Heart valves permit unidirectional flow of blood through the cardiac chambers to permit the heart to function as a pump. Valvular stenosis is one form of valvular heart disease that prevents blood from flowing through a heart valve, ultimately causing clinically significant heart failure in humans. Another form of valvular disease results from heart valves becoming incompetent. Failure of adequate heart valve closure permits blood to leak through the valve in the opposite direction to normal flow. Such reversal of flow through incompetent heart valves can cause heart failure in humans.
The human mitral valve is a complicated structure affected by a number of pathological processes that ultimately result in valvular incompetence and heart failure in humans. Components of the mitral valve include the left ventricle, left atrium, anterior and posterior papillary muscles, mitral annulus, anterior mitral leaflet, posterior mitral leaflet and numerous chordae tendonae. The anterior leaflet occupies roughly ⅔ of the mitral valve area whereas the smaller posterior leaflet occupies ⅓ of the area. The anterior mitral leaflet, however, hangs from the anterior ⅓ of the perimeter of the mitral annulus whereas the posterior mitral leaflet occupies ⅔ of the annulus circumference. Furthermore, the posterior mitral leaflet is often anatomically composed of three separate segments. In diastole, the anterior leaflet and the three posterior leaflets are pushed into the left ventricle opening. In systole, the leaflets are pushed toward the plane of the mitral annulus where the posterior leaflets and larger anterior leaflet come into coaptation to prevent blood flow from the left ventricle to the left atrium. The leaflets are held in this closed position by the chordae tendonae. Dysfunction or failure of one or more of these mitral components may cause significant mitral valvular regurgitation and clinical disease in humans.
Surgical treatment has been the gold standard since its introduction in the 1950s. Currently, there are two surgical options offered for treatment. The first, mitral valve replacement, requires complex surgery using cardiopulmonary bypass to replace the mitral valve using a mechanical or bioprosthetic valvular prosthesis. Although a time-tested and proven strategy for treatment, bioprostheic valves suffer from poor long-term durability and mechanical valves require anticoagulation. As an alternative, surgical mitral valve repair has emerged as a superior procedure to achieve mitral valve competence and normal function. This operation is really a collection of surgical techniques and prostheses that collectively are referred to a mitral valve repair. Each component of the mitral valve can be altered, replaced, repositioned, resected or reinforced to achieve mitral valve competence.
Mitral annuloplasty has become a standard component of surgical mitral valve repair. In performing this procedure, the circumference of the mitral valve annulus is reduced and/or reshaped by sewing or fixing a prosthetic ring or partial ring to the native mitral valve annulus. As a consequence of mitral annuloplasty, the posterior mitral leaflet often becomes fixed in a closed position, pinned against the posterior left ventricular endocardium. The opening and closure of the mitral valve is subsequently based almost entirely on the opening and closing of the anterior mitral valve leaflet.
The purpose and advantages of the present disclosure will be set forth in and become apparent from the description that follows. Additional advantages of the disclosed embodiments will be realized and attained by the methods and systems particularly pointed out in the written description hereof, as well as from the appended drawings.
To achieve these and other advantages and in accordance with the purpose of the disclosure, as embodied herein, in one aspect, the disclosure includes embodiments of a heart valve prosthesis. The prosthesis is configured to achieve inter-commissural self-alignment. It is preferably configured to automatically self-orient rotationally based on the native mitral commissures substantially about a central axis perpendicular to a plane substantially defined by the mitral annulus to simplify implantation. The inter-commissural self-alignment outward expansion naturally orients the prosthesis along the inter-commissural line and serves as the primary source of fixation. Accordingly, it is possible to achieve stentless and anchor-free fixation without apical tethering or a bulky sub-valvular prosthesis. Moreover, the prosthesis can be repositioned during and after delivery, and if required, can be completely retrieved even after deployment. The posterior-only embodiments create a non-regurgitant line of coaptation in coordination with a patient's native anterior mitral leaflet. This allows the treated valve to accommodate a range of loading conditions. The prosthesis additionally avoids left ventricular outflow obstruction, and is also amenable to retrograde and antegrade delivery. The leaflet(s) of the prosthesis include no free ends, rendering them less thrombogenic and less prone to failure. Moreover, the prosthesis geometry causes less flow agitation during ejection.
