Devices, systems and methods for on-skin or on-body mounting of medical devices

Information

  • Patent Grant
  • 11064921
  • Patent Number
    11,064,921
  • Date Filed
    Monday, July 30, 2018
    5 years ago
  • Date Issued
    Tuesday, July 20, 2021
    2 years ago
Abstract
Devices, systems, methods and kits for releasably mounting a medical device on the body or skin of a user are provided. Embodiments include a holder or mounting unit or structure that retains a medical device in a fixed position on a body part of a user or host, such as on the surface of the skin, and/or provides physical and/or electrical coupling to one or more additional components which may be operatively positioned above and/or below the surface of the skin.
Description
BACKGROUND

There are many instances in which it is necessary to maintain a medical device “on-body”, i.e., secured to a body part of a patient, e.g., the skin of an arm, abdomen, or elsewhere. One such instance is maintaining a component of an analyte monitoring system, e.g., a continuous analyte monitoring system, on the skin of a patient. Monitoring of the level of certain analytes may be vitally important to the health of certain individuals. In this regard, devices and systems have been developed for continuous or automatic monitoring of analytes in the blood stream or interstitial fluid. One common application of such analyte monitoring systems is in the monitoring and measurement of glucose levels in diabetic patients. Such measurements can be especially useful in monitoring and/or adjusting a treatment regimen, which may include the regular and/or emergent administration of insulin to the patient. Examples of such sensors and associated analyte monitoring systems can be found in U.S. Pat. Nos. 6,134,461; 6,175,752; 6,284,478; 6,560,471; 6,579,690; 6,746,582; 6,932,892; 7,299,082; 7,381,184; 7,618,369 and 7,697,967; and U.S. Patent Publication Nos. 2008/0161666, 2009/0054748, now U.S. Pat. No. 7,885,698, 2009/0247857, now U.S. Pat. No. 8,346,335, and 2010/0081909, now U.S. Pat. No. 8,219,173, the disclosures of each of which are incorporated by reference herein.


Many of these analyte monitoring systems include an in vivo sensor that is configured so that at least a portion of the sensor is positioned below the skin, e.g., in a blood vessel or in the subcutaneous tissue of a patient. The sensor communicates analyte information to a component positioned above the skin where, in certain embodiments, the component is intended to be maintained or worn on the skin of the patient. This on-skin or external component, in many systems, includes a control unit which has a housing which typically contains most or all of the electronic components of the analyte monitoring system. The housing is typically configured to couple or mate with one or more other portions of the control unit and with the sensor, or otherwise allows passage of the sensor therethrough, while providing electrical contact between the control unit electronics and the sensor.


Implantable or partially implantable sensors are almost always single-use devices with a limited useful sensing life, for example between about 3 and about 10 days, while the electronic components of a sensor system are typically reusable. As such, multiple sensors are used and replaced using the same on-skin/on-body control unit, thus requiring numerous physical and electrical couplings and decouplings between the control unit and sensors. Replacement of the control unit battery also requires some decoupling and recoupling of at least a portion of the control unit. Accordingly, it is important that the mechanisms and/or structures that enable the repeated coupling and decoupling of components be reliable and durable, yet easy enough for a patient to manipulate.


With the increasing popularity and use of on-skin or on-body medical devices, such as continuous analyte monitoring devices, there continues to be an interest in improving the structures by which and the manner in which the on-skin/on-body components of medical devices, are coupled/decoupled/recoupled to/from the skin and/or to each other.


SUMMARY

Generally, the present disclosure includes devices, systems, methods and kits for retaining a medical device on-body and/or removing a medical device from an on-body position and/or coupling/decoupling one or more portions of a medical device. Many of the inventive features facilitate removing disposable components from the reusable components of the medical device, such as when the disposable component, e.g., an implantable component, battery, etc., has reached its useful operative life or has expired.


Embodiments include a holder or mounting unit or structure that retains a medical device in a fixed position on a body part of a user or host, such as on the surface of the skin, and/or provides physical and/or electrical coupling to one or more additional components which may be operatively positioned above and/or below the surface of the skin. In certain embodiments, the medical devices are analyte monitoring systems which include an analyte sensor which is at least partially implantable below the skin surface and an analyte sensor control unit which is positionable above the skin surface.


In certain embodiments, the subject holders or mounting structures include a first portion and a second portion, wherein the second portion is moveable relative to the first portion for releasing at least a portion of the medical device from the structure when operatively mounted thereon. The holders or structures may further include a third portion extending between the first and second portions, wherein the third portion is configured to be alterable from a first state to a second state to provide the relative movement of the second portion to the first portion. In some of these embodiments, the third portion is returnable to the first state upon being altered to the second state, while in others, the third portion is not returnable to the first state upon being altered to the second state, for purposes, for example, of rendering the holder/structure inoperable to prevent its re-use.


In other embodiments, the subject holders or mounting units may be transformable from a first state to a second state, e.g., by a medical device release feature, or otherwise. A first state may include a useable state and a second state may include a release and/or an un-useable state. In certain embodiments, at least a portion of a holder is moved axially, rotationally, pivotally and/or arcuately relative to at least another portion of the holder after a medical device has been attached to the holder, and the movement of the at least one portion of the holder relative to another enables detachment of the medical device or a component thereof from the holder.


Additional embodiments provide assemblies including a medical device and a holder or mounting unit for releasably retaining the medical device on the body of a user, where the medical device and the mounting unit are cooperatively configured to releaseably and matingly engage with each other. In certain of these embodiments, the mounting unit includes a displaceable portion wherein displacement of the displaceable portion at least partially releases the medical device housing from the mounting unit. The displacement provided by the displaceable portion comprises one or more of linear, axial and angular movement. The displacement may be affected by a low-force pressure against the displaceable portion in a direction away from the medical device. The releasable coupling between the medical device and mounting unit may be provided by corresponding mating features on both components whereby effecting displacement of the displaceable portion decouples the corresponding mating features. A second pair of corresponding features for releasably coupling the medical device with the mounting unit may be provided wherein displacement of the displaceable portion of the mounting unit may or may not decouple the second corresponding features.


The present disclosure also includes methods, such as methods of using a medical device on the body of a host, which includes mounting the medical device on the body of the host by a mounting unit affixed to the skin surface of the host, operatively using the medical device for a predetermined period of time, and then displacing a first portion of the mounting unit relative to a second portion and thereby releasing the medical device from the mounting unit. Certain of the methods further include replacing at least one component of the medical device, returning the displaced first portion of the mounting unit to the first position, and operatively reusing the medical device for the predetermined period of time. Other methods include removing the medical device from the mounting unit, replacing at least one component of the medical device, mounting the medical device on the body of the host by means of a second mounting unit affixed to a second location on the skin surface of the host, and then operatively reusing the medical device for the predetermined period of time.


These and other objects, advantages, and features of the present disclosure will become apparent to those persons skilled in the art upon reading the details of the present disclosure as more fully described below.





BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is best understood from the following detailed description when read in conjunction with the accompanying drawings. It is emphasized that, according to common practice, the various features of the drawings are not to-scale. On the contrary, the dimensions of the various features are arbitrarily expanded or reduced for clarity. Included in the drawings are the following figures:



FIG. 1A illustrates a side view of a medical device holder according to an embodiment of the subject disclosure;



FIG. 1B illustrates an enlarged fragmented view of a portion of the holder of FIG. 1A denoted by area B;



FIG. 1C illustrates an enlarged cutaway plan view of a portion of the holder of FIG. 1A;



FIG. 2 illustrates the holder of FIGS. 1A-1C in a medical device release configuration;



FIG. 3A illustrates the holder of FIGS. 1A-1C operatively holding a medical device;



FIG. 3B illustrates an enlarged fragmented view of a portion of the holder and medical device denoted by area B of FIG. 3A; and



FIG. 4 illustrates the holder of FIGS. 1A-1C in a medical device release configuration.





DETAILED DESCRIPTION

Before the present disclosure is described, it is to be understood that the present disclosure is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present disclosure will be limited only by the appended claims.


Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the present disclosure. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges as also encompassed within the present disclosure, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the present disclosure.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the present disclosure belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present disclosure, the preferred methods and materials are now described.


It is understood that the present disclosure supercedes any disclosure of an incorporated publication to the extent there is a contradiction. The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present disclosure is not entitled to antedate such publication by virtue of prior disclosure. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.


It must be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise.


As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present disclosure.


As summarized above, embodiments of the present disclosure include devices and methods for maintaining a medical device in place on the body of a patient and/or removing a medical device from a body surface. Embodiments may be applicable to any medical device, including analyte monitoring devices and systems such as those using an analyte sensor (electrochemical, optical, etc.) wherein at least a portion of the sensor is positionable beneath the skin of the user or host for the in vivo determination of a concentration of an analyte in a body fluid, e.g., interstitial fluid, blood, urine, etc. Such an analyte sensor may be, for example, constructed to be at least partially subcutaneously (or elsewhere) positionable in a patient for the continuous and/or periodic monitoring of an analyte in a patient's interstitial fluid. The sensors also include in vivo analyte sensors positionable in a body vessel such as a vein, artery, or other portion of the body containing fluid. The sensors may have an ex vivo portion which is positionable outside the body, i.e., above the skin surface, and configured to be coupled to a component of the medical device system such as to a control unit housing mounted on the skin of the patient.


Sensors described herein may be configured for monitoring the level of the analyte over a time period which may range from minutes, hours, days, weeks, one month or longer. Of interest are analyte sensors, such as glucose sensors, that are capable of providing analyte data of a user for, and therefore have an in vivo operational life of, about one hour or more, e.g., about a few hours or more, e.g., about a few days of more, e.g., about three days or more, e.g., about five days or more, e.g., about seven days or more, e.g., about several weeks or months.


Analytes measurable by the subject sensors may include, but are not limited to, glucose, lactate, acetyl choline, amylase, bilirubin, cholesterol, chorionic gonadotropin, creatine kinase (e.g., CK-MB), creatine, DNA, fructosamine, glucose, glutamine, growth hormones, hormones, ketones, lactate, peroxide, prostate-specific antigen, prothrombin, RNA, thyroid stimulating hormone, and troponin. Other of the subject sensors may be configured to detect and measure drugs, such as, for example, antibiotics (e.g., gentamicin, vancomycin, and the like), digitoxin, digoxin, drugs of abuse, theophylline, and warfarin. Two or more analytes and/or drugs may be monitored at the same or different times, with the same or different analyte sensor(s). If different sensors are employed, they may be coupled together, e.g., physically and/or electrically.


The subject analyte monitoring systems include an on-skin or external component having a housing which typically contains most or all of the electronic components of the analyte monitoring system, also referred to as a control unit. The on-body or on-skin control unit housing typically has a shape and profile which are comfortable for the patient and permit concealment. The housing often includes a base or mounting structure which is configured for engagement with the skin, such as by an adhesive layer, patch or strip, or by strapping it to the body. The control unit may include data processing and communication electronics, the latter of which may include a transmitter for relaying or providing data obtained using the sensor to another device such as a remotely located device. The control unit may also include a variety of optional components, such as, for example, a receiver, a power supply (e.g., a battery), an alarm system, a display, a user input mechanism, a data storage unit, a watchdog circuit, a clock, a calibration circuit, etc. A remote unit, if employed with the on-skin control unit, may include one or more of the same components and additional components such as an analyte measurement circuit for use with an in vitro sensor, a pager, a telephone interface, a computer interface, etc.


While embodiments of the subject disclosure are further primarily described with respect to analyte monitoring devices and methods such as glucose monitoring devices and methods, such description is in no way intended to limit the scope of the present disclosure. It is understood that the subject disclosure is applicable to any medical device in which at least a portion of the device is intended to be maintained in place on a patient for a predetermined period of time.


Embodiments of the subject holders/mounting units include a medical device area that connects a medical device to the holder, and a body attachment area that attaches the holder to a body part of a user, where the medical device and body attachment areas may be the same or different areas, including at least partially overlapping areas.


A medical device area may contain one or more features to attach a medical device to a holder, e.g., corresponding mateable features on a holder and a medical device, such as one or more clip(s), rail(s), hook(s), tab(s), groove(s), slot(s), guide(s), orifice(s), adhesive(s), and the like. For example, certain holder embodiments may include a pair of elongated, parallel side rails that slideably receive a medical device to anchor it to the holder. Embodiments may include a medical device that has a first mating member and a holder that has a second mating member, where the second mating member is adapted to mate with the first mating member so that the first and second mating members interlock or otherwise engage with each other. In an embodiment, the first mating member may include at least one tab positioned on or in the medical device. The second mating member may include a receiving area, e.g., that includes a depression or orifice or tunnel, or the like, and be positioned on or in a holder and which is adapted to mate with the least one tab so that the at least one tab and the receiving area cooperate together to form an interlocking structure that retains the medical device and holder together, e.g., by frictional engagement, snap fit engagement, or the like. First and second mating members may be selectively engageable and disengagable such that mated arrangement prevents separation of the medical device and the holder when engaged, but are otherwise easily disengageable when desired. Such ease of coupling and decoupling components is useful, for example, when a battery or sensor requires replacement.


A body attachment area may include one or more features, including but not limited to one or more of a strap, latch, adhesive, filaments or threads, or other fasteners, to maintain or anchor a holder and a held medical device on a body of a user such as an arm, leg, abdomen, etc. for a period of time such as the operating life of the sensor. Exemplary techniques and fasteners that may be employed include but are not limited to embodiments described in U.S. Pat. No. 6,175,752, and U.S. Patent Publication No. 2010/0049025, now U.S. Pat. No. 7,951,080, the disclosures of which are herein incorporated by reference. A holder may be secured to a body prior to or after attaching a medical device to the holder.


A holder may also include an area for interaction with an analyte sensor, e.g., a portion of a sensor that protrudes from the skin while a portion of the sensor is positioned beneath the skin (e.g., in the subcutaneous space, or the like). A holder may include one or more of a port, cavity, surface, protrusion, and/or other feature that receives or otherwise interacts with at least a portion of an analyte sensor. Embodiments of a holder may include a conductive material portion (e.g., metal, carbon, conductive polymer (carbon impregnated polymers, and the like), etc.) to electrically contact conductive material of a sensor and/or of a medical device to establish electrical connection. One or more moisture barriers may be provided to encompass this area about the electrical contacts of the sensor and the holder and/or medical device to provide resistance and/or impermeability to moisture, including preventing moisture ingress to the contacts and/or other electrical components of the holder and/or sensor and/or medical device. Moisture barriers include sealants that may include polymers such as elastomers and the like. Barriers may be malleable and may provide increased resistance to shock and/or vibration.


As described herein, a holder and/or medical device may include one or more structures, e.g., cooperating structures, to hold the medical device in a fixed position relative to an analyte sensor, and/or to the holder itself e.g., interlocking features, guide features, rail features, etc. Embodiments of the medical device holders include at least one medical device release feature that at least assists in, and in some embodiments completes, release of a medical device from the holder when the medical device is connected thereto. The one or more medical device release features may alter the holder when engaged to initiate release of a medical device. Altering, which may include breaking, the holder may cause the cooperating structures to be dissociated or released from each other so the medical device can be removed from the holder, e.g., slid away from the holder. Any of the holder-altering actions described may temporarily or reversibly or permanently alter a holder and/or medical device and/or sensor.


Embodiments include a displaceable area of a holder that is movable relative to the holder, e.g., twistable, or bent, or deformable, or otherwise flexed in one or more directions relative to an axis of the holder and/or relative to one or more other portions of the holder. Embodiments include a frangible or breakable area. A frangible area may include a weakened area such as an area of material that is less durable than a surrounding area. Some holders may include an area of reduced mass, material thickness, scoring, or the like. The area may include a gripping portion that enables an area of the holder to be displaced relative to at least one other area of the holder, permitting, including causing, a medical device held by the holder to be released and/or altering the holder to prevent further use.


In some embodiments, a holder may be a single use holder designed and intended and used to hold a single medical device, after which the holder is discarded. Certain embodiments include a reusable holder such that a given holder may be designed and intended and used to hold a first medical device, and at least a second, subsequent medical device, with the same or different analyte sensors. In order to render a holder operable, the detachable portion may be replaceable with itself (e.g., not completely destructed) after detachment or with another detachable portion in some instances.


