The present disclosure generally relates to methods, devices and systems relating to removing occlusions from vessels. More specifically, the present invention comprises providing a balloon
A variety of techniques and instruments have been developed for use in the removal or repair of tissue in arteries and similar body passageways, e.g., biological conduits. A frequent objective of such techniques and instruments is the removal of atherosclerotic plaques in a patient's arteries. Atherosclerosis is characterized by the buildup of fatty deposits (atheromas) in the intimal layer (under the endothelium) of a patient's blood vessels. Very often over time, what initially is deposited as relatively soft, cholesterol-rich atheromatous material hardens into a calcified atherosclerotic plaque. Such atheromas restrict the flow of blood, and therefore often are referred to as stenotic lesions or stenoses, the blocking material being referred to as stenotic material. If left untreated, such stenoses can cause angina, hypertension, myocardial infarction, strokes and the like.
The present invention is directed in various methods, devices and systems relating to providing a balloon on a sheath in combination with orbital atherectomy in order reduce the number of steps in the procedure. In certain embodiments, the balloon comprises adjunctive low pressure balloon for prevention of vessel trauma during dilatation.
While the invention is amenable to various modifications and alternative forms, specifics thereof are shown by way of example in the drawings and described in detail herein. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.
The handle 10 desirably contains an electric motor (or similar rotational drive mechanism, e.g., a turbine) for rotating the drive shaft 20 at low or high speeds. The handle 10 typically may be connected to a power source, such as compressed air delivered through a tube 16. A pair of fiber optic cables 25 may also be provided for monitoring the speed of rotation of the turbine and drive shaft 20. Details regarding such handles and associated instrumentation are well known in the industry. The handle 10 also desirably includes a control knob 11 for advancing and retracting the electric motor, or equivalent, and the drive shaft 20 with respect to the catheter 13 and the body of the handle.
The inflatable balloon 100 mounted on the tip of catheter 13 allows for rotational atherectomy to proceed with abrasive section 28, followed by advancement of the catheter 13 such that the inflatable balloon is within the treatment region of the vessel. Balloon 100 is illustrated in the various Figures as attached to outer surface of catheter 13 and as completely surrounding the outer surface of catheter 13 and this is the preferred embodiment. However, the skilled artisan will recognize that alternate embodiments may be provided to achieve the requisite dilatation. Inflation of the balloon 100 by introduction of the inflation media from inflation reservoir 19 is accomplished as is well understood by the skilled artisan to achieve dilatation of the treatment region post-atherectomy procedure. Such an arrangement eliminates the need to withdraw the atherectomy device and, subsequently, advance a balloon device back to the treatment site for dilatation. Thus, embodiments of the present invention eliminates the need for the extra time to remove the atherectomy device and insert and position a balloon. In addition, radiopaque dye and subsequent radiation exposure will be reduced.
In the embodiment of
A system according to
In the embodiment of
Thus, a system according to the embodiment of
A system for atherectomy and subsequent dilatation, comprising:
a sheath having a lumen therethrough, wherein the catheter and drive shaft are collinear with the sheath and wherein the catheter is rotatable and translatable within the sheath, wherein a portion of the inflatable balloon may be pulled proximally within the lumen of the sheath to adjust the length of the inflated balloon exposed outside of the lumen of the sheath.
In this embodiment, sheath 200 is positioned proximal to the treatment region, e.g., the occlusion, with balloon catheter and balloon 100 and drive shaft 20 and abrasive crown disposed within lumens 610 and 602, respectively. The operator may extend the drive shaft 20 distally and out of the drive shaft lumen 602 to accomplish the rotational atherectomy procedure with the exemplary abrasive crown. When completed, the drive shaft 20 and exemplary abrasive crown may be proximally pulled back into drive shaft lumen 602. At this point, the operator may extend the balloon catheter and balloon 100 distally and out of the balloon lumen 610 to the treatment region to inflate balloon 100 as described above and accomplish the required dilatation. When dilatation is complete, the operator deflates the balloon and withdraws the now-deflated balloon proximally into the balloon lumen 610 for removal.
In any of the above embodiments described above, or the equivalent, the balloon 100 may be micro-porous to enable delivery of a therapeutic agent to the vessel wall, e.g., an anti-restinosis agent. The balloon may also be coated with a drug for delivery of the therapeutic agent to the vessel wall. The balloon 100 of the present invention, when used for low-pressure dilatation comprises an acceptable fluid loss during the inflation cycle. Stent deployment may be an option in all embodiments described herein relating to balloon inflation.
As discussed, generally, atherectomy procedures are followed up with a balloon procedure to remodel the artery and to provide a larger lumen internal diameter (ID). Rotational atherectomy allows for subsequent low-pressure balloon dilatations. Low-pressure balloon dilatations of e.g., 2 to 4 atmospheres of pressure are much less traumatic to the vessel wall than the more typical 10 to 13 atmospheres of pressure. A preferred low-pressure balloon range using the devices and methods of the present invention comprises 1 to 8 atmospheres, a more preferred range comprises 2 to 6 atmospheres, and a still more preferred range comprises 2 to 4 atmospheres of pressure.
