The present technology relates to consumer goods and, more particularly, to methods, systems, products, features, services, and other elements directed to voice-controllable media playback systems or some aspect thereof.
Options for accessing and listening to digital audio in an out-loud setting were limited until in 2003, when SONOS, Inc. filed for one of its first patent applications, entitled “Method for Synchronizing Audio Playback between Multiple Networked Devices,” and began offering a media playback system for sale in 2005. The SONOS Wireless HiFi System enables people to experience music from many sources via one or more networked playback devices. Through a software control application installed on a smartphone, tablet, or computer, one can play what he or she wants in any room that has a networked playback device. Additionally, using a controller, for example, different songs can be streamed to each room that has a playback device, rooms can be grouped together for synchronous playback, or the same song can be heard in all rooms synchronously.
Given the ever-growing interest in digital media, there continues to be a need to develop consumer-accessible technologies to further enhance the listening experience.
Features, aspects, and advantages of the presently disclosed technology may be better understood with regard to the following description, appended claims, and accompanying drawings where:
The drawings are for purposes of illustrating example embodiments, but it should be understood that the inventions are not limited to the arrangements and instrumentality shown in the drawings. In the drawings, identical reference numbers identify at least generally similar elements. To facilitate the discussion of any particular element, the most significant digit or digits of any reference number refers to the Figure in which that element is first introduced. For example, element 103a is first introduced and discussed with reference to
Voice control can be beneficial in a “smart” home that includes smart appliances and devices that are connected to a communication network, such as wireless audio playback devices, illumination devices, and home-automation devices (e.g., thermostats, door locks, etc.). In some implementations, network microphone devices may be used to control smart home devices.
A network microphone device (“NMD”) is a networked computing device that typically includes an arrangement of microphones, such as a microphone array, that is configured to detect sounds present in the NMD's environment. The detected sound may include a person's speech mixed with background noise (e.g., music being output by a playback device or other ambient noise). In practice, an NMD typically filters detected sound to remove the background noise from the person's speech to facilitate identifying whether the speech contains a voice input indicative of voice control. If so, the NMD may act based on such a voice input.
An NMD often employs a wake-word engine, which is typically onboard the NMD, to identify whether sound detected by the NMD contains a voice input that includes a particular wake word. The wake-word engine is a type of voice-input identification engine that is configured to identify (i.e., “spot”) a particular keyword (e.g., a wake word) using one or more identification algorithms, using e.g., natural-language understanding (NLU), machine learning, and/or other suitable algorithms. In practice, to help facilitate wake-word spotting, the NMD may buffer sound detected by a microphone of the NMD and then use the wake-word engine to process that buffered sound to determine whether a wake word is present.
When a wake-word engine spots a wake word in detected sound, the NMD may determine that a wake-word event (i.e., a “wake-word trigger”) has occurred, which indicates that the NMD has detected sound that includes a potential voice input. The occurrence of the wake-word event typically causes the NMD to perform additional processes involving the detected sound. In some implementations, these additional processes may include outputting an alert (e.g., an audible chime and/or a light indicator) indicating that a wake word has been identified and extracting detected-sound data from a buffer, among other possible additional processes. Extracting the detected sound may include reading out and packaging a stream of the detected-sound according to a particular format and transmitting the packaged sound-data to an appropriate VAS for interpretation.
In turn, the VAS corresponding to the wake word that was identified by the wake-word engine receives the transmitted sound data from the NMD over a communication network. A VAS traditionally takes the form of a remote service implemented using one or more cloud servers configured to process voice inputs (e.g., AMAZON's ALEXA, APPLE's SIRI, MICROSOFT's CORTANA, GOOGLE'S ASSISTANT, etc.). In some instances, certain components and functionality of the VAS may be distributed across local and remote devices. Additionally, or alternatively, a VAS may take the form of a local service implemented at an NMD or a media playback system comprising the NMD such that a voice input or certain types of voice input (e.g., rudimentary commands) are processed locally without intervention from a remote VAS.
In any case, when a VAS receives detected sound data, the VAS will typically process this data, which involves identifying the voice input and determining an intent of words captured in the voice input. The VAS may then provide a response back to the NMD with some instruction according to the determined intent. Based on that instruction, the NMD may cause one or more smart devices to perform an action. For example, in accordance with an instruction from a VAS, an NMD may cause a playback device to play a particular song or an illumination device to turn on/off, among other examples. In some cases, an NMD, or a media system with NMDs (e.g., a media playback system with NMD-equipped playback devices) may be configured to interact with multiple VASes. In practice, the NMD may select one VAS over another based on the particular wake word identified in the sound detected by the NMD.
In some implementations, a playback device that is configured to be part of a networked media playback system may include components and functionality of an NMD (i.e., the playback device is “NMD-equipped”). In this respect, such a playback device may include a microphone that is configured to detect sounds present in the playback device's environment, such as people speaking, audio being output by the playback device itself or another playback device that is nearby, or other ambient noises, and may also include components for buffering detected sound to facilitate wake-word identification.
Some NMD-equipped playback devices may include an internal power source (e.g., a rechargeable battery) that allows the playback device to operate without being physically connected to a wall electrical outlet or the like. In this regard, such a playback device may be referred to herein as a “portable playback device.” On the other hand, playback devices that are configured to rely on power from a wall electrical outlet or the like may be referred to herein as “stationary playback devices,” although such devices may in fact be moved around a home or other environment. In practice, a person might often take a portable playback device to and from a home or other environment in which one or more stationary playback devices remain.
In some cases, multiple voice services are configured for the NMD, or a system of NMDs (e.g., a media playback system of playback devices). One or more services can be configured during a set-up procedure, and additional voice services can be configured for the system later on. As such, the NMD acts as an interface with multiple voice services, perhaps alleviating a need to have an NMD from each of the voice services to interact with the respective voice services. Yet further, the NMD can operate in concert with service-specific NMDs present in a household to process a given voice command.
Where two or more voice services are configured for the NMD, a particular voice service can be invoked by utterance of a wake word corresponding to the particular voice service. For instance, in querying AMAZON, a user might speak the wake word “Alexa” followed by a voice command. Other examples include “Ok, Google” for querying GOOGLE and “Hey, Siri” for querying APPLE.
In some cases, a generic wake word can be used to indicate a voice input to an NMD. In some cases, this is a manufacturer-specific wake word rather than a wake word tied to any particular voice service (e.g., “Hey, Sonos” where the NMD is a SONOS playback device). Given such a wake word, the NMD can identify a particular voice service to process the request. For instance, if the voice input following the wake word is related to a particular type of command (e.g., music playback), then the voice input is sent to a particular voice service associated with that type of command (e.g. a streaming music service having voice command capabilities).
It can be difficult to manage the association between various playback devices with one or more corresponding VASes. For example, although a user may wish to utilize multiple VASes within her home, it may not be possible or preferable to associate a single playback device with more than one VAS. This may be due to the constraints of processing power and memory required to perform multiple wake word detection algorithms on a single device, or it may be due to restrictions imposed by one or more VASes. As a result, for any particular playback device, a user may be required to select only a single VAS to the exclusion of any other VASes.
In some instances, a playback device may be purchased with a pre-associated VAS. In such instances, a user may wish to replace the pre-associated VAS with a different VAS of the user's choosing. Additionally, some voice-enabled playback devices may be sold without any pre-associated VAS, in which cases a user may wish to manage the selection and association of a particular VAS with the playback device.
The systems and methods detailed herein address the above-mentioned challenges of managing associations between one or more playback devices and one or more VASes. In particular, systems and methods are provided for distributing wake word detection (and other voice processing functions) across multiple playback devices. As described in more detail below, in some instances the media playback system may include playback devices that are configured to detect different wake words and communicate with different VASes. For example, the media playback system may include a first playback device having a wake word engine associated with a first VAS (such as AMAZON's ALEXA) and configured to detect an associated first wake word (e.g., “Alexa”), and a second playback device having a second wake word engine associated with a second, different VAS (such as GOOGLE's ASSISTANT) and configured to detect a second, different wake word (e.g., “OK, Google”). In some aspects of the technology, the second playback device relies on sound detected by the first playback device for detecting the second wake word, thereby leveraging the existing voice processing capabilities (such as wake word detection) of the second playback device, even instances where the second playback device does not include any of its own microphones. Utilizing the wake word engine of the first playback device distributes the processing time and power associated with wake word detection, and thus frees up computational resources on both the first and second playback devices (as compared to a single playback device with two wake word engines). Moreover, distributed wake word detection may also allow a user to realize the benefits of multiple VASes, each of which may excel in different aspects, rather than requiring a user to limit her interactions to a single VAS to the exclusion of any others.
While some embodiments described herein may refer to functions performed by given actors, such as “users” and/or other entities, it should be understood that this description is for purposes of explanation only. The claims should not be interpreted to require action by any such example actor unless explicitly required by the language of the claims themselves.
Within these rooms and spaces, the MPS 100 includes one or more computing devices. Referring to
With reference still to
As further shown in
In some implementations, the various playback devices, NMDs, and/or controller devices 102-104 may be communicatively coupled to at least one remote computing device associated with a VAS and at least one remote computing device associated with a media content service (“MCS”). For instance, in the illustrated example of
As further shown in
In various implementations, one or more of the playback devices 102 may take the form of or include an on-board (e.g., integrated) network microphone device. For example, the playback devices 102a-e include or are otherwise equipped with corresponding NMDs 103a-e, respectively. A playback device that includes or is otherwise equipped with an NMD may be referred to herein interchangeably as a playback device or an NMD unless indicated otherwise in the description. In some cases, one or more of the NMDs 103 may be a stand-alone device. For example, the NMDs 103f and 103g may be stand-alone devices. A stand-alone NMD may omit components and/or functionality that is typically included in a playback device, such as a speaker or related electronics. For instance, in such cases, a stand-alone NMD may not produce audio output or may produce limited audio output (e.g., relatively low-quality audio output).
The various playback and network microphone devices 102 and 103 of the MPS 100 may each be associated with a unique name, which may be assigned to the respective devices by a user, such as during setup of one or more of these devices. For instance, as shown in the illustrated example of
As discussed above, an NMD may detect and process sound from its environment, such as sound that includes background noise mixed with speech spoken by a person in the NMD's vicinity. For example, as sounds are detected by the NMD in the environment, the NMD may process the detected sound to determine if the sound includes speech that contains voice input intended for the NMD and ultimately a particular VAS. For example, the NMD may identify whether speech includes a wake word associated with a particular VAS.
In the illustrated example of
Upon receiving the stream of sound data, the VAS 190 determines if there is voice input in the streamed data from the NMD, and if so the VAS 190 will also determine an underlying intent in the voice input. The VAS 190 may next transmit a response back to the MPS 100, which can include transmitting the response directly to the NMD that caused the wake-word event. The response is typically based on the intent that the VAS 190 determined was present in the voice input. As an example, in response to the VAS 190 receiving a voice input with an utterance to “Play Hey Jude by The Beatles,” the VAS 190 may determine that the underlying intent of the voice input is to initiate playback and further determine that intent of the voice input is to play the particular song “Hey Jude.” After these determinations, the VAS 190 may transmit a command to a particular MCS 192 to retrieve content (i.e., the song “Hey Jude”), and that MCS 192, in turn, provides (e.g., streams) this content directly to the MPS 100 or indirectly via the VAS 190. In some implementations, the VAS 190 may transmit to the MPS 100 a command that causes the MPS 100 itself to retrieve the content from the MCS 192.
In certain implementations, NMDs may facilitate arbitration amongst one another when voice input is identified in speech detected by two or more NMDs located within proximity of one another. For example, the NMD-equipped playback device 102d in the environment 101 (
In certain implementations, an NMD may be assigned to, or otherwise associated with, a designated or default playback device that may not include an NMD. For example, the Island NMD 103f in the Kitchen 101h (
Further aspects relating to the different components of the example MPS 100 and how the different components may interact to provide a user with a media experience may be found in the following sections. While discussions herein may generally refer to the example MPS 100, technologies described herein are not limited to applications within, among other things, the home environment described above. For instance, the technologies described herein may be useful in other home environment configurations comprising more or fewer of any of the playback, network microphone, and/or controller devices 102-104. For example, the technologies herein may be utilized within an environment having a single playback device 102 and/or a single NMD 103. In some examples of such cases, the LAN 111 (
a. Example Playback & Network Microphone Devices
As shown, the playback device 102 includes at least one processor 212, which may be a clock-driven computing component configured to process input data according to instructions stored in memory 213. The memory 213 may be a tangible, non-transitory, computer-readable medium configured to store instructions that are executable by the processor 212. For example, the memory 213 may be data storage that can be loaded with software code 214 that is executable by the processor 212 to achieve certain functions.
In one example, these functions may involve the playback device 102 retrieving audio data from an audio source, which may be another playback device. In another example, the functions may involve the playback device 102 sending audio data, detected-sound data (e.g., corresponding to a voice input), and/or other information to another device on a network via at least one network interface 224. In yet another example, the functions may involve the playback device 102 causing one or more other playback devices to synchronously playback audio with the playback device 102. In yet a further example, the functions may involve the playback device 102 facilitating being paired or otherwise bonded with one or more other playback devices to create a multi-channel audio environment. Numerous other example functions are possible, some of which are discussed below.
As just mentioned, certain functions may involve the playback device 102 synchronizing playback of audio content with one or more other playback devices. During synchronous playback, a listener may not perceive time-delay differences between playback of the audio content by the synchronized playback devices. U.S. Pat. No. 8,234,395 filed on Apr. 4, 2004, and titled “System and method for synchronizing operations among a plurality of independently clocked digital data processing devices,” which is hereby incorporated by reference in its entirety, provides in more detail some examples for audio playback synchronization among playback devices.
To facilitate audio playback, the playback device 102 includes audio processing components 216 that are generally configured to process audio prior to the playback device 102 rendering the audio. In this respect, the audio processing components 216 may include one or more digital-to-analog converters (“DAC”), one or more audio preprocessing components, one or more audio enhancement components, one or more digital signal processors (“DSPs”), and so on. In some implementations, one or more of the audio processing components 216 may be a subcomponent of the processor 212. In operation, the audio processing components 216 receive analog and/or digital audio and process and/or otherwise intentionally alter the audio to produce audio signals for playback.
The produced audio signals may then be provided to one or more audio amplifiers 217 for amplification and playback through one or more speakers 218 operably coupled to the amplifiers 217. The audio amplifiers 217 may include components configured to amplify audio signals to a level for driving one or more of the speakers 218.
