Embodiments of the invention relate generally to bioassay systems and examples including methods, systems, and apparatuses employing sedimentation forces for conducting a sandwich assay.
Quantification of biomolecules including proteins, nucleic acids, and others from patient samples is an important area of research and commercial development. Assays for biomolecules (also referred to as bioassays herein) may be conducted to diagnose diseases, manage chronic conditions, and monitor the overall health of patients.
Sandwich assays are an example technique for conducting bioassays, which generally proceed by adsorbing a target analyte onto a surface coated with a capture agent. The target analyte is then detected using a detection agent that also binds to the target analyte at a different site than the capture agent. Signal from the detection agent is used to detect the target analyte.
Certain details are set forth below to provide a sufficient understanding of embodiments of the invention. However, it will be clear to one skilled in the art that embodiments of the invention may be practiced without various of these particular details. In some instances, well-known chemical structures, chemical components, molecules, materials, electronic components, circuits, control signals, timing protocols, and software operations have not been shown in detail in order to avoid unnecessarily obscuring the described embodiments of the invention.
Sandwich assays may be conducted using sedimentation techniques. In the case of sedimentation bioassays, rather than using a flat surface, the surfaces of beads may be used to conduct the sandwich assay. Co-pending application U.S. application Ser. No. 12/891,977, entitled “Devices, Systems, and Methods for Conducting Sandwich Assays Using Sedimentation”, which is incorporated herein by reference in its entirety for any purpose, describes examples of sedimentation techniques and devices for conducting such sandwich assays.
Sandwich assays conducted according to the systems and methods described herein may offer orders of magnitude improvements in the sensitivity of bioassays, and may accordingly provide highly sensitive and portable diagnostic assays, which may be able to detect analytes at lower concentrations than previously possible. While advantages of sandwich assays in accordance with embodiments of the present invention are described herein, it is to be understood that the advantages are provided to aid in understanding technology described herein, however not all embodiments of the present invention may exhibit all, or any, of the described advantages.
While sandwich assays are discussed in examples described herein, techniques described herein may be utilized in a variety of different assays involving sedimentation. Agglutination assays or simple sedimentation of particles, e.g. cells, are examples. Generally, assays in accordance with embodiments of the present invention include transporting a sedimentation particle that is more dense than a density medium through the density medium.
Embodiments of the present invention include systems, apparatus, and methods for conducting assays using sedimentation. Assays, such as sandwich assays, utilizing sedimentation as described herein may be used to detect and/or quantify an analyte in a sample.
However, the above described technique may include certain shortcomings which may lead to insufficient sensitivity of the assay for label detection. One such limitation on the sensitivity of these assays may be a result of insufficient signal, background noise such as autofluorescence from device materials, and non-specific binding of labeling substances to the sedimentation particles giving false-positive signal. Systems and methods for conducting bioassays are described herein which may overcome some or all of these limitations and improve the sensitivity of the resulting assay.
Sandwich assays according to the present invention may be used to conduct immunoassays, gene expression assays, whole blood assays, or other desired bioassays. Any of a variety of suitable samples may be used including, but not limited to, whole blood, buffer solutions, or other biological fluid samples. The biological fluid may be combined with buffer or other fluids to form the sample. Generally, the sample may include analytes of interest (e.g. target analytes) to be detected and/or quantified in accordance with embodiments of the present invention.
Analytes of interest may include chemicals and/or molecules that are of interest for detection in a sample (e.g. target analytes). Any of a variety of analytes of interest may be detected in accordance with embodiments of the present invention, including proteins, RNA, and/or DNA.
Sandwich assays according to embodiments of the present invention may utilize sedimentation. Sedimentation generally refers to the process of movement of a particle or substance under an influence of a gravitational field. Sedimentation forces may be generated due to gravity or centrifugal forces, as examples.
Examples of sandwich assays described herein may be used to detect the presence of an analyte of interest (e.g. target analyte). Accordingly, a detection signal received from appropriate detection area may indicate the presence of the analyte of interest in the sample, as will be described further below. In some examples, the detection signal may be required to be above a threshold value to indicate presence of the analyte of interest in the sample to avoid possible false positives should some detection signal be received from the detection area due to other factors unrelated to the assay.
Examples of sandwich assays described herein may be used to quantify an amount of analyte of interest present in a sample. A magnitude or strength of a detection signal from an appropriate detection area may be indicative of the amount of analyte present in the sample.
Examples of sandwich assays utilizing sedimentation described herein may utilize sedimentation particles. Any particles suitable for conducting sandwich assays may be used, including, but not limited to, beads such as polystyrene beads or silica beads. Substantially any bead radii may be used. Examples of beads may include beads having a radius ranging from 150 nanometers to 10 microns. Other sizes may also be used.
The sedimentation particles (e.g. beads) may be coated with capture agents. The capture agents may be any suitable agents for binding to an analyte of interest. Suitable agents include antibodies for binding to one or more proteins, antigens, and mRNA probes for binding to DNA and/or RNA in a fluid sample. The capture agents may be coated on the particles in generally any suitable matter. In some examples, beads may be commercially available coated with appropriate capture agents.
Complexes formed in accordance with embodiments of the present invention may further include a detection agent (e.g. a tag) suitable for detection. Fluorescent tags (e.g. fluorophores) may provide an optical detection signal, however colorimetric or radioactive tags may also be used. Further improvements in labeling and enhanced sensitivity of signal during the detection stage may be obtained according to methods described herein and discussed in further detail below.
