The present invention relates generally to the field of treatment for clogged glands and/or partially clogged glands of the eye, and particularly, to a thermal compress for providing heat to an eye region for treating the clogged glands.
Many people experience dry eye syndrome. One of the causes of dry eyes is that the oil glands of the eyes, known as the Meibomian glands, become clogged. One condition that relates to a blockage or other abnormality of the Meibomian glands is referred to as Meibomian gland dysfunction (MGD). For a person with MGD, the Meibomian glands do not secrete enough oil into the eyes. When tears are inside the eye, they will quickly evaporate unless there is a layer of oil on top. The oil prevents evaporation of tears and also helps lubricate the eyes. Because the tears then evaporate too quickly, MGD is associated with dry eye syndrome. MGD also relates to an eyelid problem called blepharitis which causes inflammation of the eyelids.
A common recommendation from medical professionals for treatment of dry eye syndrome and/or blepharisis is to take a fabric eye mask, wet it, and then heat it in the microwave for 20 seconds before applying to the eye region to unclog the glands. There are two primary issues associated with this method. First, the heat very quickly dissipates and becomes ineffective. Second, the fabric on the mask is not directly focused on the target area, but rather heats up the entire general eye area including the eyebrows and upper cheeks.
There is, therefore, a need for a more effective treatment of MGD, dry eye syndrome, blepharitis, and/or any other condition that involves clogged glands in the eye region.
A system for treating clogged glands of the eye includes a heated eye mask and an electrical cord. The heated eye mask includes an outer layer of surface material, an inner layer of surface material, and a carbon fiber heating element. The outer layer of surface material is configured to be positioned away from an eye region of a user. The inner layer of surface material is configured to contact the eye region of the user. The carbon fiber heating element is disposed between the outer layer of surface material and the inner layer of surface material in a therapeutic region of the heated eye mask. The therapeutic region of the heated eye mask is a portion of the heated eye mask configured to cover only an area of the eye region of the user extending along the Meibomian glands of the eye. A thermally conductive material is in contact with the carbon fiber heating element and the inner layer of surface material to evenly distribute heat across the therapeutic region of the heated eye mask. The electrical cord is coupled to the heated eye mask for providing power to the heated eye mask.
A system for treating clogged glands of the eye includes a heated eye mask, and an electrical cord. The heated eye mask includes an outer layer of surface material, an inner layer of surface material, and a microwire. The outer layer of surface material is configured to be positioned away from an eye region of a user. The inner layer of surface material is configured to contact the eye region of the user. The microwire is disposed between the outer layer of surface material and the inner layer of surface material in a therapeutic region of the heated eye mask. The therapeutic region of the heated eye mask is a portion of the heated eye mask configured to cover only an area of the eye region of the user extending along the Meibomian glands of the eye. A thermally conductive material is in contact with the microwire and the inner layer of surface material to evenly distribute heat across the therapeutic region of the heated eye mask. The electrical cord is coupled to the heated eye mask for providing power to the heated eye mask.
One cause of dry or irritated eyes is blockage of the Meibomian glands of the eyes. The Meibomian glands are depicted in
As shown in
The power source 200, shown in
Referring to
In some embodiments, the heating element 140 is stitched to one or more intermediate layers 144 that are positioned or attached (e.g., by stitching or adhesive) between the first layer of surface material 112 and the second layer of surface material 114. In such embodiments, the heating element 140 may be positioned and stitched in between two intermediate layers 144. The intermediate layer(s) 144 assist in maintaining the heating element 140 in its desired shape and positioned in the therapeutic region 142. The material of the intermediate layer(s) 144 is any material having adequate strength and structure to hold the heating element 140 in position. In some embodiments, there is a piece of thermally conductive material 146 positioned between second layer of surface material 114 and the heating element 140 (i.e., towards the user's eye) in both therapeutic regions 142A, 142B. The thermally conductive material 146 is configured to evenly disperse the heat generated by the heating element 140. The material is preferably a conductive fabric made from, coated, or blended with conductive metals. In some embodiments, a base material, such as cotton, wool, polyester, or nylon, is coated or blended with the conductive metal. The conductive metal may be gold, carbon, titanium, nickel, silver, or copper, for example. The thermal conductive material 146 is preferably a small piece of material that is sized and configured to cover only the therapeutic region 142, therefore further assisting in the targeted therapy to only the area of the eye in which the Meibomian glands are found. To this end, in some embodiments, an additional blocking material 150, for example, a thermal blocking material, may be added in the area of the bridge of the user's nose which prevent the spread of heat between the therapeutic regions 142A, 142B over the right and left eyes.