In certain embodiments, a medical device release feature may include a medical device attachment feature, or vice versa, e.g., may be the same feature in some instances. In certain embodiments, altering of a holder may prevent continued use of the holder and/or medical device and/or sensor. For example, a feature may alter the physical and/or structural integrity of a holder (e.g., disfigure) so that it is unable to thereafter be used, e.g., unable to receive a sensor and/or couple a medical device and/or be secured to a body part and/or establish electrical communication. In certain embodiments in which a holder includes electrical contacts, altering may include rendering the electrical contacts unusable. This may include modifying one or more of the electrical contacts in shape and/or electrical conductivity, and the like. In certain embodiments, a holder may be reversibly altered, e.g., temporarily, or may be permanently altered. For example, a holder may be temporarily or permanently deformable. Embodiments that are reversibly altered may include a user intervention feature that requires a user to take action to render the holder useable once it has been rendered unusable, and in other embodiments, it may not require user intervention, e.g., may revert to an operable state automatically, e.g., after a certain action or period of time has occurred.



FIG. 1A illustrates an exemplary embodiment of an on-body medical device holder, base or mounting unit 10. Holder 10 includes a support body 14 adapted to be held on a skin surface of a user of a medical device 30 held by holder 10 (see FIG. 3A). Support body 14 may be flexible or rigid, and may include one or more flexible areas and/or one or more rigid areas. In the embodiment of FIG. 1A, holder 10 further includes an adhesive member 12 provided on the bottom surface of support body 14 for temporarily attaching holder 10 to a skin surface for a period of time, e.g., as described herein. Support body 14 includes a first or main portion 14a, a second or release portion 14b, which is shown in fragmented views in FIGS. 1B and 1C, and a third or transition portion 14c extending between the main and release portions 14a, 14b. Support body 14 may have a substantially planar construct having a bottom surface configured for placement on a skin surface and a top surface configured for receiving a medical device or a component thereof. Support body 14 may be provided in an initial state in which all portions thereof, i.e., portions 14a-c, are provided in the same plane and are coupled to each other in a serial fashion, e.g., end-to-end. In other embodiments, the various support body portions may physically overlap in parts, be stacked on top of each other, or one portion may partially or completely surround another portion. Referring again to FIG. 1A, the end of main portion 14a opposite break portion 14c and release portion 14b may provide an abutment structure or wall 24 to further support and retain a medical device 30 on holder 10 (see FIG. 3A). Abutment 24, as well as any other surfaces of holder 10, which are exposed after operative engagement with a medical device, may be curved, contoured, rounded, beveled or the like to provide a smooth, low profile.


As shown, for example in FIGS. 3A and 4, holder or base unit 10 is configured to retain a medical device 30 at medical device area 16 (e.g., in and/or on). For example, a medical device 30 may be attached to a holder 10 on a top surface of support body or unit 14 (see e.g., FIGS. 3A and 4). As discussed above, base unit 10 may further include at least one feature that is mateable with a corresponding locking feature on a medical device 30 which is intended to be mounted thereto. As shown in the embodiments of FIGS. 1A-1C, one such cooperating feature includes one or more rails 22 extending along the top surface of at least main portion 14a that are configured to engage one or more corresponding grooves (not shown) on the underside of the medical device. For example, a single rail may extend centrally along a main axis of holder 10 which corresponds to centrally extending groove (not shown) on the medical device, or a pair of spaced-apart, parallel rails may be provided on opposing sides of holder 10 corresponding to similarly situated grooves on the medical device. Rails 22 may extend over a first portion 14a and/or may extend over third portion 14c, but in many embodiments are absent from second portion 14b. Accordingly, in the illustrated embodiment, medical device 30 is mated with holder 10 by aligning a front end of its grooves (not shown) with the rear end of rails 22 and slideably advancing device 30, where such advancement may continue until it abuts end wall 24. Additionally or alternatively, as shown in FIGS. 1C and 3B, another holder, medical device mating or locking feature in the form of an aperture or receptacle 20 within release portion 14b, and a corresponding hook or tab 32 extending from a bottom surface medical device 30, may be provided. The coupling of these corresponding features may include a snap fit, friction fit or the like, to lock the movement of medical device 30 relative to holder 10. As discussed in greater detail below, in certain embodiments when holder 10 is altered and release portion 14b is displaced from medical device 30, tab 32 is released from aperture 20, as shown in FIG. 4, and medical device 30 may be removed from holder 10, e.g., by sliding it off of rails 22. In this manner, holder 10 securely yet removeably retains medical device 30.


In the case where medical device 30 includes an implantable or partially implantable glucose sensor, such as with an in vivo glucose monitoring system, holder 10 may also include a receiving area such as an aperture 18 (FIG. 1A) therethrough for guiding sensor insertion and/or providing secure electrical contact between the sensor and the sensor control unit to be mounted on holder 10. Receiving area or aperture 18 may be positioned in, on or at any of a number of areas of holder 10 including any one or more of portions 14a-c. In certain embodiments, receiving area or aperture 18 may include electrical contacts (not shown).


The various portions 14a-c of holder 10 may be made of the same or different material(s) and/or have the same or different thickness, stiffness, width, length and/or height dimensions. For example, in certain embodiments, enough material thickness may be in transition of break portion 14c to enable a medical device to be secured to support body 14, yet thin enough to enable holder 10 to be altered about portion 14c, e.g., to enable a low force displacement of portion 14b relative to portion 14a and/or portion 14c. In certain embodiments, portion 14c may have a material thickness about 50% or less of that of portions 14a and/or 14b. For example, if portions 14a/14b have a thickness dimension of about 1.0 mm, portion 14c has a thickness dimension of about 0.5 mm, requiring a force about 4 to about 12 Newtons to bend and/or break. In other embodiments, the thickness of portion 14c may be substantially less than 50% or more than 50% of the thickness of the other portions, requiring a lower or greater amount of force to break or bend. Transition portion 14c may otherwise include a hinge (e.g., a living hinge) that is connected to main portion 14a and release portion 14b to allow release portion 14b to pivot with respect to the main portion 14a. In other embodiments, transition portion 14c may include a weakened area, detent and/or fracture point. In certain of these embodiments, scores or perforations may be formed at intervals across portion 14c.


Accordingly, altering holder 10 may include any action resulting in the misalignment, e.g., linear, axial and/or angular misalignment, of portions 14a and 14b relative to each other. Such ability enables transitioning at least two portions of holder 10 from a medical device holding state in which the at least two portions are aligned with respect to each other to hold a medical device 30 (as shown in FIG. 3A) to a medical device release state in which the at least two portions of holder 10 are linearly misaligned or offset relative to each other to remove the medical device 30 from the holder 10 (as shown in FIG. 4). The medical device 30 may also be in the holding state for sensor insertion into the body of a user, and therefore the medical device holding state may be characterized as a medical device insertion state. Release portion 14b may be displaced in any direction relative to main portion 14a, e.g., may be moved in the x, y and/or z planes. In certain embodiments, release portion 14b may be limited to movement in only one direction, for example release portion 14b may be limited to movement in the x-plane direction, and in other embodiments, release portion 14b may be moveable in two or more directions. In some embodiment, moving release portion 14b may include pivoting it about a pivot point.


For example, as shown in FIGS. 2 and 4, portion 14b is moveable, e.g., bendable, away from main portion 14a, by depressing release portion 14b, to enable medical device 30 to be removed from holder 10 after, for example, the in vivo operational life of the sensor has elapsed, and/or the glucose sensor positioned in a user and being used with the system is otherwise no longer functional. Displacing release portion 14b may cause it to detach from portion 14a or at least enable it to be detached, or it may remain attached. In certain embodiments, second portion 14b may be displaced from about 1 to about 90 degrees, e.g., from about 1 to about 45 degrees. This angular displacement is typically accomplished with the application of a low force to release portion 14b, e.g., by light pressure from a finger.


In certain embodiments, displacement of release portion 14b relative to at least main portion 14a may cause medical device 30 to be at least partially decoupled or released from holder 10. This decoupling may further include at least initiating movement of medical device 30 in a release direction. For example, urging portion 14b in a transverse (or other) direction relative to portion 14a may cause medical device 30 to move, e.g., slide, away from a fully engaged, nested position within holder 10, such as that shown in FIG. 3A. In certain embodiments, holder 10 may be configured such that release and/or removal of medical device 30 from holder 10 is performed while holder 10 is operatively adhered or fixed to the skin surface, wherein in other embodiments release and/or removal of medical device 30 from holder 10 is performed while holder 10 is not operatively adhered or fixed to the skin surface. Further, medical device 30 may be configured to become inoperable or disabled upon decoupling or release from holder 10 in embodiments to prevent further use or limit application to only a single use.


It is evident from the above results and discussion that the above-described disclosure provides devices and methods for maintaining a medical device on-body. The above-described disclosure provides a number of advantages, some of which are described above and which include, but are not limited to, ease of use, even in instances in which the medical device is to be maintained on a body part that is not within the direct line of site of the patient, and comfort. Furthermore, the subject disclosure provides a patient with a high degree of confidence that the medical device is securely maintained in position on a body part. As such, the subject disclosure represents a significant contribution to the art.


In certain embodiments, a structure adapted for mounting a medical device on the body of a host may comprise a first portion, and a second portion moveable relative to the first portion, wherein movement of the second portion relative to the first portion causes release of at least a portion of a medical device from the first and second portions when operatively mounted thereon.


Certain aspects may include a third portion extending between the first and second portions, wherein the third portion is configured to be alterable from a first state to a second state to provide the movement of the second portion relative to the first portion.


In certain aspects, the third portion may be one of breakable, bendable, frangible or one or more combinations thereof


In certain aspects, the third portion may comprise one or more of a reduced mass, a reduced thickness, a weakened area, a detent, a hinge, a fracture point or scoring.


In certain aspects, the third portion may be returnable to the first state upon being altered to the second state.


In certain aspects, the third portion may be not returnable to the first state upon being altered to the second state.


In certain aspects, the relative movement may comprise one or more of linear, axial and angular displacement.


Certain aspects may include at least one feature for releasably coupling with a corresponding at least one feature of the medical device.


Certain aspects may include a first surface configured for retaining the medical device.


Certain aspects may include a second surface for placement on a skin surface, wherein the first and second surfaces are on opposing sides of the structure.


In certain aspects, the second surface may comprise an adhesive.


In certain aspects, the first portion comprises an abutment for retaining the medical device.


Certain aspects may include an aperture within one of the first and second portions for receiving an implantable component of the medical device.


In certain aspects, the aperture may enable electrical contact between the implantable component and another component of the medical device.


In certain embodiments of the present disclosure, a medical device assembly configured for temporary positioning on the body of a host may comprise a medical device having a housing, and a mounting unit adapted for mounting on the skin of a host and for releasably retaining the housing of the medical device in a low-profile position on the host, wherein the mounting unit comprises a displaceable portion and wherein displacement of the displaceable portion at least partially releases the medical device housing from the mounting unit.


In certain aspects, the displacement provided by the displaceable portion may comprise one or more of linear, axial and angular movement.


In certain aspects, the displaceable portion may be configured to be displaced by low-force pressure against the displaceable portion in a direction away from the medical device.


In certain aspects, the medical device may include a feature for releasably coupling with a corresponding feature of the mounting unit.


In certain aspects, displacement of the displaceable portion of the mounting unit may decouple the corresponding features of the mounting unit and the medical device.


In certain aspects, the medical device may comprise a second feature for releasably coupling with a corresponding second feature of the mounting unit, wherein displacement of the displaceable portion of the mounting unit does not decouple the second corresponding features of the mounting unit and the medical device.


In certain aspects, the mounting unit may have a top surface for retaining a medical device and a bottom surface for placement on a skin surface.


In certain aspects, the bottom surface of the mounting unit may comprise an adhesive material.


In certain aspects, the top surface of the mounting unit may comprise at least one feature for releasably coupling to a corresponding feature of the medical device.


In certain aspects, the at least one feature of the mounting unit may be at least one rail and the at least one feature of the medical device is at least one groove.


In certain aspects, the at least one feature of the mounting unit may be a receptacle and the at least one feature of the medical device is a tab.


In certain embodiments of the present disclosure, a method of using an on body medical device may comprise mounting a medical device on the body of a host by means of a mounting unit affixed to a skin surface of the host, operatively using the medical device for a predetermined period of time, and displacing a first portion of the mounting unit relative to a second portion of the mounting unit from a first position to a second position, wherein displaying the first portion relative to the second portion at least partially releases the medical device from the mounting unit.


Certain aspects may comprise replacing at least one component of the medical device, returning the displaced first portion of the mounting unit to the first position, and operatively reusing the medical device for the predetermined period of time.


Certain aspects may comprise removing the medical device from the mounting unit, replacing at least one component of the medical device, mounting the medical device on the body of the host by means of a second mounting unit affixed to a second location on the skin surface of the host, and operatively reusing the medical device for the predetermined period of time.


In certain aspects, the medical device may be an analyte monitoring device comprising an electronics unit having a low-profile housing, and a plurality of at least partially implantable analyte sensors, each sensor being usable for the predetermined time period, wherein the mounting unit enables electrical coupling between the electronics unit and one of the plurality of analyte sensors.


In certain aspects, replacing at least one component of the medical devices may comprise replacing a used sensor with an unused sensor.


In certain aspects, the predetermined time period may be from about 1 day to about 30 days.


In certain aspects, displacing the first portion of the mounting unit relative to the second portion may comprise one or more of linear, axial and angular movement.


In certain aspects, displacing the first portion of the mounting unit relative to the second portion may comprise applying a low-force pressure against the first portion in a direction away from the medical device.


In certain aspects, at least partially releasing the medical device from the mounting unit may comprise decoupling a mating feature of the mounting unit from a corresponding mating feature of the medical device.


While the present disclosure has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes may be made, and equivalents may be substituted without departing from the true spirit and scope of the present disclosure. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process step or steps, to the objective, spirit and scope of the present disclosure. All such modifications are intended to be within the scope of the claims appended hereto.

Claims
  • 1. An assembly comprising: an analyte sensor, at least a portion of which is positionable within the body of a host;a medical device configured to communicate analyte data, wherein the medical device comprises a housing including one or more grooves; anda mounting structure configured to hold the medical device and the analyte sensor, wherein the mounting structure comprises: a support body configured to receive the medical device, andan adhesive patch adapted to adhere the support body to a skin surface of the host,wherein the support body comprises one or more rails configured to engage with the one or more grooves of the medical device and to cause the mounting structure to hold the medical device in place,wherein the support body includes a flexible portion configured to be deformed to allow the medical device to be removed from the support body, andwherein the flexible portion is configured to be deformed by a flexing motion relative to an axis of the mounting structure, andwherein the flexing motion causes the one or more rails of the support body to decouple from the one or more grooves of the medical device.
  • 2. The assembly of claim 1, wherein the one or more grooves are disposed on a surface of the housing of the medical device.
  • 3. The assembly of claim 1, wherein the one or more rails are disposed along a top portion of the support body.
  • 4. The assembly of claim 1, wherein the one or more grooves comprises a pair of grooves, and the one or more rails comprises a pair of rails corresponding with the pair of grooves.
  • 5. The assembly of claim 4, wherein the pair of rails are disposed on opposing sides of the support body.
  • 6. The assembly of claim 1, wherein the medical device comprises a transmitter.
  • 7. The assembly of claim 1, wherein the mounting structure further comprises an aperture through which the at least a portion of the analyte sensor passes.
  • 8. The assembly of claim 1, wherein the mounting structure further comprises a conductive portion configured to electrically contact a corresponding conductive portion of the analyte sensor.
  • 9. The assembly of claim 8, wherein the mounting structure further comprises one or more moisture barriers proximate to the corresponding conductive portion of the analyte sensor.
  • 10. The assembly of claim 9, wherein the gripping portion is disposed on the flexible portion of the support body.
  • 11. The assembly of claim 8, wherein the conductive portion of the mounting structure is further configured to electrically contact a corresponding conductive portion of the medical device.
  • 12. The assembly of claim 1, wherein the support body further comprises a gripping portion configured to enable the flexible portion of the support body to be deformed.
  • 13. The assembly of claim 1, wherein the flexible portion is configured to be deformed temporarily.
  • 14. The assembly of claim 1, wherein the support body is located between the medical device and the adhesive patch.
  • 15. The assembly of claim 1, wherein the support body further comprises an abutment for retaining the medical device.
  • 16. The assembly of claim 15, wherein the abutment is disposed on an end of the support body opposite to the flexible portion of the support body.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 14/040,674, filed Sep. 28, 2013, which is a continuation-in-part of U.S. patent application Ser. No. 13/171,401, filed Jun. 28, 2011, now U.S. Pat. No. 9,572,534, which claims the benefit of and priority to U.S. Provisional Application No. 61/359,816, filed Jun. 29, 2010. U.S. Provisional Application No. 61/359,816 is incorporated herein by reference in its entirety for all purposes.