Each of the speakers 218 may include an individual transducer (e.g., a “driver”) or the speakers 218 may include a complete speaker system involving an enclosure with one or more drivers. A particular driver of a speaker 218 may include, for example, a subwoofer (e.g., for low frequencies), a mid-range driver (e.g., for middle frequencies), and/or a tweeter (e.g., for high frequencies). In some cases, a transducer may be driven by an individual corresponding audio amplifier of the audio amplifiers 217. In some implementations, a playback device may not include the speakers 218, but instead may include a speaker interface for connecting the playback device to external speakers. In certain embodiments, a playback device may include neither the speakers 218 nor the audio amplifiers 217, but instead may include an audio interface (not shown) for connecting the playback device to an external audio amplifier or audio-visual receiver.
In addition to producing audio signals for playback by the playback device 102, the audio processing components 216 may be configured to process audio to be sent to one or more other playback devices, via the network interface 224, for playback. In example scenarios, audio content to be processed and/or played back by the playback device 102 may be received from an external source, such as via an audio line-in interface (e.g., an auto-detecting 3.5 mm audio line-in connection) of the playback device 102 (not shown) or via the network interface 224, as described below.
As shown, the at least one network interface 224, may take the form of one or more wireless interfaces 225 and/or one or more wired interfaces 226. A wireless interface may provide network interface functions for the playback device 102 to wirelessly communicate with other devices (e.g., other playback device(s), NMD(s), and/or controller device(s)) in accordance with a communication protocol (e.g., any wireless standard including IEEE 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.15, 4G mobile communication standard, and so on). A wired interface may provide network interface functions for the playback device 102 to communicate over a wired connection with other devices in accordance with a communication protocol (e.g., IEEE 802.3). While the network interface 224 shown in
In general, the network interface 224 facilitates data flow between the playback device 102 and one or more other devices on a data network. For instance, the playback device 102 may be configured to receive audio content over the data network from one or more other playback devices, network devices within a LAN, and/or audio content sources over a WAN, such as the Internet. In one example, the audio content and other signals transmitted and received by the playback device 102 may be transmitted in the form of digital packet data comprising an Internet Protocol (IP)-based source address and IP-based destination addresses. In such a case, the network interface 224 may be configured to parse the digital packet data such that the data destined for the playback device 102 is properly received and processed by the playback device 102.
As shown in
In operation, the voice-processing components 220 are generally configured to detect and process sound received via the microphones 222, identify potential voice input in the detected sound, and extract detected-sound data to enable a VAS, such as the VAS 190 (
In some implementations, the voice-processing components 220 may detect and store a user's voice profile, which may be associated with a user account of the MPS 100. For example, voice profiles may be stored as and/or compared to variables stored in a set of command information or data table. The voice profile may include aspects of the tone or frequency of a user's voice and/or other unique aspects of the user's voice, such as those described in previously-referenced U.S. patent application Ser. No. 15/438,749.
As further shown in
In some implementations, the power components 227 of the playback device 102 may additionally include an internal power source 229 (e.g., one or more batteries) configured to power the playback device 102 without a physical connection to an external power source. When equipped with the internal power source 229, the playback device 102 may operate independent of an external power source. In some such implementations, the external power source interface 228 may be configured to facilitate charging the internal power source 229. As discussed before, a playback device comprising an internal power source may be referred to herein as a “portable playback device.” On the other hand, a playback device that operates using an external power source may be referred to herein as a “stationary playback device,” although such a device may in fact be moved around a home or other environment.
The playback device 102 further includes a user interface 240 that may facilitate user interactions independent of or in conjunction with user interactions facilitated by one or more of the controller devices 104. In various embodiments, the user interface 240 includes one or more physical buttons and/or supports graphical interfaces provided on touch sensitive screen(s) and/or surface(s), among other possibilities, for a user to directly provide input. The user interface 240 may further include one or more of lights (e.g., LEDs) and the speakers to provide visual and/or audio feedback to a user.
As an illustrative example,
As further shown in
By way of illustration, SONOS, Inc. presently offers (or has offered) for sale certain playback devices that may implement certain of the embodiments disclosed herein, including a “PLAY:1,” “PLAY:3,” “PLAY:5,” “PLAYBAR,” “CONNECT:AMP,” “PLAYBASE,” “BEAM,” “CONNECT,” and “SUB.” Any other past, present, and/or future playback devices may additionally or alternatively be used to implement the playback devices of example embodiments disclosed herein. Additionally, it should be understood that a playback device is not limited to the examples illustrated in
b. Example Playback Device Configurations
For purposes of control, each zone in the MPS 100 may be represented as a single user interface (“UI”) entity. For example, as displayed by the controller devices 104, Zone A may be provided as a single entity named “Portable,” Zone B may be provided as a single entity named “Stereo,” and Zone C may be provided as a single entity named “Living Room.”
In various embodiments, a zone may take on the name of one of the playback devices belonging to the zone. For example, Zone C may take on the name of the Living Room device 102m (as shown). In another example, Zone C may instead take on the name of the Bookcase device 102d. In a further example, Zone C may take on a name that is some combination of the Bookcase device 102d and Living Room device 102m. The name that is chosen may be selected by a user via inputs at a controller device 104. In some embodiments, a zone may be given a name that is different than the device(s) belonging to the zone. For example, Zone B in
As noted above, playback devices that are bonded may have different playback responsibilities, such as playback responsibilities for certain audio channels. For example, as shown in
Additionally, playback devices that are configured to be bonded may have additional and/or different respective speaker drivers. As shown in
In some implementations, playback devices may also be “merged.” In contrast to certain bonded playback devices, playback devices that are merged may not have assigned playback responsibilities, but may each render the full range of audio content that each respective playback device is capable of. Nevertheless, merged devices may be represented as a single UI entity (i.e., a zone, as discussed above). For instance,
In some embodiments, a stand-alone NMD may be in a zone by itself. For example, the NMD 103h from
Zones of individual, bonded, and/or merged devices may be arranged to form a set of playback devices that playback audio in synchrony. Such a set of playback devices may be referred to as a “group,” “zone group,” “synchrony group,” or “playback group.” In response to inputs provided via a controller device 104, playback devices may be dynamically grouped and ungrouped to form new or different groups that synchronously play back audio content. For example, referring to
In various implementations, the zones in an environment may be assigned a particular name, which may be the default name of a zone within a zone group or a combination of the names of the zones within a zone group, such as “Dining Room+Kitchen,” as shown in
Referring back to
In some embodiments, the memory 213 of the playback device 102 may store instances of various variable types associated with the states. Variables instances may be stored with identifiers (e.g., tags) corresponding to type. For example, certain identifiers may be a first type “al” to identify playback device(s) of a zone, a second type “b1” to identify playback device(s) that may be bonded in the zone, and a third type “c1” to identify a zone group to which the zone may belong. As a related example, in
In yet another example, the MPS 100 may include variables or identifiers representing other associations of zones and zone groups, such as identifiers associated with Areas, as shown in
The memory 213 may be further configured to store other data. Such data may pertain to audio sources accessible by the playback device 102 or a playback queue that the playback device (or some other playback device(s)) may be associated with. In embodiments described below, the memory 213 is configured to store a set of command data for selecting a particular VAS when processing voice inputs.
During operation, one or more playback zones in the environment of
As suggested above, the zone configurations of the MPS 100 may be dynamically modified. As such, the MPS 100 may support numerous configurations. For example, if a user physically moves one or more playback devices to or from a zone, the MPS 100 may be reconfigured to accommodate the change(s). For instance, if the user physically moves the playback device 102c from the Patio zone to the Office zone, the Office zone may now include both the playback devices 102c and 102n. In some cases, the user may pair or group the moved playback device 102c with the Office zone and/or rename the players in the Office zone using, for example, one of the controller devices 104 and/or voice input. As another example, if one or more playback devices 102 are moved to a particular space in the home environment that is not already a playback zone, the moved playback device(s) may be renamed or associated with a playback zone for the particular space.
Further, different playback zones of the MPS 100 may be dynamically combined into zone groups or split up into individual playback zones. For example, the Dining Room zone and the Kitchen zone may be combined into a zone group for a dinner party such that playback devices 102i and 102l may render audio content in synchrony. As another example, bonded playback devices in the Den zone may be split into (i) a television zone and (ii) a separate listening zone. The television zone may include the Front playback device 102b. The listening zone may include the Right, Left, and SUB playback devices 102a, 102j, and 102k, which may be grouped, paired, or merged, as described above. Splitting the Den zone in such a manner may allow one user to listen to music in the listening zone in one area of the living room space, and another user to watch the television in another area of the living room space. In a related example, a user may utilize either of the NMD 103a or 103b (
c. Example Controller Devices
The memory 413 of the controller device 104 may be configured to store controller application software and other data associated with the MPS 100 and/or a user of the system 100. The memory 413 may be loaded with instructions in software 414 that are executable by the processor 412 to achieve certain functions, such as facilitating user access, control, and/or configuration of the MPS 100. The controller device 104 is configured to communicate with other network devices via the network interface 424, which may take the form of a wireless interface, as described above.
In one example, system information (e.g., such as a state variable) may be communicated between the controller device 104 and other devices via the network interface 424. For instance, the controller device 104 may receive playback zone and zone group configurations in the MPS 100 from a playback device, an NMD, or another network device. Likewise, the controller device 104 may transmit such system information to a playback device or another network device via the network interface 424. In some cases, the other network device may be another controller device.
The controller device 104 may also communicate playback device control commands, such as volume control and audio playback control, to a playback device via the network interface 424. As suggested above, changes to configurations of the MPS 100 may also be performed by a user using the controller device 104. The configuration changes may include adding/removing one or more playback devices to/from a zone, adding/removing one or more zones to/from a zone group, forming a bonded or merged player, separating one or more playback devices from a bonded or merged player, among others.
As shown in
The playback control region 442 (
The playback zone region 443 (
For example, as shown, a “group” icon may be provided within each of the graphical representations of playback zones. The “group” icon provided within a graphical representation of a particular zone may be selectable to bring up options to select one or more other zones in the MPS 100 to be grouped with the particular zone. Once grouped, playback devices in the zones that have been grouped with the particular zone will be configured to play audio content in synchrony with the playback device(s) in the particular zone. Analogously, a “group” icon may be provided within a graphical representation of a zone group. In this case, the “group” icon may be selectable to bring up options to deselect one or more zones in the zone group to be removed from the zone group. Other interactions and implementations for grouping and ungrouping zones via a user interface are also possible. The representations of playback zones in the playback zone region 443 (
The playback status region 444 (
The playback queue region 446 may include graphical representations of audio content in a playback queue associated with the selected playback zone or zone group. In some embodiments, each playback zone or zone group may be associated with a playback queue comprising information corresponding to zero or more audio items for playback by the playback zone or zone group. For instance, each audio item in the playback queue may comprise a uniform resource identifier (URI), a uniform resource locator (URL), or some other identifier that may be used by a playback device in the playback zone or zone group to find and/or retrieve the audio item from a local audio content source or a networked audio content source, which may then be played back by the playback device.
In one example, a playlist may be added to a playback queue, in which case information corresponding to each audio item in the playlist may be added to the playback queue. In another example, audio items in a playback queue may be saved as a playlist. In a further example, a playback queue may be empty, or populated but “not in use” when the playback zone or zone group is playing continuously streamed audio content, such as Internet radio that may continue to play until otherwise stopped, rather than discrete audio items that have playback durations. In an alternative embodiment, a playback queue can include Internet radio and/or other streaming audio content items and be “in use” when the playback zone or zone group is playing those items. Other examples are also possible.
When playback zones or zone groups are “grouped” or “ungrouped,” playback queues associated with the affected playback zones or zone groups may be cleared or re-associated. For example, if a first playback zone including a first playback queue is grouped with a second playback zone including a second playback queue, the established zone group may have an associated playback queue that is initially empty, that contains audio items from the first playback queue (such as if the second playback zone was added to the first playback zone), that contains audio items from the second playback queue (such as if the first playback zone was added to the second playback zone), or a combination of audio items from both the first and second playback queues. Subsequently, if the established zone group is ungrouped, the resulting first playback zone may be re-associated with the previous first playback queue or may be associated with a new playback queue that is empty or contains audio items from the playback queue associated with the established zone group before the established zone group was ungrouped. Similarly, the resulting second playback zone may be re-associated with the previous second playback queue or may be associated with a new playback queue that is empty or contains audio items from the playback queue associated with the established zone group before the established zone group was ungrouped. Other examples are also possible.
With reference still to
The sources region 448 may include graphical representations of selectable audio content sources and/or selectable voice assistants associated with a corresponding VAS. The VASes may be selectively assigned. In some examples, multiple VASes, such as AMAZON's Alexa, MICROSOFT's Cortana, etc., may be invokable by the same NMD. In some embodiments, a user may assign a VAS exclusively to one or more NMDs. For example, a user may assign a first VAS to one or both of the NMDs 102a and 102b in the Living Room shown in
d. Example Audio Content Sources
The audio sources in the sources region 448 may be audio content sources from which audio content may be retrieved and played by the selected playback zone or zone group. One or more playback devices in a zone or zone group may be configured to retrieve for playback audio content (e.g., according to a corresponding URI or URL for the audio content) from a variety of available audio content sources. In one example, audio content may be retrieved by a playback device directly from a corresponding audio content source (e.g., via a line-in connection). In another example, audio content may be provided to a playback device over a network via one or more other playback devices or network devices. As described in greater detail below, in some embodiments audio content may be provided by one or more media content services.
Example audio content sources may include a memory of one or more playback devices in a media playback system such as the MPS 100 of
In some embodiments, audio content sources may be added or removed from a media playback system such as the MPS 100 of
e. Example Network Microphone Devices
The microphones 222 of the NMD 503 are configured to provide detected sound, SD, from the environment of the NMD 503 to the voice processor 560. The detected sound SD may take the form of one or more analog or digital signals. In example implementations, the detected sound SD may be composed of a plurality of signals associated with respective channels 562 that are fed to the voice processor 560. Each channel 562 may provide all or a portion of the detected sound SD to the voice processor 560.
Each channel 562 may correspond to a particular microphone 222. For example, an NMD having six microphones may have six corresponding channels. Each channel of the detected sound SD may bear certain similarities to the other channels but may differ in certain regards, which may be due to the position of the given channel's corresponding microphone relative to the microphones of other channels. For example, one or more of the channels of the detected sound SD may have a greater signal to noise ratio (“SNR”) of speech to background noise than other channels.
As further shown in
The spatial processor 566 is typically configured to analyze the detected sound SD and identify certain characteristics, such as a sound's amplitude (e.g., decibel level), frequency spectrum, directionality, etc. In one respect, the spatial processor 566 may help filter or suppress ambient noise in the detected sound SD from potential user speech based on similarities and differences in the constituent channels 562 of the detected sound SD, as discussed above. As one possibility, the spatial processor 566 may monitor metrics that distinguish speech from other sounds. Such metrics can include, for example, energy within the speech band relative to background noise and entropy within the speech band—a measure of spectral structure—which is typically lower in speech than in most common background noise. In some implementations, the spatial processor 566 may be configured to determine a speech presence probability, examples of such functionality are disclosed in U.S. patent application Ser. No. 15/984,073, filed May 18, 2018, titled “Linear Filtering for Noise-Suppressed Speech Detection,” which is incorporated herein by reference in its entirety.