As mentioned, examples of sandwich assays utilizing sedimentation described herein may utilize density media. Density medium (also referred to as density media herein) is generally a liquid which may have a density selected based on the sample or sedimentation particles, as described further herein. The density media may generally be implemented using a fluid having the selected density. In some examples, a fluid sample may be diluted for use with a particular density media. The density media may include, for example, a salt solution containing a suspension of silica particles which may be coated with a biocompatible coating. An example of a suitable density media is Percoll™, available from GE Lifesciences. Particular densities may be achieved by adjusting a percentage of Percoll™ in a salt solution. More generally, viscosity and density may be adjusted by changing a composition of the media. Varying the concentration of solutes such as, but not limited to, sucrose or dextran, in the density media, may adjust the density and/or viscosity of the media. In some embodiments, the density media may include a detergent, such as Tween 20. The detergent may enhance a wash function of transport through the density media.
Referring now to
In example assays, multiple sedimentation particles may be present, including one population of sedimentation particles having a density greater than a density of the density medium and another population of sedimentation particles having a density less than a density of the density medium. The sedimentation particles may be coated with capture agents having an affinity for multiple sites of the target analyte, facilitating formation of complexes with target analytes bound to both sedimentation particle types. The sedimentation particles less dense than the density medium may include the labeling agent. Accordingly, the labeling agent may be transported to a detection area through the density medium responsive to sedimentation forces only when the detection label is bound in an aggregate with the target analyte.
In example particle counting assays, particles more dense than the density medium may be sedimented through the density medium into a pellet, and the volume of the pellet may correlate with the amount of particles present in the sample.
Referring again to
As can be appreciated, biological fluids generally include water, containing a relatively small weight fraction of dissolved salts and biomolecules. Therefore biological fluids may tend not to form stable mixtures with hydrophobic fluids such as vegetable or mineral oils. Therefore, using a separation layer which includes a hydrophobic fluid may provide an effective boundary between two water based fluids even over prolonged periods of time. Furthermore, because the sedimentation particles 320 are selected to be denser than the density medium and separation layer material, the sedimentation particles may travel through the separation layer and travel through the density medium to the detection region 340.
Similar to the examples shown in
In some examples, the sandwich assay may include both a first separation layer and a second separation layer, the first separation layer acting as a boundary between the sample and density medium and the second separation layer providing a boundary over the sedimentation particles. As will be understood, any and all examples of methods and apparatus for conducting sandwich assays may be used alone or in combination with each other as desired. As can be appreciated, using a separation layer as described herein can advantageously be used to stabilize bioassays during analysis and/or storage. In this manner, by stabilizing the sample and/or the particle pellet following the sedimentation stage may result in decreased background noise from diffusing label and provide for improved sensitivity of detection.
In some examples, the sedimentation particles may include particles which are denser than blood cells thereby providing enhanced separation from the sample. In some examples, the sedimentation particles may be silica microparticles.
Accordingly, examples have been described of the use of separation layers to improve assays employing sedimentation forces. Other techniques may additionally or instead be used in embodiments of the present invention with assays employing sedimentation forces. In some examples, particle charge may be used to enhance assays utilizing sedimentation forces. Examples of assays utilizing particle charge may also include use of the separation layer, described above, or may proceed without use of a separation layer. Examples of the use of particle charge are described further below.
Referring to
In some examples, the sedimentation particles may include particles that have a negatively charged surface. In some examples, the method may further include, prior to providing the sedimentation particles in the fluid sample, treating the sedimentation particles with carboxylate such that the sedimentation particles become negatively charged, as shown in box 500. These negatively charged sedimentation particles may be used in assays for negatively-charged target analyte and in conjunction with negatively charged labeling agents. In some examples, the method may include forming the sedimentation particles from negatively charged compounds, such that the resulting sedimentation particles are negatively charged and/or have a negative surface charge. In some examples, the particles may include polystyrene beads or silica beads. In some examples, the particles may have a diameter of about 0.15 microns. In some examples, the particles may have a diameter of up to about 10 microns. In some examples, the labeling agent may include carboxylate-modified fluorescent particles. In other examples, the labeling agent may be negatively charged dye molecules.
As can be appreciated in light of the above example, the methods disclosed may decrease non-specific binding of labeling substances to the assay particles. As various particles suspended in a fluid may tend to attract or repel one another due to their surface charges, using a labeling substance and sedimentation particles with opposite surface charges may cause them to attract despite the absence of analyte (e.g., resulting in non-specific binding of the label to the particles). Accordingly, the methods and systems described may reduce non-specific binding by using a labeling agent and sedimentation particles which have a same charge. In some examples, sedimentation particles or beads may be used which have negative charge or which are pretreated to have a negative surface charge. This may be particularly advantageous because human cells have a negative surface charge and using negatively charged beads may reduce the non-specific binding of the particles and labels to cells contained in the sample of interest rather than the biomolecules being analyzed.
In some examples of the present invention, labeling agents may be used that may improve the assay sensitivity. For example, the labeling agent may include detection particles or tags which have fluorescence emission that differs in wavelength from light used to excite the particle pellet during detection. In some examples, the detection particles (e.g. tags) may be nanoparticle fluorophores. In some examples, the detection particles may be quantum dots. In some examples, the detection particles may be polymer nanoparticles doped with energy transferring fluorescent dyes. Example assays using certain fluorescent tags, such as quantum dots, may advantageously increase the sensitivity of the assay by both decreasing non-specific binding (as described above due to the negative surface charge of the quantum dots) and by providing higher intensity emission. In some examples, signal emission of the labeling agent may be up to 100 times greater than emission obtainable from conventional dye molecules. Furthermore, and as depicted in
As previously described, assays according to these examples, may be conducted by layering a mixture on a density medium disposed in an assay area (e.g. sedimentation channel or vial). Prior to layering, the mixture may be prepared by combining fluorescent tags. In some examples, the fluorescent tags may be nanoparticles selected to have higher individual fluorescent emission than dye molecules and have sufficiently large spectral gaps to allow for filtering material autofluorescence.