In some embodiments, prostheses are provided including left ventricular (“LV”) sub annulus anchors for deploying under the mitral annulus in the left ventricle. The framework for the prostheses can be made from a variety of materials, but are preferably made from a nickel-titanium alloy (NiTi). The deployable anchors can be NiTi loop frames attached to the main frame of the device by any desired technique. Preferably, coil-shaped stress relief loops are additionally provided bent into the wireframe forming the anchors and/or main frame of the prosthesis to permit the anchors to be fully collapsed without risk of fracture of the NiTi material. In some implementations, one or more such NiTi self expanding anchors are located proximate each commissure and along the posterior periphery of the implant. One or more (and sometimes all) of the collapsible NiTi ventricular anchors are held in a collapsed condition prior to and during deployment by a controllable tether threaded through the wire loop and/or stress loop and/or additional eyelet of each anchor. Prior to loading into the prosthesis delivery system, the LV anchors are all pulled together toward a central elongate axis defined by the delivery system by the controllable tether and locked at the back (proximal) end of the delivery system. The prosthesis is then radially compressed (in some cases partially due to stretching it along the axis of the delivery system and loaded into the delivery system. The delivery system can then be advanced to the mitral region either percutaneously via the Left Atrium (“LA”) or transapically via the left ventricle. In some embodiments, the LV anchors are covered with tissue or other membrane to help facilitate prevention of paravalvular leaks.
All prostheses disclosed herein can also be provided with an atrial expansion loop for seating in the left atrium and extending around the entire periphery of the atrium as described in International Patent Application No. PCT/US2013/028774, filed Mar. 2, 2013, which is incorporated by reference herein above.
In accordance with further implementations, the prostheses described herein can be used with active rail fixation techniques such as those described in U.S. patent application Ser. No. 14/074,517 filed Nov. 7, 2013 and International Application No. PCT/US2011/59586, filed Nov. 7, 2011 which are both incorporated by reference herein above. For example, rail anchors can be positioned proximate the middle of the native posterior mitral sub-annulus and/or one at each commissure or attached along the posterior leaflets. The rail tether can be pre-loaded through one or more guide eyelets or loops formed into or onto the prosthesis when initially loading the delivery system. The prosthesis can then be delivered over the tethers and the prosthesis can be locked into place. The tethers can be cut and the delivery system can accordingly be removed. Any rail delivery technique described or incorporated by reference herein can be used on any partial or full mitral or tricuspid valvular prosthesis described herein or incorporated herein by reference.
In some embodiments, the disclosure provides a heart valve prosthesis, including a first framework of a plurality semi-circular members adapted to deploy from the distal end of a first shaft within a catheter to occupy a majority of the circumference substantially coinciding with the circumferential extent of a native posterior mitral leaflet above the mitral valve annulus in the left atrium. A first semi-circular member is adapted to exert an outward radial force above the anterior annulus against the left atrium to fix the heart valve prosthesis in the desired position. A second semi-circular member is configured to exert an outward radial force above a posterior region of the mitral annulus (posterior to the mitral valve commissures) to fix the heart valve prosthesis in position. The first and second semi-circular members are configured to be joined to a main body of the prosthesis at their terminal ends. Three self expanding vertically oriented adjustable loop anchors can be provided to deploy above the mitral annulus to prevent the prosthesis from migrating to the LV, and to ensure proper positioning of the prosthesis so that the native anterior leaflet properly closes against the prosthesis.
In some implementations, the disclosure provides a partial valvular prosthesis for implantation over a native mitral valve. The prosthesis includes a main circumferential frame having a supra annular frame portion for resting above the mitral annulus over a native posterior mitral leaflet and a sub annular frame portion for extending downwardly into a native left ventricle. The main circumferential frame is preferably substantially covered by a curved membrane. The prosthesis also includes at least one deployable anchor attached to the main circumferential frame, the deployable anchor having a body formed from a wire material including at least one stress coil having at least one turn, the at least one stress coil being configured to urge the anchor outwardly to help hold the prosthesis in place upon deployment into a native mitral location.
If desired, the at least one deployable anchor can be configured to deploy against a portion of a native left ventricular site. The prosthesis can include at least two deployable anchors including at least one stress coil having at least one turn that are configured to self-expand against the left ventricle to help hold the prosthesis in place. In some embodiments, the prosthesis includes three deployable anchors, each including at least one stress coil having at least one turn that are configured to self-expand against the left ventricle to help hold the prosthesis in place. If desired, two of the aforementioned anchors can be configured to self expand laterally intro the ventricle near the middle of the mitral annulus, and the third anchor can be configured to self expand to a location underneath a central region of the posterior mitral annulus.