In operation, the one or more buffers 568—one or more of which may be part of or separate from the memory 213 (
In general, the detected-sound data form a digital representation (i.e., sound-data stream), SDS, of the sound detected by the microphones 222. In practice, the sound-data stream SDS may take a variety of forms. As one possibility, the sound-data stream SDS may be composed of frames, each of which may include one or more sound samples. The frames may be streamed (i.e., read out) from the one or more buffers 568 for further processing by downstream components, such as the wake-word engine 570 and the voice extractor 572 of the NMD 503.
In some implementations, at least one buffer 568 captures detected-sound data utilizing a sliding window approach in which a given amount (i.e., a given window) of the most recently captured detected-sound data is retained as a sound specimen in the at least one buffer 568 while older detected-sound data are overwritten when they fall outside of the window. For example, at least one buffer 568 may temporarily retain 20 frames of a sound specimen at given time, discard the oldest frame after an expiration time, and then capture a new frame, which is added to the 19 prior frames of the sound specimen.
In practice, when the sound-data stream SDS is composed of frames, the frames may take a variety of forms having a variety of characteristics. As one possibility, the frames may take the form of audio frames that have a certain resolution (e.g., 16 bits of resolution), which may be based on a sampling rate (e.g., 44,100 Hz). Additionally, or alternatively, the frames may include information corresponding to a given sound specimen that the frames define, such as metadata that indicates frequency response, power input level, SNR, microphone channel identification, and/or other information of the given sound specimen, among other examples. Thus, in some embodiments, a frame may include a portion of sound (e.g., one or more samples of a given sound specimen) and metadata regarding the portion of sound. In other embodiments, a frame may only include a portion of sound (e.g., one or more samples of a given sound specimen) or metadata regarding a portion of sound.
In any case, components of the NMD 503 downstream of the voice processor 560 may process the sound-data stream SDS. For instance, the wake-word engine 570 can be configured to apply one or more identification algorithms to the sound-data stream SDS (e.g., streamed sound frames) to spot potential wake words in the detected-sound SD. Many first- and third-party wake word detection algorithms are known and commercially available. Different voice services (e.g. AMAZON's ALEXA, APPLE's SIRI, MICROSOFT's CORTANA, GOOGLE'S ASSISTANT, etc.), for example, each use a different wake word for invoking their respective voice service, and some voice services make their algorithms available for use in third-party devices. In some embodiments, the wake-word engine 570 is configured to run multiple wake word detection algorithms on the received audio simultaneously (or substantially simultaneously). To support multiple voice services, the wake-word engine 570 may run the received sound-data stream SDS through the wake word detection algorithm for each supported voice service in parallel. In such embodiments, the NMD 503 may include VAS selector components (not shown) configured to pass voice input to the appropriate voice assistant service. In other embodiments, the VAS selector components may be omitted, such as when each of the NMD's wake-word engine(s) are dedicated to the same VAS.
In any event, when a particular wake-word engine 570 spots a potential wake word, that wake-word engine can provide an indication of a “wake-word event” (also referred to as a “wake-word trigger”). The indication of the wake-word event, in turn, can cause the NMD to invoke the VAS associated with the triggered wake-word engine.
In the example shown in
The VAS is configured to process the sound-data stream SDS contained in the messages MV sent from the NMD 503. More specifically, the VAS is configured to identify any voice input based on the sound-data stream SDS and/or data derived from the sound-data stream SDS. Referring to
As an illustrative example,
Typically, the VAS may first process the wake-word portion 680a within the sound-data stream SDS to verify the presence of the wake word. In some instances, the VAS may determine that the wake-word portion 680a comprises a false wake word (e.g., the word “Election” when the word “Alexa” is the target wake word). In such an occurrence, the VAS may send a response to the NMD 503 (
In any case, the VAS processes the utterance portion 680b to identify the presence of any words in the detected-sound data and to determine an underlying intent from these words. The words may correspond to a certain command and certain keywords 684 (identified individually in
To determine the intent of the words, the VAS is typically in communication with one or more databases associated with the VAS (not shown) and/or one or more databases (not shown) of the MPS 100. Such databases may store various user data, analytics, catalogs, and other information for natural language processing and/or other processing. In some implementations, such databases may be updated for adaptive learning and feedback for a neural network based on voice-input processing. In some cases, the utterance portion 680b may include additional information, such as detected pauses (e.g., periods of non-speech) between words spoken by a user, as shown in
Based on certain command criteria, the VAS may take actions as a result of identifying one or more commands in the voice input, such as the command 682. Command criteria may be based on the inclusion of certain keywords within the voice input, among other possibilities. Additionally, or alternatively, command criteria for commands may involve identification of one or more control-state and/or zone-state variables in conjunction with identification of one or more particular commands. Control-state variables may include, for example, indicators identifying a level of volume, a queue associated with one or more devices, and playback state, such as whether devices are playing a queue, paused, etc. Zone-state variables may include, for example, indicators identifying which, if any, zone players are grouped.
After processing the voice input, the VAS may send a response S1 to the NMD 503 via network interface 224 with an instruction to perform one or more actions based on an intent it determined from the voice input. For example, based on the voice input, the VAS may direct the NMD 503, or the MPS 100 via the NMD 503, to initiate playback on one or more of the playback devices 102, control one or more of these devices (e.g., raise/lower volume, group/ungroup devices, etc.), turn on/off certain smart devices, among other actions. After receiving the response from the VAS, the wake-word engine 570 the NMD 503 may resume or continue to monitor the sound-data stream SDS until it spots another potential wake-word, as discussed above.
The NMD 503 may be operatively coupled to playback components of a playback device, of which the NMD 503 may form a part in various embodiments. The playback components can include an audio interface 519, an audio-output processor 515, and speakers 218. One, some, or all of the playback components may be on-board a playback device comprising the NMD 503, or may be associated with a different playback device of MPS 100. The network interface 224 may communicate a signal S1 to the audio interface 519 based on the response from the VAS, and the audio interface 519 may transmit an audio signal AS to the audio-output processor 515. The audio-output processor 515, for example, may comprise one or more of the audio processing components 216 discussed above with reference to
In some implementations, the NMD 503 may include one or more other voice-input identification engines (not shown), in addition to or in lieu of the one or more wake word engines 570, that enable the NMD 503 to operate without the assistance of a remote VAS. As an example, such an engine may identify in detected sound certain commands (e.g., “play,” “pause,” “turn on,” etc.) and/or certain keywords or phrases, such as the unique name assigned to a given playback device (e.g., “Bookcase,” “Patio,” “Office,” etc.). In response to identifying one or more of these commands, keywords, and/or phrases, the NMD 503 may communicate a signal (not shown in
As shown in
The first voice processor 760 of the first playback device 702a may include voice processing components, such as a first AEC 764a, a first spatial processor 766, and a first buffer 768a. The components of the first voice processor 760a are configured to process and feed the detected sound to the first wake-word engine 770a (represented by arrow I(a)). The first wake-word engine 770a may be configured to detect a first wake word specific to the first VAS 790a. For example, the first wake word engine 770a may be associated with AMAZON's ALEXA and be configured to run a corresponding wake word detection algorithm (e.g., configured to detect the wake word “Alexa” or other associated wake word). The first wake word engine 770a may be configured to detect only wake words associated with the first VAS 790a (such as the first wake word), and cannot detect wake words associated with a different VAS (such as a second VAS 790b, described below).
In the example depicted in
In one aspect, the first playback device 702a may be configured to be NMD-equipped in a manner similar to that described above with reference to NMD 503 (
The second playback device 702b may also be configured to be NMD-equipped but in a different manner than that of the first playback device 702a. In contrast to the first playback device 702a, the second playback device 702b does not have any on-board microphones. Instead, the second playback device 702b is configured to receive and process sound detected by the microphones 722 of the first playback device 702a (via communication of the first and second network interfaces 724a and 724b). The second playback device 702b may receive the detected sound in the form of raw mic data or processed sound data (e.g., pre-processed by the first voice processor 760a). In the example shown in
As noted above, the detected sound (from the first playback device 702a) is passed via the second network interface (represented by arrow I(d)) to the second voice processor 760b which processes and transmits the detected sound to the second wake word engine 770b (represented by arrow I(e)). The second wake word engine 770b then processes the detected sound for detection of the second wake word, which may occur before, after, or while the first wake word engine 770a processes the detected sound for the first wake word. As such, the first and second playback devices 702a, 702b are configured to monitor sound detected by the microphones 722 of the first playback device 702a for different wake words associated with different VASes which allows a user to realize the benefits of multiple VASes, each of which may excel in different aspects, rather than requiring a user to limit her interactions to a single VAS to the exclusion of any others. Moreover, the distribution of wake word detection across multiple playback devices of the system frees up computational resources (e.g., processing time and power) (as compared to a single playback device with two wake word engines). As such, the playback devices of the present technology may be configured to efficiently process detected sound, thereby enhancing the responsiveness and accuracy of the media playback system to a user's command.
In various embodiments, the data transmitted from the first playback device 702a to the second playback device 702b may comprise, for example, raw microphone data and/or processed sound data from one, some or all of the microphones (e.g., after being processed by one or more of the first AEC 764a and the first spatial processor 766a). Processing the data to be transmitted may include compressing the data prior to transmission. In some implementations, it may be beneficial to perform acoustic echo cancellation (via the first AEC 764a) with the reference signal(s) before transmitting the detected sound to reduce bandwidth. In some embodiments, the second AEC 764b may be bypassed or omitted from the second voice processor 760b in configurations in which acoustic cancellation is applied to sound data to be transmitted from the first playback device 702a to the second playback device 702b. In additional or alternate embodiments, spatial processing may be carried out on the data to be transmitted to the second playback device 702b, in which case the second spatial processor 766b may be bypassed or omitted from the second voice processor 760b.
In the scenario depicted in
In some embodiments the second VAS 790b may be made aware of the first playback device 702a, the relationship between the first and second playback devices 702a, 702b, and/or the functional capabilities and/or limitations of each playback device (i.e., has/does not have a speaker/capable of playback, has/does not have a microphone/is NMD-equipped, etc.), and the response may include a message instructing the second playback device 702b to send instructions to the first playback device 702a that causes the first playback device 702a to do nothing or perform an action. Thus, even though the second playback device 702b is the playback device in direct communication with the second VAS 190b, in some embodiments the second playback device 702b may not take any action other than to instruct the first playback device 702a to act.
In some embodiments, the second VAS 790b may not receive any information regarding which playback device was the originator of the detected sound and/or which playback device will be performing the action (i.e., the second VAS 790b is not aware of the first playback device 702a). In such embodiments, the second VAS 790b may send a message to the second playback device 702b with instructions to do nothing or perform an action, and the second playback device 702b may forward the message to the first playback device 702a. The second playback device 702b may automatically forward the message, or may first process the message to decide whether the message should be transmitted to the first playback device 702a.
As shown in the example flow diagram of
Whether to be performed by the first playback device 702a, the second playback device 702b, or other playback device of the MPS 100, the action may comprise playing back an audio response on the first and/or second playback device 702a, 702b (and/or other playback device of the MPS 100). For example, the audio response may be an acknowledgment of receipt of the command, such as instructions to play back a chime or a voice response (e.g., an audio file) to play back (such as “okay,” etc.). The audio response may additionally or alternately comprise a voice response with an answer to a question asked in the voice input (e.g., “53 degrees and raining” in response to “what is the weather?”) or a follow-up request for information (“did you mean the kitchen lights or the patio lights?”).
In some embodiments, the second VAS 790b may instruct the MPS 100 to download media content (e.g., music, podcasts, audio books, etc.) requested in the voice input to the first and/or second playback device 702a, 702b. The second VAS 790b may provide instructions for the first and/or second VAS 190b to perform an action related to media content, such as increasing/decreasing the volume, starting or resuming playback of a media item, playing the next song in the queue, playing the previous song in the queue, stopping or pausing playback, grouping certain playback device(s) of the MPS 100 with other playback device(s) of the MPS 100, transferring playback of a media item to a different playback device, and others.
The action may additionally or alternately include an action that does not directly implicate playback of audio content, such as instructions for the first and/or second playback device 702a, 702b (or other playback device of the MPS 100) to instruct or otherwise cause a smart home appliance to perform an action (such as instructing a smart light to turn on/off, instructing a smart lock to lock/unlock, etc.). Other non-auditory actions include setting a timer, adding an item to a shopping list, calling one of the user's contacts, etc. For all such non-auditory actions, the second playback device 702b may receive instructions to provide an audible acknowledgment (e.g., “okay,” a chime, etc.) of the command.
While the second VAS 790b is processing the detected sound, the first playback device 702a may continue monitoring detected sound for the first wake word and/or transmitting detected sound to the second playback device 702b.
Referring again to
In some embodiments, the MPS 100 and/or the first playback device 702a may include a microphone selector (not shown) that dynamically determines which, if any, of the microphones 722 are used for collecting signals for transfer to the second playback device 702b. The microphone selector, for example, may utilize a lookback buffer to provide feedback to one or more remote computing devices of the MPS 100 for determining if, when, and/or which of the microphones 722 of the first playback device 702a can be shared with or assigned for exclusive use to the second playback device 702b. Additional details regarding microphone selection and/or aggregation across multiple playback devices may be found in, for example, in previously referenced U.S. patent application Ser. Nos. 15/989,715; 16/138,111; and Ser. No. 16/141,875.
In these and other implementations, the spatial processor may implement linear filtering or related techniques for selectively disabling/enabling microphones in a way that is not constrained by traditional beamforming techniques. For example, traditional beamforming techniques typically require the number of microphone inputs for a beamformer to be fixed (e.g., to six known microphone channels) because these techniques rely on filtering algorithms that are not adaptive or not readily adaptive to an environment. Linear filtering and related techniques, by contrast, implement algorithms and filtering coefficients that can be adapted on the fly, such that, for example, additional or fewer microphone channels can be selectively routed to the respective voice processors 760a, 760b depending on the particular ambient noise in an environment, available processing power, etc. Additional examples of spatial processors and/or associated filters, such as multi-channel Wiener filters, for processing speech, reverberated speech, and noise signals, s(t), x(t), v(t), may be found in, for example, in previously referenced U.S. patent application Ser. No. 15/984,073 and U.S. patent Ser. No. 16/147,710, filed Sep. 29, 2018, titled “Linear Filtering for Noise-Suppressed Speech Detection Via Multiple Network Microphone Devices,” both of which are incorporated by reference herein in their entireties.