A disk 700 may include a substrate 705 which may at least partially define regions of assay areas 710a-710h. While disks are described as example devices herein, it is to be understood that other embodiments of the present invention may employ different devices (e.g. vials) for conducting assays. The disk 700 may also include one or more fluid inlet ports (not shown) in fluid communication with the assay areas 710a-710h. During operation, as will be described further below, fluids including sample liquids, density media, and/or sedimentation particles, which may be suspended in a fluid, may be transported using centrifugal force from a generally central region of the disk 700 toward a periphery of the disk 700 in a direction indicated by an arrow 715. The centrifugal force may be generated by rotating the disk 700 in a direction indicated by the arrow 720, or in the opposite direction.
The substrate 705 may be implemented using any of a variety of suitable substrate materials. In some embodiments, the substrate may be a solid transparent material. Transparent plastics, quartz, glass, fused-silica, PDMS, and other transparent substrates may be desired in some embodiments to allow optical observation of sample within the channels and chambers of the disk 700. In some embodiments, however, opaque plastic, metal or semiconductor substrates may be used. In some embodiments, multiple materials may be used to implement the substrate 705. The substrate 705 may include surface treatments or other coatings, which may in some embodiments enhance compatibility with fluids placed on the substrate 705. In some embodiments surface treatments or other coatings may be provided to control fluid interaction with the substrate 705. While shown as a round disk in
In some embodiments, as will be described further below, the substrate 705 may itself be coupled to a motor for rotation. In some embodiments, the substrate may be mounted on another substrate or base for rotation. For example, a microfluidic chip fabricated at least partially in a substrate may be mounted on another substrate for spinning. In some examples, the microfluidic chip may be disposable while the substrate or base it is mounted on may be reusable. In some examples, the entire disc may be disposable. In some examples, a disposable cartridge including one or more microfluidic channels may be inserted into disk or other mechanical rotor that forms part of a detection system.
The substrate 705 may generally, at least partially, define a variety of fluidic features. The fluidic features may be microfluidic features. Generally, microfluidic, as used herein, refers to a system, device, or feature having a dimension of around 1 mm or less and suitable for at least partially containing a fluid. In some embodiments, 500 μm or less. In some embodiments, the microfluidic features may have a dimension of around 100 μm or less. Other dimensions may be used. The substrate 705 may define one or more fluidic features, including any number of channels, chambers, inlet/outlet ports, or other features.
Disk 700, which may be a microfluidic disk, may be fabricated using microscale fabrication techniques, generally known in the art. For example, microscale fabrication techniques employed for manufacturing disk 700 may include embossing, etching, injection molding, surface treatments, photolithography, bonding and other techniques.
One or more fluid inlet ports (not shown) may be provided to receive a fluid that may be analyzed using the disk 700. The fluid inlet port may have generally any configuration, and a fluid sample may enter the fluid inlet port utilizing substantially any fluid transport mechanism, including pipetting, pumping, capillary action, or others. The fluid inlet port may take substantially any shape. Generally, the fluid inlet port is in fluid communication with at least one assay area 710, and may be in fluid communication with multiple assay areas, or individual other fluid inlet ports may be independently in fluid communication with respective assay areas 710a-710h. Generally, by fluid communication it is meant that a fluid may flow from one area to the other, either freely or using one or more transport forces and/or valves, and with or without flowing through intervening structures.
The assay areas 710a-710h may be implemented according to any and combinations of the examples described herein and/or may also incorporate other features for conducting sandwich assays known in the art. The assay areas 710a-710h may generally include one or more sedimentation channels 725 in fluid communication with the fluid inlet port (not shown). Although eight assay areas 710a-710h are shown in
As the disk 700 is rotated in the direction indicated by the arrow 720 (or in the opposite direction), a centrifugal force may be generated. The centrifugal force may in part aid in transporting fluid and/or particles 730 from one portion of a sedimentation channel 725 to another portion of the sedimentation channel 725.
The motor 805 may be implemented using a centrifugation and/or stepper motor. The motor 805 may be positioned relative to the detection module 810 such that, when the device 700 is situated on the motor 805, the disk is positioned such that a detection region of the assay area 710 is exposed to the detection module 810. That is, the motor may be configured such that it provides sufficient clearance for operation of the system 800 and access to detection regions of the assays.
The detection module 810 may include a detector suitable for detecting signal from labels on the coated particles described herein. The detector may include, for example, a laser and optics suitable for optical detection of fluorescence from fluorescent labels. The detection module may include one or more photomultiplier tubes. In other examples, other detectors, such as electronic detectors, CCD cameras, or other cameras (e.g. cell phone cameras), may be used. The actuator 815 may move the detector in some examples where signal may be detected from a variety of locations of the microfluidic device 700, as will be described further below.