In another implementation, a third anchor can be formed into the main frame of the prosthesis and is configured to self expand toward a location underneath a central region of the posterior mitral annulus. The membrane can be stretched over the third anchor. The membrane of the prosthesis can define a curved plane that stretches from above the mitral annulus proximate the periphery of the mitral annulus and curves downwardly into the left ventricle and bends upwardly to contact the underside of a central posterior region of the mitral annulus. The main circumferential frame can be formed from at least one perimeter wire loop that traverses the perimeter of the membrane. If desired, the at least one perimeter wire loop can form a saddle shape when the prosthesis is deployed. The main circumferential frame portion can be formed by an outer perimeter structural wire attached to an inner circumferential loop, wherein the at least one deployable anchor is attached to the inner circumferential loop. In various embodiments, the at least one stress coil can be disposed in a sub annular location, or supra annular location, as desired. If desired, the outer perimeter structural wire can extend outwardly laterally beyond the inner loop to form crescent shaped frames on each side of the prosthesis to facilitate positioning of the implant upon installation.
In further embodiments, the prosthesis can further include at least one counter fixation retainer disposed on a supra annular portion of the prosthesis that sits in the left atrium after the prosthesis is implanted in a mitral valve annulus. Preferably, the prosthesis includes a plurality of counter fixation retainers disposed on the prosthesis, wherein at least two of the retainers engage the left atrial wall proximate opposing native commissures and wherein at least one of the retainers engages the left atrial wall proximate a central posterior location of the mitral annulus. If desired, the prosthesis can be configured to expand outwardly toward the commissures during implantation and self-align in the mitral opening. The stress loop(s) can be between about 3 mm in diameter and about 8 mm in outer diameter (e.g., about 3, 4, 5, 6, 7 or 8 mm in diameter), among others. In some implementations, the counter fixation retainer and stress loop can be formed from the same length of wire. If desired, the main circumferential frame portion can be formed from a NiTi alloy wire of any suitable diameter or gauge. Moreover the frame can be formed from a plurality of wires of any desired materials that can be joined together using any desired techniques (e.g., brazing, soldering, welding, adhesives and the like).
In some embodiments, the prosthesis can include a first attachment point for receiving a first control rod of a delivery system, such as one disposed in a central region of the sub annular frame portion. Moreover, the prosthesis can further include a second attachment point for receiving a second control rod of the delivery system, such as one disposed in a central posterior region of the supra annular frame portion. If desired, the prosthesis can be configured to collapse away from the commissures when the first attachment point is urged away from the second attachment point. If desired, the prosthesis can include at least one guide eyelet for receiving a tether of a rail delivery system. In some embodiments, a stress coil can act as such an eyelet.
The disclosure further provides a prosthesis delivery system. The system includes a collapsed partial valvular prosthesis for implantation over a native mitral valve. The prosthesis includes a main circumferential frame having a supra annular frame portion for resting above the mitral annulus over a native posterior mitral leaflet and a sub annular frame portion for extending downwardly into a native left ventricle, the main circumferential frame being substantially covered by a curved membrane. The prosthesis further includes at least one deployable anchor attached to the main circumferential frame, the deployable anchor having a body formed from a wire material including at least one stress coil having at least one turn, the at least one stress coil being configured to urge the anchor outwardly to help hold the prosthesis in place upon deployment into a native mitral location. The delivery system contains the prosthesis mounted therein. The delivery system includes an elongate catheter having a proximal end and a distal end, and includes an elongate outer tubular member having a proximal end and a distal end, and an elongate tubular core longitudinally displaceable with respect to the elongate outer tubular member, the elongate tubular core including a non-traumatizing distal tip mounted thereon, the elongate tubular core assembly being configured to be advanced distally out of the elongate tubular outer member. The delivery system further includes a first elongate control rod disposed within and along the elongate outer tubular member having a proximal end and a distal end near the distal end of the elongate outer tubular member, the first elongate control rod being configured to be advanced distally out of the elongate outer tubular member after the distal tip is advanced distally out of the elongate outer tubular member, the first elongate control rod being removably connected to a first attachment point on the prosthesis. The delivery system also includes a second elongate control rod longitudinally displaceable with respect to the first elongate control rod, the second elongate control rod being disposed within and along the elongate outer tubular member having a proximal end and a distal end near the distal end of the elongate outer tubular member, the second elongate control rod being configured to be advanced distally out of the elongate outer tubular member after the distal tip is advanced distally out of the elongate outer tubular member, the second elongate control rod being removably connected to a second attachment point on the prosthesis, wherein the prosthesis is mounted within the elongate tubular outer member and can be advanced distally out of the elongate tubular outer member by advancing the first and second elongate control rods distally outwardly from the elongate tubular outer member.