Referring to
Turning to
When voice processing is allowed to proceed, each of the first and second VASes 790a and 790b may send a response to the corresponding first and second playback devices 702a and 702b, which may include instructions to perform an action or to do nothing. The responses from the first and second VASes 790a and 790b may be transmitted at the same time or at different times, and may or may not be in the same order as the corresponding wake word detection. Likewise, performance of the action (if applicable) by the corresponding playback device may occur at the same time or at different times, and may or may not be in the same order as the corresponding wake word detection and/or receipt of response.
Whether performance of the actions by the first and second playback devices 702a, 702b occurs at least partially at the same time may depend on the nature of the actions to be performed. For example, in the illustrated embodiment, the action for the first playback device 702a is to output the requested media content, while the action for the second playback device 702b is to cause the smart lights to turn on. Turning on the lights does not require output of audio content by the second playback device 802b, and thus the second playback device 702b may perform the action without interfering with the output of the media content by the first playback device 702a. However, if the action does require playback of audio content (for example, the second playback device 702b may output a voice response of “okay” to acknowledge that the voice input has been processed), the first and second playback devices 702a, 702b may coordinate output of their respective audio contents.
Various embodiments of methods 800, 900, and 1100 include one or more operations, functions, and actions illustrated by blocks 801-805, 901-908, and 1101-1105, respectively. Although the blocks are illustrated in sequential order, these blocks may also be performed in parallel, and/or in a different order than the order disclosed and described herein. Also, the various blocks may be combined into fewer blocks, divided into additional blocks, and/or removed based upon a desired implementation.
In addition, for the methods of 800, 900, and 1100 and other processes and methods disclosed herein, the flowchart shows functionality and operation of one possible implementation of some embodiments. In this regard, each block may represent a module, a segment, or a portion of program code, which includes one or more instructions executable by one or more processors for implementing specific logical functions or steps in the process. The program code may be stored on any type of computer readable medium, for example, such as a storage device including a disk or hard drive. The computer readable medium may include non-transitory computer readable media, for example, such as tangible, non-transitory computer-readable media that stores data for short periods of time like register memory, processor cache, and Random Access Memory (RAM). The computer readable medium may also include non-transitory media, such as secondary or persistent long-term storage, like read only memory (ROM), optical or magnetic disks, compact-disc read only memory (CD-ROM), for example. The computer readable media may also be any other volatile or non-volatile storage systems. The computer readable medium may be considered a computer readable storage medium, for example, or a tangible storage device. In addition, for the method 800 and other processes and methods disclosed herein, each block in
In addition or alternatively, the second wake-word engine 770b may be configured to detect sounds in addition to or in lieu of wake words in the voice stream received from the first playback device 702a over the network interface 724. For example, the second wake-word engine 770b may be configured to run a local NLU engine to detect certain playback control commands, such as volume, grouping, playback/transport control, etc. In these and other embodiments, the second wake-word engine 770b can be configured to run other algorithms for event detection, such as listening for window breaks, fire alarms, breach of security events, etc. In some embodiments, the first playback device 702a may have limited processing resources (e.g., available system memory, power constraints, etc.) relative to the second playback device 702b. As such, a playback device without sufficient resources to run microphone DSP, a wakeword engine, and an additional NLU/event-detection engine may offload NLU/event-detection engine to another playback device. As an example, the first playback device 702a may be a portable playback device, such as set of wireless headphones. In related embodiments, the second wake-word engine 770b may be able to detect wake-words more accurately than the first wake-word engine 770a. In such instances, the second wake-word engine 770b may intervene if the first wake-word engine 770a failed to detect a certain wake-word and/or if the first wake-word engine 770a was triggered by a wake word that the second wake-word engine 770b determined to be a false positive.
Although the foregoing systems and methods for distributed wake word processing are described with respect to a configuration in which the second playback device 702b does not have any microphones, it will be appreciated that the systems and methods described herein may also be carried out using a second playback device 702b with onboard microphones. In such embodiments, the second playback device 702b may still receive and/or process transmitted data related to sound detected by one, some, or all of the microphones 722 of the first playback device 702a, which may be in addition to or in lieu of sound detected by its own microphones. In some embodiments, the second voice processor 760b receives and/or processes sound data from one, some, or all of the first microphones 722a and one, some, or all of the second microphones. The second playback device 702b may have the same or a different number and/or configuration of microphones as the first playback device 702a. The second voice processor 760b may still receive and/or process data related to the sound detected by the first microphones 722a even when the second playback device 702b is in the same room as the first playback device 702a or otherwise detecting sound generated by at least one of the same sources via its own microphones 722b.
In some aspects of the technology, one, some, or all of the microphones of the second playback device 702b may be functionally disabled (for example, by one or both of the playback devices 702, the MPS 100, and/or another playback device of the MPS 100). One or more of the second microphones may be functionally disabled, for example, in response to the second voice processor 760b receiving data related to the sound from the microphones 722 of the first playback device 702a.
The present technology is illustrated, for example, according to various aspects described below. Various examples of aspects of the present technology are described as numbered examples (1, 2, 3, etc.) for convenience. These are provided as examples and do not limit the present technology. It is noted that any of the dependent examples may be combined in any combination, and placed into a respective independent example. The other examples can be presented in a similar manner.
Example 1: A method comprising: detecting sound via a microphone array of a first playback device and analyzing, via a first wake-word engine of the first playback device, the detected sound; transmitting data associated with the detected sound from the first playback device to a second playback device over a local area network; analyzing, via a second wake-word engine of the second playback device, the transmitted data associated with the detected sound; identifying that the detected sound contains either (i) a first wake word based on the analysis via the first wake-word engine or (ii) a second wake word based on the analysis via the second wake-word engine; and based on the identification, transmitting sound data corresponding to the detected sound over a wide area network to a remote computing device associated with a particular voice assistant service. Example 2: The method of Example 1, wherein the sound data further contains a voice utterance and the method further comprises receiving, via one of the first playback device and the second playback device, at least one message from the remote computing device, where the message includes a playback command based on the voice utterance. The method may further include playing back, via at least one of the first playback device and the second playback device, audio content based on the playback command. Example 3: The method of Example 1 or Example 2, wherein the identifying comprises identifying the second wake word (i) based on the transmitted data associated with the detected sound and (ii) without detecting the sound via the second playback device. Example 4: The method of any one of Examples 1 to 3, wherein the microphone array comprises a plurality of individual microphones and the first playback device comprises a voice processor configured to receive portions of the detected sound from respective ones of the individual microphones. In such embodiments, the method may comprise processing, via the voice processor, one or more of the portions of the detected sound to produce the data associated with the detected sound that is transmitted to the second playback device. Example 5: The method of any one of Examples 1 to 4, further comprising processing the one or more portions of the detected sound comprises processing fewer than all of the portions of the detected sound. Example 6: The method of any one of Examples 1 to 5, further comprising spatially processing, via the voice processor, the detected sound based on one or more of the portions of the detected sound. In such embodiments, analyzing the detected sound via the first wake-word engine comprises analyzing the spatially processed detected sound. Example 7: The method of any one of Examples 1 to 6, further comprising (a) playing back, via the first playback device, audio content; and (b) producing, via the first playback device, at least one reference signal based on the audio content, where the data associated with the detected sound that is transmitted to the second playback device comprises data that is based on the at least one reference signal.
Example 8: A system comprising a first playback device and a second playback device. The first playback device may comprise one or more processors, a microphone array, and a first computer-readable medium storing instructions that, when executed by the one or more processors, cause the first device to perform first operations, the first operations comprising: detecting sound via the microphone array; analyzing, via a first wake-word engine of the first playback device, the detected sound; and transmitting data associated with the detected sound from the first playback device to a second playback device over a local area network. The second playback device may comprise one or more processors and a second computer-readable medium storing instructions that, when executed by the one or more processors, cause the second device to perform second operations, the second operations comprising: analyzing, via a second wake-word engine of the second playback device, the transmitted data associated with the detected sound; identifying that the detected sound contains a second wake word based on the analysis via the second wake-word engine; and based on the identification, transmitting sound data corresponding to the detected sound over a wide area network to a remote computing device associated with a particular voice assistant service. Example 9: the system of Example 8, wherein the sound data further contains a voice utterance and the second operations further comprise receiving at least one message from the remote computing device. The message may comprise a playback command that is based on the voice utterance. In such embodiments, the first operations may further comprise playing back audio content based on the playback command. Example 10: the system of Example 8 or Example 9, wherein identifying the second wake word is (i) based on the transmitted data associated with the detected sound and (ii) without detecting the sound via the second playback device. Example 11: the system of any one of Examples 8 to 10, wherein the microphone array comprises a plurality of individual microphones and the first playback device comprises a voice processor configured to receive portions of the detected sound from respective ones of the individual microphones. In such operations, the first operations may comprise processing, via the voice processor, one or more of the portions of the detected sound to produce the data associated with the detected sound that is transmitted to the second playback device. Example 12: the system of any one of Examples 8 to 11, wherein processing the one or more portions of the detected sound comprises processing fewer than all of the portions of the detected sound. Example 13: the system of any one of Examples 8 to 12, wherein the first operations further comprise spatially processing, via the voice processor, the detected sound based on one or more of the portions of the detected sound. In such embodiments, analyzing the detected sound via the first wake-word engine comprises analyzing the spatially processed detected sound. Example 14: the system of any one of Examples 8 to 13, wherein the first operations further comprise playing back, via the first playback device, audio content, and producing, via the first playback device, at least one reference signal based on the audio content. In such embodiments, the data associated with the detected sound that is transmitted to the second playback device comprises data that is based on the at least one reference signal.
Example 15: A plurality of non-transitory computer-readable media storing instructions for distributed wake-word detection, including a first computer-readable storage medium and a second computer-readable storage medium. The first computer-readable medium may store instructions that, when executed by one or more processors, cause the one or more processors to perform first operations. The first operations may comprise detecting sound via the microphone array; analyzing, via a first wake-word engine of the first playback device, the detected sound; and transmitting data associated with the detected sound from the first playback device to a second playback device over a local area network. The second computer-readable medium may store instructions that, when executed by one or more processors, cause the one or more processors to perform second operations. The second operations may comprise: analyzing, via a second wake-word engine of the second playback device, the transmitted data associated with the detected sound; identifying that the detected sound contains a second wake word based on the analysis via the second wake-word engine; and based on the identification, transmitting sound data corresponding to the detected sound over a wide area network to a remote computing device associated with a particular voice assistant service. Example 16: the plurality of non-transitory computer-readable media of Example 15, wherein the sound data further contains a voice utterance, and wherein (a) the second operations further comprise receiving at least one message from the remote computing device, wherein the message comprises a playback command, and wherein the playback command is based on the voice utterance; and (b) the first operations further comprise playing back audio content based on the playback command. Example 17: the plurality of non-transitory computer-readable media of Example 15 or Example 16, wherein identifying the second wake word is (i) based on the transmitted data associated with the detected sound and (ii) without detecting the sound via the second playback device. Example 18: the plurality of non-transitory computer-readable media of any one of Examples 15 to 17, wherein the microphone array comprises a plurality of individual microphones, the first playback device comprises a voice processor configured to receive portions of the detected sound from respective ones of the individual microphones, and the first operations comprise processing, via the voice processor, one or more of the portions of the detected sound to produce the data associated with the detected sound that is transmitted to the second playback device. Example 19: the plurality of non-transitory computer-readable media of any one of Examples 15 to 18, wherein processing the one or more portions of the detected sound comprises processing fewer than all of the portions of the detected sound. Example 20: the plurality of non-transitory computer-readable media of any one of Examples 15 to 19, wherein the first operations may further comprise spatially processing, via the voice processor, the detected sound based on one or more of the portions of the detected sound, and wherein analyzing the detected sound via the first wake-word engine comprises analyzing the spatially processed detected sound.
Example 21: A method comprising: detecting sound via a microphone array of a first playback device; transmitting data associated with the detected sound from the first playback device to a second playback device over a local area network; analyzing, via a wake word engine of the second playback device, the transmitted data associated with the detected sound for identification of a wake word; identifying that the detected sound contains the wake word based on the analysis via the wake word engine; based on the identification, transmitting sound data corresponding to the detected sound from the second playback device to a remote computing device over a wide area network, wherein the remote computing device is associated with a particular voice assistant service; receiving via the second playback device a response from the remote computing device, wherein the response is based on the detected sound; transmitting a message from the second playback device to the first playback device over the local area network, wherein the message is based on the response from the remote computing device and includes instructions to perform an action; and performing the action via the first playback device. Example 22: the method of Example 21, wherein the action is a first action and the method further comprises performing a second action via the second playback device, where the second action is based on the response from the remote computing device. Example 23: the method of Example 21 or Example 22, further comprising disabling a wake word engine of the first playback device in response to the identification of the wake word via the wake word engine of the second playback device. Example 24: the method of any one of Examples 21 to 23, further comprising enabling a wake word engine of the first playback device after the second playback device receives the response from the remote computing device. Example 25: the method of Example 24, wherein the wake word may be a second wake word, and the wake word engine of the first playback device is configured to detect a first wake word that is different than the second wake word. Example 26: the method of any one of Examples 21 to 25, wherein the first playback device is configured to communicate with the remote computing device associated with the particular voice assistant service. Example 27: the method of any one of Examples 21 to 26, wherein the remote computing device is a first remote computing device and the voice assistant service is a first voice assistant service, and the first playback device is configured to detect a wake word associated with a second voice assistant service different than the first voice assistant service.
Example 28: A first playback device comprising one or more processors and a computer-readable medium storing instructions that, when executed by the one or more processors, cause the first playback device to perform operations. The operations may comprise receiving, from a second playback device over a local area network, data associated with sound detected via a microphone array of the second playback device; analyzing, via a wake word engine of the first playback device, the data associated with the detected sound for identification of a wake word; identifying that the detected sound contains the wake word based on the analysis via the wake word engine; based on the identification, transmitting sound data corresponding to the detected sound to a remote computing device over a wide area network, wherein the remote computing device is associated with a particular voice assistant service; receiving a response from the remote computing device, wherein the response is based on the detected sound; and transmitting a message to the second playback device over the local area network, wherein the message is based on the response from the remote computing device and includes instructions for the second playback device to perform an action. Example 29: the first playback device of Example 28, wherein the action is a first action and the operations further comprise performing a second action via the first playback device, where the second action is based on the response from the remote computing device. Example 30: the first playback device of Example 28 or Example 29, wherein the operations may comprise disabling a wake word engine of the second playback device in response to the identification of the wake word via the wake word engine of the first playback device. Example 31: the first playback device of any one of Examples 28 to 30, wherein the operations of the first playback device may comprise enabling the wake word engine of the second playback device after the first playback device receives the response from the remote computing device. Example 32: the first playback device of any one of Examples 28 to 31, wherein the wake word is a first wake word and the wake word engine of the second playback device is configured to detect a second wake word that is different than the first wake word. Example 33: the first playback device of any one of Examples 27 to 32, wherein the first playback device is configured to communicate with the remote computing device associated with the particular voice assistant service. Example 34: the first playback device of any one of Examples 28 to 33, wherein the remote computing device is a first remote computing device and the voice assistant service is a first voice assistant service. In such embodiments, the second playback device may be configured to detect a wake word associated with a second voice assistant service different than the first voice assistant service.