Still referring to
In the embodiment shown in
In some embodiments, there may be fewer or more preset temperature settings, or a user may be able to select a specific temperature in degrees for the therapy session. In a preferred embodiment, the temperature settings available to the user are in the range of 120 degrees Fahrenheit to 145 degrees Fahrenheit. The temperature settings may also be shown on the display in a digital format.
The input mechanism(s) 304 on the controller 300 allow a user to select the time and/or temperature settings of the therapy session. In the embodiment shown in
The battery 310 can be any suitable rechargeable battery. For example, the battery 310 can be a lead-acid battery, a nickel-cadmium battery, nickel-metal hydride battery, etc. The battery 310 can be charged by plugging into the power source 200. Advantageously, the battery 310 allows the user to utilize the mask 100 without needing to be plugged into an outlet, or carry an external battery (e.g., battery pack, laptop).
The housing 312 can be of any suitable material (e.g., polyethylene, polypropylene, ABS). The display 302, input mechanisms 304, integrated circuit, and battery 310 can be maintained within the housing 312. The housing 312 can have an elongated rectangular shape. This may be beneficial as the elongated rectangular shape can provide the user an ergonomic grip of the controller 300.
Referring to
The graphene heating elements 902, as shown in
The two heating elements can be separated by a separation distance 922. The separation distance 922 can be an average distance between the eyes of a common user. This can be beneficial as the graphene heating elements 902 can be positioned over the eyes of the user allowing for heating mask 100 to work more efficiently (e.g., so that heat is not wasted on the bridge of the nose). In some embodiments, the separation distance 922 of the two graphene heating elements 902 can range from 10 mm to 50 mm. In some embodiments, the separation distance 922 can be 30 mm. In some embodiments, a ratio of a surface area of the graphene heating elements 902 to a surface area of the surface material 114 can range from 2:3 to 1:4. In some embodiments, the ratio of the surface area of the graphene heating elements 902 to the surface area of the surface material 114 can be 2:5. The provided ratio of the surface area of the graphene heating elements 902 to the surface area of the surface material 114 can allow for the graphene heating elements 902 to cover the therapeutic regions 142 and further provide a secure and comfortable fit to the user.
In some embodiments, the graphene heating elements 902 can have a thickness ranging from 5 μm to 50 μm. In some embodiments, the graphene heating elements can have a thickness of 25 μm. In some embodiments, the resistance of the graphene heating elements 902 can range from 4 ohms to 6 ohms. In some embodiments, the resistance of the graphene heating elements 902 can be 5 ohms. The use of graphene for the graphene heating elements 902 in the heating element assembly 140 can beneficially provide the user with a consistent temperature across the graphene heating element 902. The user of the graphene for the graphene heating elements 902 in the heating element assembly 140 beneficially enables the heating element 140 to be heated and cooled more quickly than a resistive heating element due to the low heat capacity of graphene.