If desired, the prosthesis can be configured to be expanded along a direction perpendicular to an axis defined by the delivery system by moving the distal ends of the first and second elongate control rods toward each other. If desired, the delivery system can further include a tether pre-routed through a portion of the at least one deployable anchor, wherein the at least one deployable anchor can be permitted to expand outwardly when the tether is loosened. In some embodiments, the delivery system can further include an anchor delivery member disposed within and along the elongate outer tubular member, the anchor delivery member including a torqueable proximal end and an anchor attached to a distal end of the anchor delivery member, the anchor delivery member being configured to be advanced distally outwardly from the distal end of the elongate outer tubular member after the prosthesis is advanced distally outwardly from the elongate outer tubular member.
The disclosure further provides a method for delivering a prosthesis, including providing a collapsed partial valvular prosthesis for implantation over a native mitral valve, including a main circumferential frame having a supra annular frame portion for resting above the mitral annulus over a native posterior mitral leaflet and a sub annular frame portion for extending downwardly into a native left ventricle, the main circumferential frame being substantially covered by a curved membrane, and at least one deployable anchor attached to the main circumferential frame, the deployable anchor having a body formed from a wire material including at least one stress coil having at least one turn, the at least one stress coil being configured to urge the anchor outwardly to help hold the prosthesis in place upon deployment into a native mitral location. The method further includes mounting the prosthesis within a delivery system, the delivery system including an elongate catheter having a proximal end and a distal end, having an elongate outer tubular member having a proximal end and a distal end, an elongate tubular core longitudinally displaceable with respect to the elongate outer tubular member, the elongate tubular core including a non-traumatizing distal tip mounted thereon, the elongate tubular core assembly being configured to be advanced distally out of the elongate tubular outer member, a first elongate control rod disposed within and along the elongate outer tubular member having a proximal end and a distal end near the distal end of the elongate outer tubular member, the first elongate control rod being configured to be advanced distally out of the elongate outer tubular member after the distal tip is advanced distally out of the elongate outer tubular member, the first elongate control rod being removably connected to a first attachment point on the prosthesis, and a second elongate control rod longitudinally displaceable with respect to the first elongate control rod, the second elongate control rod being disposed within and along the elongate outer tubular member having a proximal end and a distal end near the distal end of the elongate outer tubular member, the second elongate control rod being configured to be advanced distally out of the elongate outer tubular member after the distal tip is advanced distally out of the elongate outer tubular member, the second elongate control rod being removably connected to a second attachment point on the prosthesis, wherein the prosthesis is mounted within the elongate tubular outer member and can be advanced distally out of the elongate tubular outer member by advancing the first and second elongate control rods distally outwardly from the elongate tubular outer member. The method can further include advancing the distal end of the delivery system to a target location proximate a patient's mitral valve, advancing the elongate tubular core longitudinally and distally with respect to the elongate outer tubular member, and advancing the prosthesis distally with respect to the elongate outer tubular member by advancing the first and second elongate control rods distally with respect to the elongate outer tubular member.
The method can further include expanding the prosthesis laterally along a direction perpendicular to an axis defined by the delivery system by moving the distal ends of the first and second elongate control rods toward each other. The method can further include maneuvering the supra annular frame portion above the mitral annulus over the native posterior mitral leaflet and maneuvering the sub annular frame portion downwardly into the native left ventricle. The method can further include permitting the supra annular frame portion to expand laterally outwardly toward the commissures and to self-align within the mitral opening. The method can still further include releasing tension on a tether pre-routed through a portion of the at least one deployable anchor, wherein the at least one deployable anchor expands outwardly when tension on the tether is released.
If desired, the method can include advancing an anchor delivery member disposed within and along the elongate outer tubular member distally outwardly from the distal end of the elongate outer tubular member after the prosthesis is advanced distally outwardly from the elongate outer tubular member. Torque can be applied to a torqueable proximal end of the anchor delivery member to drive an anchor situated at a distal end of the anchor delivery member into cardiac tissue to hold the prosthesis in place.
In some implementations, the distal end of the delivery system can be advanced to a target location proximate a patient's mitral valve via a transapical approach through the left ventricle toward the left atrium, wherein the supra-annular frame portion of the prosthesis is oriented toward the distal end of the delivery system. In other embodiments, the distal end of the delivery system can be advanced to a target location proximate a patient's mitral valve via a percutaneous approach through the left atrium toward the left ventricle, wherein the sub-annular frame portion of the prosthesis is oriented toward the distal end of the delivery system.
The disclosure also provides a full valvular prosthesis for implantation over a native mitral valve. The prosthesis includes a main circumferential frame having a supra annular frame portion for resting above the mitral annulus over at least a native posterior mitral leaflet and a sub annular frame portion for extending downwardly into a native left ventricle, the main circumferential frame being substantially covered by a membrane, and at least one deployable anchor attached to the main circumferential frame, the deployable anchor having a body formed from a wire material including at least one stress coil having at least one turn, the at least one stress coil being configured to urge the anchor outwardly to help hold the prosthesis in place upon deployment into a native mitral location. The full prosthesis can be delivered to the mitral annulus or other anatomical target location using any technique described herein or in patent applications incorporated by reference herein.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and are intended to provide further explanation of the embodiments disclosed herein.