US Referenced Citations (1177)
Number Name Date Kind
3123790 Tyler Mar 1964 A
3211001 Petit Oct 1965 A
3260656 Ross, Jr. Jul 1966 A
3581062 Aston May 1971 A
3653841 Klein Apr 1972 A
3719564 Lilly, Jr. et al. Mar 1973 A
3776832 Oswin et al. Dec 1973 A
3837339 Aisenberg et al. Sep 1974 A
3926760 Allen et al. Dec 1975 A
3949388 Fuller Apr 1976 A
3972320 Kalman Aug 1976 A
3979274 Newman Sep 1976 A
4008717 Kowarski Feb 1977 A
4016866 Lawton Apr 1977 A
4036749 Anderson Jul 1977 A
4055175 Clemens et al. Oct 1977 A
4059406 Fleet Nov 1977 A
4076596 Connery et al. Feb 1978 A
4098574 Dappen Jul 1978 A
4100048 Pompei et al. Jul 1978 A
4120292 LeBlanc, Jr. et al. Oct 1978 A
4129128 McFarlane Dec 1978 A
4151845 Clemens May 1979 A
4168205 Danniger et al. Sep 1979 A
4172770 Semersky et al. Oct 1979 A
4178916 McNamara Dec 1979 A
4206755 Klein Jun 1980 A
4224125 Nakamura et al. Sep 1980 A
4240438 Updike et al. Dec 1980 A
4245634 Albisser et al. Jan 1981 A
4247297 Berti et al. Jan 1981 A
4294258 Bernard Oct 1981 A
4327725 Cortese et al. May 1982 A
4340458 Lerner et al. Jul 1982 A
4344438 Schultz Aug 1982 A
4349728 Phillips et al. Sep 1982 A
4352960 Dormer et al. Oct 1982 A
4356074 Johnson Oct 1982 A
4365637 Johnson Dec 1982 A
4366033 Richter et al. Dec 1982 A
4373527 Fischell Feb 1983 A
4375399 Havas et al. Mar 1983 A
4384586 Christiansen May 1983 A
4390621 Bauer Jun 1983 A
4401122 Clark, Jr. Aug 1983 A
4404066 Johnson Sep 1983 A
4418148 Oberhardt Nov 1983 A
4425920 Bourland et al. Jan 1984 A
4427770 Chen et al. Jan 1984 A
4431004 Bessman et al. Feb 1984 A
4436094 Cerami Mar 1984 A
4440175 Wilkins Apr 1984 A
4441968 Emmer et al. Apr 1984 A
4450842 Zick et al. May 1984 A
4458686 Clark, Jr. Jul 1984 A
4461691 Frank Jul 1984 A
4469110 Slama Sep 1984 A
4477314 Richter et al. Oct 1984 A
4478976 Goertz et al. Oct 1984 A
4484987 Gough Nov 1984 A
4494950 Fischell Jan 1985 A
4509531 Ward Apr 1985 A
4522690 Venkatsetty Jun 1985 A
4524114 Samuels et al. Jun 1985 A
4526661 Steckhan et al. Jul 1985 A
4527240 Kvitash Jul 1985 A
4534356 Papadakis Aug 1985 A
4538616 Rogoff Sep 1985 A
4543955 Schroeppel Oct 1985 A
4545382 Higgins et al. Oct 1985 A
4552840 Riffer Nov 1985 A
4560534 Kung et al. Dec 1985 A
4571292 Liu et al. Feb 1986 A
4573994 Fischell et al. Mar 1986 A
4581336 Malloy et al. Apr 1986 A
4595011 Phillips Jun 1986 A
4619754 Niki et al. Oct 1986 A
4619793 Lee Oct 1986 A
4622966 Beard Nov 1986 A
4627445 Garcia et al. Dec 1986 A
4627842 Katz Dec 1986 A
4627908 Miller Dec 1986 A
4633878 Bombardien Jan 1987 A
4637403 Garcia et al. Jan 1987 A
4650547 Gough Mar 1987 A
4654197 Lilja et al. Mar 1987 A
4655880 Liu Apr 1987 A
4655885 Hill et al. Apr 1987 A
4671288 Gough Jun 1987 A
4679562 Luksha Jul 1987 A
4680268 Clark, Jr. Jul 1987 A
4682602 Prohaska Jul 1987 A
4684537 Graetzel et al. Aug 1987 A
4685463 Williams Aug 1987 A
4685466 Rau Aug 1987 A
4698057 Joishy Oct 1987 A
4703756 Gough et al. Nov 1987 A
4711245 Higgins et al. Dec 1987 A
4711247 Fishman Dec 1987 A
4717673 Wrighton et al. Jan 1988 A
4721601 Wrighton et al. Jan 1988 A
4721677 Clark, Jr. Jan 1988 A
4726378 Kaplan Feb 1988 A
4726716 McGuire Feb 1988 A
4729672 Takagi Mar 1988 A
4731726 Allen, III Mar 1988 A
4749985 Corsberg Jun 1988 A
4755173 Konopka Jul 1988 A
4757022 Shults et al. Jul 1988 A
4758323 Davis et al. Jul 1988 A
4759371 Franetzki Jul 1988 A
4759828 Young et al. Jul 1988 A
4764416 Ueyama et al. Aug 1988 A
4776944 Janata et al. Oct 1988 A
4777953 Ash et al. Oct 1988 A
4779618 Mund et al. Oct 1988 A
4781683 Wozniak et al. Nov 1988 A
4781798 Gough Nov 1988 A
4784736 Lonsdale et al. Nov 1988 A
4795707 Niiyama et al. Jan 1989 A
4796634 Huntsman et al. Jan 1989 A
4805624 Yao et al. Feb 1989 A
4813424 Wilkins Mar 1989 A
4815469 Cohen et al. Mar 1989 A
4820399 Senda et al. Apr 1989 A
4822337 Newhouse et al. Apr 1989 A
4830959 McNeil et al. May 1989 A
4832797 Vadgama et al. May 1989 A
RE32947 Dormer et al. Jun 1989 E
4840893 Hill et al. Jun 1989 A
4848351 Finch Jul 1989 A
4854322 Ash et al. Aug 1989 A
4865038 Rich et al. Sep 1989 A
4871351 Feingold Oct 1989 A
4871440 Nagata et al. Oct 1989 A
4874500 Madou et al. Oct 1989 A
4890620 Gough Jan 1990 A
4894137 Takizawa et al. Jan 1990 A
4895147 Bodicky et al. Jan 1990 A
4897162 Lewandowski et al. Jan 1990 A
4897173 Nankai et al. Jan 1990 A
4909908 Ross et al. Mar 1990 A
4911794 Parce et al. Mar 1990 A
4917800 Lonsdale et al. Apr 1990 A
4919141 Zier et al. Apr 1990 A
4919767 Vadgama et al. Apr 1990 A
4921199 Villaveces May 1990 A
4923586 Katayama et al. May 1990 A
4925268 Iyer et al. May 1990 A
4927516 Yamaguchi et al. May 1990 A
4934369 Maxwell Jun 1990 A
4935105 Churchouse Jun 1990 A
4935345 Guibeau et al. Jun 1990 A
4938860 Wogoman Jul 1990 A
4944299 Silvian Jul 1990 A
4950378 Nagara Aug 1990 A
4953552 DeMarzo Sep 1990 A
4954129 Giuliani et al. Sep 1990 A
4969468 Byers et al. Nov 1990 A
4970145 Bennetto et al. Nov 1990 A
4974929 Curry Dec 1990 A
4986271 Wilkins Jan 1991 A
4988341 Columbus et al. Jan 1991 A
4994167 Shults et al. Feb 1991 A
4995402 Smith et al. Feb 1991 A
5000180 Kuypers et al. Mar 1991 A
5002054 Ash et al. Mar 1991 A
5013161 Zaragoza et al. May 1991 A
5019974 Beckers May 1991 A
5035860 Kleingeld et al. Jul 1991 A
5036860 Leigh et al. Aug 1991 A
5047044 Smith et al. Sep 1991 A
5050612 Matsumura Sep 1991 A
5055171 Peck Oct 1991 A
5058592 Whisler Oct 1991 A
5070535 Hochmair et al. Dec 1991 A
5082550 Rishpon et al. Jan 1992 A
5082786 Nakamoto Jan 1992 A
5089112 Skotheim et al. Feb 1992 A
5095904 Seligman et al. Mar 1992 A
5101814 Palti Apr 1992 A
5106365 Hernandez Apr 1992 A
5108564 Szuminsky et al. Apr 1992 A
5108889 Smith et al. Apr 1992 A
5109850 Blanco et al. May 1992 A
5120420 Nankai et al. Jun 1992 A
5122925 Inpyn Jun 1992 A
5126034 Carter et al. Jun 1992 A
5133856 Yamaguchi et al. Jul 1992 A
5135003 Souma Aug 1992 A
5140985 Schroeder et al. Aug 1992 A
5141868 Shanks et al. Aug 1992 A
5161532 Joseph Nov 1992 A
5165407 Wilson et al. Nov 1992 A
5174291 Schoonen et al. Dec 1992 A
5190041 Palti Mar 1993 A
5192416 Wang et al. Mar 1993 A
5193545 Marsoner et al. Mar 1993 A
5198367 Aizawa et al. Mar 1993 A
5202261 Musho et al. Apr 1993 A
5205920 Oyama et al. Apr 1993 A
5208154 Weaver et al. May 1993 A
5209229 Gilli May 1993 A
5217595 Smith et al. Jun 1993 A
5229282 Yoshioka et al. Jul 1993 A
5234835 Nestor et al. Aug 1993 A
5238729 Debe Aug 1993 A
5246867 Lakowicz et al. Sep 1993 A
5250439 Musho et al. Oct 1993 A
5262035 Gregg et al. Nov 1993 A
5262305 Heller et al. Nov 1993 A
5264103 Yoshioka et al. Nov 1993 A
5264104 Gregg et al. Nov 1993 A
5264105 Gregg et al. Nov 1993 A
5264106 McAleer et al. Nov 1993 A
5271815 Wong Dec 1993 A
5279294 Anderson et al. Jan 1994 A
5284156 Schramm et al. Feb 1994 A
5285792 Sjoquist et al. Feb 1994 A
5286362 Hoenes et al. Feb 1994 A
5286364 Yacynych et al. Feb 1994 A
5288636 Pollmann et al. Feb 1994 A
5293546 Tadros et al. Mar 1994 A
5293877 O'Hara et al. Mar 1994 A
5299571 Mastrototaro Apr 1994 A
5320098 Davidson Jun 1994 A
5320715 Berg Jun 1994 A
5320725 Gregg et al. Jun 1994 A
5322063 Allen et al. Jun 1994 A
5337747 Neftei Aug 1994 A
5340722 Wolfbeis et al. Aug 1994 A
5342789 Chick et al. Aug 1994 A
5352348 Young et al. Oct 1994 A
5356786 Heller et al. Oct 1994 A
5360404 Novacek et al. Nov 1994 A
5368028 Palti Nov 1994 A
5372133 Hogen Esch Dec 1994 A
5372427 Padovani et al. Dec 1994 A
5376251 Kaneko et al. Dec 1994 A
5378628 Gratzel et al. Jan 1995 A
5379238 Stark Jan 1995 A
5387327 Khan Feb 1995 A
5390670 Centa et al. Feb 1995 A
5390671 Lord et al. Feb 1995 A
5391250 Cheney, II et al. Feb 1995 A
5395504 Saurer et al. Mar 1995 A
5400782 Beaubiah Mar 1995 A
5408999 Singh et al. Apr 1995 A
5411647 Johnson et al. May 1995 A
5425361 Fenzlein et al. Jun 1995 A
5431160 Wilkins Jul 1995 A
5431921 Thombre Jul 1995 A
5437999 Diebold et al. Aug 1995 A
5462645 Albery et al. Oct 1995 A
5469846 Khan Nov 1995 A
5472317 Field et al. Dec 1995 A
5484403 Yoakum et al. Jan 1996 A
5489414 Schreiber et al. Feb 1996 A
5491474 Suni et al. Feb 1996 A
5494562 Maley et al. Feb 1996 A
5496453 Uenoyama et al. Mar 1996 A
5497772 Schulman et al. Mar 1996 A
5507288 Bocker et al. Apr 1996 A
5509410 Hill et al. Apr 1996 A
5514718 Lewis et al. May 1996 A
5531878 Vadgama et al. Jul 1996 A
5533977 Matcalf et al. Jul 1996 A
5543326 Heller et al. Aug 1996 A
5545191 Mann et al. Aug 1996 A
5551427 Altman Sep 1996 A
5560357 Faupei et al. Oct 1996 A
5562713 Silvian Oct 1996 A
5565085 Ikeda et al. Oct 1996 A
5567302 Song et al. Oct 1996 A
5568806 Cheney, II et al. Oct 1996 A
5569186 Lord et al. Oct 1996 A
5575563 Chiu et al. Nov 1996 A
5582184 Erickson et al. Dec 1996 A
5582697 Ikeda et al. Dec 1996 A
5582698 Flaherty et al. Dec 1996 A
5584813 Livingston et al. Dec 1996 A
5586553 Halili et al. Dec 1996 A
5589326 Deng et al. Dec 1996 A
5593852 Heller et al. Jan 1997 A
5596150 Arndt et al. Jan 1997 A
5601435 Quy Feb 1997 A
5609575 Larson et al. Mar 1997 A
5613978 Harding Mar 1997 A
5617851 Lipkovker Apr 1997 A
5628310 Rao et al. May 1997 A
5628890 Carter et al. May 1997 A
5632557 Simons May 1997 A
5651869 Yoshioka et al. Jul 1997 A
5653239 Pompei et al. Aug 1997 A
5660163 Schulman et al. Aug 1997 A
5665071 Wyrick Sep 1997 A
5665222 Heller et al. Sep 1997 A
5670031 Hintsche et al. Sep 1997 A
5680858 Hansen et al. Oct 1997 A
5682233 Brinda Oct 1997 A
5695623 Michel et al. Dec 1997 A
5708247 McAleer et al. Jan 1998 A
5711001 Bussan et al. Jan 1998 A
5711297 Iliff et al. Jan 1998 A
5711861 Ward et al. Jan 1998 A
5711862 Sakoda et al. Jan 1998 A
5733044 Rose et al. Mar 1998 A
5735285 Albert et al. Apr 1998 A
5738220 Geszler Apr 1998 A
5741211 Renirie et al. Apr 1998 A
5743262 Lepper, Jr. et al. Apr 1998 A
5746697 Swedlow et al. May 1998 A
5749656 Boehm et al. May 1998 A
5766131 Kondo et al. Jun 1998 A
5771001 Cobb Jun 1998 A
5772586 Heinonen et al. Jun 1998 A
5779665 Mastrototaro et al. Jul 1998 A
5791344 Schulman et al. Aug 1998 A
5800420 Gross et al. Sep 1998 A
5807375 Gross et al. Sep 1998 A
5814020 Gross Sep 1998 A
5820551 Hill et al. Oct 1998 A
5820622 Gross et al. Oct 1998 A
5822715 Worthington et al. Oct 1998 A
5827184 Netherly et al. Oct 1998 A
5840020 Heinonen et al. Nov 1998 A
5842983 Abel et al. Dec 1998 A
5851197 Marano et al. Dec 1998 A
5858001 Tsals et al. Jan 1999 A
5865804 Bachynsky Feb 1999 A
5871494 Simons et al. Feb 1999 A
5885211 Eppstein et al. Mar 1999 A
5899855 Brown May 1999 A
5918603 Brown Jul 1999 A
5924979 Sedlow et al. Jul 1999 A
5925021 Castellano et al. Jul 1999 A
5931814 Alex et al. Aug 1999 A
5931868 Gross et al. Aug 1999 A
5938679 Freeman et al. Aug 1999 A
5948006 Mann Sep 1999 A
5951492 Douglas et al. Sep 1999 A
5951521 Mastrototaro et al. Sep 1999 A
5951582 Thorne et al. Sep 1999 A
5954643 Van Antwerp Sep 1999 A
5954685 Tierny Sep 1999 A
5957854 Besson et al. Sep 1999 A
5961451 Reber et al. Oct 1999 A
5964993 Blubaugh, Jr. et al. Oct 1999 A
5965380 Heller et al. Oct 1999 A
5971922 Arita et al. Oct 1999 A
5971941 Simons et al. Oct 1999 A
5972199 Heller et al. Oct 1999 A
5987353 Khatchatrian et al. Nov 1999 A
5993411 Choi Nov 1999 A
5995860 Sun et al. Nov 1999 A
5997501 Gross et al. Dec 1999 A
6001067 Shults et al. Dec 1999 A
6004278 Botich et al. Dec 1999 A
6017335 Burnham Jan 2000 A
6022368 Gavronsky et al. Feb 2000 A
6024699 Surwit et al. Feb 2000 A
6026321 Miyata et al. Feb 2000 A
6027459 Shain et al. Feb 2000 A
6036924 Simons et al. Mar 2000 A
6048352 Douglas et al. Apr 2000 A
6049727 Crothall Apr 2000 A
6056718 Funderburk et al. May 2000 A
6059946 Yukawa et al. May 2000 A
6068399 Tseng May 2000 A
6071294 Simons et al. Jun 2000 A
6071391 Gotoh et al. Jun 2000 A
6083710 Heller et al. Jul 2000 A
6088605 Griffith et al. Jul 2000 A
6088608 Schulman et al. Jul 2000 A
6091975 Daddona et al. Jul 2000 A
6091976 Pfeiffer et al. Jul 2000 A
6093172 Funderburk et al. Jul 2000 A
6099484 Douglas et al. Aug 2000 A
6103033 Say et al. Aug 2000 A
6117290 Say et al. Sep 2000 A
6119028 Schulman et al. Sep 2000 A
6120676 Heller et al. Sep 2000 A
6121009 Heller et al. Sep 2000 A
6121611 Lindsay et al. Sep 2000 A
6122351 Schlueter, Jr. et al. Sep 2000 A
6134461 Say et al. Oct 2000 A
6143164 Heller et al. Nov 2000 A
6144837 Quy Nov 2000 A
6159147 Lichter et al. Dec 2000 A
6161095 Brown Dec 2000 A
6162611 Heller et al. Dec 2000 A
6168606 Levin et al. Jan 2001 B1
6175752 Say et al. Jan 2001 B1
6186982 Gross et al. Feb 2001 B1
6200265 Walsh et al. Mar 2001 B1
6212416 Ward et al. Apr 2001 B1