Example 35: A system comprising a first playback device and a second playback device. The first playback device may comprise one or more processors, a microphone array, and a first computer-readable medium storing instructions that, when executed by the one or more processors, cause the first playback device to perform first operations. The first operations may comprise: detecting sound via the microphone array; transmitting data associated with the detected sound to a second playback device over a local area network. The second playback device may comprise one or more processors and a second computer-readable medium storing instructions that, when executed by the one or more processors, cause the second playback device to perform second operations. The second operations may comprise analyzing, via a wake word engine of the second playback device, the transmitted data associated with the detected sound from the first playback device for identification of a wake word; identifying that the detected sound contains the wake word based on the analysis via the wake word engine; based on the identification, transmitting sound data corresponding to the detected sound to a remote computing device over a wide area network, wherein the remote computing device is associated with a particular voice assistant service; receiving a response from the remote computing device, wherein the response is based on the detected sound; and transmitting a message to the first playback device over the local area network, wherein the message is based on the response from the remote computing device and includes instructions to perform an action. The first computer-readable medium of the first playback device may cause the first playback device to perform the action from the instructions received from the second playback device. Example 36: the system of Example 35, wherein the action is a first action and the second operations further comprise performing a second action via the second playback device, where the second action is based on the response from the remote computing device. Example 37: the system of Example 35 or Example 36, wherein the second operations may further comprise disabling a wake word engine of the first playback device in response to the identification of the wake word via the wake word engine of the second playback device. Example 38: the system of any one of Examples 35 to 37, wherein the second operations may further comprise enabling the wake word engine of the first playback device after the second playback device receives the response from the remote computing device. Example 39: the system of any one of Examples 35 to 38, wherein the first playback device may be configured to communicate with the remote computing device associated with the particular voice assistant service. Example 40: the system of any one of Examples 35 to 39, wherein the remote computing device is a first remote computing device and the voice assistant service is a first voice assistant service, and wherein the first playback device is configured to detect a wake word associated with a second voice assistant service different than the first voice assistant service.
The description above discloses, among other things, various example systems, methods, apparatus, and articles of manufacture including, among other components, firmware and/or software executed on hardware. It is understood that such examples are merely illustrative and should not be considered as limiting. For example, it is contemplated that any or all of the firmware, hardware, and/or software aspects or components can be embodied exclusively in hardware, exclusively in software, exclusively in firmware, or in any combination of hardware, software, and/or firmware. Accordingly, the examples provided are not the only way(s) to implement such systems, methods, apparatus, and/or articles of manufacture.
In addition to the examples described herein with respect to grouping and bonding playback devices, in some implementations multiple playback devices may be merged together. For example, a first playback device may be merged with a second playback device to form a single merged “device.” The merged playback devices and may not be specifically assigned different playback responsibilities. That is, the merged playback devices and may, aside from playing audio content in synchrony, each play audio content as they would if they were not merged. However, the merged devices may present to the media playback system and/or to the user as a single user interface (UI) entity for control.
The specification is presented largely in terms of illustrative environments, systems, procedures, steps, logic blocks, processing, and other symbolic representations that directly or indirectly resemble the operations of data processing devices coupled to networks. These process descriptions and representations are typically used by those skilled in the art to most effectively convey the substance of their work to others skilled in the art. Numerous specific details are set forth to provide a thorough understanding of the present disclosure. However, it is understood to those skilled in the art that certain embodiments of the present disclosure can be practiced without certain, specific details. In other instances, well known methods, procedures, components, and circuitry have not been described in detail to avoid unnecessarily obscuring aspects of the embodiments. Accordingly, the scope of the present disclosure is defined by the appended claims rather than the forgoing description of embodiments.
When any of the appended claims are read to cover a purely software and/or firmware implementation, at least one of the elements in at least one example is hereby expressly defined to include a tangible, non-transitory medium such as a memory, DVD, CD, Blu-ray, and so on, storing the software and/or firmware.
Number | Name | Date | Kind |
---|---|---|---|
4741038 | Elko et al. | Apr 1988 | A |
4941187 | Slater | Jul 1990 | A |
5440644 | Farinelli et al. | Aug 1995 | A |
5588065 | Tanaka et al. | Dec 1996 | A |
5740260 | Odom | Apr 1998 | A |
5761320 | Farinelli et al. | Jun 1998 | A |
5923902 | Inagaki | Jul 1999 | A |
6032202 | Lea et al. | Feb 2000 | A |
6088459 | Hobelsberger | Jul 2000 | A |
6256554 | Dilorenzo | Jul 2001 | B1 |
6301603 | Maher et al. | Oct 2001 | B1 |
6311157 | Strong | Oct 2001 | B1 |
6366886 | Dragosh | Apr 2002 | B1 |
6404811 | Cvetko et al. | Jun 2002 | B1 |
6408078 | Hobelsberger | Jun 2002 | B1 |
6469633 | Wachter et al. | Oct 2002 | B1 |
6522886 | Youngs et al. | Feb 2003 | B1 |
6594347 | Calder et al. | Jul 2003 | B1 |
6594630 | Zlokarnik et al. | Jul 2003 | B1 |
6611537 | Edens et al. | Aug 2003 | B1 |
6611604 | Irby et al. | Aug 2003 | B1 |
6631410 | Kowalski et al. | Oct 2003 | B1 |
6757517 | Chang et al. | Jun 2004 | B2 |
6778869 | Champion | Aug 2004 | B2 |
7130608 | Hollstrom et al. | Oct 2006 | B2 |
7130616 | Janik | Oct 2006 | B2 |
7143939 | Henzerling | Dec 2006 | B2 |
7236773 | Thomas | Jun 2007 | B2 |
7295548 | Blank et al. | Nov 2007 | B2 |
7391791 | Balassanian et al. | Jun 2008 | B2 |
7483538 | McCarty et al. | Jan 2009 | B2 |
7571014 | Lambourne et al. | Aug 2009 | B1 |
7630501 | Blank et al. | Dec 2009 | B2 |
7643894 | Braithwaite et al. | Jan 2010 | B2 |
7657910 | McAulay et al. | Feb 2010 | B1 |
7661107 | Van et al. | Feb 2010 | B1 |
7702508 | Bennett | Apr 2010 | B2 |
7792311 | Holmgren et al. | Sep 2010 | B1 |
7853341 | McCarty et al. | Dec 2010 | B2 |
7961892 | Fedigan | Jun 2011 | B2 |
7987294 | Bryce et al. | Jul 2011 | B2 |
8014423 | Thaler et al. | Sep 2011 | B2 |
8041565 | Bhardwaj et al. | Oct 2011 | B1 |
8045952 | Qureshey et al. | Oct 2011 | B2 |
8073125 | Zhang et al. | Dec 2011 | B2 |
8103009 | McCarty et al. | Jan 2012 | B2 |
8234395 | Millington et al. | Jul 2012 | B2 |
8239206 | Lebeau et al. | Aug 2012 | B1 |
8255224 | Singleton et al. | Aug 2012 | B2 |
8284982 | Bailey | Oct 2012 | B2 |
8290603 | Lambourne et al. | Oct 2012 | B1 |
8340975 | Rosenberger et al. | Dec 2012 | B1 |
8364481 | Strope et al. | Jan 2013 | B2 |
8385557 | Tashev et al. | Feb 2013 | B2 |
8386261 | Mellott et al. | Feb 2013 | B2 |
8423893 | Ramsay et al. | Apr 2013 | B2 |
8428758 | Naik et al. | Apr 2013 | B2 |
8453058 | Coccaro et al. | May 2013 | B1 |
8483853 | Lambourne et al. | Jul 2013 | B1 |
8484025 | Moreno et al. | Jul 2013 | B1 |
8831761 | Kemp et al. | Sep 2014 | B2 |
8831957 | Taubman et al. | Sep 2014 | B2 |
8874448 | Kauffmann et al. | Oct 2014 | B1 |
8938394 | Faaborg et al. | Jan 2015 | B1 |
8942252 | Balassanian et al. | Jan 2015 | B2 |
8983383 | Haskin | Mar 2015 | B1 |
8983844 | Thomas et al. | Mar 2015 | B1 |
9042556 | Kallai et al. | May 2015 | B2 |
9094539 | Noble | Jul 2015 | B1 |
9215545 | Dublin et al. | Dec 2015 | B2 |
9251793 | Lebeau et al. | Feb 2016 | B2 |
9253572 | Bedingfield, Sr. et al. | Feb 2016 | B2 |
9262612 | Cheyer | Feb 2016 | B2 |
9288597 | Carlsson et al. | Mar 2016 | B2 |
9300266 | Grokop | Mar 2016 | B2 |
9307321 | Unruh | Apr 2016 | B1 |
9318107 | Sharifi | Apr 2016 | B1 |
9319816 | Narayanan | Apr 2016 | B1 |
9335819 | Jaeger et al. | May 2016 | B1 |
9368105 | Freed et al. | Jun 2016 | B1 |
9374634 | Macours | Jun 2016 | B2 |
9412392 | Lindahl et al. | Aug 2016 | B2 |
9426567 | Lee et al. | Aug 2016 | B2 |
9431021 | Scalise et al. | Aug 2016 | B1 |
9443527 | Watanabe et al. | Sep 2016 | B1 |
9472201 | Sleator | Oct 2016 | B1 |
9472203 | Ayrapetian et al. | Oct 2016 | B1 |
9484030 | Meaney et al. | Nov 2016 | B1 |
9489948 | Chu et al. | Nov 2016 | B1 |
9494683 | Sadek | Nov 2016 | B1 |
9509269 | Rosenberg | Nov 2016 | B1 |
9510101 | Polleros | Nov 2016 | B1 |
9514752 | Sharifi | Dec 2016 | B2 |
9536541 | Chen et al. | Jan 2017 | B2 |
9548053 | Basye et al. | Jan 2017 | B1 |
9548066 | Jain et al. | Jan 2017 | B2 |
9552816 | Vanlund et al. | Jan 2017 | B2 |
9560441 | McDonough, Jr. et al. | Jan 2017 | B1 |
9576591 | Kim et al. | Feb 2017 | B2 |
9601116 | Casado et al. | Mar 2017 | B2 |
9615170 | Kirsch et al. | Apr 2017 | B2 |
9615171 | O'Neill et al. | Apr 2017 | B1 |
9626695 | Balasubramanian et al. | Apr 2017 | B2 |
9632748 | Faaborg et al. | Apr 2017 | B2 |
9633186 | Ingrassia, Jr. et al. | Apr 2017 | B2 |
9633368 | Greenzeiger et al. | Apr 2017 | B2 |
9633660 | Haughay et al. | Apr 2017 | B2 |
9633671 | Giacobello et al. | Apr 2017 | B2 |
9633674 | Sinha et al. | Apr 2017 | B2 |
9640179 | Hart et al. | May 2017 | B1 |
9640183 | Jung et al. | May 2017 | B2 |
9641919 | Poole et al. | May 2017 | B1 |
9646614 | Bellegarda et al. | May 2017 | B2 |
9653060 | Hilmes et al. | May 2017 | B1 |
9653075 | Chen et al. | May 2017 | B1 |
9659555 | Hilmes et al. | May 2017 | B1 |
9672821 | Krishnaswamy et al. | Jun 2017 | B2 |
9685171 | Yang | Jun 2017 | B1 |
9691378 | Meyers et al. | Jun 2017 | B1 |
9691379 | Mathias et al. | Jun 2017 | B1 |
9697826 | Sainath et al. | Jul 2017 | B2 |
9697828 | Prasad et al. | Jul 2017 | B1 |
9698999 | Mutagi et al. | Jul 2017 | B2 |
9704478 | Vitaladevuni et al. | Jul 2017 | B1 |
9721566 | Newendorp et al. | Aug 2017 | B2 |
9721568 | Polansky et al. | Aug 2017 | B1 |
9721570 | Beal et al. | Aug 2017 | B1 |
9728188 | Rosen et al. | Aug 2017 | B1 |
9734822 | Sundaram et al. | Aug 2017 | B1 |
9747011 | Lewis et al. | Aug 2017 | B2 |
9747899 | Pogue et al. | Aug 2017 | B2 |
9747920 | Ayrapetian et al. | Aug 2017 | B2 |
9747926 | Sharifi et al. | Aug 2017 | B2 |
9754605 | Chhetri | Sep 2017 | B1 |
9762967 | Clarke et al. | Sep 2017 | B2 |
9811314 | Plagge et al. | Nov 2017 | B2 |
9813810 | Nongpiur | Nov 2017 | B1 |
9813812 | Berthelsen et al. | Nov 2017 | B2 |
9818407 | Secker-Walker | Nov 2017 | B1 |
9820036 | Tritschler et al. | Nov 2017 | B1 |
9820039 | Lang | Nov 2017 | B2 |
9826306 | Lang | Nov 2017 | B2 |
9865259 | Typrin et al. | Jan 2018 | B1 |
9865264 | Gelfenbeyn | Jan 2018 | B2 |
