This application generally relates to devices for use in the human body, such as percutaneously implanted devices and methods for adjusting the flow of fluid, such as blood, within the human body.
For a number of medical conditions, there is benefit in adjusting the flow of fluid within the human body, for example, through a passage between two body cavities. Such a passage is typically used in catheterization procedures where the catheter is delivered through a patient's vasculature. In some catheterization procedures, there is a benefit in moving from one cavity to another cavity by creating a passage. For example, such a passage may be formed between the right side of the heart and the left side of the heart, e.g., between the right atrium toward the left atrium, where clinical procedures are done on the left side of the heart using an entry from the right side of the heart. Such clinical procedures include, e.g., arrhythmia ablation procedures in the left atrium and mitral valve repair activities.
In addition, a passage may be created and maintained in a heart wall between two heart chambers for housing a shunt for redistributing blood from one heart chamber to another to address pathologies such as heart failure (HF), myocardial infarction (MI), and pulmonary arterial hypertension (PAH). HF is the physiological state in which cardiac output is insufficient to meet the needs of the body or to do so only at a higher filling pressure. There are many underlying causes of HF, including MI, coronary artery disease, valvular disease, hypertension (such as PAH), and myocarditis. Chronic heart failure is associated with neurohormonal activation and alterations in autonomic control. Although these compensatory neurohormonal mechanisms provide valuable support for the heart under normal physiological circumstances, they also play a fundamental role in the development and subsequent progression of HF.
HF is generally classified as either systolic heart failure (“SHF”) or diastolic heart failure (“DHF”). In SHF, the pumping action of the heart is reduced or weakened. A common clinical measurement is the ejection fraction, which is a function of the blood ejected out of the left ventricle (stroke volume) divided by the maximum volume in the left ventricle at the end of diastole or relaxation phase. A normal ejection fraction is greater than 50%. Systolic heart failure generally causes a decreased ejection fraction of less than 40%. Such patients have heart failure with reduced ejection fraction (“HFrEF”). A patient with HFrEF may usually have a larger left ventricle because of a phenomenon called “cardiac remodeling” that occurs secondarily to the higher ventricular pressures.
In DHF, the heart generally contracts well, with a normal ejection fraction, but is stiffer, or less compliant, than a healthy heart would be when relaxing and filling with blood. Such patients are said to have heart failure with preserved ejection fraction (“HFpEF”). This stiffness may impede blood from filling the heart and produce backup into the lungs, which may result in pulmonary venous hypertension and lung edema. HFpEF is more common in patients older than 75 years, especially in women with high blood pressure.
Both variants of HF have been treated using pharmacological approaches, which typically involve the use of vasodilators for reducing the workload of the heart by reducing systemic vascular resistance, as well as diuretics, which inhibit fluid accumulation and edema formation, and reduce cardiac filling pressure. No pharmacological therapies have been shown to improve morbidity or mortality in HFpEF whereas several classes of drugs have made an important impact on the management of patients with HFrEF, including renin-angiotensin antagonists, neprilysin inhibitors, beta blockers, mineralocorticoid antagonists and sodium-glucose co-transporter-2 (SGLT2) inhibitors, Nonetheless, in general, HF remains a progressive disease and most patients have deteriorating cardiac function and symptoms over time. In the U.S., there are over 1 million hospitalizations annually for acutely worsening HF and mortality is higher than for most forms of cancer.
In more severe cases of HFrEF, mechanical circulatory support (MCS) devices such as mechanical pumps are used to reduce the load on the heart by performing all or part of the pumping function normally done by the heart. Chronic left ventricular assist devices (“LVAD”), the total artificial heart, and cardiac transplantation are used as measures of last resort. However, such assist devices typically are intended to improve the pumping capacity of the heart, to increase cardiac output to levels compatible with normal life, and to sustain the patient until a donor heart for transplantation becomes available. This usage of MCS is also known as “bridge to transplant” therapy”. As the supply of donor hearts for transplantation is insufficient for the demand, more often MCS is the only therapeutic option—also known as “destination therapy.” Such mechanical devices enable propulsion of significant volumes of blood (liters/min) but are limited by a need for a power supply, relatively large pumps, and pose a risk of hemolysis, thrombus formation, and infection. Temporary assist devices, intra-aortic balloons, and pacing devices have also been used.
