup process.
If the setup process is interrupted or exited from any of blocks 5118, 5120, 5122, then the Alert screen at block 5124 is displayed to alert the user that any changes will be lost if not saved. After the Alert screen is displayed at block 5124, the user is taken to the New Reader Welcome screen so that the initial setup can be completed, as shown by blocks 5116, 5126.
Reader Mode
Reports Mode Flow
At block 5140, the Reports Landing screen is displayed on the remote device when the Reports tab is selected. The user is provided with the option to generate reports or to view or edit Report Preferences—e.g., the user may select, for example, between corresponding trigger elements on the Landing Screen to navigate to the Generate Reports interface or the Report Preferences interface.
From the Generate Reports screen at block 5142, the user can select the parameter of the particular Report to be generated. The Choose screen at block 5146 enables the user to set the destination of the directory for auto-saving. When a report is generated, the Progress screen at block 5144 is displayed while the report is being generated. When complete, the View reports screen at block 5148 displays the generated report, or provides a menu to select from various reports generated. The Reports can be saved via a Save window screen at block 5152 and the progress screen at block 5154 will be displayed when the save is in progress. After the save is complete, the user is taken back to the View Reports screen at block 5148.
If the View Reports screen at block 5148 is closed, then the user is taken back to the Generate Reports screen at block 5142. The user may also print one or more Reports from the View Reports screen 5148 via Print screen at block 5150.
From the Reports Landing screen at block 5140, the user may elect to navigate to the Report Set screen at block 5156. The Set Reports screen at block 5156 enable the user to pre-select reports to be generated each time the user generates reports with the data management software. Example reports may include, a Snapshot, Calendar, Average Day, Logbook, Daily Statistics, Mealtime Averages, and Reader Settings, as will be discussed further later. The various reports are selectable and will be set as the default preferences for the creation of reports from the Reader. The Calendar may default to a predetermined time period, such as 3 months for example. If the user selects the Mealtime Averages report they are presented with an overly that allows them to set the default pre and post meal target ranges.
From the Reports Landing screen at block 5140, the user may also elect to navigate to: Timeframe screen at block 5158 to enable the user to establish default timeframes used when reports are generated; Glucose Targets screen at block 5160 to enable the user to establish the default setting for the glucose target range and hypoglycemia threshold to be applied to generated reports; Auto-Save Options screen at block 5162 to enable the user to activate and set the auto save feature, as well as, choose the file name format, and save location (as shown at block 5174) that will used during report creation; Print Color screen at block 5164 that enables the user to choose default print color options; and Quick Print screen at block 5166 which allows the user to enable or disable the quick print feature, which causes the software to immediately generate reports once a Reader with data is connect to the computer.
Settings or changes made to the screens 5156, 5158, 5160, 5162, 5164, and 5166 can be saved, at which point the Progress screen at block 5172 is displayed during the save. If the user cancels or navigates away from any of screens 5156, 5158, 5160, 5162, 5164, and 5166, it is determined if any changes were made, as shown at block 5168. If not, the user is able to navigate away to the desired screen. If changes were made, then an Alert screen is displayed to alert the user that changes may be lost and to provide the user with the option to save, as represented by the Progress screen at block 5172.
Guided Reports Setup Interface
The first time a user accesses the printing features of the application, they are guided through the reports setup and creation process in a step-by-step fashion by a Guided Reports Setup interface. Along the way, the RD software collects default reports preferences such as patient information, timeframe, report set, glucose targets, and auto-save options, as well as prepares the first set of reports for viewing, saving, and printing.
When printing the selected reports, the Progress screen at block 5196 is displayed while the report is being generated. When complete, the View reports screen at block 5198 displays the generated report, or provides a menu to select from various reports generated. The Reports are then immediately printed via a Print window screen at block 5200. If auto save is set, once the reports are generated at block 5196, the selected reports are automatically saved to the selected destination, as shown at block 5204. If the creation at block 5196 is interrupted or cancelled, then the user is taken back to the Generate Reports screen at block 5202.
When electing to view the selected reports form block 5194, the Progress screen at block 5206 is displayed while the report is being generated. When complete, the View reports screen at block 5210 displays the generated report, or provides a menu to select from various reports generated. If auto save is set, once the reports are generated at block 5206, the selected reports are automatically saved to the selected destination, as shown at block 5204. If the creation at block 5206 is interrupted or cancelled, then the user is taken back to the Generate Reports screen at block 5208.
Export Reader Flow
The RD software provides a function for users to export data from a Reader coupled to the computer as a tab-delimited file or other spreadsheet-compatible format, for example. The Export function may be accessed, for example, via the “File” menu of the application.
Once enabled, the user can select to export data from the Reader, as represented by block 5262. Once selected, the meter export file is saved as shown at block 5264. If the save is determined to be valid, then the Progress screen 5272 is shown to indicate that the process of exporting data is in progress. If no error occurs, the user is taken back to the originating screen as shown at block 5276. If an error occurs, an Alert screen is provided to notify the user of the failed export, as shown at block 5274.
If at block 5266, it is determined that the saving of the meter export file was not valid, then an Alert screen is provided to notify that the save was not valid (e.g., the file already exists), as shown at block 5268. The user is provided with the option to overwrite the existing file, which navigates the user to the Progress screen at block 5272. The user is also provided the option to not save the invalid file, in which case the user is taken back to the originating screen, as shown at block 5270.
Reports
In some embodiments, the RD software provides a user interface to manage and/or control features related to reports. For example, the RD software provides a reports mode for creating, editing, viewing, printing, and for performing any other functions associated with report generation and management.
Different types of reports may be generated. For example,
As stated above, reports may be generated and communicated to a remote device—e.g., for display on the remote device and/or printing on the remote device. The remote device may be, for example, a desktop computer, laptop, cell phone, etc. For example, the remote device may be a personal computer accessed by the user, enabling the user to view and/or printout the reports. In other instances, the remote device may be a computer accessed by another party, such as a physician or health care professional. The user may, for example, bring the device to their physician so that the physician could transfer the data to his or her computer for display and/or printing of the reports.
The analyte monitoring device may communicate the reports to the remote device using any variety of wired (e.g., USB, FireWire, SPI, SDIO, RS-232 port, etc.) or wireless technologies (e.g., radio frequency (RF) communication, Zigbee® communication protocols, WiFi, infrared, wireless Universal Serial Bus (USB), Ultra Wide Band (UWB), Bluetooth® communication protocols, and cellular communication, such as code division multiple access (CDMA) or Global System for Mobile communications (GSM), etc).
In some instances, the analyte monitoring device may include software that is loaded onto the remote device—e.g., the first time connecting to the remote device. In other instances, the software may be loaded to the remote device via the internet or storage device (e.g., CD-ROM, FLASH memory drive, etc.).
In some instances, the reports may be communicated to a remote device and thereafter communicated to another remote device. For example, the user may download the data to his own computer and thereafter transmit the data to the physician for further analysis. Upon receipt, the physician could view and download reports to assess the activities and events of the user.
In the following paragraphs, example reports are provided and described. The various reports may include general identification information for the associated patient (e.g., name of the patient, identification number, etc.) and/or associated device (e.g., name of the device; model of the device, etc.).
Snapshot:
In some aspects of the present disclosure, a Snapshot report is provided. The Snapshot report captures the overall condition of the patient's health management (e.g., diabetes management). For instance, the report may highlight the key metrics for the user's activities over a specific time period. In some embodiments, the Snapshot report provides significant pieces of information related to one or more of the following: utilization, glucose levels, events, and notes.
In the embodiment shown, metrics 5308 includes average glucose value; time above, in, and below the target zone, average carb intake per day; average rapid-acting insulin intake per day; and average long-acting insulin intake per day. Section 5302 also includes a graph 5310 of glucose values for the two week period that have been averaged with respect to specific times throughout the day. Graph 5310 also indicates the range of glucose readings for the specific time throughout the day.
Metrics 5312 includes the total number of low glucose events, the average duration of a low glucose event, and the low glucose threshold. Section 5304 also includes a graph 5314 of a summary of low glucose events for the two week period that have been averaged with respect to specific times throughout the day.
Metrics 5316 includes the average number of scans per day and the percentage of available sensor data. Section 5306 also includes a graph 5318 of the percentage high glucose readings of sensor data recorded for the two week period, categorized with respect to specific times throughout the day.
Snapshot Screen 5300 also includes a Comments section 5320 that indicates any comments that the user has logged. In some embodiments, the comments section provides software generated comments generated from analysis of the sensor data. Snapshot Screen 5300 also includes a section for identifying the Report, the time period applicable to the reports, and the target range.
Calendar:
In some aspects of the present disclosure, a Calendar report is provided. The Calendar report provides an overview of the patient's involvement and highlights points of concern (e.g., hypoglycemic events).
For example,
Daily Patterns:
In some aspects of the present disclosure, a Daily Patterns report is provided. A Daily Patterns report communicates the trend in glucose levels for the given time period, with respect to times throughout the day.
Below graph 5362, and aligned with respect to the time periods, is a graph of carbs taken and logged 5370, as represented above the horizontal axis, and of rapid-acting insulin taken and logged 5372, as represented below the horizontal axis.
Daily Patterns Report 5360 also includes sections 5374, 5376, and 5378 next to graph 5362 and aligned with respect to time periods throughout the day. Section 5374 indicates the daily average glucose value for each time period throughout the day. Section 5376 indicates the daily average carb intake per time period, as well as the number of related notes taken. Section 5378 indicates the daily averages for intake of rapid-acting insulin and long-acting insulin for each time period throughout the day, as well as the number of related notes.
Mealtime Patterns:
In some aspects of the present disclosure, a Mealtime Patterns report is provided. A Mealtime Patterns report communicates the rise and fall in glucose levels relative to meals.
The report includes plots 5402, 5404, and 5406 for three different meal events—e.g., meals occurring at different time periods 5416a, 5416b, 5416c of the day (e.g., Morning, Midday, and Evening, respectively). The number of notes logged for food intake and insulin intake are also provided at sections 5418a, 5418b, and 5418c. Furthermore, the average carbs taken and logged 5420a, 5420b, and 5420c for the respective time period is also shown. The average insulin taken and logged 5422a, 5422b, and 5422c for the respective time period is also shown.
The meal time reference points 5412a, 5412b, and 5412c indicate the time at which the meal was taken. One hour incremental time periods before and after the reference points are provided. Median glucose plots 5408a, 5408b, and 5408c are displayed for the respective periods. The 10th to 90th Percentile range 5410a, 5410b, and 5410c are also provided on plots 5402, 5404, and 5406, respectively. The average glucose values 5426a, 5426b, and 5426c for the respective incremental time periods are also provided below and aligned with the respective plots.
Daily Statistics:
In some aspects of the present disclosure, a Daily Statistics report is provided. The Daily Statistics report highlights glucose readings for days within the given time period (e.g., 2 weeks). The data may be used to assist in the identification of causes of hypoglycemic events and other abnormalities, for example.
The day is broken up into incremental time periods (e.g., two hour periods as shown) and event information may be indicated on the chart. For example, a carb intake event 5502b is indicated at the corresponding incremental time period in which it occurred.
Rapid and long acting insulin intake events 5502c and 5502e, respectively, are indicated at the corresponding incremental time period in which it occurred.
Events associated with food intake and insulin logged without a value 5502f and 5502i, respectively, are indicated at the corresponding incremental time period in which it occurred.
User Time change event 5502g is indicated at the corresponding incremental time period in which it occurred. For example, if the user changes the time on the Reader device, this event would be indicated at the appropriate time and day.
Sensor scan event 5502h is indicated at the corresponding incremental time period in which it occurred. In this way, any discontinuities in glucose readings are also displayed, as represented as breaks in the glucose plot.
Furthermore, Daily Totals section 5516 displays daily totals of additional glucose related data. For example, section 5516 provides daily totals for the first day—March 17th. Section 5516 includes the average glucose for the day, the total number of carbs for the day, the amount of rap-acting insulin taken for the day, and the amount of long-acting insulin taken from the day.
Logbook:
In some aspects of the present disclosure, a Logbook report is provided. A Logbook report provides a detailed look at obtained sensor readings and, in some cases, other relevant data—e.g., insulin dosages, meal events, notes, strip glucose measurements, and ketone events—categorized by time period (e.g., by day).
Graphs 5540, 5542, and 5544 of the glucose values throughout the associated day are also provided for each day shown. The daily average is also indicated for each day.
Reader Settings:
In some aspects of the present disclosure, a Reader Settings Report is provided. A Reader Settings Report provides a summary of settings that are currently set for the Reader device.
If insulin calculation or masked mode operation are available on the Reader device, the Reader Setting Report may also include summary sections for these settings as well. For example,
Data Management Software
In certain embodiments, the data management software may include a data management software version. Information for the data management software is provided in the following described embodiments and associated figures. It should be appreciated that the example interfaces and flows are exemplary and should not be interpreted as limiting.
Home Screens
The text information, in certain embodiments, includes a menu 6750, to add a reader profile associated with the Reader device. When selected, the add a reader profile menu 6750 launches a pop-up screen 6760 to enter a name and/or patient ID of the user of the Reader, as illustrated in
Returning to
Generate Reports
In certain embodiments, the reader profile section 7130 may include patient and Reader information, such as patient name, patient ID, Reader serial number and Reader current time and date information.
The set report parameters section 7140 may include settings associated with reports to be run, such as the timeframe for the reports to be run, which can be set as a number of days or weeks, or by selecting a particular date range. The report parameters section may additionally include an option to set the target glucose range for certain reports, as described below. The set report parameters section 7140 may also include report specific settings, such as settings applicable only to the advanced daily patterns report 7150 as shown in the exemplary embodiment of
In certain embodiments, the select reports section 7120 includes a plurality of report types. The report types may be represented as icons, text, or combinations of both. The plurality of report types may include a snapshot report, a daily patterns report, an advanced daily patterns report, a mealtime patterns report, a monthly summary report, a weekly summary report, a daily log report and a Reader details report. In certain embodiments, multiple reports may be selected by selecting a selection box next to each report in the reports section. In certain embodiments, the selection of certain reports automatically triggers the selection of other reports (for example, selection of the advanced daily patterns report automatically triggers the selection of the daily patterns report. In this manner, multiple reports may be selected simultaneously, such that a single command can instruct the software to run multiple reports at once. Reports are then available for the user to view on screen or print, by use of the ‘View Reports’ 7170 and ‘Print Reports’ 7160 buttons. In one embodiment, reports are printed in a preset order—e.g. snapshot, daily patterns, advanced daily patterns, mealtime patterns, monthly summary, weekly summary, daily log, and reader details.
Still referring to
Referring again to
Also shown in
Referring still to
Still referring to
Reader Settings
The professional options additionally include a system reset screen, as shown in
In some aspects of the present disclosure, methods of operating an analyte monitoring device are provided that include receiving an indication for powering on an analyte monitoring device; powering on the analyte monitoring device; providing power to an RF reader element within the analyte monitoring device; activating a scan state for scanning an analyte sensor; receiving an indication of a predetermined event; and powering off the RF reader and maintaining power to the analyte monitoring device.
In one embodiment, the scan state comprises displaying a prompt to scan the analyte sensor on a display of the analyte monitoring device.
In one embodiment, the predetermined event is a lapse of a predetermined period of time without performing a scan. In some instances, the predetermined event is a deactivation of the scan state. In some instances, the predetermined event is a user-initiated change from a scan prompt screen to a home screen. In some instances, the predetermined event is an occurrence of a scan error or failed scan.