9881616 | Beckley et al. | Jan 2018 | B2 |
9916839 | Scalise et al. | Mar 2018 | B1 |
9947316 | Millington et al. | Apr 2018 | B2 |
9973849 | Zhang et al. | May 2018 | B1 |
10013995 | Lashkari et al. | Jul 2018 | B1 |
10048930 | Vega et al. | Aug 2018 | B1 |
10051366 | Buoni et al. | Aug 2018 | B1 |
10079015 | Lockhart et al. | Sep 2018 | B1 |
10134399 | Lang et al. | Nov 2018 | B2 |
10152969 | Reilly et al. | Dec 2018 | B2 |
20010042107 | Palm | Nov 2001 | A1 |
20020022453 | Balog et al. | Feb 2002 | A1 |
20020026442 | Lipscomb et al. | Feb 2002 | A1 |
20020034280 | Infosino | Mar 2002 | A1 |
20020072816 | Shdema et al. | Jun 2002 | A1 |
20020124097 | Isely et al. | Sep 2002 | A1 |
20030040908 | Yang et al. | Feb 2003 | A1 |
20030070869 | Hlibowicki | Apr 2003 | A1 |
20030072462 | Hlibowicki | Apr 2003 | A1 |
20030095672 | Hobelsberger | May 2003 | A1 |
20030157951 | Hasty | Aug 2003 | A1 |
20040024478 | Hans et al. | Feb 2004 | A1 |
20040093219 | Shin et al. | May 2004 | A1 |
20040128135 | Anastasakos et al. | Jul 2004 | A1 |
20050031131 | Browning et al. | Feb 2005 | A1 |
20050031132 | Browning et al. | Feb 2005 | A1 |
20050031133 | Browning et al. | Feb 2005 | A1 |
20050031134 | Leske | Feb 2005 | A1 |
20050031137 | Browning et al. | Feb 2005 | A1 |
20050031138 | Browning et al. | Feb 2005 | A1 |
20050031139 | Browning et al. | Feb 2005 | A1 |
20050031140 | Browning | Feb 2005 | A1 |
20050047606 | Lee et al. | Mar 2005 | A1 |
20050164664 | Difonzo et al. | Jul 2005 | A1 |
20050195988 | Tashev et al. | Sep 2005 | A1 |
20050207584 | Bright | Sep 2005 | A1 |
20050268234 | Rossi et al. | Dec 2005 | A1 |
20050283330 | Laraia et al. | Dec 2005 | A1 |
20060104451 | Browning et al. | May 2006 | A1 |
20060147058 | Wang | Jul 2006 | A1 |
20060190968 | Jung et al. | Aug 2006 | A1 |
20060247913 | Huerta et al. | Nov 2006 | A1 |
20060262943 | Oxford | Nov 2006 | A1 |
20070018844 | Sutardja | Jan 2007 | A1 |
20070019815 | Asada et al. | Jan 2007 | A1 |
20070033043 | Hyakumoto | Feb 2007 | A1 |
20070071255 | Schobben | Mar 2007 | A1 |
20070076131 | Li et al. | Apr 2007 | A1 |
20070076906 | Takagi et al. | Apr 2007 | A1 |
20070140058 | McIntosh et al. | Jun 2007 | A1 |
20070140521 | Mitobe et al. | Jun 2007 | A1 |
20070142944 | Goldberg et al. | Jun 2007 | A1 |
20070147651 | Mitobe et al. | Jun 2007 | A1 |
20080037814 | Shau | Feb 2008 | A1 |
20080090537 | Sutardja | Apr 2008 | A1 |
20080146289 | Korneluk et al. | Jun 2008 | A1 |
20080221897 | Cerra et al. | Sep 2008 | A1 |
20080247530 | Barton et al. | Oct 2008 | A1 |
20080248797 | Freeman et al. | Oct 2008 | A1 |
20080301729 | Broos et al. | Dec 2008 | A1 |
20090003620 | McKillop et al. | Jan 2009 | A1 |
20090005893 | Sugii et al. | Jan 2009 | A1 |
20090010445 | Matsuo et al. | Jan 2009 | A1 |
20090018828 | Nakadai et al. | Jan 2009 | A1 |
20090076821 | Brenner et al. | Mar 2009 | A1 |
20090153289 | Hope et al. | Jun 2009 | A1 |
20090197524 | Haff et al. | Aug 2009 | A1 |
20090228919 | Zott et al. | Sep 2009 | A1 |
20090238377 | Ramakrishnan et al. | Sep 2009 | A1 |
20090264072 | Dai | Oct 2009 | A1 |
20090326949 | Douthitt et al. | Dec 2009 | A1 |
20100014690 | Wolff et al. | Jan 2010 | A1 |
20100023638 | Bowman | Jan 2010 | A1 |
20100035593 | Franco et al. | Feb 2010 | A1 |
20100075723 | Min et al. | Mar 2010 | A1 |
20100092004 | Kuze | Apr 2010 | A1 |
20100172516 | Lastrucci | Jul 2010 | A1 |
20100179874 | Higgins et al. | Jul 2010 | A1 |
20100211199 | Naik et al. | Aug 2010 | A1 |
20110033059 | Bhaskar et al. | Feb 2011 | A1 |
20110035580 | Wang et al. | Feb 2011 | A1 |
20110044461 | Kuech et al. | Feb 2011 | A1 |
20110044489 | Saiki et al. | Feb 2011 | A1 |
20110091055 | Leblanc | Apr 2011 | A1 |
20110145581 | Malhotra et al. | Jun 2011 | A1 |
20110267985 | Wilkinson et al. | Nov 2011 | A1 |
20110276333 | Wang et al. | Nov 2011 | A1 |
20110280422 | Neumeyer et al. | Nov 2011 | A1 |
20110289506 | Trivi et al. | Nov 2011 | A1 |
20110299706 | Sakai | Dec 2011 | A1 |
20120020486 | Fried et al. | Jan 2012 | A1 |
20120022863 | Cho et al. | Jan 2012 | A1 |
20120078635 | Rothkopf et al. | Mar 2012 | A1 |
20120123268 | Tanaka et al. | May 2012 | A1 |
20120131125 | Seidel et al. | May 2012 | A1 |
20120148075 | Goh et al. | Jun 2012 | A1 |
20120163603 | Abe et al. | Jun 2012 | A1 |
20120177215 | Bose et al. | Jul 2012 | A1 |
20120297284 | Matthews, III et al. | Nov 2012 | A1 |
20120308044 | Vander et al. | Dec 2012 | A1 |
20120308046 | Muza | Dec 2012 | A1 |
20130006453 | Wang et al. | Jan 2013 | A1 |
20130024018 | Chang et al. | Jan 2013 | A1 |
20130039527 | Jensen et al. | Feb 2013 | A1 |
20130058492 | Silzle et al. | Mar 2013 | A1 |
20130066453 | Seefeldt et al. | Mar 2013 | A1 |
20130148821 | Sorensen | Jun 2013 | A1 |
20130179173 | Lee et al. | Jul 2013 | A1 |
20130183944 | Mozer et al. | Jul 2013 | A1 |
20130191122 | Mason | Jul 2013 | A1 |
20130198298 | Li et al. | Aug 2013 | A1 |
20130216056 | Thyssen | Aug 2013 | A1 |
20130315420 | You | Nov 2013 | A1 |
20130317635 | Bates et al. | Nov 2013 | A1 |
20130322665 | Bennett et al. | Dec 2013 | A1 |
20130324031 | Loureiro | Dec 2013 | A1 |
20130329896 | Krishnaswamy et al. | Dec 2013 | A1 |
20130331970 | Beckhardt et al. | Dec 2013 | A1 |
20130332165 | Beckley et al. | Dec 2013 | A1 |
20130343567 | Triplett et al. | Dec 2013 | A1 |
20140003611 | Mohammad et al. | Jan 2014 | A1 |
20140003625 | Sheen et al. | Jan 2014 | A1 |
20140003635 | Mohammad et al. | Jan 2014 | A1 |
20140006026 | Lamb et al. | Jan 2014 | A1 |
20140034929 | Hamada et al. | Feb 2014 | A1 |
20140064501 | Olsen et al. | Mar 2014 | A1 |
20140075306 | Rega | Mar 2014 | A1 |
20140094151 | Klappert et al. | Apr 2014 | A1 |
20140100854 | Chen et al. | Apr 2014 | A1 |
20140122075 | Bak et al. | May 2014 | A1 |
20140145168 | Ohsawa et al. | May 2014 | A1 |
20140146983 | Kim et al. | May 2014 | A1 |
20140167931 | Lee et al. | Jun 2014 | A1 |
20140168344 | Shoemake et al. | Jun 2014 | A1 |
20140195252 | Gruber et al. | Jul 2014 | A1 |
20140219472 | Huang et al. | Aug 2014 | A1 |
20140222436 | Binder et al. | Aug 2014 | A1 |
20140244013 | Reilly | Aug 2014 | A1 |
20140249817 | Hart et al. | Sep 2014 | A1 |
20140252386 | Ito et al. | Sep 2014 | A1 |
20140254805 | Su et al. | Sep 2014 | A1 |
20140258292 | Thramann et al. | Sep 2014 | A1 |
20140270282 | Tammi et al. | Sep 2014 | A1 |
20140274185 | Luna et al. | Sep 2014 | A1 |
20140274203 | Ganong, III et al. | Sep 2014 | A1 |
20140274218 | Kadiwala et al. | Sep 2014 | A1 |
20140277650 | Zurek et al. | Sep 2014 | A1 |
20140291642 | Watabe et al. | Oct 2014 | A1 |
20140340888 | Ishisone et al. | Nov 2014 | A1 |
20140363022 | Dizon et al. | Dec 2014 | A1 |
20140369491 | Kloberdans et al. | Dec 2014 | A1 |
20140372109 | Iyer et al. | Dec 2014 | A1 |
20150006176 | Pogue et al. | Jan 2015 | A1 |
20150010169 | Popova et al. | Jan 2015 | A1 |
20150014680 | Yamazaki et al. | Jan 2015 | A1 |
20150016642 | Walsh et al. | Jan 2015 | A1 |
20150036831 | Klippel | Feb 2015 | A1 |
20150063580 | Huang et al. | Mar 2015 | A1 |
20150086034 | Lombardi et al. | Mar 2015 | A1 |
20150104037 | Lee et al. | Apr 2015 | A1 |
20150106085 | Lindahl | Apr 2015 | A1 |
20150110294 | Chen et al. | Apr 2015 | A1 |
20150112672 | Giacobello et al. | Apr 2015 | A1 |
20150154976 | Mutagi | Jun 2015 | A1 |
20150169279 | Duga | Jun 2015 | A1 |
20150170645 | Di et al. | Jun 2015 | A1 |
20150180432 | Gao et al. | Jun 2015 | A1 |
20150181318 | Gautama et al. | Jun 2015 | A1 |
20150189438 | Hampiholi | Jul 2015 | A1 |
20150200454 | Heusdens et al. | Jul 2015 | A1 |
20150221678 | Yamazaki et al. | Aug 2015 | A1 |
20150222987 | Angel, Jr. et al. | Aug 2015 | A1 |
20150228274 | Leppänen et al. | Aug 2015 | A1 |
20150228803 | Koezuka et al. | Aug 2015 | A1 |
20150237406 | Ochoa et al. | Aug 2015 | A1 |
20150249889 | Iyer et al. | Sep 2015 | A1 |
20150253292 | Larkin et al. | Sep 2015 | A1 |
20150253960 | Lin et al. | Sep 2015 | A1 |
20150263174 | Yamazaki et al. | Sep 2015 | A1 |
20150271593 | Sun et al. | Sep 2015 | A1 |
20150280676 | Holman et al. | Oct 2015 | A1 |
20150296299 | Klippel et al. | Oct 2015 | A1 |
20150302856 | Kim et al. | Oct 2015 | A1 |
20150319529 | Klippel | Nov 2015 | A1 |
20150338917 | Steiner et al. | Nov 2015 | A1 |
20150341406 | Rockefeller et al. | Nov 2015 | A1 |
20150346845 | Di et al. | Dec 2015 | A1 |
20150363061 | De, III et al. | Dec 2015 | A1 |
20150363401 | Chen et al. | Dec 2015 | A1 |
20150371657 | Gao et al. | Dec 2015 | A1 |
20150380010 | Srinivasan et al. | Dec 2015 | A1 |
20160007116 | Holman | Jan 2016 | A1 |
20160021458 | Johnson et al. | Jan 2016 | A1 |
20160029142 | Isaac et al. | Jan 2016 | A1 |
20160035321 | Cho et al. | Feb 2016 | A1 |
20160036962 | Rand et al. | Feb 2016 | A1 |
20160042748 | Jain et al. | Feb 2016 | A1 |
20160044151 | Shoemaker et al. | Feb 2016 | A1 |
20160057522 | Choisel et al. | Feb 2016 | A1 |
20160077710 | Lewis et al. | Mar 2016 | A1 |
20160088036 | Corbin et al. | Mar 2016 | A1 |
20160088392 | Huttunen et al. | Mar 2016 | A1 |
20160093304 | Kim et al. | Mar 2016 | A1 |
20160094917 | Wilk et al. | Mar 2016 | A1 |
20160098393 | Hebert | Apr 2016 | A1 |
20160103653 | Jang | Apr 2016 | A1 |
20160111110 | Gautama et al. | Apr 2016 | A1 |
20160134982 | Iyer | May 2016 | A1 |
20160155443 | Khan et al. | Jun 2016 | A1 |
20160157035 | Russell et al. | Jun 2016 | A1 |
20160173578 | Sharma et al. | Jun 2016 | A1 |
20160173983 | Berthelsen et al. | Jun 2016 | A1 |
20160180853 | Vanlund et al. | Jun 2016 | A1 |
20160189716 | Lindahl et al. | Jun 2016 | A1 |
20160212538 | Fullam et al. | Jul 2016 | A1 |
20160225385 | Hammarqvist | Aug 2016 | A1 |
20160232451 | Scherzer | Aug 2016 | A1 |
20160234204 | Rishi et al. | Aug 2016 | A1 |
20160239255 | Chavez et al. | Aug 2016 | A1 |
20160260431 | Newendorp et al. | Sep 2016 | A1 |
20160302018 | Russell et al. | Oct 2016 | A1 |
20160314782 | Klimanis | Oct 2016 | A1 |
20160336519 | Seo et al. | Nov 2016 | A1 |
20160343866 | Koezuka et al. | Nov 2016 | A1 |
20160343949 | Seo et al. | Nov 2016 | A1 |
20160343954 | Seo et al. | Nov 2016 | A1 |
20160345114 | Hanna et al. | Nov 2016 | A1 |
20160352915 | Gautama | Dec 2016 | A1 |
20160353218 | Starobin et al. | Dec 2016 | A1 |
20160366515 | Mendes et al. | Dec 2016 | A1 |
20160372688 | Seo et al. | Dec 2016 | A1 |
20160373269 | Okubo et al. | Dec 2016 | A1 |
20170003931 | Dvortsov et al. | Jan 2017 | A1 |
20170012207 | Seo et al. | Jan 2017 | A1 |
20170012232 | Kataishi et al. | Jan 2017 | A1 |
20170019732 | Mendes et al. | Jan 2017 | A1 |
20170025615 | Seo et al. | Jan 2017 | A1 |
20170025630 | Seo et al. | Jan 2017 | A1 |
20170026769 | Patel | Jan 2017 | A1 |
20170039025 | Kielak | Feb 2017 | A1 |
20170060526 | Barton et al. | Mar 2017 | A1 |
20170062734 | Suzuki et al. | Mar 2017 | A1 |
20170070478 | Park et al. | Mar 2017 | A1 |
20170076720 | Gopalan et al. | Mar 2017 | A1 |
20170078824 | Heo | Mar 2017 | A1 |
20170083285 | Meyers et al. | Mar 2017 | A1 |
20170084292 | Yoo | Mar 2017 | A1 |
20170090864 | Jorgovanovic | Mar 2017 | A1 |
20170092278 | Evermann et al. | Mar 2017 | A1 |
20170092297 | Sainath et al. | Mar 2017 | A1 |
20170092889 | Seo et al. | Mar 2017 | A1 |
20170092890 | Seo et al. | Mar 2017 | A1 |
20170103755 | Jeon et al. | Apr 2017 | A1 |
20170110144 | Sharifi et al. | Apr 2017 | A1 |
20170117497 | Seo et al. | Apr 2017 | A1 |
20170123251 | Nakada et al. | May 2017 | A1 |
20170125037 | Shin | May 2017 | A1 |
20170125456 | Kasahara | May 2017 | A1 |
20170140748 | Roberts et al. | May 2017 | A1 |
20170140759 | Kumar et al. | May 2017 | A1 |
20170177585 | Rodger et al. | Jun 2017 | A1 |
20170178662 | Ayrapetian et al. | Jun 2017 | A1 |
20170188150 | Brunet et al. | Jun 2017 | A1 |
20170193999 | Aleksic et al. | Jul 2017 | A1 |
20170206896 | Ko et al. | Jul 2017 | A1 |
20170214996 | Yeo | Jul 2017 | A1 |
20170236512 | Williams et al. | Aug 2017 | A1 |