Various devices have been developed using stents to modify blood pressure and flow within a given vessel, or between chambers of the heart. For example, U.S. Pat. No. 6,120,534 to Ruiz is directed to an endoluminal stent for regulating the flow of fluids through a body vessel or organ, for example, for regulating blood flow through the pulmonary artery to treat congenital heart defects. The stent may include an expandable mesh having balloon-expandable lobed or conical portions joined by a shape-memory constricted region, which limits flow through the stent. The constricted region may be adjusted in vivo, and in addition may be heated to recover a maximum degree of constriction. Ruiz is silent on the treatment of HF or the reduction of left atrial pressure.
U.S. Patent Publication No. 2013/0178784 to McNamara describes an adjustable pressure relief shunt that may be expanded, e.g., via an inflation balloon. A tubular body of the shunt may be plastically deformed in vivo, such that the size of the shunt may be repeatedly adjusted by a variety of mechanisms, for example, elastically wound springs or a series of pawls and one-way mechanical ramps, responsive to measurements of the patient's physiological parameters. A key drawback to the approach described in that patent is the hysteresis effect, i.e., non-reversible changes in the underlying crystalline structure that occur when the shunt is permanently deformed. Importantly, such plastic deformation may lead to stress and fatigue-related fracture of the device.
U.S. Pat. No. 6,468,303 to Amplatz et al. describes a collapsible medical device and associated method for shunting selected organs and vessels. Amplatz describes that the device may be suitable to shunt a septal defect of a patient's heart, for example, by creating a shunt in the atrial septum of a neonate with hypoplastic left heart syndrome (“HLHS”). That patent also describes that increasing mixing of pulmonary and systemic venous blood improves oxygen saturation, and that the shunt may later be closed with an occluding device. Amplatz is silent on the treatment of HF or the reduction of left atrial pressure, as well as on means for regulating the rate of blood flow through the device.
Implantable interatrial shunt devices have been successfully used in patients with severe symptomatic heart failure. By diverting or shunting blood from the left atrium (“LA”) to the right atrium (“RA”), the pressure in the left atrium is lowered or prevented from elevating as high as it would otherwise (left atrial decompression). Such an accomplishment would be expected to prevent, relieve, or limit the symptoms, signs, and syndromes associated of pulmonary congestion. These include severe shortness of breath, pulmonary edema, hypoxia, the need for acute hospitalization, mechanical ventilation, and death.
Shunt flow is generally governed by the pressure gradient between the atria and the fluid mechanical properties of the shunt device. The latter are typically affected by the shunt's geometry and material composition. For example, the general flow properties of similar shunt designs have been shown to be related to the mean interatrial pressure gradient and the effective orifice diameter.
Percutaneous implantation of interatrial shunts generally requires transseptal catheterization immediately preceding shunt device insertion. The transseptal catheterization system is generally placed from an entrance site in the femoral vein, across the interatrial septum in the region of fossa ovalis (“FO”), which is the central and thinnest region of the interatrial septum. The FO in adults is typically 15-20 mm in its major axis dimension and <3 mm in thickness, but in certain circumstances may be up to 10 mm thick. LA chamber access may be achieved using a host of different techniques familiar to those skilled in the art, including but not limited to: needle puncture, stylet puncture, screw needle puncture, and radiofrequency ablation. The passageway between the two atria is dilated to facilitate passage of a shunt device having a desired orifice size. Dilation generally is accomplished by advancing a tapered sheath/dilator catheter system or inflation of an angioplasty type balloon across the FO. This is the same general location where a congenital secundum atrial septal defect (“ASD”) would be located.