In one embodiment, the methods comprise: receiving an indication to perform a sensor scan; repowering the RF reader; and reactivating the scan state for scanning the analyte sensor.
In one embodiment, the methods comprise: detecting the analyte sensor; and scanning the analyte sensor to perform an analyte reading.
In one embodiment, the analyte is glucose or a ketone body.
In some aspects of the present disclosure, analyte monitoring devices are provided. The analyte monitoring devices include a processor; and memory operably coupled to the processor, wherein the memory includes instructions stored therein for operating an analyte monitoring device, the instructions comprising instructions for performing the previously described methods.
In some aspects of the present disclosure, methods of operating an analyte monitoring device are provided that include performing a first scan of an analyte sensor; displaying a reading resulting from the first scan; preventing performance of a second scan for a predetermined period of time; and enabling performance of a second scan after lapse of the predetermined period of time.
In one embodiment, the methods include powering the analyte monitoring device off after the reading is displayed; and powering on the analyte monitoring device before the lapse of the predetermined period of time.
In one embodiment, the methods include receiving an indication of an attempt of a second scan before the lapse of the predetermined period of time; and indicating that the second scan cannot be performed. In some instances, the methods include indicating an estimated time remaining before performance of a second scan is enabled.
In one embodiment, the methods include exiting a screen displaying the reading; and indicating that any results displayed before the lapse of the predetermined period of time is for the first scan.
In one embodiment, the methods include performing the second scan of the analyte sensor after the lapse of the predetermined period of time.
In one embodiment, the predetermined period of time is between 1 and 5 minutes.
In one embodiment, the analyte is glucose or a ketone body.
In some aspects of the present disclosure, analyte monitoring devices are provided. The analyte monitoring devices include a processor; and memory operably coupled to the processor, wherein the memory includes instructions stored therein for operating an analyte monitoring device, the instructions comprising instructions for performing the previously described methods.
In some aspects of the present disclosure, methods of operating an analyte monitoring device are provided that include performing a first scan of an analyte sensor; displaying a screen for calculating a suggested insulin dose based on a result of the first scan; exiting the screen for calculating a suggested dose before logging the suggested dose calculation; enabling logging of the suggested dose calculation for a predetermined period of time; and preventing logging of the suggested dose calculation for the first scan after a lapse of the predetermined period of time.
In one embodiment, the methods include powering the device off and then back on after displaying the screen for calculating the suggest dose and before the lapse of the predetermined period of time; wherein the exiting of the screen results from powering the analyte monitoring device off. In some instances, the screen for calculating the suggested dose is displayed when the device is powered back on, and wherein the screen for calculating the suggested dose enables the user to log the suggested dose calculation.
In one embodiment, the methods include receiving an indication to log the suggested dose calculation; and associating the suggested dose calculation with the first scan and with a time the first scan was performed; wherein a countdown for an estimated amount of insulin remaining in-body starts at a time of the logging of the suggested dose calculation.
In one embodiment, the methods include powering the device off after displaying the screen for calculating the suggest dose and before lapse of the predetermined period of time, wherein the exiting of the screen results from powering the analyte monitoring device off; and powering the device back on after the lapse of the predetermined period of time.
In one embodiment, the methods include displaying a prompt to scan the analyte sensor for a second scan when the device is powered back on.
In one embodiment, the analyte is glucose or a ketone body.
In some aspects of the present disclosure, analyte monitoring devices are provided. The analyte monitoring devices include a processor; and memory operably coupled to the processor, wherein the memory includes instructions stored therein for operating an analyte monitoring device, the instructions comprising instructions for performing the previously described methods.
In some aspects of the present disclosure, methods are provided that include performing consecutive scans of an analyte sensor; displaying, on a display of the analyte monitoring device, a resulting reading for each of the consecutive scans; displaying a graph on the display of the analyte monitoring device, the graph displaying resulting readings for a first predetermined period of time and tracking subsequent resulting readings during a second predetermined period of time following the first predetermined period of time; and after the subsequent resulting readings are tracked for the entire second predetermined period of time, shifting the subsequent resulting readings into the first predetermined period of time and continuing to track subsequent resulting readings during the second period of time; and repeatedly shifting the subsequent resulting readings after tracking occurs for the entire second period of time.
In one embodiment, the graph is displayed on the display after resulting readings are obtained for the first predetermined period of time.
In one embodiment, before resulting readings are obtained for the first predetermined period of time, the graph is displayed without any resulting readings; and the resulting readings for the first predetermined period of time are displayed on the graph after the resulting readings are obtained for the first predetermined period of time. In some instances, the first predetermined period of time is a multiple of the second predetermined period of time. In some instances, the first predetermined period of time is 8 hours and the second predetermined period of time is 1 hour.
In one embodiment, the analyte is glucose or a ketone body.
In some aspects of the present disclosure, analyte monitoring devices are provided. The analyte monitoring devices include a processor; and memory operably coupled to the processor, wherein the memory includes instructions stored therein, the instructions comprising instructions for performing the previously described methods.
In some aspects of the present disclosure, methods of displaying analyte sensor readings on an analyte monitoring device are provided that include obtaining sensor readings from an analyte sensor; and displaying on a display on the analyte monitoring device, a graph of sensor readings obtained over a prior 24-hour period.
In one embodiment, the methods include displaying a trigger element for shifting the graph forward or backward by 24 hours; receiving an indication that the trigger element was initiated by a user; and shifting the graph forward or backward by 24 hours.
In some aspects of the present disclosure, analyte monitoring devices are provided. The analyte monitoring devices include a processor; and memory operably coupled to the processor, wherein the memory includes instructions stored therein for displaying analyte sensor readings on an analyte monitoring device, the instructions comprising instructions for performing the previously described methods.
In some aspects of the present disclosure, methods of displaying analyte sensor readings on an analyte monitoring device are provided that include obtaining sensor readings from an analyte sensor; and displaying on a display on the analyte monitoring device, a summary of average sensor readings for a prior predetermined period of time, wherein the average sensor readings include an average sensor reading for a plurality of divisions within a day.
In one embodiment, the prior predetermined period of time is a 7 day period, and the average sensor readings include an average sensor reading for four divisions within a day.
In one embodiment, the methods include displaying a total average of each average sensor reading for the plurality of divisions within a day.
In one embodiment, the methods include displaying a trigger element for shifting the graph forward or backward by the predetermined period of time; receiving an indication that the trigger element was triggered by a user; and shifting the graph forward or backward by the predetermined period of time.
In some aspects of the present disclosure, analyte monitoring devices are provided. The analyte monitoring devices include a processor; and memory operably coupled to the processor, wherein the memory includes instructions stored therein for displaying analyte sensor readings on an analyte monitoring device, the instructions comprising instructions for performing the previously described methods.
In some aspects of the present disclosure, analyte monitoring devices are provided. The analyte monitoring devices include a processor; and memory operably coupled to the processor, wherein the memory includes instructions stored therein for displaying analyte sensor readings on an analyte monitoring device, the instructions including instructions for instructions for obtaining sensor readings from an analyte sensor; and instructions for displaying on a display on the analyte monitoring device, a summary of average sensor readings for a prior predetermined period of time, wherein the average sensor readings include an average sensor reading for a plurality of divisions within a day.
In one embodiment, the prior predetermined period of time is a 7 day period, and the average sensor readings include an average sensor reading for four divisions within a day.
In one embodiment, the instructions include instructions for displaying a total average of each average sensor reading for the plurality of divisions within a day.
In one embodiment, the instructions include instructions for displaying a trigger element for shifting the graph forward or backward by the predetermined period of time; instructions for receiving an indication that the trigger element was triggered by a user; and instructions for shifting the graph forward or backward by the predetermined period of time.
In some aspects of the present disclosure, methods of displaying analyte sensor readings on an analyte monitoring device are provided that include obtaining sensor readings from an analyte sensor; and displaying on a display on the analyte monitoring device, a summary of average events associated with the sensor readings obtained for a prior predetermined period of time, wherein the average events include an average event for a plurality of divisions within a day; wherein the summary is displayed upon user-selection.
In one embodiment, the prior predetermined period of time is a 7 day period, and the average event include an average event for four divisions within a day.
In one embodiment, the methods include displaying a total average of each average event for the plurality of divisions within a day.
In one embodiment, the methods include displaying a trigger element for shifting the summary forward or backward by the predetermined period of time; receiving an indication that the trigger element was triggered by a user; and shifting the summary forward or backward by the predetermined period of time.
In one embodiment, the event is a low glucose reading.
In some aspects of the present disclosure, analyte monitoring devices are provided. The analyte monitoring devices include a processor; and memory operably coupled to the processor, wherein the memory includes instructions stored therein for displaying analyte sensor readings on an analyte monitoring device, the instructions comprising instructions for performing the previously described methods.
In some aspects of the present disclosure, analyte monitoring devices are provided. The analyte monitoring devices include a processor; and memory operably coupled to the processor, wherein the memory includes instructions stored therein for displaying analyte sensor readings on an analyte monitoring device, the instructions including instructions for obtaining sensor readings from an analyte sensor; and instructions for displaying on a display on the analyte monitoring device, a summary of average events associated with the sensor readings obtained for a prior predetermined period of time, wherein the average events include an average event for a plurality of divisions within a day; wherein the summary is displayed upon user-selection.
In one embodiment, the prior predetermined period of time is a 7 day period, and the average event include an average event for four divisions within a day.
In one embodiment, the analyte monitoring devices include instructions for displaying a total average of each average event for the plurality of divisions within a day.
In one embodiment, the analyte monitoring devices include instructions for displaying a trigger element for shifting the summary forward or backward by the predetermined period of time; instructions for receiving an indication that the trigger element was triggered by a user; and instructions for shifting the summary forward or backward by the predetermined period of time.
In one embodiment, the event is a low glucose reading.
In some aspects of the present disclosure, methods of displaying analyte sensor readings on an analyte monitoring device are provided that include obtaining sensor readings from an analyte sensor; and displaying on a display on the analyte monitoring device, a summary of sensor readings obtained for a prior predetermined period of time, wherein the summary of sensor readings include one or more numbers or percentages of sensor readings with respect to a target range; wherein the summary is displayed upon user-selection.
In one embodiment, a number or percentage of sensor readings above, below, and within a target range are included in the summary.
In some aspects of the present disclosure, analyte monitoring devices are provided. The analyte monitoring devices include a processor; and memory operably coupled to the processor, wherein the memory includes instructions stored therein for operating an analyte monitoring device, the instructions comprising instructions for performing the previously described methods.
In some aspects of the present disclosure, methods are provided that include obtaining sensor readings from an analyte sensor; and displaying on a display on the analyte monitoring device, a summary of data associated with use of the sensor for a prior predetermined period of time, wherein the use of the sensor includes an average number of scans per day; wherein the summary is displayed upon user-selection.
In one embodiment, the use of the sensor includes a number of days having sensor data within the prior predetermined period of time.
In some aspects of the present disclosure, analyte monitoring devices are provided. The analyte monitoring devices include a processor; and memory operably coupled to the processor, wherein the memory includes instructions stored therein for displaying analyte sensor readings on an analyte monitoring device, the instructions comprising instructions for obtaining sensor readings from an analyte sensor; and instructions for displaying on a display on the analyte monitoring device, a summary of data associated with use of the sensor for a prior predetermined period of time, wherein the use of the sensor includes an average number of scans per day; wherein the summary is displayed upon user-selection.
In one embodiment, the use of the sensor includes a number of days having sensor data within the prior predetermined period of time.
In some aspects of the present disclosure, methods are provided that include obtaining sensor readings from an analyte sensor; and displaying on a display on the analyte monitoring device, a graph of daily patterns for a prior predetermined period of time, wherein the graph of daily patterns includes an average sensor reading for a plurality of divisions within a day; wherein the graph is displayed upon user-selection.
In one embodiment, the prior predetermined period of time is a 7 day period, and the graph of daily patterns includes an average sensor reading for four divisions within a day.
In one embodiment, the chart of daily patterns indicates a range of average sensor readings for the plurality of divisions within a day.
In one embodiment, the methods include displaying a trigger element for shifting the graph forward or backward by the predetermined period of time; instructions for receiving an indication that the trigger element was triggered by a user; and shifting the graph forward or backward by the predetermined period of time.
In one embodiment, the analyte is glucose or a ketone body.
In some aspects of the present disclosure, analyte monitoring devices are provided. The analyte monitoring devices include a processor; and memory operably coupled to the processor, wherein the memory includes instructions stored therein for displaying analyte sensor readings on an analyte monitoring device, the instructions including instructions for obtaining sensor readings from an analyte sensor; and instructions for displaying on a display on the analyte monitoring device, a graph of daily patterns for a prior predetermined period of time, wherein the graph of daily patterns includes an average sensor reading for a plurality of divisions within a day; wherein the graph is displayed upon user-selection.
In one embodiment, the prior predetermined period of time is a 7 day period, and the graph of daily patterns includes an average sensor reading for four divisions within a day.
In one embodiment, the chart of daily patterns indicates a range of average sensor readings for the plurality of divisions within a day.
In one embodiment, the instructions include instructions for displaying a trigger element for shifting the graph forward or backward by the predetermined period of time; instructions for receiving an indication that the trigger element was triggered by a user; and instructions for shifting the graph forward or backward by the predetermined period of time.
In one embodiment, the analyte is glucose or a ketone body.
In some aspect of the present disclosure, methods of operating an analyte monitoring device are provided that include receiving an indication to operate in a masked mode; performing scans of an analyte sensor; and storing sensor readings obtained from the scans without displaying the sensor readings on a display of the analyte monitoring device.
In one embodiment, the methods include receiving an indication to operate in a non-masked mode; performing scans of an analyte sensor; and displaying sensor readings on a display of the analyte monitoring device.
In one embodiment, the methods include transmitting the stored sensor readings to a remote device.
In one embodiment, the methods include the analyte is glucose or a ketone body.
In some aspects of the present disclosure, analyte monitoring devices are provided. The analyte monitoring devices include a processor; and memory operably coupled to the processor, wherein the memory includes instructions stored therein for operating an analyte monitoring device, the instructions comprising instructions for performing the previously described methods.
In some aspect of the present disclosure, methods of operating an analyte sensor are provided that include communicating between an analyte sensor and a first analyte monitoring device; establishing a pairing with the first analyte monitoring device to enable the first analyte monitoring device to perform analyte readings with the analyte sensor; receiving an identification code for the first analyte monitoring device from the first analyte monitoring device; and storing the device identification code in memory to indicate the established pairing with the first analyte monitoring device.
In one embodiment, the methods include receiving a request for the device identification form a second analyte monitoring device; and transmitting the device identification code for the first analyte monitoring device to the second analyte monitoring device.
In some aspects of the present disclosure, analyte monitoring devices are provided. The analyte monitoring devices include a processor; and memory operably coupled to the processor, wherein the memory includes instructions stored therein for operating an analyte monitoring device, the instructions comprising instructions for performing the previously described methods.
In some aspects of the present disclosure, methods for operating an analyte monitoring device are provided that include communicating between a first analyte monitoring device and a first sensor; determining, with a processor of the first analyte monitoring device, that the first sensor is not paired with any analyte monitoring device; determining, with the processor, that the first analyte monitoring device is not paired with any analyte sensor; and pairing the first analyte monitoring device with the first sensor to enable the first analyte monitoring device to perform analyte readings with the first sensor; and transmitting an identification code for the first analyte monitoring device to the first sensor to indicate the pairing.