6219574 Cormier et al. Apr 2001 B1
6248067 Causey, III et al. Jun 2001 B1
6254536 DeVito Jul 2001 B1
6254586 Mann et al. Jul 2001 B1
6270455 Brown Aug 2001 B1
6275717 Gross et al. Aug 2001 B1
6283761 Joao Sep 2001 B1
6283982 Levaughn et al. Sep 2001 B1
6284478 Heller et al. Sep 2001 B1
6293925 Safabash et al. Sep 2001 B1
6295506 Heinonen et al. Sep 2001 B1
6299757 Feldman et al. Oct 2001 B1
6302866 Marggi Oct 2001 B1
6306104 Cunningham et al. Oct 2001 B1
6309884 Cooper et al. Oct 2001 B1
6329161 Heller et al. Dec 2001 B1
6331244 Lewis et al. Dec 2001 B1
6338790 Feldman et al. Jan 2002 B1
6348640 Navot et al. Feb 2002 B1
6359444 Grimes Mar 2002 B1
6360888 McIvor et al. Mar 2002 B1
6366794 Moussy et al. Apr 2002 B1
6368141 Van Antwerp et al. Apr 2002 B1
6368274 Van Antwerp et al. Apr 2002 B1
6377828 Chaiken et al. Apr 2002 B1
6377894 Deweese et al. Apr 2002 B1
6379301 Worthington et al. Apr 2002 B1
6409740 Kuhr et al. Jun 2002 B1
6413393 Van Antwerp et al. Jul 2002 B1
6418332 Mastrototaro et al. Jul 2002 B1
6424847 Mastrototaro et al. Jul 2002 B1
6427088 Bowman, IV et al. Jul 2002 B1
6433743 Massy et al. Aug 2002 B1
6435017 Nowicki, Jr. et al. Aug 2002 B1
6437679 Roques Aug 2002 B1
6440068 Brown et al. Aug 2002 B1
6445374 Albert et al. Sep 2002 B2
6458109 Henley et al. Oct 2002 B1
6461496 Feldman et al. Oct 2002 B1
6472220 Simons et al. Oct 2002 B1
6478736 Mault Nov 2002 B1
6482176 Wich Nov 2002 B1
6484045 Holker et al. Nov 2002 B1
6484046 Say et al. Nov 2002 B1
6503381 Gotoh et al. Jan 2003 B1
6514460 Fendrock Feb 2003 B1
6514718 Heller et al. Feb 2003 B2
6520326 McIvor et al. Feb 2003 B2
6522927 Bishay et al. Feb 2003 B1
6540891 Stewart et al. Apr 2003 B1
6546268 Ishikawa et al. Apr 2003 B1
6551494 Heller et al. Apr 2003 B1
6551496 Moles et al. Apr 2003 B1
6554795 Lam et al. Apr 2003 B2
6558320 Causey, III et al. May 2003 B1
6558321 Burd et al. May 2003 B1
6560471 Heller et al. May 2003 B1
6561978 Conn et al. May 2003 B1
6562001 Lebel et al. May 2003 B2
6564105 Starkweather et al. May 2003 B2
6565509 Say et al. May 2003 B1
6571128 Lebel et al. May 2003 B2
6572566 Effenhauser Jun 2003 B2
6576101 Heller et al. Jun 2003 B1
6577899 Lebel et al. Jun 2003 B2
6579690 Bonnecaze et al. Jun 2003 B1
6585644 Lebel et al. Jul 2003 B2
6589229 Connelly et al. Jul 2003 B1
6591125 Buse et al. Jul 2003 B1
6592745 Feldman et al. Jul 2003 B1
6595919 Berner et al. Jul 2003 B2
6600997 Deweese et al. Jul 2003 B2
6605200 Mao et al. Aug 2003 B1
6605201 Mao et al. Aug 2003 B1
6607509 Bobroff et al. Aug 2003 B2
6610012 Mault Aug 2003 B2
6616819 Liamos et al. Sep 2003 B1
6618934 Feldman et al. Sep 2003 B1
6633772 Ford et al. Oct 2003 B2
6635014 Starkweather et al. Oct 2003 B2
6648821 Lebel et al. Nov 2003 B2
6650471 Doi Nov 2003 B2
6654625 Say et al. Nov 2003 B1
6659948 Lebel et al. Dec 2003 B2
6666849 Marshall et al. Dec 2003 B1
6668196 Villegas et al. Dec 2003 B1
6676290 Lu Jan 2004 B1
6687546 Lebel et al. Feb 2004 B2
6689056 Kilcoyne et al. Feb 2004 B1
6694191 Starkweather et al. Feb 2004 B2
6695860 Ward et al. Feb 2004 B1
6702857 Brauker et al. Mar 2004 B2
6730200 Stewart et al. May 2004 B1
6733446 Lebel et al. May 2004 B2
6736957 Forrow et al. May 2004 B1
6740075 Lebel et al. May 2004 B2
6741877 Shults et al. May 2004 B1
6746582 Heller et al. Jun 2004 B2
6749740 Liamos et al. Jun 2004 B2
6758810 Lebel et al. Jul 2004 B2
6758835 Close et al. Jul 2004 B2
6764581 Forrow et al. Jul 2004 B1
6770030 Schaupp et al. Aug 2004 B1
6773671 Lewis et al. Aug 2004 B1
6790178 Mault et al. Sep 2004 B1
6809653 Mann et al. Oct 2004 B1
6810290 Lebel et al. Oct 2004 B2
6811533 Lebel et al. Nov 2004 B2
6811534 Bowman, IV et al. Nov 2004 B2
6813519 Lebel et al. Nov 2004 B2
6830551 Uchigaki et al. Dec 2004 B1
6837858 Cunningham et al. Jan 2005 B2
6837885 Koblish et al. Jan 2005 B2
6837988 Leong et al. Jan 2005 B2
6849052 Ughigaki et al. Feb 2005 B2
6854882 Chen Feb 2005 B2
6862465 Shults et al. Mar 2005 B2
6873268 Lebel et al. Mar 2005 B2
6881551 Heller et al. Apr 2005 B2
6892085 McIvor et al. May 2005 B2
6893545 Gotoh et al. May 2005 B2
6895265 Silver May 2005 B2
6931327 Goode, Jr. et al. Aug 2005 B2
6932892 Chen et al. Aug 2005 B2
6932894 Mao et al. Aug 2005 B2
6936006 Sabra Aug 2005 B2
6942518 Liamos et al. Sep 2005 B2
6950708 Bowman, IV et al. Sep 2005 B2
6958705 Lebel et al. Oct 2005 B2
6959211 Rule et al. Oct 2005 B2
6968294 Gutta et al. Nov 2005 B2
6971274 Olin Dec 2005 B2
6971999 Py et al. Dec 2005 B2
6974437 Lebel et al. Dec 2005 B2
6990366 Say et al. Jan 2006 B2
6997907 Safabash et al. Feb 2006 B2
6998247 Monfre et al. Feb 2006 B2
7003336 Holker et al. Feb 2006 B2
7003340 Say et al. Feb 2006 B2
7003341 Say et al. Feb 2006 B2
7010356 Jog et al. Mar 2006 B2
7024245 Lebel et al. Apr 2006 B2
7025743 Mann et al. Apr 2006 B2
7041068 Freeman et al. May 2006 B2
7041468 Drucker et al. May 2006 B2
7052483 Wojcik May 2006 B2
7056302 Douglas Jun 2006 B2
7074307 Simpson et al. Jul 2006 B2
7081195 Simpson et al. Jul 2006 B2
7097637 Triplett et al. Aug 2006 B2
7098803 Mann et al. Aug 2006 B2
7108778 Simpson et al. Sep 2006 B2
7110803 Shults et al. Sep 2006 B2
7113821 Sun et al. Sep 2006 B1
7134999 Brauker et al. Nov 2006 B2
7136689 Shults et al. Nov 2006 B2
7167818 Brown Jan 2007 B2
7171274 Starkweather et al. Jan 2007 B2
7190988 Say et al. Mar 2007 B2
7192450 Brauker et al. Mar 2007 B2
7198606 Boecker et al. Apr 2007 B2
7207974 Safabash et al. Apr 2007 B2
7226978 Tapsak et al. Jun 2007 B2
7276029 Goode, Jr. et al. Oct 2007 B2
7278983 Ireland et al. Oct 2007 B2
7297151 Boecker et al. Nov 2007 B2
7299082 Feldman et al. Nov 2007 B2
7310544 Brister et al. Dec 2007 B2
7318816 Bobroff et al. Jan 2008 B2
7324012 Mann et al. Jan 2008 B2
7329239 Safabash et al. Feb 2008 B2
7335294 Heller et al. Feb 2008 B2
7340287 Mason et al. Mar 2008 B2
7340309 Miazga et al. Mar 2008 B2
7354420 Steil et al. Apr 2008 B2
7364592 Carr-Brendel et al. Apr 2008 B2
7366556 Brister et al. Apr 2008 B2
7379765 Petisce et al. May 2008 B2
7381184 Funderburk et al. Jun 2008 B2
7402153 Steil et al. Jul 2008 B2
7416541 Yuzhakov et al. Aug 2008 B2
7424318 Brister et al. Sep 2008 B2
7455663 Bikovsky Nov 2008 B2
7460898 Brister et al. Dec 2008 B2
7462264 Heller et al. Dec 2008 B2
7467003 Brister et al. Dec 2008 B2
7471972 Rhodes et al. Dec 2008 B2
7494465 Brister et al. Feb 2009 B2
7497827 Brister et al. Mar 2009 B2
7499002 Blasko et al. Mar 2009 B2
7519408 Rasdal et al. Apr 2009 B2
7583990 Goode, Jr. et al. Sep 2009 B2
7591801 Brauker et al. Sep 2009 B2
7599726 Goode, Jr. et al. Oct 2009 B2
7604592 Freeman et al. Oct 2009 B2
7613491 Boock et al. Nov 2009 B2
7615007 Shults et al. Nov 2009 B2
7632228 Brauker et al. Dec 2009 B2
7637868 Saint et al. Dec 2009 B2
7640048 Dobbles et al. Dec 2009 B2
7651596 Petisce et al. Jan 2010 B2
7654956 Brister et al. Feb 2010 B2
7657297 Simpson et al. Feb 2010 B2
7666149 Simons et al. Feb 2010 B2
7682338 Griffin Mar 2010 B2
7697967 Stafford Apr 2010 B2
7711402 Shults et al. May 2010 B2
7713574 Brister et al. May 2010 B2
7715893 Kamath et al. May 2010 B2
7727147 Osorio et al. Jun 2010 B1
7731657 Stafford Jun 2010 B2
7736344 Moberg et al. Jun 2010 B2
7763042 Iio et al. Jul 2010 B2
7766829 Sloan et al. Aug 2010 B2
7822454 Alden et al. Oct 2010 B1
7866026 Wang et al. Jan 2011 B1
7883464 Stafford Feb 2011 B2
8512243 Stafford Aug 2013 B2
20010034479 Ring et al. Oct 2001 A1
20020002344 Douglas et al. Jan 2002 A1
20020013538 Teller Jan 2002 A1
20020019022 Dunn et al. Feb 2002 A1
20020022855 Bobroff et al. Feb 2002 A1
20020023852 McIvor et al. Feb 2002 A1
20020042090 Heller et al. Apr 2002 A1
20020050250 Peterson et al. May 2002 A1
20020055711 Lavi et al. May 2002 A1
20020057993 Maisey et al. May 2002 A1
20020066764 Perry et al. Jun 2002 A1
20020072720 Hague et al. Jun 2002 A1
20020076966 Carron et al. Jun 2002 A1
20020082487 Kollias et al. Jun 2002 A1
20020103499 Perez et al. Aug 2002 A1
20020106709 Potts et al. Aug 2002 A1
20020119711 VanAntwerp et al. Aug 2002 A1
20020128594 Das et al. Sep 2002 A1
20020130042 Moerman et al. Sep 2002 A1
20020133066 Miller et al. Sep 2002 A1
20020154050 Krupp et al. Oct 2002 A1
20020161288 Shin et al. Oct 2002 A1
20020161290 Chance Oct 2002 A1
20020165462 Westbrook et al. Nov 2002 A1
20020169369 Ward et al. Nov 2002 A1
20020169439 Flaherty et al. Nov 2002 A1
20020198444 Ughigaki et al. Dec 2002 A1
20020198543 Burdulis et al. Dec 2002 A1
20030023317 Brauker et al. Jan 2003 A1
20030023461 Quintanilla et al. Jan 2003 A1
20030028089 Galley et al. Feb 2003 A1
20030032867 Crothall et al. Feb 2003 A1
20030032874 Rhodes et al. Feb 2003 A1
20030042137 Mao Mar 2003 A1
20030055380 Flaherty Mar 2003 A1
20030060753 Starkweather et al. Mar 2003 A1
20030065308 Lebel et al. Apr 2003 A1
20030069510 Semler Apr 2003 A1
20030078481 McIvor et al. Apr 2003 A1
20030078560 Miller et al. Apr 2003 A1
20030083686 Freeman et al. May 2003 A1
20030097092 Flaherty May 2003 A1
20030100040 Bonnecaze et al. May 2003 A1
20030109775 O'Neil et al. Jun 2003 A1
20030134347 Heller et al. Jul 2003 A1
20030135333 Aceti et al. Jul 2003 A1
20030144581 Conn et al. Jul 2003 A1
20030144608 Kojima et al. Jul 2003 A1
20030155656 Chiu et al. Aug 2003 A1
20030168338 Gao et al. Sep 2003 A1
20030176933 Lebel et al. Sep 2003 A1
20030187338 Say et al. Oct 2003 A1
20030199790 Boecker et al. Oct 2003 A1
20030199910 Boecker et al. Oct 2003 A1
20030212379 Bylund et al. Nov 2003 A1
20030217966 Tapsak et al. Nov 2003 A1
20030225361 Sabra Dec 2003 A1
20030236789 Jacobsen et al. Dec 2003 A1
20040002682 Kovelman et al. Jan 2004 A1
20040010207 Flaherty et al. Jan 2004 A1
20040011671 Shults et al. Jan 2004 A1
20040015131 Flaherty et al. Jan 2004 A1
20040040840 Mao et al. Mar 2004 A1
20040045879 Shults et al. Mar 2004 A1
20040054263 Moerman et al. Mar 2004 A1
20040064068 DeNuzzio et al. Apr 2004 A1
20040064133 Miller et al. Apr 2004 A1
20040072357 Steine et al. Apr 2004 A1
20040096959 Steine et al. May 2004 A1
20040106858 Say et al. Jun 2004 A1
20040106859 Say et al. Jun 2004 A1
20040116847 Wall Jun 2004 A1
20040116865 Bengtsson Jun 2004 A1
20040116866 Gorman et al. Jun 2004 A1
20040122353 Shahmirian et al. Jun 2004 A1
20040122489 Mazar et al. Jun 2004 A1
20040133164 Funderburk et al. Jul 2004 A1
20040135684 Steinthal et al. Jul 2004 A1
20040138544 Ward et al. Jul 2004 A1
20040138588 Saikley et al. Jul 2004 A1
20040138688 Giraud Jul 2004 A1
20040140211 Broy et al. Jul 2004 A1
20040147996 Miazga et al. Jul 2004 A1
20040152622 Keith et al. Aug 2004 A1
20040158207 Hunn et al. Aug 2004 A1
20040162521 Bengtsson et al. Aug 2004 A1
20040167801 Say et al. Aug 2004 A1
20040171910 Moore-Steele Sep 2004 A1
20040171921 Say et al. Sep 2004 A1
20040176672 Silver et al. Sep 2004 A1
20040186362 Brauker et al. Sep 2004 A1
20040186365 Jin et al. Sep 2004 A1
20040193090 Lebel et al. Sep 2004 A1
20040199059 Brauker et al. Oct 2004 A1
20040204687 Mogensen et al. Oct 2004 A1
20040210122 Sleburg Oct 2004 A1
20040223985 Dunfiled et al. Nov 2004 A1
20040225338 Lebel et al. Nov 2004 A1
20040236200 Say et al. Nov 2004 A1
20040236251 Roe et al. Nov 2004 A1
20040254433 Bandis et al. Dec 2004 A1
20040254434 Goodnow et al. Dec 2004 A1
20040267300 Mace Dec 2004 A1
20050003470 Nelson et al. Jan 2005 A1
20050004494 Perez et al. Jan 2005 A1
20050006122 Burnette Jan 2005 A1
20050010269 Lebel et al. Jan 2005 A1
20050027177 Shin et al. Feb 2005 A1
20050027180 Goode, Jr. et al. Feb 2005 A1
20050031689 Shults et al. Feb 2005 A1
20050043598 Goode, Jr. et al. Feb 2005 A1
20050070819 Poux et al. Mar 2005 A1
20050085872 Yanagihara et al. Apr 2005 A1
20050090607 Tapsak et al. Apr 2005 A1
20050090850 Thoes et al. Apr 2005 A1
20050096520 Maekawa et al. May 2005 A1
20050101912 Faust et al. May 2005 A1
20050106713 Phan et al. May 2005 A1
20050112169 Brauker et al. May 2005 A1
20050114068 Chey et al. May 2005 A1
20050121322 Say et al. Jun 2005 A1
20050131346 Douglas Jun 2005 A1
20050143635 Kamath et al. Jun 2005 A1
20050149066 Stafford Jul 2005 A1
20050154410 Conway et al. Jul 2005 A1
20050159678 Taniike et al. Jul 2005 A1
20050165404 Miller Jul 2005 A1
20050173245 Feldman et al. Aug 2005 A1
20050176136 Burd et al. Aug 2005 A1
20050182306 Sloan Aug 2005 A1
20050187720 Goode, Jr. et al. Aug 2005 A1
20050192557 Brauker et al. Sep 2005 A1
20050195930 Spital et al. Sep 2005 A1
20050197554 Polcha Sep 2005 A1
20050199494 Say et al. Sep 2005 A1
20050203360 Brauker et al. Sep 2005 A1
20050222518 Dib Oct 2005 A1