U.S. Patent Publication No. 2005/0165344 to Dobak, III describes apparatus for treating heart failure that includes a tubular conduit having an emboli filter or valve, the device configured to be positioned in an opening in the atrial septum of the heart to allow flow from the left atrium into the right atrium. Dobak discloses that shunting of blood may reduce left atrial pressures, thereby preventing pulmonary edema and progressive left ventricular dysfunction, and reducing LVEDP. Dobak describes that the device may include deployable retention struts, such as metallic arms that exert a slight force on the atrial septum on both sides and pinch or clamp the device to the septum.
In addition, following implantation of a shunt device within a heart wall, tissue ingrowth including an endothelial layer or neointima layer typically forms on the device, thereby inhibiting thrombogenicity of the shunt device, and narrowing the size of the passage through the device.
The present invention overcomes the drawbacks of previously-known systems and methods by providing devices with dimensions that not only may be increased, but also may be reduced in vivo, and methods of making and using the same.
In particular, the present invention overcomes the limitations of previously known devices and methods by providing an implantable device with a composite structure exhibiting both superelastic and shape-memory properties at body temperature. Dimensions that may affect blood flow or other intended interactions between the implanted device and its biological host can be repeatedly altered in either direction by mechanical deformation of one crystalline phase of the shape-memory component in one direction and reversing the direction by temperature induction of a crystalline phase change of the shape-memory component material to its original dimension, greatly simplifying catheter related manipulations.
Under one aspect, an interatrial shunt for placement at an atrial septum of a patient's heart is provided herein. The interatrial shunt includes a body that includes first and second regions coupled in fluid communication by a neck region. The body includes a shape-memory material. The body defines a passageway through the neck region for blood to flow between a first atrium and a second atrium. The first and second regions are superelastic at body temperature, and the neck region is malleable at body temperature. A flow area of the passageway through the neck region may be adjusted in vivo.
The first and second regions that are superelastic may include NITINOL having an austenitic finish temperature (Af) between 5-20° C. The neck region that is malleable may include NITINOL having an austenitic finish temperature (Af) between 45-60° C. The neck region may be mechanically expandable. The neck region may be thermally contractible.
Under another aspect, an interatrial shunt is provided for placement at an atrial septum of a patient's heart for adjustably regulating fluid flow therethrough. The interatrial shunt may include a first expandable end region configured to be placed in a first atrium of the heart, and a second expandable end region configured to be placed in a second atrium of the heart. The first and second expandable end regions may include self-expanding superelastic material. The interatrial shunt may include a neck region between the first and second expandable end regions. The neck region may be configured for placement at the atrial septum. The neck region may include malleable shape-memory material. The interatrial shunt may define a passageway through the neck region for blood to flow between the first atrium and the second atrium. The neck region may be heat treated to exhibit different shape memory properties than the first and second expandable end regions such that a cross-sectional area of the passageway is adjustable in vivo.
The malleable shape-memory material may be configured to be expanded in vivo such that the passageway expands from the cross-sectional area to a second cross-sectional area larger than the cross-sectional area. The malleable shape-memory material may be configured to be contracted in vivo such that the passageway contracts from the second cross-sectional area to a third cross-sectional area smaller than the second cross-sectional area. The cross-sectional area may be between 4.9 to 28.3 mm2 and the second cross-sectional area and the third cross-sectional area may be between 15.9 to 78.6 mm2. The malleable shape-memory material may include NITINOL having an austenitic finish temperature (Af) between 45-60° C. The self-expanding superelastic material may include NITINOL having an austenitic finish temperature (Af) between 5-20° C. The malleable shape-memory material may be mechanically expandable. The malleable shape-memory material may be thermally contractible. The cross-sectional area of the neck region may be smaller than respective cross-sectional areas of at least one of the first and second expandable end regions. The first and second expandable end regions may extend into the first and second atria, respectively, such that respective ends of the first and second expandable end regions may not contact the atrial septum. The first and second expandable end regions and the neck region may comprise a diabolo-shaped shunt. The neck region may include a cylindrical shunt. The cylindrical shunt may be outside of the diabolo-shaped shunt. The cylindrical shunt may be formed of the malleable shape-memory material such that the cylindrical shunt radially constrains a dimension of the diabolo-shaped shunt at the neck region, and the diabolo-shaped shunt may self-expand at the neck region responsive to the malleable shape memory material expanding to a second cross-sectional area. The cylindrical shunt may be inside of the diabolo-shaped shunt. The cylindrical shunt may not be directly coupled to the diabolo-shaped shunt and the neck region. The device may further include an encapsulant indirectly and elastically coupling the cylindrical shunt to the diabolo-shaped shunt. Contraction of the cylindrical shunt may not cause contraction of the diabolo-shaped shunt at the neck region. The diabolo-shaped shunt and the cylindrical shunt may be integrally formed from a common frame. The first and second expandable end regions and the neck region may be integrally formed from a common frame. The first and second expandable end regions and the neck region may be at least partially encapsulated with a biocompatible material.