Various embodiments of the present invention may be incorporated into a rotational atherectomy system as described generally in U.S. Pat. No. 6,494,890, entitled “ECCENTRIC ROTATIONAL ATHERECTOMY DEVICE,” which is incorporated herein by reference. Additionally, the disclosure of the following co-owned patents or patent applications are herein incorporated by reference in their entireties: U.S. Pat. No. 6,295,712, entitled “ROTATIONAL ATHERECTOMY DEVICE”; U.S. Pat. No. 6,132,444, entitled “ECCENTRIC DRIVE SHAFT FOR ATHERECTOMY DEVICE AND METHOD FOR MANUFACTURE”; U.S. Pat. No. 6,638,288, entitled “ECCENTRIC DRIVE SHAFT FOR ATHERECTOMY DEVICE AND METHOD FOR MANUFACTURE”; U.S. Pat. No. 5,314,438, entitled “ABRASIVE DRIVE SHAFT DEVICE FOR ROTATIONAL ATHERECTOMY”; U.S. Pat. No. 6,217,595, entitled “ROTATIONAL ATHERECTOMY DEVICE”; U.S. Pat. No. 5,554,163, entitled “ATHERECTOMY DEVICE”; U.S. Pat. No. 7,507,245, entitled “ROTATIONAL ANGIOPLASTY DEVICE WITH ABRASIVE CROWN”; U.S. Pat. No. 6,129,734, entitled “ROTATIONAL ATHERECTOMY DEVICE WITH RADIALLY EXPANDABLE PRIME MOVER COUPLING”; U.S. Pat. No. 8,597,313, entitled “ECCENTRIC ABRADING HEAD FOR HIGH-SPEED ROTATIONAL ATHERECTOMY DEVICES”; U.S. Pat. No. 8,439,937, entitled “SYSTEM, APPARATUS AND METHOD FOR OPENING AN OCCLUDED LESION”; U.S. Pat. Pub. No. 2009/0299392, entitled “ECCENTRIC ABRADING ELEMENT FOR HIGH-SPEED ROTATIONAL ATHERECTOMY DEVICES”; U.S. Pat. Pub. No. 2010/0198239, entitled “MULTI-MATERIAL ABRADING HEAD FOR ATHERECTOMY DEVICES HAVING LATERALLY DISPLACED CENTER OF MASS”; U.S. Pat. Pub. No. 2010/0036402, entitled “ROTATIONAL ATHERECTOMY DEVICE WITH PRE-CURVED DRIVE SHAFT”; U.S. Pat. Pub. No. 2009/0299391, entitled “ECCENTRIC ABRADING AND CUTTING HEAD FOR HIGH-SPEED ROTATIONAL ATHERECTOMY DEVICES”; U.S. Pat. Pub. No. 2010/0100110, entitled “ECCENTRIC ABRADING AND CUTTING HEAD FOR HIGH-SPEED ROTATIONAL ATHERECTOMY DEVICES”; U.S. Design Pat. No. D610258, entitled “ROTATIONAL ATHERECTOMY ABRASIVE CROWN”; U.S. Design Pat. No. D6107102, entitled “ROTATIONAL ATHERECTOMY ABRASIVE CROWN”; U.S. Pat. Pub. No. 2009/0306689, entitled “BIDIRECTIONAL EXPANDABLE HEAD FOR ROTATIONAL ATHERECTOMY DEVICE”; U.S. Pat. Pub. No. 2010/0211088, entitled “ROTATIONAL ATHERECTOMY SEGMENTED ABRADING HEAD AND METHOD TO IMPROVE ABRADING EFFICIENCY”; U.S. Pat. Pub. No. 2013/0018398, entitled “ROTATIONAL ATHERECTOMY DEVICE WITH ELECTRIC MOTOR”; and U.S. Pat. No. 7,666,202, entitled “ORBITAL ATHERECTOMY DEVICE GUIDE WIRE DESIGN.” It is contemplated by this invention that the features of one or more of the embodiments of the present invention may be combined with one or more features of the embodiments of atherectomy devices described therein.
The present invention should not be considered limited to the particular examples described above, but rather should be understood to cover all aspects of the invention. Various modifications, equivalent processes, as well as numerous structures to which the present invention may be applicable will be readily apparent to those of skill in the art to which the present invention is directed upon review of the present specification.
This application claims priority to App. Ser. No. 61/858,881, entitled “Devices, Systems and Methods for an Atherectomy Device with Balloon Tipped Saline Sheath,” filed Jul. 26, 2013, and to App. Ser. No. 61/861,041, entitled “Devices, Systems and Methods for an Atherectomy Device with Balloon Tipped Saline Sheath and Having Adjunctive Low Pressure Balloon,” filed Aug. 1, 2013, the entire contents of each of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61858881 | Jul 2013 | US | |
61861041 | Aug 2013 | US |