20050222599 Czernecki et al. Oct 2005 A1
20050236277 Imran et al. Oct 2005 A9
20050239154 Feldman et al. Oct 2005 A1
20050239156 Drucker et al. Oct 2005 A1
20050241957 Mao et al. Nov 2005 A1
20050245795 Goode, Jr. et al. Nov 2005 A1
20050245799 Brauker et al. Nov 2005 A1
20050245839 Stivoric et al. Nov 2005 A1
20050245844 Mace et al. Nov 2005 A1
20050267327 Iizuka et al. Dec 2005 A1
20050277164 Drucker et al. Dec 2005 A1
20050283114 Bresina et al. Dec 2005 A1
20050287620 Heller et al. Dec 2005 A1
20060001538 Kraft et al. Jan 2006 A1
20060004303 Weidenhaupt et al. Jan 2006 A1
20060009727 O'Mahony et al. Jan 2006 A1
20060010098 Goodnow et al. Jan 2006 A1
20060015020 Neale et al. Jan 2006 A1
20060015024 Brister et al. Jan 2006 A1
20060016700 Brister et al. Jan 2006 A1
20060019327 Brister et al. Jan 2006 A1
20060020186 Brister et al. Jan 2006 A1
20060020187 Brister et al. Jan 2006 A1
20060020188 Kamath et al. Jan 2006 A1
20060020189 Brister et al. Jan 2006 A1
20060020190 Kamath et al. Jan 2006 A1
20060020191 Brister et al. Jan 2006 A1
20060020192 Brister et al. Jan 2006 A1
20060020300 Nghiem et al. Jan 2006 A1
20060025662 Buse et al. Feb 2006 A1
20060036139 Brister et al. Feb 2006 A1
20060036140 Brister et al. Feb 2006 A1
20060036141 Kamath et al. Feb 2006 A1
20060036142 Brister et al. Feb 2006 A1
20060036143 Brister et al. Feb 2006 A1
20060036144 Brister et al. Feb 2006 A1
20060036145 Brister et al. Feb 2006 A1
20060047220 Sakata et al. Mar 2006 A1
20060091006 Wang et al. May 2006 A1
20060095014 Ethelfeld May 2006 A1
20060129173 Wilkinson Jun 2006 A1
20060135908 Liniger et al. Jun 2006 A1
20060155210 Beckman et al. Jul 2006 A1
20060155317 List et al. Jul 2006 A1
20060166629 Reggiardo Jul 2006 A1
20060173444 Choy et al. Aug 2006 A1
20060181695 Sage, Jr. Aug 2006 A1
20060183985 Brister et al. Aug 2006 A1
20060189863 Peyser Aug 2006 A1
20060189939 Gonnelli et al. Aug 2006 A1
20060193375 Lee Aug 2006 A1
20060195029 Shults et al. Aug 2006 A1
20060200181 Fukuzawa et al. Sep 2006 A1
20060200970 Brister et al. Sep 2006 A1
20060222566 Brauker et al. Oct 2006 A1
20060226985 Goodnow et al. Oct 2006 A1
20060247508 Fennell Nov 2006 A1
20060253086 Moberg et al. Nov 2006 A1
20060258929 Goode, Jr. et al. Nov 2006 A1
20060258939 Pesach et al. Nov 2006 A1
20060258959 Sode Nov 2006 A1
20060264888 Moberg et al. Nov 2006 A1
20060276724 Freeman et al. Dec 2006 A1
20060282042 Walters et al. Dec 2006 A1
20060287591 Ocvirk et al. Dec 2006 A1
20070016381 Kamath et al. Jan 2007 A1
20070027381 Stafford Feb 2007 A1
20070038044 Dobbles et al. Feb 2007 A1
20070056858 Chen et al. Mar 2007 A1
20070060814 Stafford Mar 2007 A1
20070068807 Feldman et al. Mar 2007 A1
20070073129 Shah et al. Mar 2007 A1
20070078320 Stafford Apr 2007 A1
20070078321 Mazza et al. Apr 2007 A1
20070078322 Stafford Apr 2007 A1
20070088377 Levaughn et al. Apr 2007 A1
20070093754 Mogensen et al. Apr 2007 A1
20070095661 Wang et al. May 2007 A1
20070106135 Sloan et al. May 2007 A1
20070108048 Wang et al. May 2007 A1
20070110124 Shiraki et al. May 2007 A1
20070123819 Mernoe et al. May 2007 A1
20070149875 Ouyang et al. Jun 2007 A1
20070163880 Woo et al. Jul 2007 A1
20070173706 Neinast et al. Jul 2007 A1
20070173741 Deshmukh et al. Jul 2007 A1
20070191701 Feldman et al. Aug 2007 A1
20070197889 Brister et al. Aug 2007 A1
20070199818 Petyt et al. Aug 2007 A1
20070203407 Hoss et al. Aug 2007 A1
20070203966 Brauker et al. Aug 2007 A1
20070213611 Simpson et al. Sep 2007 A1
20070219496 Kamen et al. Sep 2007 A1
20070227911 Wang et al. Oct 2007 A1
20070232879 Brister et al. Oct 2007 A1
20070233013 Schoenberg et al. Oct 2007 A1
20070235331 Simpson et al. Oct 2007 A1
20070244368 Bayloff et al. Oct 2007 A1
20070244379 Boock et al. Oct 2007 A1
20070244398 Lo et al. Oct 2007 A1
20070249922 Peyser et al. Oct 2007 A1
20070255302 Koeppel et al. Nov 2007 A1
20080004512 Funderburk et al. Jan 2008 A1
20080004573 Kaufmann et al. Jan 2008 A1
20080009692 Stafford Jan 2008 A1
20080009805 Ethelfeld Jan 2008 A1
20080017522 Heller et al. Jan 2008 A1
20080021666 Goode, Jr. et al. Jan 2008 A1
20080027474 Curry et al. Jan 2008 A1
20080029391 Mao et al. Feb 2008 A1
20080033254 Kamath et al. Feb 2008 A1
20080033268 Stafford Feb 2008 A1
20080033318 Mace et al. Feb 2008 A1
20080039702 Hayter et al. Feb 2008 A1
20080045824 Tapsak et al. Feb 2008 A1
20080064937 McGarraugh et al. Mar 2008 A1
20080064941 Funderburk et al. Mar 2008 A1
20080064944 Van Antwerp et al. Mar 2008 A1
20080065646 Zhang et al. Mar 2008 A1
20080066305 Wang et al. Mar 2008 A1
20080071156 Brister et al. Mar 2008 A1
20080083617 Simpson et al. Apr 2008 A1
20080086042 Brister et al. Apr 2008 A1
20080086044 Brister et al. Apr 2008 A1
20080086273 Shults et al. Apr 2008 A1
20080097246 Stafford Apr 2008 A1
20080099332 Scott et al. May 2008 A1
20080102441 Chen et al. May 2008 A1
20080108942 Brister et al. May 2008 A1
20080112848 Huffstodt et al. May 2008 A1
20080114280 Stafford May 2008 A1
20080119707 Stafford May 2008 A1
20080133702 Sharma et al. Jun 2008 A1
20080148873 Wang Jun 2008 A1
20080161664 Mastrototaro et al. Jul 2008 A1
20080167578 Bryer et al. Jul 2008 A1
20080183061 Goode, Jr. et al. Jul 2008 A1
20080183399 Goode, Jr. et al. Jul 2008 A1
20080188731 Brister et al. Aug 2008 A1
20080189051 Goode, Jr. et al. Aug 2008 A1
20080194935 Brister et al. Aug 2008 A1
20080194936 Goode, Jr. et al. Aug 2008 A1
20080194937 Goode, Jr. et al. Aug 2008 A1
20080194938 Brister et al. Aug 2008 A1
20080195049 Thalmann et al. Aug 2008 A1
20080195232 Carr-Brendel et al. Aug 2008 A1
20080195967 Goode, Jr. et al. Aug 2008 A1
20080197024 Simpson et al. Aug 2008 A1
20080200788 Brister et al. Aug 2008 A1
20080200789 Brister et al. Aug 2008 A1
20080200791 Simpson et al. Aug 2008 A1
20080200897 Hoss et al. Aug 2008 A1
20080208025 Shults et al. Aug 2008 A1
20080214481 Challoner et al. Sep 2008 A1
20080214915 Brister et al. Sep 2008 A1
20080214918 Brister et al. Sep 2008 A1
20080228051 Shults et al. Sep 2008 A1
20080228054 Shults et al. Sep 2008 A1
20080242961 Brister et al. Oct 2008 A1
20080255440 Eilerson et al. Oct 2008 A1
20080262330 Reynolds et al. Oct 2008 A1
20080262469 Brister et al. Oct 2008 A1
20080267823 Wang et al. Oct 2008 A1
20080269584 Shekalim Oct 2008 A1
20080269673 Butoi et al. Oct 2008 A1
20080275313 Brister et al. Nov 2008 A1
20080283396 Wang et al. Nov 2008 A1
20080287764 Rasdal et al. Nov 2008 A1
20080287765 Rasdal et al. Nov 2008 A1
20080287766 Rasdal et al. Nov 2008 A1
20080294096 Uber et al. Nov 2008 A1
20080296155 Shults et al. Dec 2008 A1
20080300476 Stafford Dec 2008 A1
20080306368 Goode, Jr. et al. Dec 2008 A1
20080306434 Dobbles et al. Dec 2008 A1
20080306435 Kamath et al. Dec 2008 A1
20080306444 Brister et al. Dec 2008 A1
20090005659 Kollias et al. Jan 2009 A1
20090012377 Jennewine et al. Jan 2009 A1
20090012379 Goode, Jr. et al. Jan 2009 A1
20090018424 Kamath et al. Jan 2009 A1
20090030294 Petisce et al. Jan 2009 A1
20090036758 Brauker et al. Feb 2009 A1
20090036763 Brauker et al. Feb 2009 A1
20090036915 Karbowniczek et al. Feb 2009 A1
20090043181 Brauker et al. Feb 2009 A1
20090043182 Brauker et al. Feb 2009 A1
20090043525 Brauker et al. Feb 2009 A1
20090043541 Brauker et al. Feb 2009 A1
20090043542 Brauker et al. Feb 2009 A1
20090045055 Rhodes et al. Feb 2009 A1
20090048563 Ethelfeld et al. Feb 2009 A1
20090054866 Teisen-Simony et al. Feb 2009 A1
20090062633 Brauker et al. Mar 2009 A1
20090062635 Brauker et al. Mar 2009 A1
20090069658 Say et al. Mar 2009 A1
20090069750 Schraga Mar 2009 A1
20090076356 Simpson et al. Mar 2009 A1
20090076359 Peyser Mar 2009 A1
20090076360 Brister et al. Mar 2009 A1
20090076361 Kamath et al. Mar 2009 A1
20090082693 Stafford Mar 2009 A1
20090088614 Taub Apr 2009 A1
20090088787 Koike et al. Apr 2009 A1
20090099436 Brister et al. Apr 2009 A1
20090102678 Mazza et al. Apr 2009 A1
20090105569 Stafford Apr 2009 A1
20090118592 Klitgaard May 2009 A1
20090124877 Goode et al. May 2009 A1
20090124878 Goode et al. May 2009 A1
20090124879 Brister et al. May 2009 A1
20090124964 Leach et al. May 2009 A1
20090124979 Raymond et al. May 2009 A1
20090131768 Simpson et al. May 2009 A1
20090131769 Leach et al. May 2009 A1
20090131776 Simpson et al. May 2009 A1
20090131777 Simpson et al. May 2009 A1
20090131860 Nielsen May 2009 A1
20090137886 Shariati et al. May 2009 A1
20090137887 Shariati et al. May 2009 A1
20090143659 Li et al. Jun 2009 A1
20090143660 Brister et al. Jun 2009 A1
20090156919 Brister et al. Jun 2009 A1
20090156924 Shariati et al. Jun 2009 A1
20090163790 Brister et al. Jun 2009 A1
20090163791 Brister et al. Jun 2009 A1
20090171182 Stafford Jul 2009 A1
20090178459 Li et al. Jul 2009 A1
20090182217 Li et al. Jul 2009 A1
20090192366 Mensinger et al. Jul 2009 A1
20090192380 Shariati et al. Jul 2009 A1
20090192722 Shariati et al. Jul 2009 A1
20090192724 Brauker et al. Jul 2009 A1
20090192745 Kamath et al. Jul 2009 A1
20090192751 Kamath et al. Jul 2009 A1
20090198215 Chong et al. Aug 2009 A1
20090203981 Brauker et al. Aug 2009 A1
20090204341 Brauker et al. Aug 2009 A1
20090212766 Olson et al. Aug 2009 A1
20090216103 Brister et al. Aug 2009 A1
20090240120 Mensinger et al. Sep 2009 A1
20090240128 Mensinger et al. Sep 2009 A1
20090240193 Mensinger et al. Sep 2009 A1
20090242399 Kamath et al. Oct 2009 A1
20090242425 Kamath et al. Oct 2009 A1
20090247855 Boock et al. Oct 2009 A1
20090247856 Boock et al. Oct 2009 A1
20090259118 Feldman et al. Oct 2009 A1
20090259201 Hwang et al. Oct 2009 A1
20090259202 Leeflang et al. Oct 2009 A1
20090270765 Ghesquire et al. Oct 2009 A1
20090287073 Boock et al. Nov 2009 A1
20090287074 Shults et al. Nov 2009 A1
20090292184 Funderburk et al. Nov 2009 A1
20090292185 Funderburk et al. Nov 2009 A1
20090294277 Thomas et al. Dec 2009 A1
20090299155 Yang et al. Dec 2009 A1
20090299156 Simpson et al. Dec 2009 A1
20090299162 Brauker et al. Dec 2009 A1
20090299167 Seymour Dec 2009 A1
20090299276 Brauker et al. Dec 2009 A1
20100004597 Gryn et al. Jan 2010 A1
20100010324 Brauker et al. Jan 2010 A1
20100010331 Brauker et al. Jan 2010 A1
20100010332 Brauker et al. Jan 2010 A1
20100016687 Brauker et al. Jan 2010 A1
20100016698 Rasdal et al. Jan 2010 A1
20100022855 Brauker et al. Jan 2010 A1
20100022863 Mogensen et al. Jan 2010 A1
20100030038 Brauker et al. Feb 2010 A1
20100030053 Goode, Jr. et al. Feb 2010 A1
20100030484 Brauker et al. Feb 2010 A1
20100030485 Brauker et al. Feb 2010 A1
20100036215 Goode, Jr. et al. Feb 2010 A1
20100036216 Goode, Jr. et al. Feb 2010 A1
20100036222 Goode, Jr. et al. Feb 2010 A1
20100036223 Goode, Jr. et al. Feb 2010 A1
20100036225 Goode, Jr. et al. Feb 2010 A1
20100036281 Doi Feb 2010 A1
20100041971 Goode, Jr. et al. Feb 2010 A1
20100045465 Brauker et al. Feb 2010 A1
20100049014 Funderburk et al. Feb 2010 A1
20100049024 Saint et al. Feb 2010 A1
20100063373 Kamath et al. Mar 2010 A1
20100069728 Funderburk et al. Mar 2010 A1
20100076283 Simpson et al. Mar 2010 A1
20100081908 Dobbles et al. Apr 2010 A1
20100081910 Brister et al. Apr 2010 A1
20100087724 Brauker et al. Apr 2010 A1
20100096259 Zhang et al. Apr 2010 A1
20100099970 Shults et al. Apr 2010 A1
20100099971 Shults et al. Apr 2010 A1
20100100113 Iio et al. Apr 2010 A1
20100106088 Yodfat et al. Apr 2010 A1
20100113897 Brenneman et al. May 2010 A1
20100119693 Tapsak et al. May 2010 A1
20100121169 Petisce et al. May 2010 A1
20100168677 Gabriel et al. Jul 2010 A1
20100174157 Brister et al. Jul 2010 A1
20100174158 Kamath et al. Jul 2010 A1
20100174163 Brister et al. Jul 2010 A1
20100174164 Brister et al. Jul 2010 A1
20100174165 Brister et al. Jul 2010 A1
20100174166 Brister et al. Jul 2010 A1
20100174167 Kamath et al. Jul 2010 A1
20100174168 Goode et al. Jul 2010 A1
20100179401 Rasdal et al. Jul 2010 A1
20100179402 Goode et al. Jul 2010 A1
20100179404 Kamath et al. Jul 2010 A1
20100179408 Kamath et al. Jul 2010 A1
20100179409 Kamath et al. Jul 2010 A1
20100185065 Goode et al. Jul 2010 A1
20100185069 Brister et al. Jul 2010 A1
20100185070 Brister et al. Jul 2010 A1
20100185071 Simpson et al. Jul 2010 A1
20100185072 Goode et al. Jul 2010 A1
20100185075 Brister et al. Jul 2010 A1
20100191082 Brister et al. Jul 2010 A1
20100198033 Krulevitch et al. Aug 2010 A1
20100198034 Thomas et al. Aug 2010 A1
20100198035 Kamath et al. Aug 2010 A1
20100198036 Kamath et al. Aug 2010 A1
20100198142 Sloan et al. Aug 2010 A1
20100204653 Gryn et al. Aug 2010 A1
20100212583 Brister et al. Aug 2010 A1