Under another aspect, an interatrial shunt for adjustably regulating fluid flow in a heart having a first atrium, a second atrium, and an atrial septum is provided. The interatrial shunt may include a first region that includes a self-expanding superelastic material configured to be placed in the first atrium. The first region may be superelastic at body temperature. The interatrial shunt may include a second region that includes a malleable shape-memory material configured to be placed through an opening in the atrial septum so as to provide fluid flow from the first atrium to the second atrium. The second region may be malleable at body temperature. The malleable shape-memory material may have a first cross-sectional area. The malleable shape-memory material may be expandable from the first cross-sectional area to a second cross-sectional area. The malleable shape-memory material may be contractible from the second cross-sectional area to a third cross-sectional area.
The self-expanding superelastic material may include NITINOL having an austenitic finish temperature (Af) between 5-20° C., and the malleable shape-memory material may include NITINOL having an austenitic finish temperature (Af) between 45-60° C. The malleable shape-memory material may be mechanically expandable and thermally contractible. The interatrial shunt may include a third region that includes a second self-expanding superelastic material, is configured to be placed in the second atrium, and is coupled to the second region.
In accordance with another aspect, a device is provided for adjustably regulating fluid flow therethrough. The device may include a first component including a first self-expanding superelastic material, and a second component coupled to the first component and including a first malleable shape-memory material. The first malleable shape-memory material may have a first cross sectional area. The first malleable shape-memory material may be expandable to a second cross sectional area. The first malleable shape-memory material may be contractible to a third cross sectional area.
In some examples, the first self-expanding superelastic material includes NITINOL having an austenitic finish temperature (Af) of less than body temperature (normally ˜37° C.). Illustratively, the Af of the NITINOL of the first self-expanding superelastic material may be between 5-20° C.
In some examples, the first malleable shape-memory material includes NITINOL having an austenitic finish temperature (Af) of greater than body temperature or 37° C. Illustratively, the Af of the NITINOL of the malleable shape-memory material may be between 45-60° C. This is higher than body temperature when febrile but not high enough to cause permanent injury such a protein denaturation from brief exposure.
In some examples, the first malleable shape-memory material is mechanically expandable. In some examples, the first malleable shape-memory material is thermally contractible. In some examples, the first malleable shape-memory material is joined to the first self-expanding superelastic material by welding. In some examples, the device includes an encapsulant covering at least a portion of at least one of the first component and the second component. Optionally, the encapsulant joins the first malleable shape-memory material to the first self-expanding superelastic material.
In some examples, the first cross sectional area is smaller than the third cross sectional area. In some examples, the first cross sectional area is larger than the third cross sectional area.
In some examples, the device further includes a third component including a second self-expanding superelastic material and coupled to the first component and the second component. Optionally, the first component includes an inlet, the second component includes a neck, and the third component includes an outlet fluidically coupled to the inlet via the neck. As a further option, the cross sectional area of the neck is smaller than respective cross sectional areas of at least one of the inlet and the outlet. As a still further option, the inlet and outlet anchor the device within an opening through a septum between two chambers within the body, and the neck provides a channel for flow between these chambers. In other options, the cross sectional area of the neck is larger than respective cross sectional areas of at least one of the inlet (ingress of blood flow) and the outlet (egress of blood flow). Optionally, the second component is configured to engage an opening in the human body. As a further option, the opening may be created through a fossa ovalis of an interatrial septum between a right atrium and a left atrium. The neck may be configured to engage the opening, the inlet may be configured to extend into the right atrium, and the outlet may be configured to extend into the left atrium.