In some aspects of the present disclosure, analyte monitoring devices are provided. The analyte monitoring devices include a processor; and memory operably coupled to the processor, wherein the memory includes instructions stored therein for operating an analyte monitoring device, the instructions comprising instructions for performing the previously described methods.
In some aspects of the present disclosure, methods of operating an analyte monitoring device are provided that include communicating between a first analyte monitoring device and a first sensor; determining, with a processor of the first analyte monitoring device, that the first sensor is paired with a second analyte monitoring device; and preventing, with the processor, the first analyte monitoring device from performing analyte readings with the first sensor; wherein the determining that the first sensor is paired comprises receiving, with the processor, an indication that the first sensor contains an identification (ID) code for the second analyte monitoring device that is paired to the first sensor.
In one embodiment, the methods include visually indicating on a display on the first analyte monitoring device that the first sensor cannot be used.
In one embodiment, the methods include communicating between the first analyte monitoring device and a second sensor; determining, with the processor, that the second sensor is not paired with any analyte monitoring device; determining, with the processor, that the first analyte monitoring device is not paired with any analyte sensor; pairing the first analyte monitoring device with the second sensor to enable the first analyte monitoring device to perform analyte readings with the second sensor; and transmitting an identification code for the first analyte monitoring device to the second sensor for storage on the second sensor, the identification code indicating a pairing of the first analyte monitoring device with the second sensor.
In one embodiment, the methods include communicating between the first analyte monitoring device and a third sensor; determining, with the processor, that the third sensor is not paired with any analyte monitoring device; and preventing, with the processor, the first analyte monitoring from performing analyte readings with the second sensor.
Certain embodiments include a reader device for receiving analyte data from an analyte sensing device, the reader device comprising a housing, a display mounted on the housing, a processor mounted in the housing, and memory storing instructions which, when executed by the processor, causes the processor to navigate from a current user interface screen on the display to a home screen in response to an input from a user, wherein navigating from the current user interface screen to the home screen including checking whether the analyte sensing device is expired and, if the analyte sensing device is expired, displaying a sensor expired notification, calculate a time remaining until the analyte sensing device expires, display the home screen, wherein the home screen includes an indication of the remaining time until the analyte sensing device expires, receive analyte information from the analyte sensing device, and display the received analyte information on the display.
In some embodiments, the sensor expired notification requires confirmation prior to navigating to the home screen.
In some embodiments, the indication of the time remaining before expiration of the analyte sensing device includes an indication of no active sensor, and the time remaining is displayed as a number of days when the time remaining is greater than 1 day, as a number of hours when the time remaining is greater than 1 hour and less than 1 day, and as a number of minutes when the time remaining is less than 1 hour.
In some embodiments, the home screen includes an indication of an estimated insulin-on-board amount.
In some embodiments, the indication of the estimated insulin-on-board amount includes a person-shaped icon, wherein the estimated insulin-on-board amount is represented by a fill percentage of the person-shaped icon.
In some embodiments, the displayed analyte information includes a numerical current analyte level, a graphical representation of past analyte levels, and an arrow representing a trend of the numerical current analyte level.
Certain embodiments include instructions causing the processor to determine whether a current analyte level is above a high analyte level threshold, below a low analyte level threshold, above a high projected analyte level threshold or below a low projected analyte level threshold.
In some embodiments, the high analyte level threshold is 240 mg/dL, the low analyte level threshold is 70 mg/dL, the high projected analyte level threshold is 240 mg/dL within the next 15 minutes, and the low projected analyte level threshold is 70 mg/dL within the next 15 minutes.
In some embodiments, the graphical representation of past analyte levels includes 8 hours of past analyte data.
Certain embodiments include instructions causing the processor to not allow consecutive analyte level scans within a predetermined period of time.
Certain embodiments include instructions causing the processor to not allow more than one analyte level scan within a predetermined period of time.
In some embodiments, the predetermined period of time is 3 minutes.
Certain embodiments include a method of operating a reader device of an analyte monitoring system, comprising scanning for a new sensor with the reader device, wherein scanning includes waiting a predetermined length of time before timing out the scanning for the new sensor, checking whether the new sensor has previously been paired with a different reader device, not allowing a pairing of the reader device with the new sensor if the sensor has already been paired with the different reader device, waiting a predetermined length of time for a paired sensor to warm up, displaying a home screen after waiting the predetermined length of time, wherein the home screen includes an indication of the remaining time until the paired sensor expires, starting a glucose scan using the paired sensor and displaying results of the glucose scan, a display including a simultaneous display of a numerical current glucose level, a graphical representation of historical glucose levels for a past predetermined time period, and an arrow representation of a current glucose trend.
Certain embodiments include displaying a sensor expiring soon notification when the new sensor expires within a predetermined length of upcoming time.
In some embodiments, the predetermined length of upcoming time includes 3 days.
In some embodiments, the sensor expiring soon notification is displayed after first scan of the day for the last 3 days before sensor expiration and after every scan for the last 8 hours before sensor expiration.
In some embodiments, a time remaining notification is contextual and units of display vary based on how much time remaining before sensor expiration.
In some embodiments, when the time remaining before sensor expiration is more than 3 days, the time remaining is displayed in units of days, when the time remaining before sensor expiration is between 1 hour and 1 day, the time remaining is displayed in units of hours, and when the time remaining before sensor expiration is less than 1 hour, the time remaining is displayed in units of minutes.
In some embodiments, when the time remaining before sensor expiration reaches zero, the reader device automatically navigates back to the home screen.
Certain embodiments include displaying a high or low glucose value indication.
In some embodiments, the high glucose value indication is 240 mg/dL and the low glucose value indication is 70 mg/dL.
Certain embodiments include selecting the high or low glucose value indication and navigating to a high or low glucose notification screen, wherein the high or low glucose notification screen includes an option to set a reminder for a next glucose scan.
Certain embodiments include displaying a high or low projected glucose value indication.
In some embodiments, the high projected glucose value indication is 240 mg/dL within the next 15 minutes and the low projected glucose value indication is 70 mg/dL within the next 15 minutes.
Certain embodiments include selecting the high or low projected glucose value indication and navigating to a high or low projected glucose notification screen, wherein the high or low projected glucose notification screen includes an option to set a reminder for a next glucose scan.
In some embodiments, the graphical representation of historical glucose levels includes the prior 8 full clock hours and minutes of the current clock hour.
Certain embodiments include a method of operating a reader device in a masked mode, the method comprising, entering a masked mode, wherein the masked mode precludes display of sensor data on a display of the reader device.
In some embodiments, the masked mode can only be activated or deactivated by a health care professional.
In some embodiments, notifications of completed sensor scans are displayed without results on the display of the reader device.
Certain embodiments include setting reminders to scan for current sensor data after a predetermined time interval.
In some embodiments, a next reminder is reset upon a manual scan.
Certain embodiments include a glucose monitoring system comprising a glucose sensor, a reader device paired with the glucose sensor and a reader software executable on a personal computer, the reader software configured to analyze data saved on the reader device and configure settings associated with the reader device, wherein the reader software automatically launches upon connection of the reader device to the personal computer, wherein the reader software is configured to automatically update the reader device firmware or the reader software upon detection of an available update and wherein the reader software includes a plurality of reports related to glucose data saved on the reader device executable by the reader software.
Certain embodiments include a glucose monitoring system comprising a glucose sensor, a reader device paired with the glucose sensor and including firmware and a reader software executable on a personal computer, the reader software configured to analyze data saved on the reader device and configure settings associated with the reader device, wherein the reader software automatically launches upon connection of the reader device to the personal computer, wherein the reader software is configured to automatically update the reader device firmware or the reader software upon detection of an available update and wherein the reader software includes a plurality of reports related to glucose data saved on the reader device executable by the reader software.
In some embodiments, the reader device must be configured prior to use, wherein configuring the reader device includes associating a user profile with the reader device.
In some embodiments, the reader device software requires a user to configure the reader device prior to use, wherein configuring the reader device includes associating a user profile with the reader device.
In some embodiments, the user profile includes a patient name and a patient ID.
In some embodiments, reader software options are unavailable until the reader device is associated with the user profile.
In some embodiments, the reader software automatically discovers the user profile associated with the reader device when the reader device is connected to the personal computer.
In some embodiments, the reader software checks a time and date information stored on the reader device upon connection of the reader device to the personal computer, and wherein the time and date information are checked versus current time and date information stored on the personal computer.
In some embodiments, the time and date information of the reader device are synchronized automatically or manually with the current time and date information stored on the personal computer.
In some embodiments, the time and date information of the reader device are synchronized with the current time and date information stored on the personal computer.
In some embodiments, the reader software is unavailable to the user when a software or firmware update is in progress.
In some embodiments, the reader software executes one or more of the plurality of reports simultaneously.
In some embodiments, the results of the executed plurality of reports are saved in a PDF format.
In some embodiments, the plurality of reports includes a snapshot report, a daily patterns report, a mealtime patterns report, a monthly summary report, a weekly summary report, and a daily log report.
In some embodiments, the one or more of the plurality of reports includes graphical information and numerical information.
In some embodiments, the reader software includes customizable notes for events associated with the glucose data.
In some embodiments, the reader software includes customizable reminders configurable for execution on the reader device.
In some embodiments, the reader software includes authorized access only options.
In some embodiments, the authorized access only options require an access code for access.
In some embodiments, the authorized access only options include an option to disable or enable a masked mode, wherein the masked mode configures the reader device to not display the glucose data on a display of the reader device.
In some aspects of the present disclosure, analyte monitoring devices are provided. The analyte monitoring devices include a processor; and memory operably coupled to the processor, wherein the memory includes instructions stored therein for operating an analyte monitoring device, the instructions comprising instructions for performing the previously described methods.
It should be understood that techniques introduced herein can be implemented by programmable circuitry programmed or configured by software and/or firmware, or they can be implemented entirely by special-purpose “hardwired” circuitry, or in a combination of such forms. Such special-purpose circuitry (if any) can be in the form of, for example, one or more application-specific integrated circuits (ASICS), programmable logic devices (PLDs), field-programmable gate arrays (FPGAs), etc.
Software or firmware implementing the techniques introduced herein may be stored on a machine-readable storage medium and may be executed by one or more general-purpose or special-purpose programmable microprocessors. A “machine-readable medium”, as the term is used herein, includes any mechanism that can store information in a form accessible by a machine (a machine may be, for example, a computer, network device, cellular phone, personal digital assistant (PDA), manufacturing took, any device with one or more processors, etc.). For example, a machine-accessible medium includes recordable/non-recordable media (e.g., read-only memory (ROM); random access memory (RAM); magnetic disk storage media; optical storage media; flash memory devices; etc.), etc. The term “logic”, as used herein, can include, for example, special purpose hardwired circuitry, software and/or firmware in conjunction with programmable circuitry, or a combination thereof.
The preceding merely illustrates the principles of the invention. It will be appreciated that those skilled in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody the principles of the invention and are included within its spirit and scope. Furthermore, all examples and conditional language recited herein are principally intended to aid the reader in understanding the principles of the invention and the concepts contributed by the inventors to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and aspects of the invention as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents and equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure. The scope of the present invention, therefore, is not intended to be limited to the exemplary aspects shown and described herein. Rather, the scope and spirit of present invention is embodied by the appended claims.