20170242651 | Lang et al. | Aug 2017 | A1 |
20170242653 | Lang et al. | Aug 2017 | A1 |
20170243576 | Millington et al. | Aug 2017 | A1 |
20170243587 | Plagge et al. | Aug 2017 | A1 |
20170245076 | Kusano et al. | Aug 2017 | A1 |
20170257686 | Gautama et al. | Sep 2017 | A1 |
20170270919 | Parthasarathi et al. | Sep 2017 | A1 |
20170287485 | Civelli et al. | Oct 2017 | A1 |
20170353789 | Kim et al. | Dec 2017 | A1 |
20180033428 | Kim et al. | Feb 2018 | A1 |
20180040324 | Wilberding | Feb 2018 | A1 |
20180047394 | Tian et al. | Feb 2018 | A1 |
20180062871 | Jones et al. | Mar 2018 | A1 |
20180091913 | Hartung et al. | Mar 2018 | A1 |
20180130469 | Gruenstein et al. | May 2018 | A1 |
20180137861 | Ogawa et al. | May 2018 | A1 |
20180233136 | Torok et al. | Aug 2018 | A1 |
20190012141 | Piersol | Jan 2019 | A1 |
20190043492 | Lang | Feb 2019 | A1 |
20190074025 | Lashkari et al. | Mar 2019 | A1 |
20190079721 | Vega et al. | Mar 2019 | A1 |
20190098400 | Buoni et al. | Mar 2019 | A1 |
Number | Date | Country |
---|---|---|
2017100486 | Jun 2017 | AU |
2017100581 | Jun 2017 | AU |
103546616 | Jan 2014 | CN |
105284076 | Jan 2016 | CN |
1349146 | Oct 2003 | EP |
1389853 | Feb 2004 | EP |
2683147 | Jan 2014 | EP |
2351021 | Sep 2017 | EP |
2001236093 | Aug 2001 | JP |
2004347943 | Dec 2004 | JP |
2004354721 | Dec 2004 | JP |
2005284492 | Oct 2005 | JP |
2008079256 | Apr 2008 | JP |
2008158868 | Jul 2008 | JP |
2010141748 | Jun 2010 | JP |
2013037148 | Feb 2013 | JP |
2014071138 | Apr 2014 | JP |
2014137590 | Jul 2014 | JP |
20100111071 | Oct 2010 | KR |
200153994 | Jul 2001 | WO |
2003093950 | Nov 2003 | WO |
2015037396 | Mar 2015 | WO |
2015178950 | Nov 2015 | WO |
2016014142 | Jan 2016 | WO |
2016022926 | Feb 2016 | WO |
2016033364 | Mar 2016 | WO |
2016057268 | Apr 2016 | WO |
2017039632 | Mar 2017 | WO |
Entry |
---|
US 9,299,346 B1, 03/2016, Hart et al. (withdrawn) |
Non-Final Office Action dated May 9, 2018, issued in connection with U.S. Appl. No. 15/818,051, filed Nov. 20, 2017, 22 pages. |
Notice of Allowance dated Dec. 4, 2017, issued in connection with U.S. Appl. No. 15/277,810, filed Sep. 27, 2016, 5 pages. |
Notice of Allowance dated Jul. 5, 2018, issued in connection with U.S. Appl. No. 15/237,133, filed Aug. 15, 2016, 5 pages. |
Notice of Allowance dated Jul. 9, 2018, issued in connection with U.S. Appl. No. 15/438,741, filed Feb. 21, 2017, 5 pages. |
Notice of Allowance dated Apr. 1, 2019, issued in connection with U.S. Appl. No. 15/935,966, filed Mar. 26, 2018, 5 pages. |
Notice of Allowance dated Aug. 1, 2018, issued in connection with U.S. Appl. No. 15/297,627, filed Oct. 19, 2016, 9 pages. |
Notice of Allowance dated Apr. 11, 2018, issued in connection with U.S. Appl. No. 15/719,454, filed Sep. 28, 2017, 15 pages. |
Notice of Allowance dated Dec. 12, 2018, issued in connection with U.S. Appl. No. 15/811,468, filed Nov. 13, 2017, 9 pages. |
Notice of Allowance dated Jul. 12, 2017, issued in connection with U.S. Appl. No. 15/098,805, filed Apr. 14, 2016, 8 pages. |
Notice of Allowance dated Sep. 12, 2018, issued in connection with U.S. Appl. No. 15/438,744, filed Feb. 21, 2017, 15 pages. |
Notice of Allowance dated Dec. 13, 2017, issued in connection with U.S. Appl. No. 15/784,952, filed Oct. 16, 2017, 9 pages. |
Notice of Allowance dated Feb. 13, 2019, issued in connection with U.S. Appl. No. 15/959,907, filed Apr. 23, 2018, 10 pages. |
Notice of Allowance dated Aug. 14, 2017, issued in connection with U.S. Appl. No. 15/098,867, filed Apr. 14, 2016, 10 pages. |
Notice of Allowance dated Feb. 14, 2017, issued in connection with U.S. Appl. No. 15/229,855, filed Aug. 5, 2016, 11 pages. |
Notice of Allowance dated Jun. 14, 2017, issued in connection with U.S. Appl. No. 15/282,554, filed Sep. 30, 2016, 11 pages. |
Notice of Allowance dated Nov. 14, 2018, issued in connection with U.S. Appl. No. 15/297,627, filed Oct. 19, 2016, 5 pages. |
Notice of Allowance dated Dec. 15, 2017, issued in connection with U.S. Appl. No. 15/223,218, filed Jul. 29, 2016, 7 pages. |
Notice of Allowance dated Mar. 15, 2019, issued in connection with U.S. Appl. No. 15/804,776, filed Nov. 6, 2017, 9 pages. |
Notice of Allowance dated Aug. 16, 2017, issued in connection with U.S. Appl. No. 15/098,892, filed Apr. 14, 2016, 9 pages. |
Notice of Allowance dated Aug. 17, 2017, issued in connection with U.S. Appl. No. 15/131,244, filed Apr. 18, 2016, 9 pages. |
Notice of Allowance dated Sep. 17, 2018, issued in connection with U.S. Appl. No. 15/211,689, filed Jul. 15, 2016, 6 pages. |
Notice of Allowance dated Apr. 18, 2019, issued in connection with U.S. Appl. No. 16/173,797, filed Oct. 29, 2018, 9 pages. |
Notice of Allowance dated Dec. 19, 2018, issued in connection with U.S. Appl. No. 15/818051, filed Nov. 20, 2017, 9 pages. |
Notice of Allowance dated Jul. 19, 2018, issued in connection with U.S. Appl. No. 15/681,937, filed Aug. 21, 2017, 7 pages. |
Notice of Allowance dated Mar. 20, 2018, issued in connection with U.S. Appl. No. 15/784,952, filed Oct. 16, 2017, 7 pages. |
Notice of Allowance dated Sep. 20, 2018, issued in connection with U.S. Appl. No. 15/946,599, filed Apr. 5, 2018, 7 pages. |
Notice of Allowance dated Aug. 22, 2017, issued in connection with U.S. Appl. No. 15/273,679, filed Sep. 22, 2016, 5 pages. |
Notice of Allowance dated Jan. 22, 2018, issued in connection with U.S. Appl. No. 15/178,180, filed Jun. 9, 2016, 9 pages. |
Notice of Allowance dated Apr. 24, 2019, issued in connection with U.S. Appl. No. 16/154,469 filed Oct. 8, 2018, 5 pages. |
Notice of Allowance dated Mar. 27, 2019, issued in connection with U.S. Appl. No. 16/214,666, filed Dec. 10, 2018, 6 pages. |
Notice of Allowance dated Dec. 29, 2017, issued in connection with U.S. Appl. No. 15/131,776, filed Apr. 18, 2016, 13 pages. |
Notice of Allowance dated Apr. 3, 2019, issued in connection with U.S. Appl. No. 16/160,107, filed Oct. 15, 2018, 7 pages. |
Notice of Allowance dated Jul. 30, 2018, issued in connection with U.S. Appl. No. 15/098,718, filed Apr. 14, 2016, 5 pages. |
Notice of Allowance dated Nov. 30, 2018, issued in connection with U.S. Appl. No. 15/438,725, filed Feb. 21, 2017, 5 pages. |
Notice of Allowance dated Oct. 5, 2018, issued in connection with U.S. Appl. No. 15/211,748, filed Jul. 15, 2018, 10 pages. |
Notice of Allowance dated Aug. 9, 2018, issued in connection with U.S. Appl. No. 15/229,868, filed Aug. 5, 2016, 11 pages. |
Notice of Allowance dated Mar. 9, 2018, issued in connection with U.S. Appl. No. 15/584,782, filed May 2, 2017, 8 pages. |
Palm, Inc., “Handbook for the Palm VII Handheld,” May 2000, 311 pages. |
Presentations at WinHEC 2000, May 2000, 138 pages. |
Restriction Requirement dated Aug. 9, 2018, issued in connection with U.S. Appl. No. 15/717,621, filed Sep. 27, 2017, 8 pages. |
Souden et al. “An Integrated Solution for Online Multichannel Noise Tracking and Reduction.” IEEE Transactions on Audio, Speech, and Language Processing, vol. 19. No. 7, Sep. 7, 2011, 11 pp. |
Souden et al. “Gaussian Model-Based Multichannel Speech Presence Probability” IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, No. 5, Jul. 5, 2010, 6pages. |
Souden et al. “On Optimal Frequency-Domain Multichannel Linear Filtering for Noise Reduction.” IEEE Transactions Dn Audio, Speech, and Language Processing, vol. 18, No. 2, Feb. 2010, 17pages. |
Steven J. Nowlan and Geoffrey E. Hinton “Simplifying Neural Networks by Soft Weight-Sharing” Neural Computation 4, 1992, 21 pages. |
Tsiami et al. “Experiments in acoustic source localization using sparse arrays in adverse indoors environments”, 2014 22nd European Signal Processing Conference, Sep. 1, 2014, 5 pages. |
Tweet: “How to start using Google app voice commands to make your life easier Share This Story shop @Bullet”, Jan. 21, 2016, https://bgr.com/2016/01/21/best-ok-google-voice-commands/, 3 page. |
Ullrich et al. “Soft Weight-Sharing for Neural Network Compression.” ICLR 2017, 16 pages. |
United States Patent and Trademark Office, U.S. Appl. No. 60/490,768, filed Jul. 28, 2003, entitled “Method for synchronizing audio playback between multiple networked devices,” 13 pages. |
United States Patent and Trademark Office, U.S. Appl. No. 60/825,407, filed Sep. 12, 2006, entitled “Controlling and manipulating groupings in a multi-zone music or media system,” 82 pages. |
UPnP; “Universal Plug and Play Device Architecture,” Jun. 8, 2000; version 1.0; Microsoft Corporation; pp. 1-54. |
Vacher at al. “Recognition of voice commands by multisource ASR and noise cancellation in a smart home environment” Signal Processing Conference 2012 Proceedings of the 20th European, IEEE, Aug. 27, 2012, 5 pages. |
Vacher et al. “Speech Recognition in a Smart Home: Some Experiments for Telemonitoring,” 2009 Proceedings of the 5th Conference on Speech Technology and Human-Computer Dialogoue, Constant, 2009, 10 pages. |
Wung et al. “Robust Acoustic Echo Cancellation in the Short-Time Fourier Transform Domain Using Adaptive Crossband Filters” IEEE International Conference on Acoustic, Speech and Signal Processing ICASSP, 2014, p. 1300-1304. |
Xiao et al. “A Learning-Based Approach to Direction of Arrival Estimation in Noisy and Reverberant Environments,” 2015 IEEE International Conference on Acoustics, Speech and Signal Processing, Apr. 19, 2015, 5 pages. |
Yamaha DME 64 Owner's Manual; copyright 2004, 80 pages. |
Yamaha DME Designer 3.5 setup manual guide; copyright 2004, 16 pages. |
Yamaha DME Designer 3.5 User Manual; Copyright 2004, 507 pages. |
Advisory Action dated Jun. 28, 2018, issued in connection with U.S. Appl. No. 15/438744, filed Feb. 21, 2017, 3 pages. |
Advisory Action dated Dec. 31, 2018, issued in connection with U.S. Appl. No. 15/804776, filed Nov. 6, 2017, 4 pages. |
AudioTron Quick Start Guide, Version 1.0, Mar. 2001, 24 pages. |
AudioTron Reference Manual, Version 3.0, May 2002, 70 pages. |
AudioTron Setup Guide, Version 3.0, May 2002, 38 pages. |
Australian Patent Office, Examination Report dated Oct. 30, 2018, issued in connection with Australian Application No. 2017222436, 3 pages. |
“Automatic Parameter Tying in Neural Networks” ICLR 2018, 14 pages. |
Bluetooth. “Specification of the Bluetooth System: The ad hoc SCATTERNET for affordable and highly functional wireless connectivity,” Core, Version 1.0 A, Jul. 26, 1999, 1068 pages. |
Bluetooth. “Specification of the Bluetooth System: Wireless connections made easy,” Core, Version 1.0 B, Dec. 1, 1999, 1076 pages. |
Canadian Patent Office, Canadian Office Action dated Nov. 14, 2018, issued in connection with Canadian Application No. 3015491, 3 pages. |
Chinese Patent Office, First Office Action and Translation dated Mar. 20, 2019, issued in connection with Chinese Application No. 201780025028.2, 18 pages. |
Chinese Patent Office, First Office Action and Translation dated Mar. 27, 2019, issued in connection with Chinese Application No. 201780025029.7, 9 pages. |
Corrected Notice of Allowability dated Mar. 8, 2017, issued in connection with U.S. Appl. No. 15/229,855, filed Aug. 5, 2016, 6 pages. |
Dell, Inc. “Dell Digital Audio Receiver: Reference Guide,” Jun. 2000, 70 pages. |
Dell, Inc. “Start Here,” Jun. 2000, 2 pages. |
“Denon 2003-2004 Product Catalog,” Denon, 2003-2004, 44 pages. |
European Patent Office, European Extended Search Report dated Jan. 3, 2019, issued in connection with European Application No. 177570702, 8 pages. |
European Patent Office, European Extended Search Report dated Jan. 3, 2019, issued in connection with European Application No. 17757075.1, 9 pages. |
European Patent Office, European Extended Search Report dated Oct. 30, 2017, issued in connection with EP Application No. 17174435.2, 11 pages. |
European Patent Office, European Office Action dated Jan. 22, 2019, issued in connection with European Application No. 171744352, 9 pages. |