The processing device 820 may include one or more processing units, such as one or more processors. In some examples, the processing device 820 may include a controller, logic circuitry, and/or software for performing functionalities described herein. The processing device 820 may be coupled to one or more memories, input devices, and/or output devices including, but not limited to, disk drives, keyboards, mice, and displays. The processing device may provide control signals to the motor 805 to rotate the device 700 at selected speeds for selected times, as has been described above. The processing device may provide control signals to the detection module 810, including one or more detectors and/or actuators, to detect signals from the labels and/or move the detector to particular locations. The processing device may develop these control signals in accordance with input from an operator and/or in accordance with software including instructions encoded in one or more memories, where the instructions, when executed by one or more processing units, may cause the processing device to output a predetermined sequence of control signals. The processing device 820 may receive electronic signals from the detection module 810 indicative of the detected signal from labels. The processing device 820 may detect an analyte of interest and/or calculate a quantity of a target analyte in a fluid sample based on the signals received from the detection module 810, as has been described above. Accordingly, the processing device 820 may perform calculations. The calculations may be performed in accordance with software including one or more executable instructions stored on a memory causing the processing device to perform the calculations. Results may be stored in memory, communicated over a network, and/or displayed. It is to be understood that the configuration of the processing device 820 and related components is quite flexible, and any of a variety of computing systems may be used including server systems, desktops, laptops, controllers, and the like.
As will be understood, while the examples presented herein have been described with reference to a single set of particle beads and respective analyte, multiple analytes may be included in a given assay and analyzed simultaneously, by using, for example, different bead sizes and densities of the beads and medium or layers of density medium. The methods for enhancing the sensitivity of sandwich assays may be applied in conducting any of assays described herein or known in the art.
The sedimentation channel 905 may taper along a first direction Y so as to form generally triangularly shaped region at a bottom portion 920 of the device, the prism region having a first thickness Tchannel. The sedimentation channel 905 may taper along a second direction Z so as to modify the generally prism-shaped bottom portion 920 into a generally pyramid shaped region 920. In some examples, the bottom portion 920 may include an end portion 940, which may have a substantially flattened rectangular profile. It will be understood that while a rectangular end portion 940 is shown, other form factors may be used such as a flattened semicircular end portion 940. Any shape which effectively reduces one dimension of (e.g. flattens) the particle pellet and thereby distributes the pellet over a larger surface area may be used.
In some examples, one or more of the walls 915, 925 and/or 935 of the sedimentation channel 905 may be sloped inward and/or upward to form the pellet chamber 930. The pellet chamber 930 may have a thickness Tpellet which is less than the thickness Tchannel. In some examples, the channel thickness Tchannel may be reduced as compared to the thickness Tpellet by a factor of ½ to 1/10. That is, in some examples, the thickness Tchannel may be twice as thick as the thickness Tpellet. In some examples, the thickness Tchannel may be up to about 10 times the thickness Tpellet of the pellet chamber 930. As can be appreciated, the narrowing of the thickness of the channel 905 causes the particle pellet to spread out and may lead to an increase in the effective signal of the sedimentation assay. In some examples, the thickness Tpellet of the pellet chamber 930 may be constant throughout the length of the chamber 930. In some examples, the thickness of the pellet chamber may vary along its length.
As will be appreciated, packed particles may reflect light signals due to Rayleigh or Mie scattering depending on size. Thick particle pellets may be less efficient at transmitting light as compared to thinner pellet with a large surface area, which may be more effective at transmitting light-based signals such as fluorescence, luminescence, or phosphorescence. Examples according to the present disclosure, such as the example device 900, may provide a larger surface area for detection thereby increasing the sensitivity of the assay, as described. Furthermore, low cost instrumentation, for example such that use large area light collection optics, may be used to detect the larger effective signal from a thinner pellet provided according to the examples described
As described, examples of devices according to the present invention may include detection regions 910 which may be tapered and/or flattened to provide a pellet chamber 930 with an increased surface area. As will be appreciated, a non-tapered or constant thickness configuration may generally provide a detection region causes the detection particles to gather and/or clump together to form a pellet having a smaller cross sectional area and larger thickness than the device 900. This may decrease the sensitivity of the assay because the smaller cross-sectional area will generally provide a weaker detection signal.
An example method for conducting a bioassay may include layering a mixture on a density medium disposed in a sedimentation channel, wherein the mixture includes a sample and coated particles, subjecting the mixture to sedimentation forces such that particles denser than the density medium travel through the density medium, and forming a substantially flat particle pellet in a detection region of the sedimentation channel.
The method of conducting a bioassay may include the steps of transporting the particles and aggregates to an end portion of the sedimentation channel, wherein the end portion has a first length shorter than a length of the sedimentation channel, a first width shorter than the width of the sedimentation channel and a first thickness shorter than the thickness of the sedimentation channel. The method may further include the steps of detecting a presence of an analyte of interest in the detection region.
In some examples, the step of forming a substantially flat particle pellet may include collecting the particles in an end region of the sedimentation channel, the end region being tapered along a first direction and a second direction. In some examples, forming a substantially flat particle pellet may include forming a particle pellet which has a thickness and a length having a high aspect ratio.
Although improvements are described relative to typical assays, the advantages or improvements achieved by examples of the present invention are provided herein to aid in the understanding of the disclosure, and it is to be understood that not all embodiments of the present invention may provide all, or any, of the improvements or advantages described herein.
From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention.
This application is a continuation-in-part of U.S. application Ser. No. 12/891,977, filed Sep. 28, 2010, entitled “DEVICES, SYSTEMS, AND METHODS FOR CONDUCTING SANDWICH ASSAYS USING SEDIMENTATION”, which application claims the benefit of Provisional Application No. 61/362,398, filed Jul. 8, 2010, and Provisional Application No. 61/362,407, filed Jul. 8, 2010. These applications are incorporated herein by reference in their entirety, for any purpose.
Described examples were made with Government support under Government Contract No. DE-AC04-94AL85000 awarded by the U.S. Department of Energy to Sandia Corporation. The Government has certain rights in the invention, including a paid-up license and the right, in limited circumstances, to require the owner of any patent issuing in this invention to license others on reasonable terms.