The accompanying drawings, which are incorporated in and constitute part of this specification, are included to illustrate and provide a further understanding of the method and system of the disclosure. Together with the description, the drawings serve to explain the principles of the disclosed embodiments.
The foregoing and other objects, aspects, features, and advantages of exemplary embodiments will become more apparent and may be better understood by referring to the following description taken in conjunction with the accompanying drawings, in which:
Reference will now be made in detail to the present preferred embodiments of the disclosure, examples of which are illustrated in the accompanying drawings. The method and corresponding steps of the disclosed embodiments will be described in conjunction with the detailed description of the system.
Exemplary embodiments provide systems, devices and methods for repairing or replacing elements of the mitral valve. Exemplary elements of the valve prosthesis include the device frame, prosthetic posterior mitral leaflet equivalent and elements to prevent or reduce abnormal prolapse of the native anterior mitral leaflet during systole, as well a full mitral replacement prosthesis. Exemplary methods of implanting the valve prosthesis include direct open surgical placement, minimally invasive surgical placement either with or without the use of cardiopulmonary bypass, and totally catheter based implantation. Exemplary methods for maintaining the valve prosthesis in the preferred mitral annular location include external compression, compression following percutaneous deliver, or rail or suture guided implantation and seating with subsequent active or passive fixation of the valve prosthesis based upon the rail or suture guides.
In some implementations, the disclosure provides a partial valvular prosthesis for implantation over a native mitral valve. The prosthesis includes a main circumferential frame having a supra annular frame portion for resting above the mitral annulus over a native posterior mitral leaflet and a sub annular frame portion for extending downwardly into a native left ventricle. The main circumferential frame is preferably substantially covered by a curved membrane. The prosthesis also includes at least one deployable anchor attached to the main circumferential frame, the deployable anchor having a body formed from a wire material including at least one stress coil having at least one turn, the at least one stress coil being configured to urge the anchor outwardly to help hold the prosthesis in place upon deployment into a native mitral location.
For purposes of illustration, and not limitation, embodiments of a partial prosthesis and aspects thereof are illustrated in the embodiments of
By way of further illustration,
As illustrated in
Prosthesis 1600 is provided in a collapsed condition mounted on a delivery catheter. When expanded, as illustrated in
Valve frame 1600 further includes a sub annular frame portion 1604 that extends downwardly into a patient's left ventricle formed in part by left ventricular extensions 1650 that meet at the bottom of the valve frame structure 1600.
It will be appreciated by those of skill in the art that valve frame 1600, as taught in 61/862,041, has a geometry that causes the loops 1620, 1610 to rest above the mitral annuls to permit the sub annular frame portion 1604 to extend downwardly into a native left ventricle in a manner that helps the valve frame geometrically avoid the native anterior mitral valve leaflet. This is because the left commissure markers 1612 are physically disposed at a location to be aligned with the native mitral valve commissures of the patient. When the markers 1612 are so aligned with the native mitral commissures, the posterior loop 1620 naturally aligns with and is laid over the mitral valve annulus in the posterior region of the mitral annulus between the two commissures. This alignment further ensures that loop 1610 is placed over the anterior mitral valve leaflet, avoiding the location 1605 of the native mitral valve leaflet so as to not interfere in the operation of the native anterior mitral valve leaflet. The alignment further ensures that the left ventricular extensions extend downwardly into the left ventricle, but not in the region 1605 of the anterior native mitral valve leaflet of the patient. Particularly, one of skill in the art will appreciate that the extensions 1650 lay off to the lateral sides of the left ventricle disposed below the commissure markers 1612.
The geometry of the valve frame/prosthesis 1600 thus permits delivering the mitral valve prosthesis 1600 into the patient's heart using a delivery catheter, deploying the supra annular frame portion of the main circumferential frame above the mitral annulus, and deploying the sub annular frame portion 1604 of the mitral valve prosthesis downwardly through a main opening of the patient's mitral valve into a posterior region of a native left ventricle of the patient in a location that is posterior with respect to native commissures of the patient's mitral valve. In so doing, the sub annular frame portion extends below the mitral annulus proximate the posterior ventricular wall, and the sub annular frame portion does not substantially interfere with operation of the anterior native mitral valve leaflet of the patient when deployed. As such, the sub annular frame portion 1604 of the mitral valve prosthesis, upon installation, does not interfere with the opening and closing of the native anterior mitral valve leaflet and also extends along the ventricular wall along the posterior region of the mitral annulus. Deployment of the sub annular frame portion includes deploying a surface 1670 illustrated in
All statements herein reciting principles, aspects, and embodiments of the invention, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure.