The present application is a continuation of U.S. patent application Ser. No. 14/214,430, filed Mar. 14, 2014, which is a continuation-in-part of and claims priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 13/407,617 filed Feb. 28, 2012, which claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 61/492,266 filed Jun. 1, 2011, entitled “Devices, Systems, and Methods Associated with Analyte Monitoring Devices and Devices Incorporating the Same,” to U.S. Provisional Application No. 61/489,098 filed May 23, 2011, entitled “Devices, Systems, and Methods Associated with Analyte Monitoring Devices and Devices Incorporating the Same,” and to U.S. Provisional Application No. 61/447,645 filed Feb. 28, 2011, entitled “Devices, Systems, and Methods Associated with Analyte Monitoring Devices and Devices Incorporating the Same,” the disclosures of each of which are incorporated herein by reference for all purposes. The present application also claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 61/801,518 filed Mar. 15, 2013, entitled “Devices, Systems, and Methods Associated with Analyte Monitoring Devices and Devices Incorporating the Same,” the disclosure of which is incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3581062 | Aston | May 1971 | A |
3926760 | Allen et al. | Dec 1975 | A |
3949388 | Fuller | Apr 1976 | A |
4036749 | Anderson | Jul 1977 | A |
4055175 | Clemens et al. | Oct 1977 | A |
4129128 | McFarlane | Dec 1978 | A |
4245634 | Albisser et al. | Jan 1981 | A |
4327725 | Cortese et al. | May 1982 | A |
4344438 | Schultz | Aug 1982 | A |
4349728 | Phillips et al. | Sep 1982 | A |
4425920 | Bourland et al. | Jan 1984 | A |
4441968 | Emmer et al. | Apr 1984 | A |
4464170 | Clemens et al. | Aug 1984 | A |
4478976 | Goertz et al. | Oct 1984 | A |
4494950 | Fischell | Jan 1985 | A |
4509531 | Ward | Apr 1985 | A |
4527240 | Kvitash | Jul 1985 | A |
4538616 | Rogoff | Sep 1985 | A |
4545382 | Higgins et al. | Oct 1985 | A |
4619793 | Lee | Oct 1986 | A |
4671288 | Gough | Jun 1987 | A |
4703756 | Gough et al. | Nov 1987 | A |
4711245 | Higgins et al. | Dec 1987 | A |
4731726 | Allen, III | Mar 1988 | A |
4749985 | Corsberg | Jun 1988 | A |
4757022 | Shults et al. | Jul 1988 | A |
4777953 | Ash et al. | Oct 1988 | A |
4779618 | Mund et al. | Oct 1988 | A |
4847785 | Stephens | Jul 1989 | A |
4854322 | Ash et al. | Aug 1989 | A |
4890620 | Gough | Jan 1990 | A |
4925268 | Iyer et al. | May 1990 | A |
4953552 | DeMarzo | Sep 1990 | A |
4986271 | Wilkins | Jan 1991 | A |
4995402 | Smith et al. | Feb 1991 | A |
5000180 | Kuypers et al. | Mar 1991 | A |
5002054 | Ash et al. | Mar 1991 | A |
5019974 | Beckers | May 1991 | A |
5050612 | Matsumura | Sep 1991 | A |
5051688 | Murase et al. | Sep 1991 | A |
5055171 | Peck | Oct 1991 | A |
5082550 | Rishpon et al. | Jan 1992 | A |
5106365 | Hernandez | Apr 1992 | A |
5122925 | Inpyn | Jun 1992 | A |
5135004 | Adams et al. | Aug 1992 | A |
5165407 | Wilson et al. | Nov 1992 | A |
5202261 | Musho et al. | Apr 1993 | A |
5210778 | Massart | May 1993 | A |
5228449 | Christ et al. | Jul 1993 | A |
5231988 | Wernicke et al. | Aug 1993 | A |
5246867 | Lakowicz et al. | Sep 1993 | A |
5251126 | Kahn et al. | Oct 1993 | A |
5262035 | Gregg et al. | Nov 1993 | A |
5262305 | Heller et al. | Nov 1993 | A |
5264104 | Gregg et al. | Nov 1993 | A |
5264105 | Gregg et al. | Nov 1993 | A |
5279294 | Anderson et al. | Jan 1994 | A |
5285792 | Sjoquist et al. | Feb 1994 | A |
5293877 | O'Hara et al. | Mar 1994 | A |
5299571 | Mastrototaro | Apr 1994 | A |
5320715 | Berg | Jun 1994 | A |
5320725 | Gregg et al. | Jun 1994 | A |
5322063 | Allen et al. | Jun 1994 | A |
5340722 | Wolfbeis et al. | Aug 1994 | A |
5342789 | Chick et al. | Aug 1994 | A |
5356786 | Heller et al. | Oct 1994 | A |
5360404 | Novacek et al. | Nov 1994 | A |
5372427 | Padovani et al. | Dec 1994 | A |
5379238 | Stark | Jan 1995 | A |
5384547 | Lynk et al. | Jan 1995 | A |
5390671 | Lord et al. | Feb 1995 | A |
5391250 | Cheney, II et al. | Feb 1995 | A |
5394877 | Orr et al. | Mar 1995 | A |
5402780 | Faasse, Jr. | Apr 1995 | A |
5408999 | Singh et al. | Apr 1995 | A |
5410326 | Goldstein | Apr 1995 | A |
5411647 | Johnson et al. | May 1995 | A |
5431160 | Wilkins | Jul 1995 | A |
5431921 | Thombre | Jul 1995 | A |
5462645 | Albery et al. | Oct 1995 | A |
5472317 | Field et al. | Dec 1995 | A |
5489414 | Schreiber et al. | Feb 1996 | A |
5497772 | Schulman et al. | Mar 1996 | A |
5507288 | Bocker et al. | Apr 1996 | A |
5509410 | Hill et al. | Apr 1996 | A |
5514718 | Lewis et al. | May 1996 | A |
5531878 | Vadgama et al. | Jul 1996 | A |
5532686 | Urbas et al. | Jul 1996 | A |
5543326 | Heller et al. | Aug 1996 | A |
5552997 | Massart | Sep 1996 | A |
5568806 | Cheney, II et al. | Oct 1996 | A |
5569186 | Lord et al. | Oct 1996 | A |
5582184 | Erickson et al. | Dec 1996 | A |
5586553 | Halili et al. | Dec 1996 | A |
5593852 | Heller et al. | Jan 1997 | A |
5601435 | Quy | Feb 1997 | A |
5609575 | Larson et al. | Mar 1997 | A |
5628310 | Rao et al. | May 1997 | A |
5628890 | Nigel et al. | May 1997 | A |
5634468 | Platt et al. | Jun 1997 | A |
5640954 | Pfeiffer et al. | Jun 1997 | A |
5653239 | Pompei et al. | Aug 1997 | A |
5665222 | Heller et al. | Sep 1997 | A |
5707502 | McCaffrey et al. | Jan 1998 | A |
5711001 | Bussan et al. | Jan 1998 | A |
5711861 | Ward et al. | Jan 1998 | A |
5724030 | Urbas et al. | Mar 1998 | A |
5726646 | Bane et al. | Mar 1998 | A |
5735285 | Albert et al. | Apr 1998 | A |
5748103 | Flach et al. | May 1998 | A |
5749907 | Mann | May 1998 | A |
5772586 | Heinonen et al. | Jun 1998 | A |
5791344 | Schulman et al. | Aug 1998 | A |
5794219 | Brown | Aug 1998 | A |
5804047 | Karube et al. | Sep 1998 | A |
5807375 | Gross et al. | Sep 1998 | A |
5820551 | Hill et al. | Oct 1998 | A |
5822715 | Worthington et al. | Oct 1998 | A |
5875186 | Belanger et al. | Feb 1999 | A |
5891049 | Cyrus et al. | Apr 1999 | A |
5899855 | Brown | May 1999 | A |
5914026 | Blubaugh, Jr. et al. | Jun 1999 | A |
5918603 | Brown | Jul 1999 | A |
5925021 | Castellano et al. | Jul 1999 | A |
5942979 | Luppino | Aug 1999 | A |
5951485 | Cyrus et al. | Sep 1999 | A |
5951521 | Mastrototaro et al. | Sep 1999 | A |
5957854 | Besson et al. | Sep 1999 | A |
5961451 | Reber et al. | Oct 1999 | A |
5964993 | Blubaugh, Jr. et al. | Oct 1999 | A |
5965380 | Heller et al. | Oct 1999 | A |
5971922 | Arita et al. | Oct 1999 | A |
5987353 | Khatchatrian et al. | Nov 1999 | A |
5995860 | Sun et al. | Nov 1999 | A |
6001067 | Shults et al. | Dec 1999 | A |
6022315 | Iliff | Feb 2000 | A |
6024699 | Surwit et al. | Feb 2000 | A |
6028413 | Brockmann | Feb 2000 | A |
6049727 | Crothall | Apr 2000 | A |
6052565 | Ishikura et al. | Apr 2000 | A |
6066243 | Anderson et al. | May 2000 | A |
6071391 | Gotoh et al. | Jun 2000 | A |
6083710 | Heller et al. | Jul 2000 | A |
6088608 | Schulman et al. | Jul 2000 | A |
6091975 | Daddona et al. | Jul 2000 | A |
6091976 | Pfeiffer et al. | Jul 2000 | A |
6091987 | Thompson | Jul 2000 | A |
6093172 | Funderburk et al. | Jul 2000 | A |
6096364 | Bok et al. | Aug 2000 | A |
6103033 | Say et al. | Aug 2000 | A |
6117290 | Say et al. | Sep 2000 | A |
6119028 | Schulman et al. | Sep 2000 | A |
6120676 | Heller et al. | Sep 2000 | A |
6121009 | Heller et al. | Sep 2000 | A |
6121611 | Lindsay et al. | Sep 2000 | A |
6122351 | Schlueter, Jr. et al. | Sep 2000 | A |
6129823 | Hughes et al. | Oct 2000 | A |
6130623 | MacLellan et al. | Oct 2000 | A |
6134461 | Say et al. | Oct 2000 | A |
6141573 | Kurnik et al. | Oct 2000 | A |
6143164 | Heller et al. | Nov 2000 | A |
6144837 | Quy | Nov 2000 | A |
6144871 | Saito et al. | Nov 2000 | A |
6159147 | Lichter et al. | Dec 2000 | A |
6161095 | Brown | Dec 2000 | A |
6162611 | Heller et al. | Dec 2000 | A |
6167362 | Brown | Dec 2000 | A |
6175752 | Say et al. | Jan 2001 | B1 |
6200265 | Walsh et al. | Mar 2001 | B1 |
6212416 | Ward et al. | Apr 2001 | B1 |
6219574 | Cormier et al. | Apr 2001 | B1 |
6248065 | Brown | Jun 2001 | B1 |
6248067 | Causey, III et al. | Jun 2001 | B1 |
6254586 | Mann et al. | Jul 2001 | B1 |
6270455 | Brown | Aug 2001 | B1 |
6275717 | Gross et al. | Aug 2001 | B1 |
6283761 | Joao | Sep 2001 | B1 |
6284478 | Heller et al. | Sep 2001 | B1 |
6291200 | LeJeune et al. | Sep 2001 | B1 |
6293925 | Safabash et al. | Sep 2001 | B1 |
6294997 | Paratore et al. | Sep 2001 | B1 |
6295506 | Heinonen et al. | Sep 2001 | B1 |
6299757 | Feldman et al. | Oct 2001 | B1 |
6306104 | Cunningham et al. | Oct 2001 | B1 |
6309884 | Cooper et al. | Oct 2001 | B1 |
6314317 | Willis | Nov 2001 | B1 |
6329161 | Heller et al. | Dec 2001 | B1 |
6338790 | Feldman et al. | Jan 2002 | B1 |
6348640 | Navot et al. | Feb 2002 | B1 |
6359270 | Bridson | Mar 2002 | B1 |
6359444 | Grimes | Mar 2002 | B1 |
6360888 | McIvor et al. | Mar 2002 | B1 |
6366794 | Moussy et al. | Apr 2002 | B1 |
6368273 | Brown | Apr 2002 | B1 |
6377828 | Chaiken et al. | Apr 2002 | B1 |
6377894 | Deweese et al. | Apr 2002 | B1 |
6379301 | Worthington et al. | Apr 2002 | B1 |
6400974 | Lesho | Jun 2002 | B1 |
6416471 | Kumar et al. | Jul 2002 | B1 |
6418332 | Mastrototaro et al. | Jul 2002 | B1 |
6418346 | Nelson et al. | Jul 2002 | B1 |
6424847 | Mastrototaro et al. | Jul 2002 | B1 |
6427088 | Bowman, IV et al. | Jul 2002 | B1 |
6440068 | Brown et al. | Aug 2002 | B1 |
6461496 | Feldman et al. | Oct 2002 | B1 |
6471689 | Joseph et al. | Oct 2002 | B1 |
6478736 | Mault | Nov 2002 | B1 |
6484045 | Holker et al. | Nov 2002 | B1 |
6484046 | Say et al. | Nov 2002 | B1 |
6493069 | Nagashimada et al. | Dec 2002 | B1 |
6496729 | Thompson | Dec 2002 | B2 |
6497655 | Linberg et al. | Dec 2002 | B1 |
6498043 | Schulman et al. | Dec 2002 | B1 |
6503381 | Gotoh et al. | Jan 2003 | B1 |
6514460 | Fendrock | Feb 2003 | B1 |
6514718 | Heller et al. | Feb 2003 | B2 |
6540891 | Stewart et al. | Apr 2003 | B1 |
6546268 | Ishikawa et al. | Apr 2003 | B1 |
6549796 | Sohrab | Apr 2003 | B2 |
6551494 | Heller et al. | Apr 2003 | B1 |
6554798 | Mann et al. | Apr 2003 | B1 |
6558320 | Causey, III et al. | May 2003 | B1 |
6558321 | Burd et al. | May 2003 | B1 |
6558351 | Steil et al. | May 2003 | B1 |
6560471 | Heller et al. | May 2003 | B1 |
6561975 | Pool et al. | May 2003 | B1 |
6561978 | Conn et al. | May 2003 | B1 |
6562001 | Lebel et al. | May 2003 | B2 |
6564105 | Starkweather et al. | May 2003 | B2 |
6565509 | Say et al. | May 2003 | B1 |
6571128 | Lebel et al. | May 2003 | B2 |
6572542 | Houben et al. | Jun 2003 | B1 |
6574490 | Abbink et al. | Jun 2003 | B2 |
6574510 | Von Arx et al. | Jun 2003 | B2 |
6576101 | Heller et al. | Jun 2003 | B1 |
6577899 | Lebel et al. | Jun 2003 | B2 |
6579231 | Phipps | Jun 2003 | B1 |
6579690 | Bonnecaze et al. | Jun 2003 | B1 |
6585644 | Lebel et al. | Jul 2003 | B2 |
6591125 | Buse et al. | Jul 2003 | B1 |
6592745 | Feldman et al. | Jul 2003 | B1 |
6595919 | Berner et al. | Jul 2003 | B2 |
6600997 | Deweese et al. | Jul 2003 | B2 |
6605200 | Mao et al. | Aug 2003 | B1 |
6605201 | Mao et al. | Aug 2003 | B1 |
6607509 | Bobroff et al. | Aug 2003 | B2 |
6610012 | Mault | Aug 2003 | B2 |
6616819 | Liamos et al. | Sep 2003 | B1 |
6618934 | Feldman et al. | Sep 2003 | B1 |
6633772 | Ford et al. | Oct 2003 | B2 |
6635014 | Starkweather et al. | Oct 2003 | B2 |
6635167 | Batman et al. | Oct 2003 | B1 |
6641533 | Causey, III et al. | Nov 2003 | B2 |
6648821 | Lebel et al. | Nov 2003 | B2 |
6650471 | Doi | Nov 2003 | B2 |
6654625 | Say et al. | Nov 2003 | B1 |
6658396 | Tang et al. | Dec 2003 | B1 |
6659948 | Lebel et al. | Dec 2003 | B2 |
6668196 | Villegas et al. | Dec 2003 | B1 |
6676816 | Mao et al. | Jan 2004 | B2 |
6687546 | Lebel et al. | Feb 2004 | B2 |
6689056 | Kilcoyne et al. | Feb 2004 | B1 |