The ground lead 906-910 and positive lead 912-916 can be an electrically conductive material (e.g., copper). The ground lead 906-910 can comprise of a ground source lead 906, a ground bridge lead 908, and two ground contact leads 910, as described herein. The positive lead 912-916 can comprise of a first positive lead 914, a positive bridge lead 912, and a second positive lead 916, as described herein. The ground contact leads 910, the first positive lead 914, and the second positive lead 916 can be electrically coupled to the graphene heating elements 902 on the front surface 938 using any suitable method. For example, the ground contact leads 910, the first positive lead 914, and the second positive lead 916 can be coupled to the front surface 938 of the graphene heating elements 902 using a conductive adhesive, solder, heat forming, etc. In some embodiments, the positive lead 912-916 can provide a voltage ranging from 4.5 volts to 5 volts. In some embodiments, the positive lead 912-916 can provide a voltage of 5 volts. As described herein, the power supplied by the electrical cord 202 can be adjusted by the user utilizing the controller 300. In some embodiments, the controller 300 can provide four temperature settings. The temperature can be adjusted to suit the needs of the user. In some embodiments, the controller 300 can adjust the temperature of the heating elements by providing power at varying duty cycles (e.g., 50%, 66%, 75%, 100%). For example, a user can select a low temperature setting. Based on the selection, the controller 300 can provide 5 volts to the heating element assembly 140 via the electrical cord 202 with a duty cycle of 50% (e.g., one second on then one second off).
In some embodiments, the first positive lead 914 and the second positive lead 916 can connect with an outer edge of the graphene heating elements 902. In the illustrated embodiment, the positive leads 914 and 916 can be electrically coupled to a majority of the circumference of the graphene heating elements 902. The majority of the circumference of the graphene heating elements 902 can be the circumference of the graphene heating elements excluding the gap 920 (e.g., approximately 95% of the total circumference). The first positive lead 914 and the second positive lead 916 can cover the circumference of the graphene heating elements 902 without covering an internal surface of the gap 920. This gap 920 and the break in the first positive lead 914 and the second positive lead can allow for the ground contact leads 910 to contact the center of the graphene heating element without causing a short between the ground lead 906-910 and the positive lead 912-916. The first positive lead 914 is connected to the second positive lead 916 by the positive bridge lead 912. The positive bridge lead 912 can be located in a central portion of the mask body 110 that extends over the bridge of the nose of the user.
As shown in
In some embodiments, the ground contact leads 910 can be connected to the center of the graphene heating elements 902. The ground contact leads 910 can be of an elongated stadium shape with a height approximately 12.5% of the height 926 and a width approximately 50% of the width 924 The ground contact leads 910 can be electrically connected to the first positive lead 914 and the second positive lead 916 through the graphene heating elements 902 such that an electrical current can pass through the graphene heating elements 902. The ground contact leads 910 can be shaped such that there is a constant lead distance 918 between the first positive lead 914 or second positive lead 916 and the ground contact leads 910 through the graphene heating elements 902. As such, the distance between the ground lead 906-910 and the positive lead 912-916 is not constant at the gap 920 as the leads are not connected through the graphene heating elements 902 at the gap 920. The constant lead distance 918 can be beneficial as it provides uniform heating throughout the graphene heating elements 902. The ground contact leads 910 can be connected to a ground bridge lead 908 that connects the two ground contact leads 910 with the ground source lead 906. The ground bridge lead 908 can be located in a central portion of the mask body 110 that extends over the bridge of the nose of the user and can be configured to run in parallel with the positive bridge lead 912.
As shown in
The positive terminal 930 and the ground terminal 928 are located on the back side of the heating element assembly 140 away from the user's face and eyes. This can be beneficial as it prevents any discomfort that may be caused by the terminals. The ground terminal 928, positive terminal 930, ground wire 932, and the positive wire 934 can be wrapped in an electrically insulating sheathing 936 (e.g., electrical tape) to insulate the exposed wires and terminals preventing the insulated components from shorting, causing a shock, or becoming disconnected.