The methods and systems of the present disclosure, as described above and shown in the drawings, provide for improved techniques for treating mitral valves of patients. It will be apparent to those skilled in the art that various modifications and variations can be made in the devices, methods and systems of the present disclosure without departing from the spirit or scope of the disclosure. Thus, it is intended that the present disclosure include modifications and variations that are within the scope of the subject disclosure and equivalents.
This patent application is a continuation of and claims the benefit of priority to U.S. patent application Ser. No. 14/453,478, filed Aug. 4, 2014, which in turn claims the benefit of priority to International Application No. PCT/US2014/49629, filed Aug. 4, 2014, which claims the benefit of priority to U.S. Provisional Patent Application Ser. No. 61/862,041, filed Aug. 4, 2013, U.S. Provisional Patent Application Ser. No. 61/878,264, filed Sep. 16, 2013 and U.S. Provisional Patent Application Ser. No. 62/007,369, filed Jun. 3, 2014. This application is also related to U.S. patent application Ser. No. 14/074,517 filed Nov. 7, 2013 which in turn claims the benefit of U.S. Provisional Patent Application Ser. No. 61/723,734, filed Nov. 7, 2012, U.S. patent application Ser. No. 13/240,793, filed Sep. 22, 2011, International Application No. PCT/US2013/28774, filed Mar. 2, 2013, International Application No. PCT/US2011/59586, filed Nov. 7, 2011. The entire contents of each of the above referenced patent applications is incorporated herein by reference for any purpose whatsoever.
Number | Name | Date | Kind |
---|---|---|---|
4106129 | Carpentier et al. | Aug 1978 | A |
4259753 | Liotta et al. | Apr 1981 | A |
4666442 | Arru et al. | May 1987 | A |
4692164 | Dzemeshkevich et al. | Sep 1987 | A |
5411552 | Andersen et al. | May 1995 | A |
5449384 | Johnson | Sep 1995 | A |
5606928 | Religa et al. | Mar 1997 | A |
5788715 | Watson, Jr. et al. | Aug 1998 | A |
5843167 | Dwyer | Dec 1998 | A |
5861028 | Angell | Jan 1999 | A |
5895410 | Forber et al. | Apr 1999 | A |
5928281 | Huynh et al. | Jul 1999 | A |
6059769 | Lunn et al. | May 2000 | A |
6106510 | Lunn et al. | Aug 2000 | A |
6375774 | Lunn et al. | Apr 2002 | B1 |
6599303 | Peterson | Jul 2003 | B1 |
6602271 | Adams et al. | Aug 2003 | B2 |
6716231 | Rafiee et al. | Apr 2004 | B1 |
6733525 | Yang et al. | May 2004 | B2 |
6790229 | Berreklouw | Sep 2004 | B1 |
6797000 | Simpson et al. | Sep 2004 | B2 |
6800081 | Parodi | Oct 2004 | B2 |
6866677 | Douk et al. | Mar 2005 | B2 |
6893459 | Macoviak | May 2005 | B1 |
6911036 | Douk et al. | Jun 2005 | B2 |
6953476 | Shalev | Oct 2005 | B1 |
6960217 | Bolduc | Nov 2005 | B2 |
7044958 | Douk et al. | May 2006 | B2 |
7066946 | Douk et al. | Jun 2006 | B2 |
7189259 | Simionescu et al. | Mar 2007 | B2 |
7195641 | Palmaz et al. | Mar 2007 | B2 |
7201772 | Schwammenthal et al. | Apr 2007 | B2 |
7294135 | Stephens et al. | Nov 2007 | B2 |
7316706 | Bloom et al. | Jan 2008 | B2 |
7399315 | Iobbi | Jul 2008 | B2 |
7425219 | Quadri | Sep 2008 | B2 |
7442204 | Schwammenthal et al. | Oct 2008 | B2 |
7442207 | Rafiee | Oct 2008 | B2 |
7445631 | Salahieh et al. | Nov 2008 | B2 |
7481838 | Carpentier et al. | Jan 2009 | B2 |
7491232 | Bolduc et al. | Feb 2009 | B2 |