6694191 | Starkweather et al. | Feb 2004 | B2 |
6695860 | Ward et al. | Feb 2004 | B1 |
6702857 | Brauker et al. | Mar 2004 | B2 |
6730200 | Stewart et al. | May 2004 | B1 |
6731976 | Penn et al. | May 2004 | B2 |
6733446 | Lebel et al. | May 2004 | B2 |
6735183 | O'Toole et al. | May 2004 | B2 |
6736957 | Forrow et al. | May 2004 | B1 |
6740075 | Lebel et al. | May 2004 | B2 |
6741877 | Shults et al. | May 2004 | B1 |
6743635 | Neel et al. | Jun 2004 | B2 |
6746582 | Heller et al. | Jun 2004 | B2 |
6749740 | Liamos et al. | Jun 2004 | B2 |
6758810 | Lebel et al. | Jul 2004 | B2 |
6764581 | Forrow et al. | Jul 2004 | B1 |
6770030 | Schaupp et al. | Aug 2004 | B1 |
6773671 | Lewis et al. | Aug 2004 | B1 |
6789195 | Prihoda et al. | Sep 2004 | B1 |
6790178 | Mault et al. | Sep 2004 | B1 |
6804558 | Haller et al. | Oct 2004 | B2 |
6809653 | Mann et al. | Oct 2004 | B1 |
6810290 | Lebel et al. | Oct 2004 | B2 |
6811533 | Lebel et al. | Nov 2004 | B2 |
6811534 | Bowman, IV et al. | Nov 2004 | B2 |
6813519 | Lebel et al. | Nov 2004 | B2 |
6837858 | Cunningham et al. | Jan 2005 | B2 |
6862465 | Shults et al. | Mar 2005 | B2 |
6873268 | Lebel et al. | Mar 2005 | B2 |
6878112 | Linberg et al. | Apr 2005 | B2 |
6881551 | Heller et al. | Apr 2005 | B2 |
6892085 | McIvor et al. | May 2005 | B2 |
6893545 | Gotoh et al. | May 2005 | B2 |
6895265 | Silver | May 2005 | B2 |
6923763 | Kovatchev et al. | Aug 2005 | B1 |
6923764 | Aceti et al. | Aug 2005 | B2 |
6931327 | Goode, Jr. et al. | Aug 2005 | B2 |
6932892 | Chen et al. | Aug 2005 | B2 |
6932894 | Mao et al. | Aug 2005 | B2 |
6936006 | Sabra | Aug 2005 | B2 |
6940403 | Kail, IV | Sep 2005 | B2 |
6941163 | Ford et al. | Sep 2005 | B2 |
6942518 | Liamos et al. | Sep 2005 | B2 |
6950708 | Bowman, IV et al. | Sep 2005 | B2 |
6958705 | Lebel et al. | Oct 2005 | B2 |
6968294 | Gutta et al. | Nov 2005 | B2 |
6968375 | Brown | Nov 2005 | B1 |
6971274 | Olin | Dec 2005 | B2 |
6974437 | Lebel et al. | Dec 2005 | B2 |
6990366 | Say et al. | Jan 2006 | B2 |
6997907 | Safabash et al. | Feb 2006 | B2 |
6998247 | Monfre et al. | Feb 2006 | B2 |
6999854 | Roth | Feb 2006 | B2 |
7003336 | Holker et al. | Feb 2006 | B2 |
7003340 | Say et al. | Feb 2006 | B2 |
7003341 | Say et al. | Feb 2006 | B2 |
7009511 | Mazar et al. | Mar 2006 | B2 |
7015817 | Copley et al. | Mar 2006 | B2 |
7016713 | Gardner et al. | Mar 2006 | B2 |
7020508 | Stivoric et al. | Mar 2006 | B2 |
7024236 | Ford et al. | Apr 2006 | B2 |
7024245 | Lebel et al. | Apr 2006 | B2 |
7025774 | Freeman et al. | Apr 2006 | B2 |
7027848 | Robinson et al. | Apr 2006 | B2 |
7027931 | Jones et al. | Apr 2006 | B1 |
7041068 | Freeman et al. | May 2006 | B2 |
7041468 | Drucker et al. | May 2006 | B2 |
7043305 | KenKnight et al. | May 2006 | B2 |
7046153 | Oja et al. | May 2006 | B2 |
7052483 | Wojcik | May 2006 | B2 |
7056302 | Douglas | Jun 2006 | B2 |
7058453 | Nelson et al. | Jun 2006 | B2 |
7060031 | Webb et al. | Jun 2006 | B2 |
7074307 | Simpson et al. | Jul 2006 | B2 |
7081195 | Simpson et al. | Jul 2006 | B2 |
7082334 | Boute et al. | Jul 2006 | B2 |
7092891 | Maus et al. | Aug 2006 | B2 |
7098803 | Mann et al. | Aug 2006 | B2 |
7108778 | Simpson et al. | Sep 2006 | B2 |
7110803 | Shults et al. | Sep 2006 | B2 |
7113821 | Sun et al. | Sep 2006 | B1 |
7123950 | Mannheimer | Oct 2006 | B2 |
7125382 | Zhou et al. | Oct 2006 | B2 |
7134999 | Brauker et al. | Nov 2006 | B2 |
7136689 | Shults et al. | Nov 2006 | B2 |
7153265 | Vachon | Dec 2006 | B2 |
7155290 | Von Arx et al. | Dec 2006 | B2 |
7167818 | Brown | Jan 2007 | B2 |
7171274 | Starkweather et al. | Jan 2007 | B2 |
7179226 | Crothall et al. | Feb 2007 | B2 |
7190988 | Say et al. | Mar 2007 | B2 |
7192450 | Brauker et al. | Mar 2007 | B2 |
7198606 | Boecker et al. | Apr 2007 | B2 |
7203549 | Schommer et al. | Apr 2007 | B2 |
7207974 | Safabash et al. | Apr 2007 | B2 |
7223236 | Brown | May 2007 | B2 |
7226442 | Sheppard et al. | Jun 2007 | B2 |
7226978 | Tapsak et al. | Jun 2007 | B2 |
7228182 | Healy et al. | Jun 2007 | B2 |
7237712 | DeRocco et al. | Jul 2007 | B2 |
7258666 | Brown | Aug 2007 | B2 |
7276029 | Goode, Jr. et al. | Oct 2007 | B2 |
7278983 | Ireland et al. | Oct 2007 | B2 |
7286894 | Grant et al. | Oct 2007 | B1 |
7299082 | Feldman et al. | Nov 2007 | B2 |
7310544 | Brister et al. | Dec 2007 | B2 |
7318816 | Bobroff et al. | Jan 2008 | B2 |
7324012 | Mann et al. | Jan 2008 | B2 |
7324850 | Persen et al. | Jan 2008 | B2 |
7329239 | Safabash et al. | Feb 2008 | B2 |
7335294 | Heller et al. | Feb 2008 | B2 |
7354420 | Steil et al. | Apr 2008 | B2 |
7364592 | Carr-Brendel et al. | Apr 2008 | B2 |
7366556 | Brister et al. | Apr 2008 | B2 |
7347819 | Lebel et al. | May 2008 | B2 |
7379765 | Petisce et al. | May 2008 | B2 |
7381184 | Funderburk et al. | Jun 2008 | B2 |
7384397 | Zhang et al. | Jun 2008 | B2 |
7387010 | Sunshine et al. | Jun 2008 | B2 |
7392167 | Brown | Jun 2008 | B2 |
7399277 | Saidara et al. | Jul 2008 | B2 |
7402153 | Steil et al. | Jul 2008 | B2 |
7419573 | Gundel | Sep 2008 | B2 |
7424318 | Brister et al. | Sep 2008 | B2 |
7429258 | Angel et al. | Sep 2008 | B2 |
7455663 | Bikovsky | Nov 2008 | B2 |
7460898 | Brister et al. | Dec 2008 | B2 |
7462264 | Heller et al. | Dec 2008 | B2 |
7467003 | Brister et al. | Dec 2008 | B2 |
7471972 | Rhodes et al. | Dec 2008 | B2 |
7492254 | Bandy et al. | Feb 2009 | B2 |
7494465 | Brister et al. | Feb 2009 | B2 |
7497827 | Brister et al. | Mar 2009 | B2 |
7499002 | Blasko et al. | Mar 2009 | B2 |
7501053 | Karinka et al. | Mar 2009 | B2 |
7519408 | Rasdal et al. | Apr 2009 | B2 |
7565197 | Haubrich et al. | Jul 2009 | B2 |
7574266 | Dudding et al. | Aug 2009 | B2 |
7583990 | Goode, Jr. et al. | Sep 2009 | B2 |
7591801 | Brauker et al. | Sep 2009 | B2 |
7599726 | Goode, Jr. et al. | Oct 2009 | B2 |
7602310 | Mann et al. | Oct 2009 | B2 |
7604178 | Stewart | Oct 2009 | B2 |
7613491 | Boock et al. | Nov 2009 | B2 |
7615007 | Shults et al. | Nov 2009 | B2 |
7618369 | Hayter et al. | Nov 2009 | B2 |
7624028 | Brown | Nov 2009 | B1 |
7630748 | Budiman | Dec 2009 | B2 |
7632228 | Brauker et al. | Dec 2009 | B2 |
7635594 | Holmes et al. | Dec 2009 | B2 |
7637868 | Saint et al. | Dec 2009 | B2 |
7640048 | Dobbles et al. | Dec 2009 | B2 |
7643971 | Brown | Jan 2010 | B2 |
7647237 | Malave et al. | Jan 2010 | B2 |
7651596 | Petisce et al. | Jan 2010 | B2 |
7651845 | Doyle, III et al. | Jan 2010 | B2 |
7654956 | Brister et al. | Feb 2010 | B2 |
7657297 | Simpson et al. | Feb 2010 | B2 |
7659823 | Killian et al. | Feb 2010 | B1 |
7668596 | Von Arx et al. | Feb 2010 | B2 |
7684999 | Brown | Mar 2010 | B2 |
7689440 | Brown | Mar 2010 | B2 |
7697967 | Stafford | Apr 2010 | B2 |
7699775 | Desai et al. | Apr 2010 | B2 |
7711402 | Shults et al. | May 2010 | B2 |
7713574 | Brister et al. | May 2010 | B2 |
7715893 | Kamath et al. | May 2010 | B2 |
7727147 | Osorio et al. | Jun 2010 | B1 |
7731657 | Stafford | Jun 2010 | B2 |
7736310 | Taub | Jun 2010 | B2 |
7736344 | Moberg et al. | Jun 2010 | B2 |
7741734 | Joannopoulos et al. | Jun 2010 | B2 |
7754093 | Forrow et al. | Jul 2010 | B2 |
7763042 | Iio et al. | Jul 2010 | B2 |
7766829 | Sloan et al. | Aug 2010 | B2 |
7768387 | Fennell et al. | Aug 2010 | B2 |
7779332 | Karr et al. | Aug 2010 | B2 |
7782192 | Jeckelmann et al. | Aug 2010 | B2 |
7783333 | Brister et al. | Aug 2010 | B2 |
7791467 | Mazar et al. | Sep 2010 | B2 |
7792562 | Shults et al. | Sep 2010 | B2 |
7811231 | Jin et al. | Oct 2010 | B2 |
7813809 | Strother et al. | Oct 2010 | B2 |
7822454 | Alden et al. | Oct 2010 | B1 |
7826382 | Sicurello et al. | Nov 2010 | B2 |
7831310 | Lebel et al. | Nov 2010 | B2 |
7860574 | Von Arx et al. | Dec 2010 | B2 |
7866026 | Wang et al. | Jan 2011 | B1 |
7877274 | Brown | Jan 2011 | B2 |
7877276 | Brown | Jan 2011 | B2 |
7882611 | Shah et al. | Feb 2011 | B2 |
7889069 | Fifolt et al. | Feb 2011 | B2 |
7899545 | John | Mar 2011 | B2 |
7912674 | Killoren Clark et al. | Mar 2011 | B2 |
7914460 | Melker et al. | Mar 2011 | B2 |
7916013 | Stevenson | Mar 2011 | B2 |
7921186 | Brown | Apr 2011 | B2 |
7937255 | Brown | May 2011 | B2 |
7938797 | Estes | May 2011 | B2 |
7941200 | Weinert et al. | May 2011 | B2 |
7941308 | Brown | May 2011 | B2 |
7941323 | Brown | May 2011 | B2 |
7941326 | Brown | May 2011 | B2 |
7941327 | Brown | May 2011 | B2 |
7946985 | Mastrototaro et al. | May 2011 | B2 |
7949507 | Brown | May 2011 | B2 |
7955258 | Goscha et al. | Jun 2011 | B2 |
7966230 | Brown | Jun 2011 | B2 |
7970448 | Shults et al. | Jun 2011 | B2 |
7970620 | Brown | Jun 2011 | B2 |
7972267 | Brown | Jul 2011 | B2 |
7972296 | Braig et al. | Jul 2011 | B2 |
7976466 | Ward et al. | Jul 2011 | B2 |
7976467 | Young et al. | Jul 2011 | B2 |
7978063 | Baldus et al. | Jul 2011 | B2 |
7979259 | Brown | Jul 2011 | B2 |
7979284 | Brown | Jul 2011 | B2 |
7999674 | Kamen | Aug 2011 | B2 |
8010174 | Goode et al. | Aug 2011 | B2 |
8010256 | Oowada | Aug 2011 | B2 |
8015025 | Brown | Sep 2011 | B2 |
8015030 | Brown | Sep 2011 | B2 |
8015033 | Brown | Sep 2011 | B2 |
8019618 | Brown | Sep 2011 | B2 |
8024201 | Brown | Sep 2011 | B2 |
8032399 | Brown | Oct 2011 | B2 |
8072310 | Everhart | Dec 2011 | B1 |
8090445 | Ginggen | Jan 2012 | B2 |
8093991 | Stevenson et al. | Jan 2012 | B2 |
8094009 | Allen et al. | Jan 2012 | B2 |
8098159 | Batra et al. | Jan 2012 | B2 |
8098160 | Howarth et al. | Jan 2012 | B2 |
8098161 | Lavedas | Jan 2012 | B2 |
8098201 | Choi et al. | Jan 2012 | B2 |
8098208 | Ficker et al. | Jan 2012 | B2 |
8102021 | Degani | Jan 2012 | B2 |
8102154 | Bishop et al. | Jan 2012 | B2 |
8102263 | Yeo et al. | Jan 2012 | B2 |
8102789 | Rosar et al. | Jan 2012 | B2 |
8103241 | Young et al. | Jan 2012 | B2 |
8103325 | Swedlow et al. | Jan 2012 | B2 |
8111042 | Bennett | Feb 2012 | B2 |
8115488 | McDowell | Feb 2012 | B2 |
8116681 | Baarman | Feb 2012 | B2 |
8116683 | Baarman | Feb 2012 | B2 |
8117481 | Anselmi et al. | Feb 2012 | B2 |
8120493 | Burr | Feb 2012 | B2 |
8124452 | Sheats | Feb 2012 | B2 |
8130093 | Mazar et al. | Mar 2012 | B2 |
8131351 | Kalgren et al. | Mar 2012 | B2 |
8131365 | Zhang et al. | Mar 2012 | B2 |
8131565 | Dicks et al. | Mar 2012 | B2 |
8132037 | Fehr et al. | Mar 2012 | B2 |
8135352 | Langsweirdt et al. | Mar 2012 | B2 |
8136735 | Arai et al. | Mar 2012 | B2 |
8138925 | Downie et al. | Mar 2012 | B2 |
8140160 | Pless et al. | Mar 2012 | B2 |
8140168 | Olson et al. | Mar 2012 | B2 |
8140299 | Siess | Mar 2012 | B2 |
8150321 | Winter et al. | Apr 2012 | B2 |
8150516 | Levine et al. | Apr 2012 | B2 |
8160900 | Taub et al. | Apr 2012 | B2 |
8179266 | Hermle | May 2012 | B2 |
8192394 | Estes et al. | Jun 2012 | B2 |
8216138 | McGarraugh et al. | Jul 2012 | B1 |
8282549 | Brauker et al. | Oct 2012 | B2 |
8328719 | Young et al. | Dec 2012 | B2 |
8348843 | Young et al. | Jan 2013 | B2 |
8461985 | Fennell et al. | Jun 2013 | B2 |
8514086 | Harper et al. | Aug 2013 | B2 |
8521558 | Malave et al. | Aug 2013 | B2 |
8597570 | Terashima et al. | Dec 2013 | B2 |
8652037 | Bakarania et al. | Feb 2014 | B2 |
8816862 | Taub et al. | Aug 2014 | B2 |
8905965 | Mandro et al. | Dec 2014 | B2 |
9136939 | Galley et al. | Sep 2015 | B2 |
9186113 | Harper et al. | Nov 2015 | B2 |
9226714 | Harper et al. | Jan 2016 | B2 |
9341614 | Bielawa et al. | May 2016 | B2 |
9419704 | Galley et al. | Aug 2016 | B2 |
9532737 | Karan | Jan 2017 | B2 |
10010273 | Sloan | Jul 2018 | B2 |
10136845 | Taub | Nov 2018 | B2 |
10449294 | Estes | Oct 2019 | B1 |
10595756 | Taub | Mar 2020 | B2 |
11166650 | Tubb | Nov 2021 | B2 |
20010011224 | Brown | Aug 2001 | A1 |
20010020124 | Tamada | Sep 2001 | A1 |
20010037060 | Thompson et al. | Nov 2001 | A1 |
20010037366 | Webb et al. | Nov 2001 | A1 |
20010047604 | Valiulis | Dec 2001 | A1 |
20020019022 | Dunn et al. | Feb 2002 | A1 |