The electrically insulating cover 904 can be of any electrically insulating material (e.g., polymide). The electrically insulating cover 904 mostly encapsulates and insulates the graphene heating elements 902, the positive lead 912-916 and the ground lead 906-910. The electrically insulating cover 904 can have an absence of material surrounding the positive terminal 930 and the ground terminal 928 allowing an electrical coupling between the ground lead 906-910 and the ground terminal 928 and the positive lead 912-916 and the positive terminal 930. The electrically insulating cover 904 can further prevent the positive lead 912-916 and ground lead 906-910 from shorting, and hold the graphene heating elements 902, positive lead 912-916, and ground lead 906-910 in place. In some embodiments, the electrically insulating cover 904 is stitched to one or more intermediate layers 144 that are positioned or attached (e.g., by stitching or adhesive) between the first layer of surface material 112 and the second layer of surface material 114. In such embodiments, the electrically insulating cover 904 may be positioned and stitched in between two intermediate layers 144. The intermediate layer(s) 144 assist in maintaining the heating element assembly 140 in its desired shape and positioned in the therapeutic region 142.
As shown in
The carbon fiber heating element 1006, as shown in
In some embodiments, the carbon fiber heating element 1006 is manufactured to be thin. For example, the carbon fiber heating element 1006 may have a thickness ranging from 5 μm to 20 μm. The use of carbon fiber for the carbon fiber heating element 1006 can beneficially provide the user with a consistent temperature across the carbon fiber heating element 1006 while providing flexibility of the heated eye mask 1002. For example, the shape and the structure of the carbon fiber heating element 1006 does not change even under consistent and constant force. This prevents the carbon fiber heating element 1006 from deteriorating over time, ensuring a longer life of the heated eye mask 1002. Moreover, the carbon fiber heating element 1006 provides a benefit in that the carbon fiber is not susceptible to corrosion or rust. Additionally, the carbon fiber heating element 1006 may have a tensile strength between 400 ksi and 600 ksi. The high tensile strength of the carbon fiber heating element 1006 prevents heated eye mask 1002 from becoming worn out from constant use. For example, the heated eye mask 100 could be machine washable without reducing the wear of the carbon fiber of the carbon fiber heating element. The carbon fiber heating element 1006 also provides the benefit of reducing the weight of the heated eye mask 1002. Specifically, carbon fiber used in the carbon fiber heating element 1006 is lighter than conventional metal alloys (e.g., aluminum, steel, etc.) which are used in traditional wires. For example, the carbon fiber used in the carbon fiber heating element 1006 is 2 times lighter than aluminum and 5 times lighter than steel. Thus, the carbon fiber with similar dimensions as conventional metal alloys would reduce the weight of the heated eye mask 1000.
The positive lead 1012 and ground lead 1014 can be an electrically conductive material (e.g., copper). The positive lead 1012 is electrically coupled to a first end of the carbon fiber heating element 1006 and the ground lead is electrically coupled to a second end of the carbon fiber heating element 1006. In some embodiments, the positive lead 1012 and the ground lead 1014 include a conductor 1016. The conductor 1016 facilitates the electrically connection between the positive lead 1012 and the carbon fiber heating element 1006 and between the ground lead 1014 and the carbon fiber heating element 1006. The conductor 1016 may be formed of molybdenum. In some embodiments, the positive lead 1012 can provide a voltage ranging from 4.5 volts to 5 volts. In some embodiments, the positive lead 1012 can provide a voltage of 5 volts. As described herein, the power supplied by the electrical cord 202 can be adjusted by the user utilizing the controller 300. In some embodiments, the controller 300 can provide four temperature settings. The temperature can be adjusted to suit the needs of the user. In some embodiments, the controller 300 can adjust the temperature of the heating elements by providing power at varying duty cycles (e.g., 50%, 66%, 75%, 100%). For example, a user can select a low temperature setting. Based on the selection, the controller 300 can provide 5 volts to the carbon fiber heating element 1006 via the electrical cord 202 with a duty cycle of 50% (e.g., one second on then one second off). As the carbon content of the carbon fiber heating element 1006 is approximately in a range between 90% and 99%, as the controller provides voltage to the carbon fiber heating element 1006, the carbon fiber heating element 1006 provides the benefit of being a large power reserve, high temperature resistance, and having a high heat capacity.