7524330 | Berreklouw | Apr 2009 | B2 |
7655040 | Douk et al. | Feb 2010 | B2 |
7682352 | Rafiee et al. | Mar 2010 | B2 |
7699892 | Rafiee et al. | Apr 2010 | B2 |
7716801 | Douk et al. | May 2010 | B2 |
7753840 | Simionescu et al. | Jul 2010 | B2 |
7753949 | Lamphere et al. | Jul 2010 | B2 |
7780726 | Seguin | Aug 2010 | B2 |
7799069 | Bailey et al. | Sep 2010 | B2 |
7806917 | Xiao | Oct 2010 | B2 |
7806919 | Bloom et al. | Oct 2010 | B2 |
7815673 | Bloom et al. | Oct 2010 | B2 |
7947072 | Yang et al. | May 2011 | B2 |
7955384 | Rafiee et al. | Jun 2011 | B2 |
7972370 | Douk et al. | Jul 2011 | B2 |
7998188 | Zilla et al. | Aug 2011 | B2 |
8002825 | Letac et al. | Aug 2011 | B2 |
8052750 | Tuval et al. | Nov 2011 | B2 |
8062355 | Figulla et al. | Nov 2011 | B2 |
8070802 | Lamphere et al. | Dec 2011 | B2 |
8092518 | Schreck | Jan 2012 | B2 |
8092520 | Quadri | Jan 2012 | B2 |
8092524 | Nugent et al. | Jan 2012 | B2 |
8226710 | Nguyen et al. | Jul 2012 | B2 |
8252051 | Chau et al. | Aug 2012 | B2 |
8308798 | Pintor et al. | Nov 2012 | B2 |
8337541 | Quadri et al. | Dec 2012 | B2 |
8348995 | Tuval et al. | Jan 2013 | B2 |
8348996 | Tuval et al. | Jan 2013 | B2 |
8353954 | Cai et al. | Jan 2013 | B2 |
8353955 | Styrc et al. | Jan 2013 | B2 |
20010021872 | Bailey et al. | Sep 2001 | A1 |
20020032481 | Gabbay | Mar 2002 | A1 |
20020138138 | Yang | Sep 2002 | A1 |
20030033009 | Gabbay | Feb 2003 | A1 |
20030055495 | Pease et al. | Mar 2003 | A1 |
20030065386 | Weadock | Apr 2003 | A1 |
20030097172 | Shalev et al. | May 2003 | A1 |
20040087998 | Lee et al. | May 2004 | A1 |
20040127916 | Bolduc et al. | Jul 2004 | A1 |
20040260317 | Bloom et al. | Dec 2004 | A1 |
20050038508 | Gabbay | Feb 2005 | A1 |
20050043790 | Seguin | Feb 2005 | A1 |
20050055082 | Ben-Muvhar et al. | Mar 2005 | A1 |
20050137690 | Salahieh | Jun 2005 | A1 |
20050137769 | Salahieh et al. | Jun 2005 | A1 |
20050143809 | Salahieh et al. | Jun 2005 | A1 |
20050177180 | Kaganov et al. | Aug 2005 | A1 |
20050273135 | Chanduszko et al. | Dec 2005 | A1 |
20050288706 | Widomski et al. | Dec 2005 | A1 |
20060085012 | Dolan | Apr 2006 | A1 |
20060106449 | Ben-Muvhar | May 2006 | A1 |
20060106450 | Ben-Muvhar | May 2006 | A1 |
20060167494 | Suddaby | Jul 2006 | A1 |
20060173537 | Yang et al. | Aug 2006 | A1 |
20070010851 | Chanduszko et al. | Jan 2007 | A1 |
20070016288 | Gurskis | Jan 2007 | A1 |
20070043435 | Seguin et al. | Feb 2007 | A1 |
20070067029 | Gabbay | Mar 2007 | A1 |
20070250160 | Rafiee | Oct 2007 | A1 |
20070255398 | Yang et al. | Nov 2007 | A1 |
20070260305 | Drews et al. | Nov 2007 | A1 |
20070288089 | Gurkis et al. | Dec 2007 | A1 |
20070293942 | Mizraee | Dec 2007 | A1 |
20080021537 | Ben-Muvhar et al. | Jan 2008 | A1 |
20080065191 | Bolduc et al. | Mar 2008 | A1 |
20080071361 | Tuval | Mar 2008 | A1 |
20080071369 | Tuval | Mar 2008 | A1 |
20080077234 | Styrc | Mar 2008 | A1 |
20080125860 | Webler et al. | May 2008 | A1 |
20080208328 | Antocci et al. | Aug 2008 | A1 |
20080221672 | Amphere et al. | Sep 2008 | A1 |
20080281411 | Berreklouw | Nov 2008 | A1 |
20090005863 | Goetz et al. | Jan 2009 | A1 |
20090062841 | Amplatz et al. | Mar 2009 | A1 |
20090149949 | Quinn | Jun 2009 | A1 |
20090204133 | Melzer | Aug 2009 | A1 |
20090270966 | Douk et al. | Oct 2009 | A1 |
20090270976 | Douk et al. | Oct 2009 | A1 |
20090306768 | Quadri | Dec 2009 | A1 |