Number | Name | Date | Kind |
---|---|---|---|
3376083 | Everhardus | Apr 1968 | A |
3555284 | Anderson | Jan 1971 | A |
3744974 | Maddox | Jul 1973 | A |
3844341 | Bimshas et al. | Oct 1974 | A |
4125375 | Hunter | Nov 1978 | A |
4156570 | Wardlaw | May 1979 | A |
4164690 | Muller et al. | Aug 1979 | A |
4282464 | Uzuka | Aug 1981 | A |
4380355 | Beardmore | Apr 1983 | A |
4554071 | Ruijten et al. | Nov 1985 | A |
4656143 | Baker et al. | Apr 1987 | A |
4683579 | Wardlaw | Jul 1987 | A |
4844818 | Smith | Jul 1989 | A |
5000254 | Williams | Mar 1991 | A |
5197858 | Cheng | Mar 1993 | A |
5279936 | Vorpahl | Jan 1994 | A |
5296775 | Cronin et al. | Mar 1994 | A |
5297623 | Ogushi et al. | Mar 1994 | A |
5335143 | Maling | Aug 1994 | A |
5583746 | Wang | Dec 1996 | A |
5616974 | Yamada | Apr 1997 | A |
5635362 | Levine et al. | Jun 1997 | A |
5705628 | Hawkins | Jan 1998 | A |
5727928 | Brown | Mar 1998 | A |
5736787 | Larimer | Apr 1998 | A |
5794687 | Webster et al. | Aug 1998 | A |
5882903 | Andrevski et al. | Mar 1999 | A |
5957659 | Amou et al. | Sep 1999 | A |
5963887 | Giorgio | Oct 1999 | A |
5979541 | Saito | Nov 1999 | A |
6050326 | Evans et al. | Apr 2000 | A |
6078468 | Fiske | Jun 2000 | A |
6153148 | Thomas | Nov 2000 | A |
6175495 | Batchelder | Jan 2001 | B1 |
6194798 | Lopatinsky | Feb 2001 | B1 |
6249071 | Lopatinsky et al. | Jun 2001 | B1 |
6319469 | Mian et al. | Nov 2001 | B1 |
6356435 | Davis et al. | Mar 2002 | B1 |
6379974 | Parce et al. | Apr 2002 | B1 |
6392720 | Kim | May 2002 | B1 |
6457955 | Cheng | Oct 2002 | B1 |
6525938 | Chen | Feb 2003 | B1 |
6545438 | Mays, II | Apr 2003 | B1 |
6619385 | Watanabe et al. | Sep 2003 | B2 |
6623860 | Hu et al. | Sep 2003 | B2 |
6638408 | Speicher et al. | Oct 2003 | B1 |
6659169 | Lopatinsky et al. | Dec 2003 | B1 |
6664673 | Lopatinsky et al. | Dec 2003 | B2 |
6685809 | Jacobson et al. | Feb 2004 | B1 |
6860323 | Cheng | Mar 2005 | B2 |
6873069 | Odagiri et al. | Mar 2005 | B1 |
6876550 | Sri-Jayantha et al. | Apr 2005 | B2 |
6879120 | Xi | Apr 2005 | B2 |
6887384 | Frechet et al. | May 2005 | B1 |
6955215 | Al-Garni et al. | Oct 2005 | B2 |
6960449 | Wang et al. | Nov 2005 | B2 |
6966357 | Herbert | Nov 2005 | B1 |
7021894 | Lopatinsky et al. | Apr 2006 | B2 |
7033747 | Gordon | Apr 2006 | B2 |
7035102 | Holmes | Apr 2006 | B2 |
7044202 | Lopatinsky et al. | May 2006 | B2 |
7055581 | Roy | Jun 2006 | B1 |
7071687 | Sekijima et al. | Jul 2006 | B2 |
7100677 | Lee et al. | Sep 2006 | B2 |
7134839 | Horng et al. | Nov 2006 | B2 |
7136285 | Herbert | Nov 2006 | B1 |
7157049 | Valencia et al. | Jan 2007 | B2 |
7165413 | Symons | Jan 2007 | B2 |
7165938 | Lee et al. | Jan 2007 | B2 |
7265975 | Tsai | Sep 2007 | B2 |
7267526 | Hsu et al. | Sep 2007 | B2 |
7273091 | Bahl et al. | Sep 2007 | B2 |
7284596 | Larson | Oct 2007 | B2 |
7301771 | Hata et al. | Nov 2007 | B2 |
7304845 | Xia | Dec 2007 | B2 |
7312085 | Chou et al. | Dec 2007 | B2 |
7324339 | Foster, Sr. | Jan 2008 | B2 |
7349212 | Xia | Mar 2008 | B2 |
7381027 | Kaneko et al. | Jun 2008 | B2 |
7455501 | Horng et al. | Nov 2008 | B2 |
7458413 | Mok | Dec 2008 | B2 |
7481263 | Breier et al. | Jan 2009 | B2 |
7520314 | Hwang et al. | Apr 2009 | B2 |
7543457 | Crocker et al. | Jun 2009 | B2 |
7667969 | Khanna et al. | Feb 2010 | B2 |
7670102 | Chang et al. | Mar 2010 | B2 |
7695256 | Horng et al. | Apr 2010 | B2 |
7758810 | Lee et al. | Jul 2010 | B2 |
7836939 | Zimmerman et al. | Nov 2010 | B2 |
7896611 | Khanna et al. | Mar 2011 | B2 |
7900690 | Hawwa et al. | Mar 2011 | B2 |
7905712 | Huang | Mar 2011 | B2 |
7911791 | Refai-Ahmed et al. | Mar 2011 | B2 |
8337775 | Pugia et al. | Dec 2012 | B2 |
20010055812 | Mian et al. | Dec 2001 | A1 |
20020090307 | Cheng | Jul 2002 | A1 |
20020098535 | Wang et al. | Jul 2002 | A1 |
20020137068 | Haugland et al. | Sep 2002 | A1 |
20020151043 | Gordon | Oct 2002 | A1 |
20020153251 | Sassi et al. | Oct 2002 | A1 |
20020164659 | Rao et al. | Nov 2002 | A1 |
20020170825 | Lee et al. | Nov 2002 | A1 |
20030013203 | Jedrzejewski et al. | Jan 2003 | A1 |
20030124719 | Woodside | Jul 2003 | A1 |
20030203504 | Hefti | Oct 2003 | A1 |
20030221963 | Bjellqvist et al. | Dec 2003 | A1 |