20020042090 | Heller et al. | Apr 2002 | A1 |
20020054320 | Ogino | May 2002 | A1 |
20020072784 | Sheppard et al. | Jun 2002 | A1 |
20020095076 | Krausman et al. | Jul 2002 | A1 |
20020103499 | Perez et al. | Aug 2002 | A1 |
20020106709 | Potts et al. | Aug 2002 | A1 |
20020111832 | Judge | Aug 2002 | A1 |
20020128594 | Das et al. | Sep 2002 | A1 |
20020133107 | Darcey | Sep 2002 | A1 |
20020147135 | Schnell | Oct 2002 | A1 |
20020161288 | Shin et al. | Oct 2002 | A1 |
20020788748 | Blackwell et al. | Dec 2002 | |
20030005464 | Gropper et al. | Jan 2003 | A1 |
20030021729 | Moller et al. | Jan 2003 | A1 |
20030023317 | Brauker et al. | Jan 2003 | A1 |
20030023461 | Quintanilla et al. | Jan 2003 | A1 |
20030028089 | Galley et al. | Feb 2003 | A1 |
20030032867 | Crothall et al. | Feb 2003 | A1 |
20030032874 | Rhodes et al. | Feb 2003 | A1 |
20030042137 | Mao et al. | Mar 2003 | A1 |
20030060692 | Ruchti et al. | Mar 2003 | A1 |
20030060753 | Starkweather et al. | Mar 2003 | A1 |
20030065308 | Lebel et al. | Apr 2003 | A1 |
20030100040 | Bonnecaze et al. | May 2003 | A1 |
20030114897 | Von Arx et al. | Jun 2003 | A1 |
20030134347 | Heller et al. | Jul 2003 | A1 |
20030147515 | Kai et al. | Aug 2003 | A1 |
20030163351 | Brown | Aug 2003 | A1 |
20030168338 | Gao et al. | Sep 2003 | A1 |
20030176933 | Lebel et al. | Sep 2003 | A1 |
20030187338 | Say et al. | Oct 2003 | A1 |
20030199790 | Boecker et al. | Oct 2003 | A1 |
20030208113 | Mault et al. | Nov 2003 | A1 |
20030212379 | Bylund et al. | Nov 2003 | A1 |
20030217966 | Tapsak et al. | Nov 2003 | A1 |
20040010207 | Flaherty et al. | Jan 2004 | A1 |
20040011671 | Shults et al. | Jan 2004 | A1 |
20040015102 | Cummings et al. | Jan 2004 | A1 |
20040040840 | Mao et al. | Mar 2004 | A1 |
20040041749 | Dixon | Mar 2004 | A1 |
20040045879 | Shults et al. | Mar 2004 | A1 |
20040054263 | Moerman et al. | Mar 2004 | A1 |
20040060818 | Feldman et al. | Apr 2004 | A1 |
20040063435 | Sakamoto et al. | Apr 2004 | A1 |
20040064068 | DeNuzzio et al. | Apr 2004 | A1 |
20040073266 | Haefner et al. | Apr 2004 | A1 |
20040078215 | Dahlin et al. | Apr 2004 | A1 |
20040099529 | Mao et al. | May 2004 | A1 |
20040106858 | Say et al. | Jun 2004 | A1 |
20040117210 | Brown | Jun 2004 | A1 |
20040122353 | Shahmirian et al. | Jun 2004 | A1 |
20040133164 | Funderburk et al. | Jul 2004 | A1 |
20040133390 | Osorio et al. | Jul 2004 | A1 |
20040135684 | Steinthal et al. | Jul 2004 | A1 |
20040138588 | Saikley et al. | Jul 2004 | A1 |
20040147872 | Thompson | Jul 2004 | A1 |
20040152622 | Keith et al. | Aug 2004 | A1 |
20040167801 | Say et al. | Aug 2004 | A1 |
20040171921 | Say et al. | Sep 2004 | A1 |
20040172307 | Gruber | Sep 2004 | A1 |
20040176672 | Silver et al. | Sep 2004 | A1 |
20040186362 | Brauker et al. | Sep 2004 | A1 |
20040186365 | Jin et al. | Sep 2004 | A1 |
20040193090 | Lebel et al. | Sep 2004 | A1 |
20040199059 | Brauker et al. | Oct 2004 | A1 |
20040204687 | Mogensen et al. | Oct 2004 | A1 |
20040204868 | Maynard et al. | Oct 2004 | A1 |
20040223985 | Dunfiled et al. | Nov 2004 | A1 |
20040225338 | Lebel et al. | Nov 2004 | A1 |
20040236200 | Say et al. | Nov 2004 | A1 |
20040249253 | Racchini et al. | Dec 2004 | A1 |
20040254433 | Bandis et al. | Dec 2004 | A1 |
20040254434 | Goodnow et al. | Dec 2004 | A1 |
20040260478 | Schwamm | Dec 2004 | A1 |
20040267300 | Mace | Dec 2004 | A1 |
20050001024 | Kusaka et al. | Jan 2005 | A1 |
20050003470 | Nelson et al. | Jan 2005 | A1 |
20050004494 | Perez et al. | Jan 2005 | A1 |
20050010269 | Lebel et al. | Jan 2005 | A1 |
20050027177 | Shin et al. | Feb 2005 | A1 |
20050031689 | Shults et al. | Feb 2005 | A1 |
20050038680 | McMahon | Feb 2005 | A1 |
20050043598 | Goode, Jr. et al. | Feb 2005 | A1 |
20050049179 | Davidson et al. | Mar 2005 | A1 |
20050060194 | Brown | Mar 2005 | A1 |
20050070774 | Addison et al. | Mar 2005 | A1 |
20050090607 | Tapsak et al. | Apr 2005 | A1 |
20050096511 | Fox et al. | May 2005 | A1 |
20050096516 | Soykan et al. | May 2005 | A1 |
20050112169 | Brauker et al. | May 2005 | A1 |
20050113886 | Fischell et al. | May 2005 | A1 |
20050114068 | Chey et al. | May 2005 | A1 |
20050116683 | Cheng et al. | Jun 2005 | A1 |
20050121322 | Say et al. | Jun 2005 | A1 |
20050131346 | Douglas | Jun 2005 | A1 |
20050137530 | Campbell et al. | Jun 2005 | A1 |
20050143635 | Kamath et al. | Jun 2005 | A1 |
20050154271 | Rasdal et al. | Jul 2005 | A1 |
20050173245 | Feldman et al. | Aug 2005 | A1 |
20050176136 | Burd et al. | Aug 2005 | A1 |
20050182306 | Sloan | Aug 2005 | A1 |
20050184153 | Auchinleck | Aug 2005 | A1 |
20050187442 | Cho et al. | Aug 2005 | A1 |
20050187720 | Goode, Jr. et al. | Aug 2005 | A1 |
20050192557 | Brauker et al. | Sep 2005 | A1 |
20050195930 | Spital et al. | Sep 2005 | A1 |
20050199494 | Say et al. | Sep 2005 | A1 |
20050203360 | Brauker et al. | Sep 2005 | A1 |
20050204134 | Von Arx et al. | Sep 2005 | A1 |
20050214892 | Kovatchev et al. | Sep 2005 | A1 |
20050228883 | Brown | Oct 2005 | A1 |
20050239154 | Feldman et al. | Oct 2005 | A1 |
20050239156 | Drucker et al. | Oct 2005 | A1 |
20050241957 | Mao et al. | Nov 2005 | A1 |
20050245795 | Goode, Jr. et al. | Nov 2005 | A1 |
20050245799 | Brauker et al. | Nov 2005 | A1 |
20050251033 | Scarantino et al. | Nov 2005 | A1 |
20050277164 | Drucker et al. | Dec 2005 | A1 |
20050277912 | John | Dec 2005 | A1 |
20050287620 | Heller et al. | Dec 2005 | A1 |
20060001538 | Kraft et al. | Jan 2006 | A1 |
20060001551 | Kraft et al. | Jan 2006 | A1 |
20060010014 | Brown | Jan 2006 | A1 |
20060010098 | Goodnow et al. | Jan 2006 | A1 |
20060015020 | Neale et al. | Jan 2006 | A1 |
20060015024 | Brister et al. | Jan 2006 | A1 |
20060016700 | Brister et al. | Jan 2006 | A1 |
20060017923 | Ruchti et al. | Jan 2006 | A1 |
20060019327 | Brister et al. | Jan 2006 | A1 |
20060020186 | Brister et al. | Jan 2006 | A1 |
20060020187 | Brister et al. | Jan 2006 | A1 |
20060020188 | Kamath et al. | Jan 2006 | A1 |
20060020189 | Brister et al. | Jan 2006 | A1 |
20060020190 | Kamath et al. | Jan 2006 | A1 |
20060020191 | Brister et al. | Jan 2006 | A1 |
20060020192 | Brister et al. | Jan 2006 | A1 |
20060020300 | Nghiem et al. | Jan 2006 | A1 |
20060025662 | Buse et al. | Feb 2006 | A1 |
20060031094 | Cohen et al. | Feb 2006 | A1 |
20060036139 | Brister et al. | Feb 2006 | A1 |
20060036140 | Brister et al. | Feb 2006 | A1 |
20060036141 | Kamath et al. | Feb 2006 | A1 |
20060036142 | Brister et al. | Feb 2006 | A1 |
20060036143 | Brister et al. | Feb 2006 | A1 |
20060036144 | Brister et al. | Feb 2006 | A1 |
20060036145 | Brister et al. | Feb 2006 | A1 |
20060079740 | Silver et al. | Apr 2006 | A1 |
20060091006 | Wang et al. | May 2006 | A1 |
20060142651 | Brister et al. | Jun 2006 | A1 |
20060154642 | Scannell | Jul 2006 | A1 |
20060166629 | Reggiardo | Jul 2006 | A1 |
20060173406 | Hayes et al. | Aug 2006 | A1 |
20060173444 | Choy et al. | Aug 2006 | A1 |
20060183984 | Dobbles et al. | Aug 2006 | A1 |
20060189863 | Peyser et al. | Aug 2006 | A1 |
20060193375 | Lee et al. | Aug 2006 | A1 |
20060222566 | Brauker et al. | Oct 2006 | A1 |
20060224141 | Rush et al. | Oct 2006 | A1 |
20060226985 | Goodnow et al. | Oct 2006 | A1 |
20060234202 | Brown | Oct 2006 | A1 |
20060235722 | Brown | Oct 2006 | A1 |
20060241975 | Brown | Oct 2006 | A1 |
20060247508 | Fennell | Nov 2006 | A1 |
20060247710 | Goetz et al. | Nov 2006 | A1 |
20060247985 | Liamos et al. | Nov 2006 | A1 |
20060258929 | Goode et al. | Nov 2006 | A1 |
20060272652 | Stocker et al. | Dec 2006 | A1 |
20060285660 | Brown | Dec 2006 | A1 |
20060285736 | Brown | Dec 2006 | A1 |
20060287691 | Drew | Dec 2006 | A1 |
20060287889 | Brown | Dec 2006 | A1 |
20060287931 | Brown | Dec 2006 | A1 |
20060290496 | Peeters et al. | Dec 2006 | A1 |
20060293607 | Alt et al. | Dec 2006 | A1 |
20070010950 | Abensour et al. | Jan 2007 | A1 |
20070011320 | Brown | Jan 2007 | A1 |
20070016381 | Kamath et al. | Jan 2007 | A1 |
20070016445 | Brown | Jan 2007 | A1 |
20070017983 | Frank et al. | Jan 2007 | A1 |
20070021984 | Brown | Jan 2007 | A1 |
20070027381 | Stafford | Feb 2007 | A1 |
20070032717 | Brister et al. | Feb 2007 | A1 |
20070033074 | Nitzan et al. | Feb 2007 | A1 |
20070055799 | Koehler et al. | Mar 2007 | A1 |
20070056858 | Chen et al. | Mar 2007 | A1 |
20070060814 | Stafford | Mar 2007 | A1 |
20070060869 | Tolle et al. | Mar 2007 | A1 |
20070060979 | Strother et al. | Mar 2007 | A1 |
20070061167 | Brown | Mar 2007 | A1 |
20070066956 | Finkel | Mar 2007 | A1 |
20070068807 | Feldman et al. | Mar 2007 | A1 |
20070073129 | Shah et al. | Mar 2007 | A1 |
20070078320 | Stafford | Apr 2007 | A1 |
20070078321 | Mazza et al. | Apr 2007 | A1 |
20070078322 | Stafford | Apr 2007 | A1 |
20070078818 | Zvitz et al. | Apr 2007 | A1 |
20070093786 | Goldsmith et al. | Apr 2007 | A1 |
20070095661 | Wang et al. | May 2007 | A1 |
20070106135 | Sloan et al. | May 2007 | A1 |
20070108048 | Wang et al. | May 2007 | A1 |
20070118588 | Brown | May 2007 | A1 |
20070149875 | Ouyang et al. | Jun 2007 | A1 |
20070156033 | Causey, III et al. | Jul 2007 | A1 |
20070156457 | Brown | Jul 2007 | A1 |
20070163880 | Woo et al. | Jul 2007 | A1 |
20070173706 | Neinast et al. | Jul 2007 | A1 |
20070173709 | Petisce et al. | Jul 2007 | A1 |
20070173710 | Petisce et al. | Jul 2007 | A1 |
20070191701 | Feldman et al. | Aug 2007 | A1 |
20070191702 | Yodfat et al. | Aug 2007 | A1 |
20070199818 | Petyt et al. | Aug 2007 | A1 |
20070203407 | Hoss et al. | Aug 2007 | A1 |
20070203539 | Stone et al. | Aug 2007 | A1 |
20070203966 | Brauker et al. | Aug 2007 | A1 |
20070208246 | Brauker et al. | Sep 2007 | A1 |
20070213605 | Brown | Sep 2007 | A1 |
20070227911 | Wang et al. | Oct 2007 | A1 |
20070228071 | Kamen et al. | Oct 2007 | A1 |
20070231846 | Cosentino et al. | Oct 2007 | A1 |
20070232878 | Kovatchev et al. | Oct 2007 | A1 |
20070232880 | Siddiqui et al. | Oct 2007 | A1 |
20070233013 | Schoenberg et al. | Oct 2007 | A1 |
20070235331 | Simpson et al. | Oct 2007 | A1 |
20070244383 | Talbot et al. | Oct 2007 | A1 |
20070249922 | Peyser et al. | Oct 2007 | A1 |
20070253021 | Mehta et al. | Nov 2007 | A1 |
20070255321 | Gerber et al. | Nov 2007 | A1 |
20070255348 | Holtzclaw | Nov 2007 | A1 |
20070255531 | Drew | Nov 2007 | A1 |
20070258395 | Jollota et al. | Nov 2007 | A1 |
20070270672 | Hayter | Nov 2007 | A1 |
20070285238 | Batra | Dec 2007 | A1 |
20080004515 | Jennewine et al. | Jan 2008 | A1 |
20080004601 | Jennewine et al. | Jan 2008 | A1 |
20080004904 | Tran | Jan 2008 | A1 |
20080009692 | Stafford | Jan 2008 | A1 |
20080017522 | Heller et al. | Jan 2008 | A1 |
20080018433 | Pitt-Pladdy | Jan 2008 | A1 |
20080021666 | Goode, Jr. et al. | Jan 2008 | A1 |
20080029391 | Mao et al. | Feb 2008 | A1 |
20080030369 | Mann et al. | Feb 2008 | A1 |
20080033254 | Kamath et al. | Feb 2008 | A1 |
20080039702 | Hayter et al. | Feb 2008 | A1 |
20080045824 | Tapsak et al. | Feb 2008 | A1 |
20080058773 | John | Mar 2008 | A1 |
20080060955 | Goodnow | Mar 2008 | A1 |
20080061961 | John | Mar 2008 | A1 |
20080064943 | Talbot et al. | Mar 2008 | A1 |
20080066305 | Wang et al. | Mar 2008 | A1 |
20080071156 | Brister et al. | Mar 2008 | A1 |
20080071328 | Haubrich et al. | Mar 2008 | A1 |
20080083617 | Simpson et al. | Apr 2008 | A1 |
20080086042 | Brister et al. | Apr 2008 | A1 |
20080086044 | Brister et al. | Apr 2008 | A1 |
20080086273 | Shults et al. | Apr 2008 | A1 |
20080092638 | Brenneman et al. | Apr 2008 | A1 |
20080102441 | Chen et al. | May 2008 | A1 |
20080108942 | Brister et al. | May 2008 | A1 |
20080114228 | McCluskey et al. | May 2008 | A1 |
20080114229 | Brown | May 2008 | A1 |
20080119705 | Patel et al. | May 2008 | A1 |
20080125636 | Ward et al. | May 2008 | A1 |
20080127052 | Rostoker | May 2008 | A1 |