In some examples, the first component is configured to engage a lumen in the human body. Optionally, the lumen includes a blood vessel, and the first and third components are configured to engage the blood vessel. The neck may be configured to be disposed adjacent to an ostium of the blood vessel.
In some examples, the device includes a third component including a second malleable shape-memory material and coupled to the first component and the second component. Optionally, the second malleable shape-memory material has a fourth cross sectional area permitting a fourth rate of fluid flow therethrough. The second malleable shape-memory material may be expandable to a fifth cross sectional area permitting a fifth rate of fluid flow therethrough. The second malleable shape-memory material may be contractible to a sixth cross sectional area permitting a sixth rate of fluid flow therethrough. Optionally, the second component includes an inlet and the third component includes an outlet fluidically coupled to the inlet via the first component. As a further option, the inlet is configured to engage a blood vessel in the human body, the first component is configured to engage the blood vessel, and the outlet is configured to extend into an ostium of the blood vessel.
In some examples, the device further includes a valve disposed in the second component. The first component may be configured to engage a blood vessel in the human body, and the second component may extend into the blood vessel.
In some examples, the second component is located inside of the first component.
In some examples, the first component includes a diabolo-shaped shunt having a neck, and the second component includes a cylindrical shunt. Optionally, the cylindrical shunt is outside of the diabolo-shaped shunt. As a further option, the first malleable shape-memory material may radially constrain a dimension of the neck. The first malleable shape-memory material optionally radially contacts an outer surface of the neck so as to constrain the neck from self-expanding to a larger dimension. Optionally, the neck self-expands responsive to the first malleable shape memory material expanding to the second cross sectional area. The device optionally further includes an encapsulant forming an inner lumen through the first component and an outer covering of the first component and the second component.
In other examples, the cylindrical shunt is inside of the diabolo-shaped shunt. Optionally, the cylindrical shunt is inside of, and not directly coupled to, the neck of the diabolo-shaped shunt. The device optionally further includes an encapsulant indirectly and elastically coupling the cylindrical shunt to the diabolo-shaped shunt such that the encapsulant forms a lumen through the inner cylindrical shunt. Optionally, contraction of the cylindrical shunt does not cause contraction of neck of the outer diabolo-shaped shunt. Optionally, the neck of the diabolo-shaped shunt is self-expandable to a fourth cross sectional area.
In some examples, the second component is located inside of the first component.
Optionally, the first malleable shape-memory material radially constrains a dimension of the first component. Optionally, the first malleable shape-memory material radially contacts an inner surface of the first component so as to constrain the first component from contracting to a smaller dimension. Optionally, the first component self-contracts responsive to the first malleable shape memory material contracting to the third cross sectional area. Optionally, the device further includes an encapsulant forming an outer covering of the first component and the second component.
Under another aspect, a method for reducing and increasing an internal dimension of a device in vivo is provided. The method may include inserting into a fluid path first and second components coupled to one another. The first component may include a self-expanding superelastic material, and the second component may include a malleable shape-memory material having a first cross sectional area. The method may include expanding the malleable shape-memory material to a second cross sectional area; and contracting the malleable shape-memory material to a third cross sectional area.
In some examples, contracting the malleable shape-memory material includes heating the malleable shape-memory material. In some examples, the heating includes flowing heated saline through the device via a catheter. In some examples, the heating includes applying radio frequency (RF) energy to the device. In some examples, expanding the malleable shape-memory material includes expanding a balloon within the malleable shape-memory material.
Under another aspect, a method for adjustably regulating fluid flow is provided. The method may include inserting into a fluid path first and second components coupled to one another. The first component may include a self-expanding superelastic material, and the second component may include a malleable shape-memory material having a first cross sectional area permitting a first rate of fluid flow therethrough. The method may include expanding the malleable shape-memory material to a second cross sectional area permitting a second rate of fluid flow therethrough; and contracting the malleable shape-memory material to a third cross sectional area permitting a third rate of fluid flow therethrough.