20040035556 | Jean | Feb 2004 | A1 |
20040072278 | Chou et al. | Apr 2004 | A1 |
20040109291 | Kannmacher | Jun 2004 | A1 |
20040114327 | Sri-Jayantha et al. | Jun 2004 | A1 |
20040119354 | Takada | Jun 2004 | A1 |
20050002163 | Lopatinsky | Jan 2005 | A1 |
20050087445 | Speicher et al. | Apr 2005 | A1 |
20050195573 | Huang | Sep 2005 | A1 |
20050215410 | Merino et al. | Sep 2005 | A1 |
20050274490 | Larson | Dec 2005 | A1 |
20060007656 | Symons | Jan 2006 | A1 |
20060021735 | Lopatinsky | Feb 2006 | A1 |
20060171654 | Hawkins et al. | Aug 2006 | A1 |
20060191792 | Herr et al. | Aug 2006 | A1 |
20070000268 | Crocker et al. | Jan 2007 | A1 |
20070041158 | Hornung | Feb 2007 | A1 |
20070231419 | Pelcz et al. | Oct 2007 | A1 |
20080069706 | Huang | Mar 2008 | A1 |
20080108047 | Woodside | May 2008 | A1 |
20080149484 | Tolley et al. | Jun 2008 | A1 |
20090004059 | Pugia et al. | Jan 2009 | A1 |
20090069554 | Finne | Mar 2009 | A1 |
20090145584 | Walsh et al. | Jun 2009 | A1 |
20090166004 | Lai et al. | Jul 2009 | A1 |
20090209402 | Andersson | Aug 2009 | A1 |
20100068754 | Kirakossian | Mar 2010 | A1 |
20100120596 | Froman et al. | May 2010 | A1 |
20100151560 | Wo et al. | Jun 2010 | A1 |
20100177480 | Koplow | Jul 2010 | A1 |
20100328887 | Refai-Ahmed et al. | Dec 2010 | A1 |
20110103011 | Koplow | May 2011 | A1 |
Number | Date | Country |
---|---|---|
0407169887 | Jul 1995 | JP |
2000-054978 | Feb 2000 | JP |
02000341902 | Dec 2000 | JP |
2006-037918 | Feb 2006 | JP |
WO0168225 | Sep 2001 | WO |
WO-2008143578 | Nov 2008 | WO |
2009098237 | Aug 2009 | WO |
WO2010016963 | Feb 2010 | WO |
Entry |
---|
Curtis, R. A. et al., “A Molecular Approach to Bioseparations: Protein-Protein and Protein-Salt Interactions”, Chemical Engineering Science, 2006, pp. 907-923, vol. 61. |
Abi-Samra, Kameel et al., “Infrared Controlled Waxes for Liquid Handling and Storage on a CD-Microfluidic Platform”, The Royal Society of Chemistry; Lab Chip, 2011, 723-726. |
Baldwin, Robert L. , “How Hofmeister Ion Interactions Affect Protein Stability”, Biophysical Journal; vol. 71, Oct. 1996, 2056-2063. |
Boyko, Matthew et al., “Cell-Free DNA—A Marker to Predict Ischemic Brain Damage in a Rat Stroke Experimental Model”, Neurosurg Anesthesiol; vol. 23, No. 3, Jul. 2011, 222-228. |
Carney, J. , “Rapid Diagnostic Tests Employing Latex Particles”, Analytical Proceedings, Apr. 1990, 99-100. |
Curtis, R. A. et al., “A Molecular Approach to Bioseparations: Protein-Protein and Protein-Salt Interactions”, Chemical Engineering Science 61, 2006, 907-923. |
Czeiger, David et al., “Measurement of Circulating Cell-Free DNA Levels by a New Simple Fluorescent Test in Patients With Primary Colorectal Cancer”, Am J Clin Pathol, 2011, 264-270. |
Glorikian, Harry et al., “Smart-Consumables Product Development Strategy: Implications for Molecular Diagnostics”, DX Direction, 2010, 12-16. |
Goldshtein, Hagit et al., “A Rapid Direct Fluorescent Assay for Cell-Free DNA Quantification in Biological Fluids”, Annals of Clinical Biochemistry, 2009, 488-494. |
Holmes, David et al., “Leukocyte Analysis and Differentiation Using High Speed Microfluidic Single Cell Impedance Cytometry”, Lab Chip 9, Aug. 7, 2009, 2881-2889. |
Lee, B. S. et al., “A Fully Automated Immunoassay From Whole Blood on a Disc”, Lab Chip 9, Mar. 5, 2009, 1548-1555. |
Lim, C. T. et al., “Bead-Based Microfluidic Immunoassays: The Next Generation”, Biosens Bioelectron 22, Jul. 20, 2006, 1197-1204. |
Lo, Y. M. D. et al., “Plasma DNA as a Prognostic Marker in Trauma Patients”, Clinical Chemistry 46:3, 2000, 319-323. |
Madou, Marc et al., “Lab on a CD”, Annual Rev. Biomed Eng 8, 2006, 601-628. |
Maes, Melissa L. et al., “Comparison of Sample Fixation and the Use of LDS-751 or Anti-CD45 for Leukocyte Identification in Mouse Whole Blood for Flow Cytometry”, Journal of Immunological Methods, Jan. 30, 2007, 1-13. |
Min, Junhong et al., “Functional Integration of DNA Purification and Concentration Into a Real Time Micro-PCR Chip”, The Royal Society of Chemistry; Lab Chip, 2011, 259-265. |
Price, Christopher P. et al., “Light-Scattering Immunoassay”, Principles and Practice of Immunoassay (Second Edition); Chapter 18, 1997, 445-480. |