20100213057 Feldman et al. Aug 2010 A1
20100214104 Goode et al. Aug 2010 A1
20100217105 Yodfat et al. Aug 2010 A1
20100217557 Kamath et al. Aug 2010 A1
20100223013 Kamath et al. Sep 2010 A1
20100223022 Kamath et al. Sep 2010 A1
20100223023 Kamath et al. Sep 2010 A1
20100228109 Kamath et al. Sep 2010 A1
20100228497 Kamath et al. Sep 2010 A1
20100240975 Goode et al. Sep 2010 A1
20100240976 Goode et al. Sep 2010 A1
20100261987 Kamath et al. Oct 2010 A1
20100262201 He et al. Oct 2010 A1
20100274107 Boock et al. Oct 2010 A1
20100280341 Boock et al. Nov 2010 A1
20100286496 Simpson et al. Nov 2010 A1
20100298684 Leach et al. Nov 2010 A1
20100313105 Nekoomaram et al. Dec 2010 A1
20100317952 Budiman et al. Dec 2010 A1
20100324392 Yee et al. Dec 2010 A1
20100324403 Brister et al. Dec 2010 A1
20100326842 Mazza et al. Dec 2010 A1
20100331642 Bruce et al. Dec 2010 A1
20100331644 Neale et al. Dec 2010 A1
20100331647 Shah et al. Dec 2010 A1
20100331648 Kamath et al. Dec 2010 A1
20100331653 Stafford Dec 2010 A1
20100331656 Mensinger et al. Dec 2010 A1
20100331657 Mensinger et al. Dec 2010 A1
20110004085 Mensinger et al. Jan 2011 A1
20110009727 Mensinger et al. Jan 2011 A1
20110021889 Hoss et al. Jan 2011 A1
20110024043 Boock et al. Feb 2011 A1
20110024307 Simpson et al. Feb 2011 A1
20110027127 Simpson et al. Feb 2011 A1
20110027453 Boock et al. Feb 2011 A1
20110027458 Boock et al. Feb 2011 A1
20110028815 Simpson et al. Feb 2011 A1
20110028816 Simpson et al. Feb 2011 A1
20110040256 Bobroff et al. Feb 2011 A1
20110040263 Hordum et al. Feb 2011 A1
20110046456 Hordum et al. Feb 2011 A1
20110046467 Simpson et al. Feb 2011 A1
20110054275 Stafford Mar 2011 A1
20110060196 Stafford Mar 2011 A1
20110073475 Kastanos et al. Mar 2011 A1
20110077490 Simpson et al. Mar 2011 A1
20110077659 Mandecki et al. Mar 2011 A1
20110082484 Saravia et al. Apr 2011 A1
20110106126 Love et al. May 2011 A1
20110118579 Goode et al. May 2011 A1
20110118580 Goode et al. May 2011 A1
20110124992 Brauker et al. May 2011 A1
20110124997 Goode et al. May 2011 A1
20110125410 Goode et al. May 2011 A1
20110130970 Goode et al. Jun 2011 A1
20110130971 Goode et al. Jun 2011 A1
20110130998 Goode et al. Jun 2011 A1
20110137257 Gyrn et al. Jun 2011 A1
20110144465 Shults et al. Jun 2011 A1
20110178378 Brister et al. Jul 2011 A1
20110178461 Chong et al. Jul 2011 A1
20110184258 Stafford Jul 2011 A1
20110190603 Stafford Aug 2011 A1
20110190614 Brister et al. Aug 2011 A1
20110191044 Stafford Aug 2011 A1
20110201910 Rasdal et al. Aug 2011 A1
20110201911 Johnson et al. Aug 2011 A1
20110213225 Bernstein et al. Sep 2011 A1
20110218414 Kamath et al. Sep 2011 A1
20110231107 Brauker et al. Sep 2011 A1
20110231140 Goode et al. Sep 2011 A1
20110231141 Goode et al. Sep 2011 A1
20110231142 Goode et al. Sep 2011 A1
20110253533 Shults et al. Oct 2011 A1
20110257495 Hoss et al. Oct 2011 A1
20110257521 Fraden Oct 2011 A1
20110257895 Brauker et al. Oct 2011 A1
20110263958 Brauker et al. Oct 2011 A1
20110270062 Goode et al. Nov 2011 A1
20110270158 Brauker et al. Nov 2011 A1
20110275919 Petisce et al. Nov 2011 A1
20110288574 Curry et al. Nov 2011 A1
20110290645 Brister et al. Dec 2011 A1
20110313543 Brauker et al. Dec 2011 A1
20110319729 Donnay et al. Dec 2011 A1
20110319733 Stafford Dec 2011 A1
20110319738 Woodruff et al. Dec 2011 A1
20110319739 Kamath et al. Dec 2011 A1
20110320130 Valdes et al. Dec 2011 A1
20120010642 Lee et al. Jan 2012 A1
20120035445 Boock et al. Feb 2012 A1
20120040101 Tapsak et al. Feb 2012 A1
20120046534 Simpson et al. Feb 2012 A1
20120078071 Bohm et al. Mar 2012 A1
20120108934 Valdes et al. May 2012 A1
20120108983 Banet et al. May 2012 A1
20120123385 Edwards et al. May 2012 A1
20120184909 Gyrn et al. Jul 2012 A1
20120296327 Hutchins et al. Nov 2012 A1
20130047981 Bacon Feb 2013 A1
Foreign Referenced Citations (64)
Number Date Country
4401400 Jul 1995 DE
0098592 Jan 1984 EP
0127958 Dec 1984 EP
0320109 Jun 1989 EP
0353328 Feb 1990 EP
0390390 Oct 1990 EP
0396788 Nov 1990 EP
0286118 Jan 1995 EP
1048264 Nov 2000 EP
1177802 Feb 2002 EP
0987982 Jan 2007 EP
2060284 May 2009 EP
2201969 Jun 2010 EP
2327362 Jun 2011 EP
2335587 Jun 2011 EP
11-506629 Jun 1999 JP
2004-520103 Jul 2004 JP
2004-520898 Jul 2004 JP
WO-1996039977 May 1996 WO
WO-1996025089 Aug 1996 WO
WO-1996035370 Nov 1996 WO
WO-1997021457 Jun 1997 WO
WO-1998035053 Aug 1998 WO
WO-1998056293 Dec 1998 WO
WO-1999033504 Jul 1999 WO
WO-1999056613 Nov 1999 WO
WO-2000049940 Aug 2000 WO
WO-2000059370 Oct 2000 WO
WO-2000078992 Dec 2000 WO
WO-2001052935 Jul 2001 WO
WO-2001054753 Aug 2001 WO
WO-2002016905 Feb 2002 WO
WO-2002050534 Jun 2002 WO
WO-2002058537 Aug 2002 WO
WO-2003028784 Apr 2003 WO
WO-2003073936 Sep 2003 WO
WO-2003076893 Sep 2003 WO
WO-2003082091 Oct 2003 WO
WO-2004030726 Apr 2004 WO
WO-2004054445 Jul 2004 WO
WO-2004060436 Jul 2004 WO
WO-2004061420 Jul 2004 WO
WO-2004098684 Nov 2004 WO
WO-2004098685 Nov 2004 WO
WO-2004107971 Dec 2004 WO
WO-2005037184 Apr 2005 WO
WO-2005084534 Sep 2005 WO
WO-2005089103 Sep 2005 WO
WO-2005092177 Oct 2005 WO
WO-2006001024 Jan 2006 WO
WO-2006015922 Feb 2006 WO
WO-2006042811 Apr 2006 WO
WO-2006061354 Jun 2006 WO
WO-2006108809 Oct 2006 WO
WO-2007027788 Mar 2007 WO
WO-2007041248 Apr 2007 WO
WO-2007097754 Aug 2007 WO
WO-2007053832 Dec 2007 WO
WO-2007140783 Dec 2007 WO
WO-2008065646 Jun 2008 WO
WO-2008133702 Nov 2008 WO
WO-2009062675 May 2009 WO
WO-2010112521 Oct 2010 WO
WO-2011002815 Jan 2011 WO
Non-Patent Literature Citations (310)
Entry
Alcock, S. J., et al., “Continuous Analyte Monitoring to Aid Clinical Practice”, IEEE Engineering in Medicine and Biology Magazine, 1994, pp. 319-325.
Armour, J. C., et al., “Application of Chronic Intravascular Blood Glucose Sensor in Dogs”, Diabetes, vol. 39, 1990, pp. 1519-1526.
Aussedat, B., et al., “A User-Friendly Method for Calibrating a Subcutaneous Glucose Sensor-Based Hypoglycemic Alarm”, Biosensors & Bioelectronics, vol. 12, No. 11, 1997, pp. 1061-1071.
Bennion, N., et al., “Alternate Site Glucose Testing: A Crossover Design”, Diabetes Technology & Therapeutics, vol. 4, No. 1, 2002, pp. 25-33.
Bindra, D. S., et al., “Design and in Vitro Studies of a Needle-Type Glucose Sensor for Subcutaneous Monitoring”, Analytical Chemistry, vol. 63, No. 17, 1991, pp. 1692-1696.
Blank, T. B., et al., “Clinical Results From a Non-Invasive Blood Glucose Monitor”, Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring II, Proceedings of SPIE, vol. 4624, 2002, pp. 1-10.
Bobbioni-Harsch, E., et al., “Lifespan of Subcutaneous Glucose Sensors and Their Performances During Dynamic Glycaemia Changes in Rats”, Journal of Biomedical Engineering, vol. 15, 1993, pp. 457-463.
Brooks, S. L., et al., “Development of an On-Line Glucose Sensor for Fermentation Monitoring”, Biosensors, vol. 3, 1987/88, pp. 45-56.
Cass, A. E., et al., “Ferrocene-Medicated Enzyme Electrode for Amperometric Determination of Glucose”, Analytical Chemistry, vol. 56, No. 4, 1984, 667-671.
Csoregi, E., et al., “Design and Optimization of a Selective Subcutaneously Implantable Glucose Electrode Based on ‘Wired’ Glucose Oxidase”, Analytical Chemistry, vol. 67, No. 7, 1995, pp. 1240-1244.
Dexcom, “STS User's Guide”, DexCom, Inc., 2006, pp. 1-111.
Feldman, B., et al., “A Continuous Glucose Sensor Based on Wired Enzyme™ Technology—Results from a 3-Day Trial in Patients with Type 1 Diabetes”, Diabetes Technology & Therapeutics, vol. 5, No. 5, 2003, pp. 769-779.
Feldman, B., et al., “Correlation of Glucose Concentrations in Interstitial Fluid and Venous Blood During Periods of Rapid Glucose Change”, Abbott Diabetes Care, Inc. Freestyle Navigator Continuous Glucose Monitor Pamphlet, 2004.
Gregg, B. A., et al., “Cross-Linked Redox Gels Containing Glucose Oxidase for Amperometric Bionsensor Applications”, Analytical Chemistry, vol. 62, No. 3, 1990, pp. 258-263.
Gunasingham, et al., “Electrochemically Modulated Optrode for Glucose”, Biosensors & Bioelectronics, vol. 7, 1992, pp. 353-359.
Harrison, D. J., et al., “Characterization of Perfluorosulfonic Acid Polymer Coated Enzyme Electrodes and a Miniatureized Integrated Potentiostat for Glucose Analysis in Whole Blood”, Analytical Chemistry, vol. 60, No. 19, 1988, pp. 2002-2007.
Heller, A., “Electrical Connection Enzyme Redox Centers to Electrodes”, Journal of Physical Chemistry, vol. 96, No. 9, 1990, pp. 3579-3587.
Ikeda, T., et al., “Artificial Pancreas—Investigation of the Stability of Glucose Sensors Using a Telemetry System” (English language translation of abstract), Jpn. J. Artif. Organs, vol. 19, No. 2, 1990, pp. 889-892.
Isermann, R., “Supervision, Fault-Detection and Fault-Diagnosis Methods—An Introduction”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 639-652.
Isermann, R., et al., “Trends in the Application of Model-Based Fault Detection and Diagnosis of Technical Processes”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 709-719.
Johnson, K. W., et al., “In vivo Evaluation of an Electroenzymatic Glucose Sensor Implanted in Subcutaneous Tissue”, Biosensors & Bioelectronics, vol. 7, 1992, pp. 709-714.
Johnson, P. C., “Peripheral Circulation”, John Wiley & Sons, 1978, pp. 198.
Jungheim, K., et al., “How Rapid Does Glucose Concentration Change in Daily Life of Patients with Type 1 Diabetes?”, 2002, pp. 250.
Jungheim, K., et al., “Risky Delay of Hypoglycemia Detection by Glucose Monitoring at the Arm”, Diabetes Care, vol. 24, No. 7, 2001, pp. 1303-1304.
Kaplan, S. M., “Wiley Electrical and Electronics Engineering Dictionary”, IEEE Press, 2004, pp. 141, 142, 548, 549.
Lortz, J., et al., “What is Bluetooth? We Explain the Newest Short-Range Connectivity Technology”, Smart Computing Learning Series, Wireless Computing, vol. 8, Issue 5, 2002, pp. 72-74.
Maidan, R., et al., “Elimination of Electrooxidizable Interferant-Produced Currents in Amperometric Biosensors”, Analytical Chemistry, vol. 64, No. 23, 1992, pp. 2889-2896.
Malin, S. F., et al., “Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectoscopy”, Clinical Chemistry, vol. 45, No. 9, 1999, pp. 1651-1658.
Mastrototaro, J. J., et al., “An Electroenzymatic Glucose Sensor Fabricated on a Flexible Substrate”, Sensors and Actuators B, vol. 5, 1991, pp. 139-144.
Mcgarraugh, G., et al., “Glucose Measurements Using Blood Extracted from the Forearm and the Finger”, TheraSense, Inc., 2001, 16 Pages.
Mcgarraugh, G., et al., “Physiological Influences on Off-Finger Glucose Testing”, Diabetes Technology & Therapeutics, vol. 3, No. 3, 2001, pp. 367-376.
Mckean, B. D., et al., “A Telemetry-Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors”, IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, 1988, pp. 526-532.
Minimed Technologies, “Tape Tips and Other Infusion Site Information”, 1995.
Moatti-Sirat, D., et al., “Towards Continuous Glucose Monitoring: In Vivo Evaluation of a Miniaturized Glucose Sensor Implanted for Several Days in Rat Subcutaneous Tissue”, Diabetologia, vol. 35, 1992, pp. 224-330.
Ohara, T. J., et al., “Glucose Electrodes Based on Cross-Linked [Os(bpy)2C1]+/2+ Complexed Poly(1-Vinylimidazole) Films”, Analytical Chemistry, vol. 65, No. 23, 1993, pp. 3512-3517.
Pickup, J., et al., “Implantable Glucose Sensors: Choosing the Appropriate Sensing Strategy”, Biosensors, vol. 3, 1987/88, pp. 335-346.
Pickup, J., et al., “In Vivo Molecular Sensing in Diabetes Mellitus: An Implantable Glucose Sensor with Direct Electron Transfer”, Diabetologia, vol. 32, 1989, pp. 213-217.
Pishko, M. V., et al., “Amperometric Glucose Microelectrodes Prepared Through Immobilization of Glucose Oxidase in Redox Hydrogels”, Analytical Chemistry, vol. 63, No. 20, 1991, pp. 2268-2272.
Poitout, V., et al., “In Vitro and In Vivo Evaluation in Dogs of a Miniaturized Glucose Sensor”, ASAIO Transactions, vol. 37, No. 3, 1991, pp. M298-M300.
Quinn, C. P., et al., “Kinetics of Glucose Delivery to Subcutaneous Tissue in Rats Measured with 0.3-mm Amperometric Microsensors”, The American Physiological Society, 1995, E155-E161.
Reach, G., et al., “Can Continuous Glucose Monitoring Be Used for the Treatment of Diabetes?”, Analytical Chemistry, vol. 64, No. 6, 1992, pp. 381-386.
Rebrin, K., et al., “Automated Feedback Control of Subcutaneous Glucose Concentration in Diabetic Dogs”, Diabetologia, vol. 32, 1989, pp. 573-576.
Roe, J. N., et al., “Bloodless Glucose Measurements”, Critical Review in Therapeutic Drug Carrier Systems, vol. 15, Issue 3, 1998, pp. 199-241.