Final Office Action dated Oct. 6, 2017, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2016, 25 pages. |
Final Office Action dated Apr. 11, 2019, issued in connection with U.S. Appl. No. 15/131,254, filed Apr. 18, 2016, 17 pages. |
Final Office Action dated Aug. 11, 2017, issued in connection with U.S. Appl. No. 15/131,776, filed Apr. 18, 2016, 7 pages. |
Final Office Action dated Apr. 13, 2018, issued in connection with U.S. Appl. No. 15/131,254, filed Apr. 18, 2016, 18 pages. |
Final Office Action dated Apr. 13, 2018, issued in connection with U.S. Appl. No. 15/438,744, filed Feb. 21, 2017, 20 pages. |
Final Office Action dated Jun. 15, 2017, issued in connection with U.S. Appl. No. 15/098,718, filed Apr. 14, 2016, 15 pages. |
Final Office Action dated Oct. 15, 2018, issued in connection with U.S. Appl. No. 15/804,776, filed Nov. 6, 2017, 18 pages. |
Final Office Action dated Oct. 16, 2018, issued in connection with U.S. Appl. No. 15/438,725, filed Feb. 21, 2017, 10 pages. |
Final Office Action dated Feb. 21, 2018, issued in connection with U.S. Appl. No. 15/297,627, filed Oct. 19, 2016, 12 pages. |
Final Office Action dated Apr. 26, 2019, issued in connection with U.S. Appl. No. 15/721,141, filed Sep. 29, 2017, 20 pages. |
Final Office Action dated Apr. 30, 2019, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2016, 6 pages. |
Final Office Action dated Feb. 5, 2019, issued in connection with U.S. Appl. No. 15/438,749, filed Feb. 21, 2017, 17 pages. |
Fiorenza Arisio et al. “Deliverable 1.1 User Study, analysis of requirements and definition of the application task,” May 31, 2012, http://dirha.fbk.eu/sites/dirhalbk.eu/files/docs/DIRHA_D1.1., 31 pages. |
Freiberger, Karl, “Development and Evaluation of Source Localization Algorithms for Coincident Microphone Arrays,” Diploma Thesis, Apr. 1, 2010, 106 pages. |
Giacobello et al. “A Sparse Nonuniformly Partitioned Multidelay Filter for Acoustic Echo Cancellation,” 2013, IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, Oct. 2013, New Paltz, NY, 4 pages. |
Giac,obello et al. “Tuning Methodology for Speech Enhancement Algorithms using a Simulated Conversational Database and Perceptual Objective Measures,” 2014, 4th Joint Workshop on Hands-free Speech Communication and Microphone Arrays HSCMA, 2014, 5 pages. |
Han et al. “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding.” ICLR 2016, Feb. 15, 2016, 14 pages. |
Helwani et al “Source-domain adaptive filtering for MIMO systems with application to acoustic echo cancellation”, Acoustics Speech and Signal Processing, 2010 IEEE International Conference, Mar. 14, 2010, 4 pages. |
Hirano et al. “A Noise-Robust Stochastic Gradient Algorithm with an Adaptive Step-Size Suitable for Mobile Hands-Free Telephones,” 1995, International Conference on Acoustics, Speech, and Signal Processing, vol. 2, 4 pages. |
International Bureau, International Preliminary Report on Patentability, dated Apr. 11, 2019, issued in connection with International Application No. PCT/US2017/0054063, filed Sep. 28, 2017, 9 pages. |
International Bureau, International Preliminary Report on Patentability, dated Sep. 7, 2018, issued in connection with International Application No. PCT/US2017/018728, filed Feb. 21, 2017, 8 pages. |
International Bureau, International Preliminary Report on Patentability, dated Sep. 7, 2018, issued in connection with International Application No. PCT/US2017/018739, filed Feb. 21, 2017, 7 pages. |
International Searching Authority, International Search Report and Written Opinion dated Dec. 19, 2018, in connection with International Application No. PCT/US2018/053517, 13 pages. |
International Searching Authority, International Search Report and Written Opinion dated Nov. 22, 2017, issued in connection with International Application No. PCT/US2017/054063, filed Sep. 28, 2017, 11 pages. |
International Searching Authority, International Search Report and Written Opinion dated Jan. 23, 2018, issued in connection with International Application No. PCT/US2017/57220, filed Oct. 18, 2017, 8 pages. |
International Searching Authority, International Search Report and Written Opinion dated May 23, 2017, issued in connection with International Application No. PCT/US2017/018739, Filed Feb. 21, 2017, 10 pages. |
International Searching Authority, International Search Report and Written Opinion dated Oct. 23, 2017, issued in connection with International Application No. PCT/US2017/042170, filed Jul. 14, 2017, 15 pages. |
International Searching Authority, International Search Report and Written Opinion dated Oct. 24, 2017, issued in connection with International Application No. PCT/US2017/042227, filed Jul. 14, 2017, 16 pages. |
International Searching Authority, International Search Report and Written Opinion dated May 30, 2017, issued in connection with International Application No. PCT/US2017/018728, Filed on Feb. 21, 2017, 11 pages. |
Jo et al., “Synchronized One-to-many Media Streaming with Adaptive Playout Control,” Proceedings of SPIE, 2002, pp. 71-82, vol. 4861. |
Jones, Stephen, “Dell Digital Audio Receiver: Digital upgrade for your analog stereo,” Analog Stereo, Jun. 24, 2000 retrieved Jun. 18, 2014, 2 pages. |
Jose Alvarez and Mathieu Salzmann “Compression-aware Training of Deep Networks” 31st Conference on Neural Information Processing Systems, Nov. 13, 2017, 12pages. |
Louderback, Jim, “Affordable Audio Receiver Furnishes Homes With MP3,” TechTV Vault. Jun. 28, 2000 retrieved Jul. 10, 2014, 2 pages. |
Maja Taseska and Emanual A.P. Habets, “MMSE-Based Blind Source Extraction in Diffuse Noise Fields Using a complex Coherence-Based a Priori Sap Estimator.” International Workshop on Acoustic Signal Enhancement 2012, Sep. 1-6, 2012, 4pages. |
Morales-Cordovilla et al. “Room Localization for Distant Speech Recognition,” Proceedings of Interspeech 2014, Sep. 14, 2014, 4 pages. |
Newman, Jared. “Chromecast Audio's multi-room support has arrived,” Dec. 11, 2015, https://www.pcworld.com/article/3014204/customer-electronic/chromcase-audio-s-multi-room-support-has . . . , 1 page. |
Ngo et al. “Incorporating the Conditional Speech Presence Probability in Multi-Channel Wiener Filter Based Noise Reduction in Hearing Aids.” EURASIP Journal on Advances in Signal Processing vol. 2009, Jun. 2, 2009, 11 pages. |
Non-Final Office Action dated Jun. 1, 2017, issued in connection with U.S. Appl. No. 15/223,218, filed Jul. 29, 2016, 7 pages. |
Non-Final Office Action dated Nov. 2, 2017, issued in connection with U.S. Appl. No. 15/584,782, filed May 2, 2017, 11 pages. |
Non-Final Office Action dated Nov. 3, 2017, issued in connection with U.S. Appl. No. 15/438,741, filed Feb. 21, 2017, 11 pages. |
Non-Final Office Action dated Feb. 7, 2017, issued in connection with U.S. Appl. No. 15/131,244, filed Apr. 18, 2016, 12 pages. |
Non-Final Office Action dated Feb. 8, 2017, issued in connection with U.S. Appl. No. 15/098,892, filed Apr. 14, 2016, 17 pages. |
Non-Final Office Action dated Mar. 9, 2017, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2016, 13 pages. |
Non-Final Office Action dated Jan. 10, 2018, issued in connection with U.S. Appl. No. 15/098,718, filed Apr. 14, 2016, 15 pages. |
Non-Final Office Action dated Jan. 10, 2018, issued in connection with U.S. Appl. No. 15/229,868, filed Aug. 5, 2016, 13 pages. |
Non-Final Office Action dated Jan. 10, 2018, issued in connection with U.S. Appl. No. 15/438,725, filed Feb. 21, 2017, 15 pages. |
Non-Final Office Action dated Sep. 10, 2018, issued in connection with U.S. Appl. No. 15/670,361, filed Aug. 7, 2017, 17 pages. |
Non-Final Office Action dated Dec. 12, 2016, issued in connection with U.S. Appl. No. 15/098,718, filed Apr. 14, 2016, 11 pages. |
Non-Final Office Action dated Feb. 12, 2019, issued in connection with U.S. Appl. No. 15/670,361, filed Aug. 7, 2017, 13 pages. |
Non-Final Office Action dated Jan. 13, 2017, issued in connection with U.S. Appl. No. 15/098,805, filed Apr. 14, 2016, 11 pages. |
Non-Final Office Action dated Nov. 13, 2018, issued in connection with U.S. Appl. No. 15/717,621, filed Sep. 27, 2017, 23 pages. |
Non-Final Office Action dated Nov. 13, 2018, issued in connection with U.S. Appl. No. 16/160,107, filed Oct. 15, 2018, 8 pages. |
Non-Final Office Action dated Sep. 14, 2017, issued in connection with U.S. Appl. No. 15/178,180, filed Jun. 9, 2016, 16 pages. |
Non-Final Office Action dated Sep. 14, 2018, issued in connection with U.S. Appl. No. 15/959,907, filed Apr. 23, 2018, 15 pages. |
Non-Final Office Action dated Jan. 15, 2019, issued in connection with U.S. Appl. No. 16/173,797, filed Oct. 29, 2018, 6 pages. |
Non-Final Office Action dated Mar. 16, 2018, issued in connection with U.S. Appl. No. 15/681,937, filed Aug. 21, 2017, 5 pages. |
Non-Final Office Action dated Oct. 16, 2018, issued in connection with U.S. Appl. No. 15/131,254, filed Apr. 18, 2016, 16 pages. |
Non-Final Office Action dated Apr. 18, 2018, issued in connection with U.S. Appl. No. 15/811,468, filed Nov. 13, 2017, 14 pages, |
Non-Final Office Action dated Jan. 18, 2019, issued in connection with U.S. Appl. No. 15/721,141, filed Sep. 29, 2017, 18 pages. |
Non-Final Office Action dated Apr. 19, 2017, issued in connection with U.S. Appl. No. 15/131,776, filed Apr. 18, 2016, 12 pages. |
Non-Final Office Action dated Feb. 20, 2018, issued in connection with U.S. Appl. No. 15/211,748, filed Jul. 15, 2016, 31 pages. |
Non-Final Office Action dated Feb. 21, 2019, issued in connection with U.S. Appl. No. 16/214,666, filed Dec. 10, 2018, 12 pages. |
Non-Final Office Action dated May 22, 2018, issued in connection with U.S. Appl. No. 15/946,599, filed Apr. 5, 2018, 19 pages. |
Non-Final Office Action dated Aug. 24, 2017, issued in connection with U.S. Appl. No. 15/297,627, filed Oct. 19, 2016, 13 pages. |
Non-Final Office Action dated Jul. 25, 2017, issued in connection with U.S. Appl. No. 15/273,679, filed Jul. 22, 2016, 11 pages. |
Non-Final Office Action dated Dec. 26, 2018, issued in connection with U.S. Appl. No. 16/154,469, filed Oct. 8, 2018, 7 pages. |
Non-Final Office Action dated Jan. 26, 2017, issued in connection with U.S. Appl. No. 15/098,867, filed Apr. 14, 2016, 16 pages. |
Non-Final Office Action dated Oct. 26, 2017, issued in connection with U.S. Appl. No. 15/438,744, filed Feb. 21, 2017, 12 pages. |
Non-Final Office Action dated Jun. 27, 2018, issued in connection with U.S. Appl. No. 15/438,749, filed Feb. 21, 2017, 16 pages. |
Non-Final Office Action dated Mar. 29, 2019, issued in connection with U.S. Appl. No. 16/102,650, filed Aug. 13, 2018, 11 pages. |
Non-Final Office Action dated May 3, 2019, issued in connection with U.S. Appl. No. 16/178,122, filed Nov. 1, 2018, 14 pages. |
Non-Final Office Action dated Apr. 30, 2019, issued in connection with U.S. Appl. No. 15/718,521, filed Sep. 28, 2017, 39 pages. |
Non-Final Office Action dated Jun. 30, 2017, issued in connection with U.S. Appl. No. 15/277,810, filed Sep. 27, 2016, 13 pages. |
Non-Final Office Action dated Apr. 4, 2019, issued in connection with U.S. Appl. No. 15/718,911, filed Sep. 28, 2017, 21 pages. |
Non-Final Office Action dated Jan. 4, 2019, issued in connection with U.S. Appl. No. 15/948,541, filed Apr. 9, 2018, 6 pages. |
Non-Final Office Action dated Feb. 6, 2018, issued in connection with U.S. Appl. No. 15/211,689, filed Jul. 15, 2016, 32 pages. |
Non-Final Office Action dated Feb. 6, 2018, issued in connection with U.S. Appl. No. 15/237,133, filed Aug. 15, 2016, 6 pages. |
Non-Final Office Action dated Sep. 6, 2017, issued in connection with U.S. Appl. No. 15/131,254, filed Apr. 18, 2016, 13 pages. |
Non-Final Office Action dated Sep. 6, 2018, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2016, 29 pages. |
Non-Final Office Action dated Apr. 9, 2018, issued in connection with U.S. Appl. No. 15/804,776, filed Nov. 6, 2017, 18 pages. |
Number | Date | Country | |
---|---|---|---|
20200258513 A1 | Aug 2020 | US |