Rhodes, Andrew et al., “Plasma DNA Concentration as a Predictor of Mortality and Sepsis in Critically Ill Patients”, Critical Care, 2006, 1-7. |
Rider, Todd H. et al., “A B Cell-Based Sensor for Rapid Identification of Pathogens”, www.sciencemag.org; Science vol. 301, 2003, 213-215. |
Riegger, L. et al., “Read-Out Concepts for Multiplexed Bead-Based Fluorescence Immunoassays on Centrifugal Microfluidic Platforms”, Sensors and Actuators a-Physical, 2006, 455-462. |
Schaff, Ulrich Y. et al., “Whole Blood Immunoassay Based on Centrifugal Bead Sedimentation”, Clinical Chemistry, 2011, 753-761. |
Zhang, L. et al., “A New Biodosimetric Method: Branched DNA-Based Quantitative Detection of B1 DNA in Mouse Plasma”, The British Journal of Radiology, 83, Aug. 2010, 694-701. |
Ziegler, Annemarie et al., “Circulating DNA: A New Diagnostic Gold Mine?”, Cancer Treatment Reviews, 2002, 255-271. |
Ahanotu, et al., “Staphylococcal Enterotoxin B as a Biological Weapon: Recognition, Management, and Surveillance of Staphylococcal Enterotoxin”, Applied Biosafety; vol. 11 (3), 2006, 120-126. |
Amukele, et al., “Ricin A-chain activity on stem-loop and unstructured DNA substrates.”, Biochemistry; vol. 44(11), Mar. 25, 2005, 4416-4425. |
Andersson, et al., “Parallel nanoliter microfluidic analysis system”, Clinical Chemistry, 2007. |
Berry, Scott M., “One-step Purification of Nucleic Acid for Gene Expression Analysis via Immiscible Filtration Assisted by Surface Tension”, Lap Chip, May 21, 2011. |
Brigotti, et al., “Shiga toxin 1 acting on DNA in vitro is a heat-stable enzyme not requiring proteolytic activation”, Biochimie Journal; 86(45), 2004, 305-309. |
Endo, et al., “RNA N-Glycosidase Activity of Ricin A-chain. Mechanism of Action of the Toxic Lectin Ricin on Eukaryotic Ribosomes”, The Journal of Biological Chemistry, vol. 262, No. 17, Jun. 15, 1987, 8128-8130. |
Gorkin, et al., “Centrifugal microfluidics for biomedical applications”, www.rsc.org/loc Lab on a Chip, 2010, 1758-1773. |
Holmberg, et al., “Depurination of A4256 in 28 S rRNA by the Ribosome-inactivating Proteins from Barley and Ricin Results in Different Ribosome Conformations”, Journal of Molecular Biology; vol. 259(1), May 31, 1996, 81-94. |
Huang, et al., “The Primary Structure of Staphylococcal Enterotoxin B. III. The Cyanogen Bromide Peptides of Reduced and Aminoethylated Enterotoxin B, and the Complete Amino Acid Sequence.”, The Journal of Biological Chemistry vol. 245 No. 14, Jul. 25, 1970, 3518-3525. |
International Search Report and Written Opinion dated Jun. 28, 2013 for PCT/US2013/032349. |
Lee, et al., “Fully integrated lab-on-a-disc for simultaneous analysis of biochemistry and immunoassay from whole blood”, Lab Chip, 2011. |
Saukkonen, et al., “Cell-Free Plasma DNA as a Predictor of Outcome in Severe Sepsis and Septic Shock”, Clinical Chemistry; vol. 54:6, 2008, 1000-1007. |
Schembri, et al., “Portable Simultaneous Multiple Analyte Whole-Blood Analyzer for Point-of-Care Testing”, Clinical Chemistry 38/9, 1992, 1665-1670. |
Schneider, et al., “Characterization of EBV-Genome Negative “Null” and “T” Cell Lines Derived From Children With Acute Lymphoblastic Leukemia and Leukemic Transformed Non-Hodgkin Lymphoma”, International Journal of Cancer; 19(5), May 15, 1977, 621-626. |
Yu, et al., “Bioinformatic processing to identify single nucleotide polymorphism that potentially affect Ape1 function.”, Mutation Research/Genetic Toxicology and Environmental Mutagenesis; vol. 722(2), Jun. 17, 2011, 140-146. |
Albrecht, J W. et al., “Micro Free-Flow IEF Enhanced by Active Cooling and Functionalized Gels”, Electrophoresis, 2006, pp. 4960-4969, vol. 27. |
Amersham, M. “Percoll: Methodology and Applications”, 2001, pp. 1-84. |
Cabrera, C R. et al., “Formation of Natural pH Gradients in a Microfluidic Device under Flow Conditions: Model and Experimental Validation”, Analytical Chemistry, 2001, pp. 658-666, vol. 73. |
Cui, Huanchun et al., “Multistage Isoelectric Focusing in a Polymeric Microfluidic Chip”, Analytical Chemistry, Dec. 15, 2005, pp. 7878-7886, vol. 77, No. 24. |
Das, C., et al. “Effects of Separation Length and Voltage on Isoelectric Focusing in a Plastic Microfluidic Device”, Electrophoresis, 2006, pp. 3619-3626, vol. 27. |