Sakakida, M., et al., “Development of Ferrocene-Mediated Needle-Type Glucose Sensor as a Measure of True Subcutaneous Tissue Glucose Concentrations”, Artificial Organs Today, vol. 2, No. 2, 1992, pp. 145-158.
Sakakida, M., et al., “Ferrocene-Mediated Needle-Type Glucose Sensor Covered with Newly Designed Biocompatible Membrane”, Sensors and Actuators B, vol. 13-14, 1993, pp. 319-322.
Salehi, C., et al., “A Telemetry-Instrumentation System for Long-Term Implantable Glucose and Oxygen Sensors”, Analytical Letters, vol. 29, No. 13, 1996, pp. 2289-2308.
Schmidt, F. J., et al., “Calibration of a Wearable Glucose Sensor”, The International Journal of Artificial Organs, vol. 15, No. 1, 1992, pp. 55-61.
Schmidtke, D. W., et al., “Measurement and Modeling of the Transient Difference Between Blood and Subcutaneous Glucose Concentrations in the Rat After Injection of Insulin”, Proceedings of the National Academy of Sciences, vol. 95, 1998, pp. 294-299.
Shaw, G. W., et al., “In Vitro Testing of a Simply Constructed, Highly Stable Glucose Sensor Suitable for Implantation in Diabetic Patients”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 401-406.
Shichiri, M., et al., “Glycaemic Control in Pancreatectomized Dogs with a Wearable Artificial Endocrine Pancreas”, Diabetologia, vol. 24, 1983, pp. 179-184.
Shichiri, M., et al., “In Vivo Characteristics of Needle-Type Glucose Sensor—Measurements of Subcutaneous Glucose Concentrations in Human Volunteers”, Hormone and Metabolic Research Supplement Series, vol. 20, 1988, pp. 17-20.
Shichiri, M., et al., “Membrane Design for Extending the Long-Life of an Implantable Glucose Sensor”, Diabetes Nutrition and Metabolism, vol. 2, 1989, pp. 309-313.
Shichiri, M., et al., “Needle-type Glucose Sensor for Wearable Artificial Endocrine Pancreas”, Implantable Sensors for Closed-Loop Prosthetic Systems, Chapter 15, 1985, pp. 197-210.
Shichiri, M., et al., “Telemetry Glucose Monitoring Device With Needle-Type Glucose Sensor: A Useful Tool for Blood Glucose Monitoring in Diabetic Individuals”, Diabetes Care, vol. 9, No. 3, 1986, pp. 298-301.
Shichiri, M., et al., “Wearable Artificial Endocrine Pancreas With Needle-Type Glucose Sensor”, The Lancet, 1982, pp. 1129-1131.
Shults, M. C., et al., “A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors”, IEEE Transactions on Biomedical Engineering, vol. 41, No. 10, 1994, pp. 937-942.
Sternberg, R., et al., “Study and Development of Multilayer Needle-Type Enzyme-Based Glucose Microsensors”, Biosensors, vol. 4, 1988, pp. 27-40.
Thompson, M., et al., “In Vivo Probes: Problems and Perspectives”, Clinical Biochemistry, vol. 19, 1986, pp. 255-261.
Turner, A., et al., “Diabetes Mellitus: Biosensors for Research and Management”, Biosensors, vol. 1, 1985, pp. 85-115.
Updike, S. J., et al., “Principles of Long-Term Fully Implanted Sensors with Emphasis on Radiotelemetric Monitoring of Blood Glucose from Inside a Subcutaneous Foreign Body Capsule (FBC)”, Biosensors in the Body: Continuous in vivo Monitoring, Chapter 4, 1997, pp. 117-137.
Velho, G., et al., “Strategies for Calibrating a Subcutaneous Glucose Sensor”, Biomedica Biochimica Acta, vol. 48, 1989, pp. 957-964.
Wilson, G. S., et al., “Progress Toward the Development of an Implantable Sensor for Glucose”, Clinical Chemistry, vol. 38, No. 9, 1992, pp. 1613-1617.
Ye, L., et al., “High Current Density ‘Wired’ Quinoprotein Glucose Dehydrogenase Electrode”, Analytical Chemistry, vol. 65, No. 3, 1993, pp. 238-241.
Australian Patent Application No. 2007309066, Examination Report dated Aug. 16, 2013.
Australian Patent Application No. 2007309066, Examination Report dated Jul. 12, 2012.
Canadian Patent Application No. 2617192, Examiner's Report dated Oct. 22, 2012.
Canadian Patent Application No. 2624247, Examiner's Report dated Mar. 27, 2013.
Canadian Patent Application No. 2874576, Examiner's Report dated Feb. 17, 2015.
Canadian Patent Application No. 2874576, Examiner's Report dated Feb. 19, 2016.
Chinese Patent Application No. 200780039416.2, Original Language and English Translation of Office Action dated Apr. 25, 2012.
Chinese Patent Application No. 200780039416.2, Original Language and English Translation of Office Action dated Mar. 30, 2011.
Chinese Patent Application No. 20078004373.9, Original Language and English Translation of Notice of Allowance dated May 18, 2011.
Chinese Patent Application No. 20078004373.9, Original Language and English Translation of Office Action dated Apr. 14, 2010.
Chinese Patent Application No. 20088005388.7, Original Language and English Translation of Office Action dated Jul. 25, 2011.
Chinese Patent Application No. 20088005388.7, Original Language and English Translation of Office Action dated May 15, 2012.
European Patent Application No. 08730066.1, Extended European Search Report dated Oct. 5, 2012.
European Patent Application No. EP-06788869 3, Examination Report dated Sep. 25, 2012.
European Patent Application No. EP-06788869.3, Extended European Search Report dated Mar. 18, 2010.
European Patent Application No. EP-06804122.7, Decision to Refuse the Application dated Feb. 25, 2013.
European Patent Application No. EP-06804122.7, Extended European Search Report dated Sep. 28, 2009.
European Patent Application No. EP-06804122.7, Official Letter dated Jan. 25, 2011.
European Patent Application No. EP-06804122.7, Official Letter dated Nov. 30, 2011.
European Patent Application No. EP-06813967.4, Extended European Search Report dated Mar. 4, 2010.
European Patent Application No. EP-06815715.5, Extended European Search Report dated Oct. 30, 2009.
European Patent Application No. EP-06851063.5, Extended European Search Report dated Sep. 21, 2009.
European Patent Application No. EP-07842173.2, Examination Report dated Mar. 21, 2013.
European Patent Application No. EP-07842173.2, Extended European Search Report dated Dec. 29, 2010.
European Patent Application No. EP-07842180.7, Examination Report dated Oct. 23, 2012.
European Patent Application No. EP-07842180.7, Extended Search Report dated Sep. 28, 2009.
European Patent Application No. EP-07842180.7, Official Letter dated Dec. 14, 2011.
European Patent Application No. EP-07842180.7, Second Office Action dated Feb. 23, 2011.
European Patent Application No. EP-07843396.8, Extended European Search Report dated Dec. 22, 2010.
European Patent Application No. EP-07843396.8, Intention to Grant a European Patent dated Sep. 17, 2012.
European Patent Application No. EP-07854298.2, Extended European Search Report dated Mar. 29, 2010.
European Patent Application No. EP-13000104.3, Extended European Search Report dated Mar. 12, 2013.
European Patent Application No. EP-14179905.6, Notice of Opposition filed May 19, 2016.
European Patent Application No. EP-15002441.2, Extended European Search Report dated Dec. 18, 2015.
Israeli Patent Application No. 198329, Original Language and English Translation of Office Action dated Mar. 5, 2012.
Japanese Patent Application No. 2009-534798, Original Language and English Translation of Office Action dated Sep. 25, 2012.
Japanese Patent Application No. 2009-534799, English Translation of Office Action dated Sep. 27, 2011.
Japanese Patent Application No. 2009-534799, Original Language and English Translation of Office Action dated Feb. 19, 2013.
Mexican Patent Application No. MX/a/2009/004322, English Translation of Office Action dated Mar. 11, 2013.
Mexican Patent Application No. MX/a/2009/004322, English Translation of Office Action dated Sep. 19, 2012.
Mexican Patent Application No. MX/a/2009/004398, Original Language and English Translation of Office Action dated Sep. 24, 2012.
PCT Application No. PCT/US2006/029541 International Search Report and Written Opinion of the International Searching Authority dated Apr. 24, 2001.
PCT Application No. PCT/US2006/029541, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Feb. 7, 2008.
PCT Application No. PCT/US2006/033885, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Mar. 13, 2008.
PCT Application No. PCT/US2006/033885, International Search Report and Written Opinion of the International Searching Authority dated Aug. 3, 2007.
PCT Application No. PCT/US2006/037312, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Apr. 11, 2008.
PCT Application No. PCT/US2006/037312, International Search Report and Written Opinion of the International Searching Authority dated Apr. 17, 2007.
PCT Application No. PCT/US2006/037928, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Mar. 19, 2009.
PCT Application No. PCT/US2006/037928, International Search Report and Written Opinion of the International Searching Authority dated Jul. 11, 2008.
PCT Application No. PCT/US2006/062690, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Oct. 7, 2008.
PCT Application No. PCT/US2006/062690, International Search Report and Written Opinion of the International Searching Authority dated Dec. 28, 2006.
PCT Application No. PCT/US2007/078065, International Search Report and Written Opinion of the International Searching Authority dated Apr. 11, 2008.
PCT Application No. PCT/US2007/078073, International Search Report and Written Opinion of the International Searching Authority dated Apr. 11, 2008.
PCT Application No. PCT/US2007/079774, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Apr. 9, 2009.
PCT Application No. PCT/US2007/079774, International Search Report and Written Opinion of the International Searching Authority dated Mar. 13, 2008.
PCT Application No. PCT/US2007/082114, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated May 7, 2009.
PCT Application No. PCT/US2007/082114, International Search Report and Written Opinion of the International Searching Authority dated May 9, 2008.
PCT Application No. PCT/US2007/082121, International Search Report and Written Opinion of the International Searching Authority dated May 9, 2008.
PCT Application No. PCT/US2007/082121, Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated May 7, 2009.
PCT Application No. PCT/US2008/054186, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Aug. 27, 2009.
PCT Application No. PCT/US2008/054186, International Search Report and Written Opinion of the International Searching Authority dated Aug. 8, 2008.
PCT Application No. PCT/US2008/065154, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Dec. 10, 2009.
PCT Application No. PCT/US2008/065154, International Search Report and Written Opinion of the International Searching Authority dated Sep. 3, 2008.
PCT Application No. PCT/US2010/022860, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Aug. 18, 2011.
PCT Application No. PCT/US2010/022860, International Search Report and Written Opinion of the International Searching Authority dated Mar. 10, 2010.
PCT Application No. PCT/US2010/047065, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Mar. 15, 2012.
PCT Application No. PCT/US2010/047065, International Search Report and Written Opinion of the International Searching Authority dated Dec. 21, 2010.
PCT Application No. PCT/US2010/047381, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Mar. 15, 2012.
PCT Application No. PCT/US2010/047381, International Search Report and Written Opinion of the International Searching Authority dated Oct. 15, 2010.
PCT Application No. PCT/US2010/047414, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Mar. 15, 2012.
PCT Application No. PCT/US2010/047414, International Search Report and Written Opinion of the International Searching Authority dated Dec. 27, 2010.
PCT Application No. PCT/US2010/047415, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Mar. 15, 2012.
PCT Application No. PCT/US2010/047415, International Search Report and Written Opinion of the International Searching Authority dated Oct. 25, 2010.
PCT Application No. PCT/US2010/050772, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Apr. 12, 2012.
PCT Application No. PCT/US2010/050772, International Search Report and Written Opinion of the International Searching Authority dated Dec. 3, 2010.
PCT Application No. PCT/US2010/050888, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Apr. 12, 2012.
PCT Application No. PCT/US2010/050888, International Search Report and Written Opinion of the International Searching Authority dated Nov. 29, 2010.
PCT Application No. PCT/US2010/051861, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Apr. 19, 2012.