20090319038 | Gurskis et al. | Dec 2009 | A1 |
20100036479 | Hill et al. | Feb 2010 | A1 |
20100082094 | Quadri et al. | Apr 2010 | A1 |
20100100167 | Bortlein et al. | Apr 2010 | A1 |
20100174363 | Castro | Jul 2010 | A1 |
20100179648 | Richter et al. | Jul 2010 | A1 |
20100179649 | Richter et al. | Jul 2010 | A1 |
20100185275 | Richter et al. | Jul 2010 | A1 |
20100249923 | Alkhatib et al. | Sep 2010 | A1 |
20100262232 | Annest | Oct 2010 | A1 |
20100280606 | Naor | Nov 2010 | A1 |
20100298931 | Quadri et al. | Nov 2010 | A1 |
20110112632 | Chau et al. | May 2011 | A1 |
20110137409 | Yang et al. | Jun 2011 | A1 |
20110172784 | Richter et al. | Jul 2011 | A1 |
20110282438 | Drews et al. | Nov 2011 | A1 |
20110313515 | Quadri et al. | Dec 2011 | A1 |
20110319988 | Schankereli et al. | Dec 2011 | A1 |
20110319989 | Lane | Dec 2011 | A1 |
20110319990 | Macoviak | Dec 2011 | A1 |
20120022639 | Hacohen | Jan 2012 | A1 |
20120059450 | Chiang et al. | Mar 2012 | A1 |
20120078353 | Quadri et al. | Mar 2012 | A1 |
20120078360 | Rafiee | Mar 2012 | A1 |
20120179086 | Shank | Jul 2012 | A1 |
20120179244 | Schankereli et al. | Jul 2012 | A1 |
20120215303 | Quadri et al. | Aug 2012 | A1 |
20120245623 | Kariniemi et al. | Sep 2012 | A1 |
20120316642 | Yu et al. | Dec 2012 | A1 |
20120323316 | Chau et al. | Dec 2012 | A1 |
20130190861 | Chau | Jul 2013 | A1 |
20130282054 | Osypka | Oct 2013 | A1 |
20140018906 | Rafiee | Jan 2014 | A1 |
20140039083 | Rafiee | Feb 2014 | A1 |
20140067054 | Chau | Mar 2014 | A1 |
20140128965 | Rafiee | May 2014 | A1 |
20140163608 | Osypka | Jun 2014 | A1 |
20140163668 | Rafiee | Jun 2014 | A1 |
20140257361 | Prom | Sep 2014 | A1 |
20140257373 | Prom | Sep 2014 | A1 |
20140324164 | Gross | Oct 2014 | A1 |
20140343669 | Lane | Nov 2014 | A1 |
20140358223 | Rafiee et al. | Dec 2014 | A1 |
20140379074 | Spence | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
2412397 | Feb 2012 | EP |
100 718 | Dec 2010 | RU |
WO2007121314 | Oct 2007 | WO |
2012061809 | May 2012 | WO |
WO2013131069 | Sep 2013 | WO |
WO2015069947 | May 2015 | WO |
WO2015148821 | Oct 2015 | WO |
Entry |
---|
International Search Report for co-pending international application No. PCT/US2013/028774, dated Jun. 14, 2013. |
International Preliminary Report on Patentability and Written Opinion, on related application No. PCT/US2014/064431 dated Mar. 26, 2015. |
International Search Report, for related application No. PCT/US2015/022782, dated Jun. 18, 2015. |
Patent Examination Report issued in related Australian patent application No. 2013205892, dated Oct. 13, 2015. |
USPTO's Non-Final Office Action in related U.S. Appl. No. 13/886,983, dated Dec. 24, 2015. |
International Search Report, for related application No. PCT/US2011/059586, dated May 25, 2012. |
International Preliminary Report on Patentability and Written Opinion, or related application No. PCT/US2011/059586, dated May 25, 2012. |
BioIntegral Surgical, Mitral Valve Restoration System, 2009. |
Number | Date | Country | |
---|---|---|---|
20190254821 A1 | Aug 2019 | US |
Number | Date | Country | |
---|---|---|---|
62007369 | Jun 2014 | US | |
61878264 | Sep 2013 | US | |
61862041 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14453478 | Aug 2014 | US |
Child | 16400020 | US | |
Parent | PCT/US2014/049629 | Aug 2014 | US |
Child | 14453478 | US |