20080148873 | Wang | Jun 2008 | A1 |
20080167572 | Stivoric et al. | Jul 2008 | A1 |
20080177149 | Weinert et al. | Jul 2008 | A1 |
20080183061 | Goode, Jr. et al. | Jul 2008 | A1 |
20080183399 | Goode, Jr. et al. | Jul 2008 | A1 |
20080188731 | Brister et al. | Aug 2008 | A1 |
20080189051 | Goode, Jr. et al. | Aug 2008 | A1 |
20080194934 | Ray et al. | Aug 2008 | A1 |
20080194935 | Brister et al. | Aug 2008 | A1 |
20080194936 | Goode, Jr. et al. | Aug 2008 | A1 |
20080194937 | Goode, Jr. et al. | Aug 2008 | A1 |
20080194938 | Brister et al. | Aug 2008 | A1 |
20080195232 | Carr-Brendel et al. | Aug 2008 | A1 |
20080195967 | Goode, Jr. et al. | Aug 2008 | A1 |
20080197024 | Simpson et al. | Aug 2008 | A1 |
20080200788 | Brister et al. | Aug 2008 | A1 |
20080200789 | Brister et al. | Aug 2008 | A1 |
20080200791 | Simpson et al. | Aug 2008 | A1 |
20080201325 | Doniger et al. | Aug 2008 | A1 |
20080208025 | Shults et al. | Aug 2008 | A1 |
20080214900 | Fennell et al. | Sep 2008 | A1 |
20080214915 | Brister et al. | Sep 2008 | A1 |
20080214918 | Brister et al. | Sep 2008 | A1 |
20080228051 | Shults et al. | Sep 2008 | A1 |
20080228054 | Shults et al. | Sep 2008 | A1 |
20080228055 | Sher | Sep 2008 | A1 |
20080234943 | Ray et al. | Sep 2008 | A1 |
20080235469 | Drew | Sep 2008 | A1 |
20080242961 | Brister et al. | Oct 2008 | A1 |
20080242963 | Essenpreis et al. | Oct 2008 | A1 |
20080249470 | Malave et al. | Oct 2008 | A1 |
20080254544 | Modzelewski et al. | Oct 2008 | A1 |
20080255438 | Saidara et al. | Oct 2008 | A1 |
20080262469 | Brister et al. | Oct 2008 | A1 |
20080267823 | Wang et al. | Oct 2008 | A1 |
20080269571 | Brown | Oct 2008 | A1 |
20080269714 | Mastrototaro et al. | Oct 2008 | A1 |
20080269723 | Mastrototaro et al. | Oct 2008 | A1 |
20080275313 | Brister et al. | Nov 2008 | A1 |
20080287761 | Hayter | Nov 2008 | A1 |
20080287764 | Rasdal et al. | Nov 2008 | A1 |
20080287765 | Rasdal et al. | Nov 2008 | A1 |
20080287766 | Rasdal et al. | Nov 2008 | A1 |
20080296155 | Shults et al. | Dec 2008 | A1 |
20080300572 | Rankers et al. | Dec 2008 | A1 |
20080306368 | Goode, Jr. et al. | Dec 2008 | A1 |
20080306434 | Dobbles et al. | Dec 2008 | A1 |
20080306435 | Kamath et al. | Dec 2008 | A1 |
20080306444 | Brister et al. | Dec 2008 | A1 |
20080312518 | Jina et al. | Dec 2008 | A1 |
20080319085 | Wright et al. | Dec 2008 | A1 |
20080319294 | Taub et al. | Dec 2008 | A1 |
20080319295 | Bernstein et al. | Dec 2008 | A1 |
20080319296 | Bernstein et al. | Dec 2008 | A1 |
20090006034 | Hayter et al. | Jan 2009 | A1 |
20090006061 | Thukral et al. | Jan 2009 | A1 |
20090012377 | Jennewine et al. | Jan 2009 | A1 |
20090012379 | Goode, Jr. et al. | Jan 2009 | A1 |
20090018424 | Kamath et al. | Jan 2009 | A1 |
20090030294 | Petisce et al. | Jan 2009 | A1 |
20090036758 | Brauker et al. | Feb 2009 | A1 |
20090036763 | Brauker et al. | Feb 2009 | A1 |
20090040022 | Finkenzeller | Feb 2009 | A1 |
20090043181 | Brauker et al. | Feb 2009 | A1 |
20090043182 | Brauker et al. | Feb 2009 | A1 |
20090043525 | Brauker et al. | Feb 2009 | A1 |
20090043541 | Brauker et al. | Feb 2009 | A1 |
20090043542 | Brauker et al. | Feb 2009 | A1 |
20090045055 | Rhodes et al. | Feb 2009 | A1 |
20090048503 | Dalal et al. | Feb 2009 | A1 |
20090054745 | Jennewine et al. | Feb 2009 | A1 |
20090054747 | Fennell | Feb 2009 | A1 |
20090054748 | Feldman et al. | Feb 2009 | A1 |
20090062633 | Brauker et al. | Mar 2009 | A1 |
20090062635 | Brauker et al. | Mar 2009 | A1 |
20090076356 | Simpson et al. | Mar 2009 | A1 |
20090076360 | Brister et al. | Mar 2009 | A1 |
20090076361 | Kamath et al. | Mar 2009 | A1 |
20090082693 | Stafford | Mar 2009 | A1 |
20090085768 | Patel et al. | Apr 2009 | A1 |
20090085873 | Betts et al. | Apr 2009 | A1 |
20090088614 | Taub | Apr 2009 | A1 |
20090093687 | Telfort et al. | Apr 2009 | A1 |
20090099436 | Brister et al. | Apr 2009 | A1 |
20090105554 | Stahmann et al. | Apr 2009 | A1 |
20090105570 | Sloan et al. | Apr 2009 | A1 |
20090105571 | Fennell et al. | Apr 2009 | A1 |
20090112478 | Mueller, Jr. et al. | Apr 2009 | A1 |
20090124877 | Goode, Jr. et al. | May 2009 | A1 |
20090124878 | Goode, Jr. et al. | May 2009 | A1 |
20090124879 | Brister et al. | May 2009 | A1 |
20090124964 | Leach et al. | May 2009 | A1 |
20090131768 | Simpson et al. | May 2009 | A1 |
20090131769 | Leach et al. | May 2009 | A1 |
20090131776 | Simpson et al. | May 2009 | A1 |
20090131777 | Simpson et al. | May 2009 | A1 |
20090131860 | Nielsen | May 2009 | A1 |
20090137886 | Shariati et al. | May 2009 | A1 |
20090137887 | Shariati et al. | May 2009 | A1 |
20090143659 | Li et al. | Jun 2009 | A1 |
20090143660 | Brister et al. | Jun 2009 | A1 |
20090143661 | Taub et al. | Jun 2009 | A1 |
20090150186 | Cohen et al. | Jun 2009 | A1 |
20090156919 | Brister et al. | Jun 2009 | A1 |
20090156924 | Shariati et al. | Jun 2009 | A1 |
20090163790 | Brister et al. | Jun 2009 | A1 |
20090163791 | Brister et al. | Jun 2009 | A1 |
20090177068 | Stivoric et al. | Jul 2009 | A1 |
20090178459 | Li et al. | Jul 2009 | A1 |
20090182217 | Li et al. | Jul 2009 | A1 |
20090189738 | Hermle | Jul 2009 | A1 |
20090192366 | Mensinger et al. | Jul 2009 | A1 |
20090192380 | Shariati et al. | Jul 2009 | A1 |
20090192722 | Shariati et al. | Jul 2009 | A1 |
20090192724 | Brauker et al. | Jul 2009 | A1 |
20090192745 | Kamath et al. | Jul 2009 | A1 |
20090192751 | Kamath et al. | Jul 2009 | A1 |
20090203981 | Brauker et al. | Aug 2009 | A1 |
20090204341 | Brauker et al. | Aug 2009 | A1 |
20090216100 | Ebner et al. | Aug 2009 | A1 |
20090216103 | Brister et al. | Aug 2009 | A1 |
20090234200 | Husheer | Sep 2009 | A1 |
20090240120 | Mensinger et al. | Sep 2009 | A1 |
20090240128 | Mensinger et al. | Sep 2009 | A1 |
20090240193 | Mensinger et al. | Sep 2009 | A1 |
20090242399 | Kamath et al. | Oct 2009 | A1 |
20090242425 | Kamath et al. | Oct 2009 | A1 |
20090247855 | Boock et al. | Oct 2009 | A1 |
20090247856 | Boock et al. | Oct 2009 | A1 |
20090247857 | Harper et al. | Oct 2009 | A1 |
20090248380 | Brown | Oct 2009 | A1 |
20090267765 | Greene et al. | Oct 2009 | A1 |
20090287073 | Boock et al. | Nov 2009 | A1 |
20090287074 | Shults et al. | Nov 2009 | A1 |
20090289796 | Blumberg | Nov 2009 | A1 |
20090294277 | Thomas et al. | Dec 2009 | A1 |
20090296742 | Sicurello et al. | Dec 2009 | A1 |
20090298182 | Schulat et al. | Dec 2009 | A1 |
20090299151 | Taub et al. | Dec 2009 | A1 |
20090299152 | Taub et al. | Dec 2009 | A1 |
20090299155 | Yang et al. | Dec 2009 | A1 |
20090299156 | Simpson et al. | Dec 2009 | A1 |
20090299162 | Brauker et al. | Dec 2009 | A1 |
20090299276 | Brauker et al. | Dec 2009 | A1 |
20100010324 | Brauker et al. | Jan 2010 | A1 |
20100010329 | Taub et al. | Jan 2010 | A1 |
20100010330 | Rankers et al. | Jan 2010 | A1 |
20100010331 | Brauker et al. | Jan 2010 | A1 |
20100010332 | Brauker et al. | Jan 2010 | A1 |
20100016687 | Brauker et al. | Jan 2010 | A1 |
20100016698 | Rasdal et al. | Jan 2010 | A1 |
20100022855 | Brauker et al. | Jan 2010 | A1 |
20100030038 | Brauker et al. | Feb 2010 | A1 |
20100030053 | Goode, Jr. et al. | Feb 2010 | A1 |
20100030484 | Brauker et al. | Feb 2010 | A1 |
20100030485 | Brauker et al. | Feb 2010 | A1 |
20100036215 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036216 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036222 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036223 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036225 | Goode, Jr. et al. | Feb 2010 | A1 |
20100041971 | Goode, Jr. et al. | Feb 2010 | A1 |
20100045465 | Brauker et al. | Feb 2010 | A1 |
20100049024 | Saint et al. | Feb 2010 | A1 |
20100063373 | Kamath et al. | Mar 2010 | A1 |
20100076283 | Simpson et al. | Mar 2010 | A1 |
20100081905 | Bommakanti et al. | Apr 2010 | A1 |
20100081908 | Dobbles et al. | Apr 2010 | A1 |
20100081910 | Brister et al. | Apr 2010 | A1 |
20100082364 | Taub et al. | Apr 2010 | A1 |
20100087724 | Brauker et al. | Apr 2010 | A1 |
20100093786 | Watanabe et al. | Apr 2010 | A1 |
20100096259 | Zhang et al. | Apr 2010 | A1 |
20100099970 | Shults et al. | Apr 2010 | A1 |
20100099971 | Shults et al. | Apr 2010 | A1 |
20100105999 | Dixon et al. | Apr 2010 | A1 |
20100119693 | Tapsak et al. | May 2010 | A1 |
20100121167 | McGarraugh et al. | May 2010 | A1 |
20100121169 | Petisce et al. | May 2010 | A1 |
20100141656 | Krieftewirth | Jun 2010 | A1 |
20100145172 | Petisce et al. | Jun 2010 | A1 |
20100146300 | Brown | Jun 2010 | A1 |
20100152554 | Steine et al. | Jun 2010 | A1 |
20100160759 | Celentano et al. | Jun 2010 | A1 |
20100160760 | Shults et al. | Jun 2010 | A1 |
20100161269 | Kamath et al. | Jun 2010 | A1 |
20100168538 | Keenan et al. | Jul 2010 | A1 |
20100168540 | Kamath et al. | Jul 2010 | A1 |
20100168541 | Kamath et al. | Jul 2010 | A1 |
20100168542 | Kamath et al. | Jul 2010 | A1 |
20100168543 | Kamath et al. | Jul 2010 | A1 |
20100168544 | Kamath et al. | Jul 2010 | A1 |
20100168545 | Kamath et al. | Jul 2010 | A1 |
20100168546 | Kamath et al. | Jul 2010 | A1 |
20100168657 | Kamath et al. | Jul 2010 | A1 |
20100174157 | Brister et al. | Jul 2010 | A1 |
20100174158 | Kamath et al. | Jul 2010 | A1 |
20100174163 | Brister et al. | Jul 2010 | A1 |
20100174164 | Brister et al. | Jul 2010 | A1 |
20100174165 | Brister et al. | Jul 2010 | A1 |
20100174166 | Brister et al. | Jul 2010 | A1 |
20100174167 | Kamath et al. | Jul 2010 | A1 |
20100174168 | Goode et al. | Jul 2010 | A1 |
20100174266 | Estes | Jul 2010 | A1 |
20100179399 | Goode et al. | Jul 2010 | A1 |
20100179400 | Brauker et al. | Jul 2010 | A1 |
20100179401 | Rasdal et al. | Jul 2010 | A1 |
20100179402 | Goode et al. | Jul 2010 | A1 |
20100179404 | Kamath et al. | Jul 2010 | A1 |
20100179405 | Goode et al. | Jul 2010 | A1 |
20100179407 | Goode et al. | Jul 2010 | A1 |
20100179408 | Kamath et al. | Jul 2010 | A1 |
20100179409 | Kamath et al. | Jul 2010 | A1 |
20100185065 | Goode et al. | Jul 2010 | A1 |
20100185069 | Brister et al. | Jul 2010 | A1 |
20100185070 | Brister et al. | Jul 2010 | A1 |
20100185071 | Simpson et al. | Jul 2010 | A1 |
20100185072 | Goode et al. | Jul 2010 | A1 |
20100185073 | Goode et al. | Jul 2010 | A1 |
20100185074 | Goode et al. | Jul 2010 | A1 |
20100185075 | Brister et al. | Jul 2010 | A1 |
20100185175 | Kamen et al. | Jul 2010 | A1 |
20100190435 | Cook et al. | Jul 2010 | A1 |
20100191082 | Brister et al. | Jul 2010 | A1 |
20100191472 | Doniger et al. | Jul 2010 | A1 |
20100198034 | Thomas et al. | Aug 2010 | A1 |
20100198035 | Kamath et al. | Aug 2010 | A1 |
20100198036 | Kamath et al. | Aug 2010 | A1 |
20100198142 | Sloan et al. | Aug 2010 | A1 |
20100204557 | Kiaie et al. | Aug 2010 | A1 |
20100213080 | Celentano et al. | Aug 2010 | A1 |
20100230285 | Hoss et al. | Sep 2010 | A1 |
20100274111 | Say et al. | Oct 2010 | A1 |
20100274515 | Hoss et al. | Oct 2010 | A1 |
20100275108 | Sloan et al. | Oct 2010 | A1 |
20100313105 | Nekoomaram et al. | Dec 2010 | A1 |
20100326842 | Mazza et al. | Dec 2010 | A1 |
20110004276 | Blair et al. | Jan 2011 | A1 |
20110021889 | Hoss et al. | Jan 2011 | A1 |
20110024043 | Boock et al. | Feb 2011 | A1 |
20110024307 | Simpson et al. | Feb 2011 | A1 |
20110027127 | Simpson et al. | Feb 2011 | A1 |
20110027453 | Boock et al. | Feb 2011 | A1 |
20110027458 | Boock et al. | Feb 2011 | A1 |
20110028815 | Simpson et al. | Feb 2011 | A1 |
20110028816 | Simpson et al. | Feb 2011 | A1 |
20110031986 | Bhat et al. | Feb 2011 | A1 |
20110054282 | Nekoomaram et al. | Mar 2011 | A1 |
20110060530 | Fennell | Mar 2011 | A1 |
20110077490 | Simpson et al. | Mar 2011 | A1 |
20110077494 | Doniger et al. | Mar 2011 | A1 |
20110081726 | Berman et al. | Apr 2011 | A1 |
20110148905 | Simmons et al. | Jun 2011 | A1 |