Thereby, the carbon fiber heating element 1006 may save up to 30% more energy than traditional metal electric materials while heating in 30% of the time thereby reducing the heating time. In some embodiments, the carbon fiber utilized within the carbon fiber heating element 1006 is a pure black body heating material in which there is no visible light during the electro-thermal conversion process. As a current is supplied through the positive lead 1012, an electric current thermal effect occurs in which on an atomic level, the carbon atoms within the carbon fiber of the carbon fiber heating element 1006 begin to collide and the friction between the atoms during the collision cause a generation of heat released in the form of far-infrared radiant energy. The far-infrared radiation energy produced by the carbon fiber heating element 1006 not only warms the top layer of the body but penetrates the body in a range approximately between 1 cm and 5 cm.
This facilitates a rapid temperature rise, a small thermal hysteresis, a fast heat exchange speed and a long heat radiation transmission distance while providing uniform heating with very little heat loss between the heated eye mask 1000 and the user's body. The luminous flux of the carbon fiber heating element 1006 is smaller than that of metal based heating elements and provide an electric to heat conversion efficiency approximately in a range between 90% to 97%. Further, the thermal efficiency is increased in approximately a range between 25% and 50% from the thermal efficiency of a metal heating element of the same power tungsten molybdenum material.
As a user uses the heating eye mask 1002 with the carbon fiber heating element 1006, the carbon fiber heating element 1006 may provide certain benefits to the user, For example, the carbon fiber heating element 1006 may absorb water molecules in the air to produce a resonance frictional heat effect, which increases the temperature of the carbon fiber heating element 1006. By this way, the users human tissue cells may be activated and blood circulation may be promoted. The metabolism of the user may also be accelerated and the immunity of the user may be enhanced. Due to the increase in heat, the heated eye mask 1002 may also be anti-odor, dehumidified, and have antibacterial effects.
As utilized herein with respect to numerical ranges, the terms “approximately,” “about,” “substantially,” and similar terms generally mean+/−10% of the disclosed values. When the terms “approximately,” “about,” “substantially,” and similar terms are applied to a structural feature (e.g., to describe its shape, size, orientation, direction, etc.), these terms are meant to cover minor variations in structure that may result from, for example, the manufacturing or assembly process and are intended to have a broad meaning in harmony with the common and accepted usage by those of ordinary skill in the art to which the subject matter of this disclosure pertains. Accordingly, these terms should be interpreted as indicating that insubstantial or inconsequential modifications or alterations of the subject matter described and claimed are considered to be within the scope of the disclosure as recited in the appended claims.
It should be noted that the term “exemplary” and variations thereof, as used herein to describe various embodiments, are intended to indicate that such embodiments are possible examples, representations, or illustrations of possible embodiments (and such terms are not intended to connote that such embodiments are necessarily extraordinary or superlative examples).
The term “coupled” and variations thereof, as used herein, means the joining of two members directly or indirectly to one another. Such joining may be stationary (e.g., permanent or fixed) or moveable (e.g., removable or releasable). Such joining may be achieved with the two members coupled directly to each other, with the two members coupled to each other using a separate intervening member and any additional intermediate members coupled with one another, or with the two members coupled to each other using an intervening member that is integrally formed as a single unitary body with one of the two members. If “coupled” or variations thereof are modified by an additional term (e.g., directly coupled), the generic definition of “coupled” provided above is modified by the plain language meaning of the additional term (e.g., “directly coupled” means the joining of two members without any separate intervening member), resulting in a narrower definition than the generic definition of “coupled” provided above. Such coupling may be mechanical, electrical, or fluidic.