Folgea, D. et al., “Detecting Single Stranded DNA with a Solid State Nanopore”, Nano Letters, 2005, vol. 5, No. 10, pp. 1905-1909. |
Glorikian, H. et al., “Overview of Microfluidic Applications IN IVDS”, DX Direction 1, 2010, pp. 12-16. |
Gorg, A. et al., “Recent Developments in Two-Dimensional Gel Electrophoresis with Immobilized pH Gradients: Wide pH Gradients up to pH 12, Longer Separation Distances and Simplified Proceedures”, Electrophoresis, vol. 20, 1999, pp. 712-717. |
Gorg, A. et al., “The Current State of Two-Dimensional Electrophoresis with Immobilized pH Gradients”, Electrophoresis, vol. 21, 2000, pp. 1037-1053. |
Hatch, A V. et al., “Integrated Preconcentration SDS-PAGE of Proteins in Microchips Using Photopatterned Cross-Linked Polyacrylamide Gels”, Analytical Chemistry, vol. 78, 2006, pp. 4976-4984. |
Herr, A E. et al., “Microfluidic Immunoassays as Rapid Saliva-Based Clinical Diagnostics”, PNAS, vol. 104, No. 13, 2007, pp. 5268-5273. |
Herr, A E. et al., “On-Chip Coupling of Isoelectric Focusing and Free Solution Electrophoresis for Multidimensional Separations”, Analytical Chemistry, vol. 75, 2003, pp. 1180-1187. |
Huang, T et al., “Microfabrication of a Tapered Channel for Isoelectric Focusing with Thermally Generated pH Gradient”, Electrophoresis, vol. 23, 2002, pp. 3504-3510. |
International Search Report dated Dec. 24, 2009 for PCT/US2009/044550. |
International Search Report dated Mar. 1, 2012 for PCT/US2012/027299. |
Invitrogen Life Technologies, Instructional Manual, ZOOM IEF Fractionator, Cat. Nos. ZF10001 & ZF10002, Version C, Jul. 2004, pp. 1-64. |
Lim, P., et al., “Rapid isoelectric trapping in a micropreparative-scale multicompartment electrolyzer”, Electrophoresis, 2007. vol. 28, pp. 1851-1859. |
Lo, C T. et al., “Photoploymerized Diffusion-Defined Ployacrylamide Gradient Gels for On-Chip Protein Sizing”, The Royal Society of Chemistry, Lab on a Chip, vol. 8, No. 8, 2008, pp. 1273-1279. |
Long, et al., “Integration of nanoporous membranes for sample filtration/preconcentration in microchip electrophoresis”, Electrophoresis, 2004, pp. 4927-4934, vol. 27. |
O'Farrell, P. H., “High Resolution Two-Dimensional Electrophoresis of Proteins”, The Journal of Biological Chemistry, vol. 250, No. 9, 1975, pp. 4007-4021. |
Ogle, et al., “Preparative-scale isoelectric trapping separations using a modified Gradiflow Unit”, Journal of Chromatography A, 2002, vol. 979, pp. 155-161. |
Righetti, P G. “The Alpher, Bethe, and Gamow of IEF, the Alpha-Centaury of Electrokinetic Methodologies, Part II: Immobilized pH Gradients”, Electrophoresis, 2007, pp. 545-555, vol. 28. |
Righetti, P G. “The Alpher, Bethe, Gamow of Isoelectric Focusing, the Alpha-Centaury of Electrokinetic Methodologies. Part 1”, Electrophoresis, 2006, pp. 923-938, vol. 27. |
Satomi, T. et. al., “Design Optimization of Spirally Grooved Thrust Air Gearings for Polygon Mirrow Laser Scanners”, The Japan Society of Mechanical Engineers, 1993, Series C., vol. 36(3), pp. 393-399. |
Sommer, G J. et al., “On-Chip Isoelectric Focusing Using Photopolymerized Immobilized pH Gradients”, Analytical Chemistry, 2008, pp. 3327-3333, vol. 80. |
Tan, W et al., “Miniaturized Capillary Isoelectric Focusing in Plastic Microfluidic Devices”, Electrophoresis, 2002, pp. 3638-3645, vol. 23. |
Zilberstein, G et al., “Parallel Isoelectric Focusing Chip”, Proteomics, 2004, pp. 2533-2540, vol. 4. |
Zilberstein, G. et al., “Parallel isoelectric focusing II”, Electrophoresis 2004, vol. 25, pp. 3643-3651. |
Zilberstein, G. et al., “Parallel processing in the isoelectric focusing chip”, Electrophoresis, 2003, vol. 24, pp. 3735-3744. |
Zuo, X; Speicher, D.W.; “A Method for Global Analysis of Complex Proteoms Using Sample Prefactionation by Solution Isoelectrofocusing Prior to Two-Dimensional Electrophoresis”, Analytical Biochemistry, 2000, vol. 284, pp. 266-278. |
Number | Date | Country | |
---|---|---|---|
20140154816 A1 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
61362398 | Jul 2010 | US | |
61362407 | Jul 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12891977 | Sep 2010 | US |
Child | 13423050 | US |