20110152637 | Kateraas et al. | Jun 2011 | A1 |
20110184268 | Taub | Jul 2011 | A1 |
20110208027 | Wagner et al. | Aug 2011 | A1 |
20110213225 | Bernstein et al. | Sep 2011 | A1 |
20110257895 | Brauker et al. | Oct 2011 | A1 |
20110287528 | Fern et al. | Nov 2011 | A1 |
20110289497 | Kiaie et al. | Nov 2011 | A1 |
20110313349 | Krulevitch et al. | Dec 2011 | A1 |
20110319729 | Donnay et al. | Dec 2011 | A1 |
20110320130 | Valdes et al. | Dec 2011 | A1 |
20120010642 | Lee et al. | Jan 2012 | A1 |
20120078071 | Bohm et al. | Mar 2012 | A1 |
20120088995 | Fennell et al. | Apr 2012 | A1 |
20120108934 | Valdes et al. | May 2012 | A1 |
20120165626 | Irina et al. | Jun 2012 | A1 |
20120165640 | Galley et al. | Jun 2012 | A1 |
20120173200 | Breton et al. | Jul 2012 | A1 |
20120232520 | Sloan | Sep 2012 | A1 |
20120245447 | Karan | Sep 2012 | A1 |
20130035575 | Mayou et al. | Feb 2013 | A1 |
20130184547 | Taub et al. | Jul 2013 | A1 |
20130235166 | Jones et al. | Sep 2013 | A1 |
20140066735 | Engelhardt et al. | Mar 2014 | A1 |
20140088393 | Bernstein et al. | Mar 2014 | A1 |
20140121480 | Budiman et al. | May 2014 | A1 |
20140200426 | Taub | Jul 2014 | A1 |
20180303389 | Sloan | Oct 2018 | A1 |
20200221983 | Taub | Jul 2020 | A1 |
Number | Date | Country |
---|---|---|
101610714 | Dec 2009 | CN |
102163206 | Aug 2011 | CN |
4401400 | Jul 1995 | DE |
0098592 | Jan 1984 | EP |
0127958 | Dec 1984 | EP |
0320109 | Jun 1989 | EP |
0353328 | Feb 1990 | EP |
0390390 | Oct 1990 | EP |
0396788 | Nov 1990 | EP |
0286118 | Jan 1995 | EP |
1048264 | Nov 2000 | EP |
2 109 394 | May 2018 | EP |
WO-1996025089 | Aug 1996 | WO |
WO-1996035370 | Nov 1996 | WO |
WO 9904043 | Jan 1999 | WO |
WO-2000049940 | Aug 2000 | WO |
WO-2000059370 | Oct 2000 | WO |
WO-2000074753 | Dec 2000 | WO |
WO-2001052935 | Jul 2001 | WO |
WO-2001054753 | Aug 2001 | WO |
WO-2002016905 | Feb 2002 | WO |
WO-2003076893 | Sep 2003 | WO |
WO-2003082091 | Oct 2003 | WO |
WO 2004093648 | Nov 2004 | WO |
WO-2006024671 | Mar 2006 | WO |
WO-2008001366 | Jan 2008 | WO |
WO-2008086541 | Jul 2008 | WO |
WO 2008153693 | Dec 2008 | WO |
WO-2010077329 | Jul 2010 | WO |
WO 2010127169 | Nov 2010 | WO |
WO 2011032177 | Mar 2011 | WO |
Entry |
---|
CN, 201480016099.2 Third Office Action, dated Feb. 27, 2019. |
EP, 19161571.5 Search Report, dated Jan. 15, 2020. |
Armour, J. C., et al., “Application of Chronic Intravascular Blood Glucose Sensor in Dogs”, Diabetes, vol. 39, 1990, pp. 1519-1526. |
Aussedat, B., et al., “A User-Friendly Method for Calibrating a Subcutaneous Glucose Sensor-Based Hypoglycemic Alarm”, Biosensors & Bioelectronics, vol. 12, No. 11, 1997, pp. 1061-1070. |
Bennion, N., et al., “Alternate Site Glucose Testing: A Crossover Design”, Diabetes Technology & Therapeutics, vol. 4, No. 1, 2002, pp. 25-33. |
Blank, T. B., et al., “Clinical Results From a Non-Invasive Blood Glucose Monitor”, Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring II, Proceedings of SPIE, vol. 4624, 2002, pp. 1-10. |
Brooks, S. L., et al., “Development of an On-Line Glucose Sensor for Fermentation Monitoring”, Biosensors, vol. 3, 1987/88, pp. 45-56. |
Cass, A. E., et al., “Ferrocene-Medicated Enzyme Electrode for Amperometric Determination of Glucose”, Analytical Chemistry, vol. 56, No. 4, 1984, 667-671. |
Cheyne, E. H., et al., “Performance of a Continuous Glucose Monitoring System During Controlled Hypoglycaemia in Healthy Volunteers”, Diabetes Technology & Therapeutics, vol. 4, No. 5, 2002, pp. 607-613. |
Csoregi, E., et al., “Design and Optimization of a Selective Subcutaneously Implantable Glucose Electrode Based on ‘Wired’ Glucose Oxidase”, Analytical Chemistry, vol. 67, No. 7, 1995, pp. 1240-1244. |
Feldman, B., et al., “A Continuous Glucose Sensor Based on Wired Enzyme™ Technology—Results from a 3-Day Trial in Patients with Type 1 Diabetes”, Diabetes Technology & Therapeutics, vol. 5, No. 5, 2003, pp. 769-779. |
Feldman, B., et al., “Correlation of Glucose Concentrations in Interstitial Fluid and Venous Blood During Periods of Rapid Glucose Change”, Abbott Diabetes Care, Inc. Freestyle Navigator Continuous Glucose Monitor Pamphlet, 2004. |
Garg, S., et al., “Improvement in Glycemic Excursions with a Transcutaneous, Real-Time Continuous Glucose Sensor”, Diabetes Care, vol. 29, No. 1, 2006, pp. 44-50. |
Isermann, R., “Supervision, Fault-Detection and Fault-Diagnosis Methods—An Introduction”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 639-652. |
Isermann, R., et al., “Trends in the Application of Model-Based Fault Detection and Diagnosis of Technical Processes”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 709-719. |
Johnson, P. C., “Peripheral Circulation”, John Wiley & Sons, 1978, pp. 198. |
Jovanovic, L., “The Role of Continuous Glucose Monitoring in Gestational Diabetes Mellitus”, Diabetes Technology & Therapeutics, vol. 2, Sup. 1, 2000, pp. S67-S71. |
Jungheim, K., et al., “How Rapid Does Glucose Concentration Change in Daily Life of Patients with Type 1 Diabetes?”, 2002, pp. 250. |
Jungheim, K., et al., “Risky Delay of Hypoglycemia Detection by Glucose Monitoring at the Arm”, Diabetes Care, vol. 24, No. 7, 2001, pp. 1303-1304. |
Kaplan, S. M., “Wiley Electrical and Electronics Engineering Dictionary”, IEEE Press, 2004, pp. 141, 142, 548, 549. |
Li, Y., et al., “In Vivo Release From a Drug Delivery MEMS Device”, Journal of Controlled Release, vol. 100, 2004, 99. 211-219. |
Lodwig, V., et al., “Continuous Glucose Monitoring with Glucose Sensors: Calibration and Assessment Criteria”, Diabetes Technology & Therapeutics, vol. 5, No. 4, 2003, pp. 573-587. |
Lortz, J., et al., “What is Bluetooth? We Explain The Newest Short-Range Connectivity Technology”, Smart Computing Learning Series, Wireless Computing, vol. 8, Issue 5, 2002, pp. 72-74. |
Malin, S. F., et al., “Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectoscopy”, Clinical Chemistry, vol. 45, No. 9, 1999, pp. 1651-1658. |
McGarraugh, G., et al., “Glucose Measurements Using Blood Extracted from the Forearm and the Finger”, TheraSense, Inc., 2001, 16 Pages. |
McGarraugh, G., et al., “Physiological Influences on Off-Finger Glucose Testing”, Diabetes Technology & Therapeutics, vol. 3, No. 3, 2001, pp. 367-376. |
McKean, B. D., et al., “A Telemetry-Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors”, IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, 1988, pp. 526-532. |
Morbiducci, U, et al., “Improved Usability of the Minimal Model of Insulin Sensitivity Based on an Automated Approach and Genetic Algorithms for Parameter Estimation”, Clinical Science, vol. 112, 2007, pp. 257-263. |
Mougiakakou, et al., “A Real Time Simulation Model of Glucose-Insulin Metabolism for Type 1 Diabetes Patients”, Proceedings of the 2005 IEEE, 2005, pp. 298-301. |
Panteleon, A. E., et al., “The Role of the Independent Variable to Glucose Sensor Calibration”, Diabetes Technology & Therapeutics, vol. 5, No. 3, 2003, pp. 401-410. |
Parker, R., et al., “Robust H∞ Glucose Control in Diabetes Using a Physiological Model”, AlChE Journal, vol. 46, No. 12, 2000, pp. 2537-2549. |
Pickup, J., et al., “Implantable Glucose Sensors: Choosing the Appropriate Sensing Strategy”, Biosensors, vol. 3, 1987/88, pp. 335-346. |
Pickup, J., et al., “In Vivo Molecular Sensing in Diabetes Mellitus: An Implantable Glucose Sensor with Direct Electron Transfer”, Diabetologia, vol. 32, 1989, pp. 213-217. |
Pishko, M. V., et al., “Amperometric Glucose Microelectrodes Prepared Through Immobilization of Glucose Oxidase in Redox Hydrogels”, Analytical Chemistry, vol. 63, No. 20, 1991, pp. 2268-2272. |
Quinn, C. P., et al., “Kinetics of Glucose Delivery to Subcutaneous Tissue in Rats Measured with 0.3-mm Amperometric Microsensors”, The American Physiological Society, 1995, E155-E161. |
Roe, J. N., et al., “Bloodless Glucose Measurements”, Critical Review in Therapeutic Drug Carrier Systems, vol. 15, Issue 3, 1998, pp. 199-241. |
Sakakida, M., et al., “Development of Ferrocene-Mediated Needle-Type Glucose Sensor as a Measure of True Subcutaneous Tissue Glucose Concentrations”, Artificial Organs Today, vol. 2, No. 2, 1992, pp. 145-158. |
Sakakida, M., et al., “Ferrocene-Mediated Needle-Type Glucose Sensor Covered with Newly Designed Biocompatible Membrane”, Sensors and Actuators B, vol. 13-14, 1993, pp. 319-322. |
Salehi, C., et al., “A Telemetry-Instrumentation System for Long-Term Implantable Glucose and Oxygen Sensors”, Analytical Letters, vol. 29, No. 13, 1996, pp. 2289-2308. |
Schmidtke, D. W., et al., “Measurement and Modeling of the Transient Difference Between Blood and Subcutaneous Glucose Concentrations in the Rat After Injection of Insulin”, Proceedings of the National Academy of Sciences, vol. 95, 1998, pp. 294-299. |
Shaw, G. W., et al., “In Vitro Testing of a Simply Constructed, Highly Stable Glucose Sensor Suitable for Implantation in Diabetic Patients”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 401-406. |
Shichiri, M., et al., “Glycaemic Control in Pancreatectomized Dogs with a Wearable Artificial Endocrine Pancreas”, Diabetologia, vol. 24, 1983, pp. 179-184. |
Shichiri, M., et al., “In Vivo Characteristics of Needle-Type Glucose Sensor—Measurements of Subcutaneous Glucose Concentrations in Human Volunteers”, Hormone and Metabolic Research Supplement Series, vol. 20, 1988, pp. 17-20. |
Shichiri, M., et al., “Membrane Design for Extending the Long-Life of an Implantable Glucose Sensor”, Diabetes Nutrition and Metabolism, vol. 2, 1989, pp. 309-313. |
Shichiri, M., et al., “Needle-type Glucose Sensor for Wearable Artificial Endocrine Pancreas”, Implantable Sensors for Closed-Loop Prosthetic Systems, Chapter 15, 1985, pp. 197-210. |
Shichiri, M., et al., “Telemetry Glucose Monitoring Device With Needle-Type Glucose Sensor: A Useful Tool for Blood Glucose Monitoring in Diabetic Individuals”, Diabetes Care, vol. 9, No. 3, 1986, pp. 298-301. |
Shichiri, M., et al., “Wearable Artificial Endocrine Pancreas With Needle-Type Glucose Sensor”, The Lancet, 1982, pp. 1129-1131. |
Shults, M. C., et al., “A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors”, IEEE Transactions on Biomedical Engineering, vol. 41, No. 10, 1994, pp. 937-942. |
Sternberg, R., et al., “Study and Development of Multilayer Needle-Type Enzyme-Based Glucose Microsensors”, Biosensors, vol. 4, 1988, pp. 27-40. |
Thompson, M., et al., “In Vivo Probes: Problems and Perspectives”, Clinical Biochemistry, vol. 19, 1986, pp. 255-261. |
Turner, A., et al., “Diabetes Mellitus: Biosensors for Research and Management”, Biosensors, vol. 1, 1985, pp. 85-115. |
Updike, S. J., et al., “Principles of Long-Term Fully Implanted Sensors with Emphasis on Radiotelemetric Monitoring of Blood Glucose from Inside a Subcutaneous Foreign Body Capsule (FBC)”, Biosensors in the Body: Continuous in vivo Monitoring, Chapter 4, 1997, pp. 117-137. |
Velho, G., et al., “Strategies for Calibrating a Subcutaneous Glucose Sensor”, Biomedica Biochimica Acta, vol. 48, 1989, pp. 957-964. |
Wilson, G. S., et al., “Progress Toward the Development of an Implantable Sensor for Glucose”, Clinical Chemistry, vol. 38, No. 9, 1992, pp. 1613-1617. |
CN, 201480016099.2 Office Action, dated Sep. 15, 2017. |
EP, 14762779.8 Supplementary Search Report, dated Jul. 6, 2016. |
JP, 2016-503198 Notice of Grounds for Rejection, dated Mar. 6, 2018. |
Number | Date | Country | |
---|---|---|---|
20190183393 A1 | Jun 2019 | US |
Number | Date | Country | |
---|---|---|---|
61801518 | Mar 2013 | US | |
61492266 | Jun 2011 | US | |
61489098 | May 2011 | US | |
61447645 | Feb 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14214430 | Mar 2014 | US |
Child | 16175157 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13407617 | Feb 2012 | US |
Child | 14214430 | US |