References herein to the positions of elements (e.g., “top,” “bottom,” “above,” “below”) are merely used to describe the orientation of various elements in the FIGURES. It should be noted that the orientation of various elements may differ according to other exemplary embodiments, and that such variations are intended to be encompassed by the present disclosure.
The hardware and data processing components used to implement the various processes, operations, illustrative logics, logical blocks, modules and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a general purpose single- or multi-chip processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, or, any conventional processor, controller, microcontroller, or state machine. A processor also may be implemented as a combination of computing devices, such as a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. In some embodiments, particular processes and methods may be performed by circuitry that is specific to a given function. The memory (e.g., memory, memory unit, storage device) may include one or more devices (e.g., RAM, ROM, Flash memory, hard disk storage) for storing data and/or computer code for completing or facilitating the various processes, layers and modules described in the present disclosure. The memory may be or include volatile memory or non-volatile memory, and may include database components, object code components, script components, or any other type of information structure for supporting the various activities and information structures described in the present disclosure. According to an exemplary embodiment, the memory is communicably connected to the processor via a processing circuit and includes computer code for executing (e.g., by the processing circuit or the processor) the one or more processes described herein.
The present disclosure contemplates methods, systems and program products on any machine-readable media for accomplishing various operations. The embodiments of the present disclosure may be implemented using existing computer processors, or by a special purpose computer processor for an appropriate system, incorporated for this or another purpose, or by a hardwired system. Embodiments within the scope of the present disclosure include program products comprising machine-readable media for carrying or having machine-executable instructions or data structures stored thereon. Such machine-readable media can be any available media that can be accessed by a general purpose or special purpose computer or other machine with a processor. By way of example, such machine-readable media can comprise RAM, ROM, EPROM, EEPROM, or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to carry or store desired program code in the form of machine-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer or other machine with a processor. Combinations of the above are also included within the scope of machine-readable media. Machine-executable instructions include, for example, instructions and data which cause a general purpose computer, special purpose computer, or special purpose processing machines to perform a certain function or group of functions.
Although the figures and description may illustrate a specific order of method steps, the order of such steps may differ from what is depicted and described, unless specified differently above. Also, two or more steps may be performed concurrently or with partial concurrence, unless specified differently above. Such variation may depend, for example, on the software and hardware systems chosen and on designer choice. All such variations are within the scope of the disclosure. Likewise, software implementations of the described methods could be accomplished with standard programming techniques with rule-based logic and other logic to accomplish the various connection steps, processing steps, comparison steps, and decision steps.
It is important to note that the construction and arrangement of the assembly as shown in the various exemplary embodiments is illustrative only. Additionally, any element disclosed in one embodiment may be incorporated or utilized with any other embodiment disclosed herein. For example, the heating element assembly 140 of the exemplary embodiment described in at least paragraphs [0031]-[0041] may be incorporated in the mask body 110 of the exemplary embodiment described in at least paragraphs [0023]-[0025]. Although only one example of an element from one embodiment that can be incorporated or utilized in another embodiment has been described above, it should be appreciated that other elements of the various embodiments may be incorporated or utilized with any of the other embodiments disclosed herein.
This application is a continuation-in-part of U.S. patent application Ser. No. 17/388,975, filed Jul. 29, 2021, which is a continuation of U.S. patent application Ser. No. 17/142,872, filed Jan. 6, 2021, now U.S. Pat. No. 11,135,087, which is a continuation-in-part of U.S. patent application Ser. No. 16/913,870, filed Jun. 26, 2020, which claims the benefit of and priority to U.S. Provisional Patent Application No. 62/866,846, filed Jun. 26, 2019, all of which are hereby incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
62866846 | Jun 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17142872 | Jan 2021 | US |
Child | 17388975 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17388975 | Jul 2021 | US |
Child | 17944952 | US | |
Parent | 16913870 | Jun 2020 | US |
Child | 17142872 | US |