PCT Application No. PCT/US2010/051861, International Search Report and Written Opinion of the International Searching Authority dated Nov. 30, 2010.
Russian Patent Application No. 2009-119430, Original Language and English Translation of Office Action dated Jun. 5, 2011.
Russian Patent Application No. 2009135048, Original Language and English Translation of Office Action dated Dec. 20, 2011.
U.S. Appl. No. 11/026,766, Office Action dated Apr. 28, 2011.
U.S. Appl. No. 11/026,766, Office Action dated Apr. 4, 2009.
U.S. Appl. No. 11/026,766, Office Action dated Dec. 24, 2009.
U.S. Appl. No. 11/026,766, Office Action dated Feb. 8, 2012.
U.S. Appl. No. 11/026,766, Office Action dated Jan. 26, 2007.
U.S. Appl. No. 11/026,766, Office Action dated Jul. 12, 2013.
U.S. Appl. No. 11/026,766, Office Action dated Jul. 21, 2008.
U.S. Appl. No. 11/026,766, Office Action dated May 9, 2006.
U.S. Appl. No. 11/026,766, Office Action dated Oct. 15, 2007.
U.S. Appl. No. 11/026,766, Office Action dated Oct. 19, 2011.
U.S. Appl. No. 11/026,766, Office Action dated Oct. 28, 2010.
U.S. Appl. No. 11/027,230, Advisory Action dated Aug. 27, 2012.
U.S. Appl. No. 11/027,230, Advisory Action dated Jul. 29, 2010.
U.S. Appl. No. 11/027,230, Notice of Allowance dated Aug. 14, 2013.
U.S. Appl. No. 11/027,230, Office Action dated Apr. 11, 2012.
U.S. Appl. No. 11/027,230, Office Action dated Apr. 24, 2013.
U.S. Appl. No. 11/027,230, Office Action dated Dec. 4, 2009.
U.S. Appl. No. 11/027,230, Office Action dated Jun. 24, 2008.
U.S. Appl. No. 11/027,230, Office Action dated Mar. 20, 2009.
U.S. Appl. No. 11/027,230, Office Action dated May 6, 2010.
U.S. Appl. No. 11/027,230, Office Action dated Oct. 1, 2012.
U.S. Appl. No. 11/192,773, Advisory Action dated Aug. 19, 2009.
U.S. Appl. No. 11/192,773, Office Action dated Apr. 4, 2007.
U.S. Appl. No. 11/192,773, Office Action dated Apr. 16, 2009.
U.S. Appl. No. 11/192,773, Office Action dated Aug. 2, 2011.
U.S. Appl. No. 11/192,773, Office Action dated Dec. 12, 2007.
U.S. Appl. No. 11/192,773, Office Action dated Dec. 17, 2009.
U.S. Appl. No. 11/192,773, Office Action dated Jan. 31, 2012.
U.S. Appl. No. 11/192,773, Office Action dated Jul. 16, 2010.
U.S. Appl. No. 11/192,773, Office Action dated Jul. 21, 2008.
U.S. Appl. No. 11/192,773, Office Action dated Mar. 29, 2013.
U.S. Appl. No. 11/192,773, Office Action dated Oct. 28, 2010.
U.S. Appl. No. 11/216,932, Notice of Allowance dated Mar. 11, 2010.
U.S. Appl. No. 11/216,932, Office Action dated Feb. 25, 2008.
U.S. Appl. No. 11/216,932, Office Action dated Jul. 9, 2008.
U.S. Appl. No. 11/216,932, Office Action dated May 24, 2007.
U.S. Appl. No. 11/240,257, Notice of Allowance dated Dec. 16, 2010.
U.S. Appl. No. 11/240,257, Office Action dated Apr. 17, 2009.
U.S. Appl. No. 11/240,257, Office Action dated Dec. 24, 2009.
U.S. Appl. No. 11/240,257, Office Action dated Jul. 12, 2010.
U.S. Appl. No. 11/240,257, Office Action dated Jun. 27, 2008.
U.S. Appl. No. 11/240,257, Office Action dated Oct. 18, 2010.
U.S. Appl. No. 11/240,259, Notice of Allowance dated Jun. 3, 2013.
U.S. Appl. No. 11/240,259, Office Action dated Jun. 5, 2009.
U.S. Appl. No. 11/240,259, Office Action dated Nov. 29, 2007.
U.S. Appl. No. 11/240,259, Office Action dated Nov. 30, 2009.
U.S. Appl. No. 11/240,259, Office Action dated Oct. 6, 2008.
U.S. Appl. No. 11/365,334, Advisory Action dated Jul. 29, 2009.
U.S. Appl. No. 11/365,334, Notice of Allowance dated Jul. 14, 2011.
U.S. Appl. No. 11/365,334, Office Action dated Apr. 20, 2009.
U.S. Appl. No. 11/365,334, Office Action dated Dec. 28, 2009.
U.S. Appl. No. 11/365,334, Office Action dated Feb. 7, 2011.
U.S. Appl. No. 11/365,334, Office Action dated Jun. 30, 2008.
U.S. Appl. No. 11/365,334, Office Action dated May 14, 2010.
U.S. Appl. No. 11/380,883, Office Action dated Jul. 19, 2010.
U.S. Appl. No. 11/380,883, Office Action dated Jul. 7, 2008.
U.S. Appl. No. 11/380,883, Office Action dated Nov. 12, 2009.
U.S. Appl. No. 11/380,883, Office Action dated Oct. 3, 2008.
U.S. Appl. No. 11/380,883, Office Action dated Feb. 4, 2014.
U.S. Appl. No. 11/380,883, Office Action dated Oct. 22, 2014.
U.S. Appl. No. 11/530,472, Advisory Action dated Apr. 20, 2009.
U.S. Appl. No. 11/530,472, Advisory Action dated Apr. 21, 2010.
U.S. Appl. No. 11/530,472, Notice of Allowance dated Aug. 17, 2012.
U.S. Appl. No. 11/530,472, Office Action dated Dec. 14, 2010.
U.S. Appl. No. 11/530,472, Office Action dated Feb. 2, 2010.
U.S. Appl. No. 11/530,472, Office Action dated Jan. 14, 2008.
U.S. Appl. No. 11/530,472, Office Action dated Jun. 1, 2012.
U.S. Appl. No. 11/530,472, Office Action dated May 14, 2009.
U.S. Appl. No. 11/530,472, Office Action dated May 18, 2011.
U.S. Appl. No. 11/530,472, Office Action dated Nov. 21, 2008.
U.S. Appl. No. 11/530,472, Office Action dated Sep. 10, 2011.
U.S. Appl. No. 11/530,473, Office Action dated Dec. 11, 2009.
U.S. Appl. No. 11/530,473, Office Action dated Jan. 10, 2008.
U.S. Appl. No. 11/530,473, Office Action dated Jul. 2, 2014.
U.S. Appl. No. 11/530,473, Office Action dated Jan. 23, 2015.
U.S. Appl. No. 11/530,473, Office Action dated Jun. 25, 2010.
U.S. Appl. No. 11/530,473, Office Action dated May 14, 2009.
U.S. dated No. 11/530,473, Office Action dated Oct. 6, 2008.
U.S. Appl. No. 11/535,983, Notice of Allowance dated Feb. 19, 2010.
U.S. Appl. No. 11/535,983, Office Action dated Jun. 26, 2009.
U.S. Appl. No. 11/535,983, Office Action dated Oct. 3, 2008.
U.S. Appl. No. 11/552,065, Office Action dated Oct. 3, 2014.
U.S. Appl. No. 11/552,065, Advisory Action dated Sep. 5, 2012.
U.S. Appl. No. 11/552,065, Office Action dated Jun. 28, 2012.
U.S. Appl. No. 11/552,065, Office Action dated Nov. 17, 2011.
U.S. Appl. No. 11/552,072, Office Action dated Aug. 26, 2014.
U.S. Appl. No. 11/552,072, Office Action dated Jan. 20, 2010.
U.S. Appl. No. 11/552,072, Office Action dated Jul. 23, 2009.
U.S. Appl. No. 11/552,072, Office Action mailed Oct. 3, 2008.
U.S. Appl. No. 11/617,698, Notice of Allowance dated May 24, 2013.
U.S. Appl. No. 11/617,698, Office Action dated Dec. 17, 2009.
U.S. Appl. No. 11/617,698, Office Action dated Jun. 21, 2010.
U.S. Appl. No. 11/617,698, Office Action dated Jun. 26, 2009.
U.S. Appl. No. 11/617,698, Office Action dated Nov. 29, 2010.
U.S. Appl. No. 11/617,698, Office Action dated Oct. 2, 2012.
U.S. Appl. No. 11/617,698, Office Action dated Oct. 3, 2008.
U.S. Appl. No. 12/032,593, Advisory Action dated Nov. 24, 2010.
U.S. Appl. No. 12/032,593, Office Action dated Mar. 26, 2010.
U.S. Appl. No. 12/032,593, Office Action dated Sep. 17, 2010.
U.S. Appl. No. 12/129,573, Notice of Allowance dated Aug. 22, 2013.
U.S. Appl. No. 12/129,573, Office Action dated Apr. 13, 2012.
U.S. Appl. No. 12/129,573, Office Action dated Mar. 11, 2013.
U.S. Appl. No. 12/129,573, Office Action dated Oct. 22, 2012.
U.S. Appl. No. 12/129,573, Office Action dated Sep. 29, 2011.
U.S. Appl. No. 12/571,349, Notice of Allowance dated Aug. 18, 2014.
U.S. Appl. No. 12/571,349, Office Action dated Apr. 29, 2011.
U.S. Appl. No. 12/571,349, Office Action dated Nov. 10, 2010.
U.S. Appl. No. 12/571,349, Office Action dated Oct. 11, 2013.
U.S. Appl. No. 12/795,634, Notice of Allowance dated Oct. 2, 2013.
U.S. Appl. No. 12/795,634, Notice of Allowance dated Sep. 16, 2013.
U.S. Appl. No. 12/795,634, Office Action dated May 23, 2013.
U.S. Appl. No. 12/826,662, Advisory Action dated Sep. 12, 2012.
U.S. Appl. No. 12/826,662, Office Action dated Dec. 22, 2011.
U.S. Appl. No. 12/826,662, Office Action dated Jul. 2, 2012.
U.S. Appl. No. 12/826,662, Office Action dated Nov. 4, 2013.
U.S. Appl. No. 12/870,818, Office Action dated Jul. 8, 2015.
U.S. Appl, No. 12/870,818, Office Action dated May 23, 2013.
U.S. Appl. No. 12/870,818, Office Action dated Nov. 29, 2013.
U.S. Appl. No. 12/873,301, Office Action dated Aug. 27, 2012.
U.S. Appl. No. 12/873,301, Office Action dated Oct. 29, 2013.
U.S. Appl. No. 12/873,302, Office Action dated Mar. 14, 2013.
U.S. Appl. No. 12/873,302, Office Action dated Oct. 15, 2012.
U.S. Appl. No. 12/873,302, Office Action dated Sep. 12, 2013.
U.S. Appl. No. 12/893,974, Office Action dated Dec. 19, 2013.
U.S. Appl. No. 12/893,974, Office Action dated Mar. 28, 2013.
U.S. Appl. No. 12/895,015, Office Action dated Feb. 2, 2015.
U.S. Appl. No. 12/895,015, Office Action dated Jun. 26, 2014.
U.S. Appl. No. 13/022,616, Advisory Action dated Sep. 24, 2014.
U.S. Appl. No. 13/022,616, Office Action dated Jul. 7, 2014.
U.S. Appl. No. 13/022,616, Office Action dated Feb. 26, 2014.
U.S. Appl. No. 13/252,118, Office Action dated May 19, 2013.
U.S. Appl. No. 13/717,501, Office Action dated Jan. 10, 2014.
U.S. Appl. No. 14/500,705, Interview Summary dated Dec. 17, 2015.
U.S. Appl. No. 14/500,705, Notice of Allowance dated Feb. 24, 2016.
U.S. Appl. No. 14/500,705, Notice of Allowance dated Jan. 20, 2016.
U.S. Appl. No. 14/500,705, Office Action dated May 7, 2015.
U.S. Appl. No. 14/500,705, Office Action dated Nov. 5, 2015.
U.S. Appl. No. 14/687,523, Office Action dated Jan. 25, 2016.
U.S. Appl. No. 15/141,819, Office Action dated Jul. 28, 2016.
Reexamination U.S. Appl. No. 90/008,172, Request for Reexamination of U.S. Pat. No. 6,990,366, filed Aug. 16, 2006.
Reexamination U.S. Appl. No. 90/008,457, Notice of Intent to Issue Reexamination Certificate dated Mar. 13, 2008.
Reexamination U.S. Appl. No. 90/008,457, Order Granting Request for Reexamination dated Feb. 23, 2007.
Reexamination U.S. Appl. No. 90/008,457, Request for Reexamination of U.S. Pat. No. 6,990,366, filed Jan. 23, 2007.
Reexamination U.S. Appl. No. 90/009,104 & Reexamination U.S. Appl. No. 90/009,328, Notice of Intent to Issue Reexamination Certificate dated Nov. 20, 2009.
Reexamination U.S. Appl. No. 90/009,104 & Reexamination U.S. Appl. No. 90/009,328, Office Action dated Aug. 4, 2009.
Reexamination U.S. Appl. No. 90/009,104 & Reexamination U.S. Appl. No. 90/009,328, Office Action dated Sep. 30, 2009.
Reexamination U.S. Appl. No. 90/009,104, Office Action dated Oct. 16, 2008.
Reexamination U.S. Appl. No. 90/009,104, Order Granting Request for Reexamination dated Jun. 5, 2008.
Reexamination U.S. Appl. No. 90/009,104, Request for Reexamination of U.S. Pat. No. 6,990,366 filed Apr. 8, 2008.
Reexamination U.S. Appl. No. 90/009,328, Order Granting Request for Reexamination dated Dec. 9, 2008.
Reexamination U.S. Appl. No. 90/009,328, Request for Reexamination of U.S. Pat. No. 6,990,366 filed Nov. 10, 2008.
Reexamination U.S. Appl. No. 90/010,791, Notice of Intent to Issue Reexamination Certificate dated May 17, 2011.
Reexamination U.S. Appl. No. 90/010,791, Office Action dated Dec. 17, 2010.
Reexamination U.S. Appl. No. 90/010,791, Office Action dated May 28, 2010.
Reexamination U.S. Appl. No. 90/010,791, Order Granting Request for Reexamination dated Feb. 22, 2010.
Reexamination U.S. Appl. No. 90/010,791, Request for Reexamination of U.S. Pat. No. 6,990,366 filed Dec. 22, 2009.
Reexamination U.S. Appl. No. 90/011,730, Notice of Intent to Issue Reexam Certificate for U.S. Pat. No. 6,990,366 dated Apr. 5, 2012.
Reexamination U.S. Appl. No. 90/011,730, Office Action dated Jan. 11, 2012.
Reexamination U.S. Appl. No. 90/011,730, Order Granting Request for Reexamination of U.S. Pat. No. 6,990,366 dated Aug. 24, 2011.
Reexamination U.S. Appl. No. 90/011,730, Request for Reexamination of U.S. Pat. No. 6,990,366 filed Jun. 3, 2011.
Reexamination U.S. Appl. No. 95/002,113, Order Denying Request for Reexamination of U.S. Pat. No. 6,990,366 dated Nov. 13, 2012.
Reeexamination U.S. Appl. No. 95/002,113, Petition for Review of the Order Denying Request Reexamination of U.S. Pat. No. 6,990,366 dated Dec. 13, 2012.
Reexamination U.S. Appl. No. 95/002,113, Request for Reexamination of U.S. Pat. No. 6,990,366 filed Aug. 30, 2012.
Reexamination U.S. Appl. No. 95/002,162, Order Denying Request for Reexamination of U.S. Pat. No. 8,175,673 dated Nov. 13, 2012.
Reexamination U.S. Appl. No. 95/002,162, Petition for Review of the Order Denying Request Reexamination of U.S. Pat. No. 8,175,673 dated Dec. 13, 2012.
Reexamination U.S. Appl. No. 95/002,162, Request for Reexamination of U.S. Pat. No. 8,175,673 filed Sep. 7, 2012.
Related Publications (1)
Number Date Country
20180353110 A1 Dec 2018 US
Provisional Applications (1)
Number Date Country
61359816 Jun 2010 US
Continuations (1)
Number Date Country
Parent 14040674 Sep 2013 US
Child 16049091 US
Continuation in Parts (1)
Number Date Country
Parent 13171401 Jun 2011 US
Child 14040674 US