In some examples, contracting the malleable shape-memory material includes heating the malleable shape-memory material. In some examples, the heating includes flowing heated saline through the device via a catheter. In some examples, the heating includes applying radio frequency (RF) energy to the device. In some examples, expanding the malleable shape-memory material includes expanding a balloon within the malleable shape-memory material.
Under another aspect, a repositionable device for fixation within a body lumen is provided. The device may include a first component including a self-expanding superelastic material; and a second component coupled to the first component and including a malleable shape-memory material. The self-expanding superelastic material may have a predetermined fully expanded dimension. The second component may have a first dimension suitable for deployment through a catheter. The malleable shape-memory material may be expandable to a second dimension for fixation within a body lumen. The malleable shape-memory material may be thermally transitionable to a third dimension. The malleable shape-memory material may be mechanically re-expandable to a fourth dimension.
Under another aspect, a method for adjustably fixating a device within a body lumen is provided. The method may include inserting into a body lumen a device including first and second components coupled to one another. The first component may include a self-expanding superelastic material. The second component may include a malleable shape-memory material having a first dimension. The method may include expanding the malleable shape-memory material to a second dimension to fixate the device within a body lumen. The method may include thermally contracting the malleable shape-memory material. The method may include repositioning the device within the body lumen while the malleable shape-memory material is thermally contracted. The method may include mechanically re-expanding the malleable shape-memory material to a third dimension to fixate the device within the body lumen.
In some examples, thermally contracting the malleable shape-memory material includes heating the malleable shape-memory material. In some examples, the heating includes flowing heated saline through the device via a catheter. In some examples, the heating includes applying radio frequency (RF) energy to the device. In some examples, the mechanically expanding the malleable shape-memory material includes expanding a balloon within the malleable shape-memory material.
In any of the aforementioned devices and methods, the first component and the second component optionally are integrally formed from a common frame with one another.
Under another aspect, a dilator for enlarging an opening through a region of the human body is provided. The dilator may include a sheath having a proximal end and a distal end; and a dilator disposed at the distal end of the sheath and including a tip, an enlarged region, and a reduced region. The reduced region may be sized so as to securably engage with the distal end of the sheath. The enlarged region may be sized so as to provide a smooth profile between the sheath and the tip. A distal end of the tip may taper to approximately a point. At least the enlarged region and the reduced region may include a martensitic shape-memory material having an austenitic finish temperature (Af) substantially greater than 37° C. such that, upon application of heat within the body, the shape memory material returns to a smaller, heat-set outer dimension such that the dilator has a substantially smooth, reduced size profile.
In some examples, the tip also includes the martensitic shape-memory material. In some examples, the tip includes a self-expanding superelastic material. The tip, the reduced region, and the enlarged region optionally are integrally formed from a common frame with one another.
Under another aspect, a system is provided that includes such a dilator, and a device to deploy in the opening.
Under another aspect, a method for forming an enlarged opening through a region of the human body is provided. The method may include disposing a guidewire through the region of the human body to form an opening. The method may include pushing a dilator over the guidewire and through the opening to form an enlarged opening. The method may include heating the dilator to reduce the size of the dilator. The method may include, while the dilator has the reduced size, withdrawing the dilator through the enlarged opening.
In some examples, the heating includes flowing heated saline through the dilator via a catheter. In some examples, the heating includes applying radio frequency (RF) energy to the dilator. In some examples, the method includes deploying a device within the opening, and withdrawing the dilator through the device.
Under another aspect, a transatrial gate is provided. The transatrial gate may include a left atrial disc including a first self-expanding superelastic material, and a right atrial disc including a second self-expanding superelastic material. The transatrial gate also may include a martensitic shape-memory material that is heat set to completely occlude passage between the left and right atrial discs that is expandable to allow passage between the left and right atrial discs.
In some examples, the martensitic shape-memory material is provided as a mesh. In some examples, the martensitic shape-memory material is balloon expandable. In some examples, the martensitic shape-memory material is configured to be closeable by application of heat after being expanded to allow passage between the left and right atrial discs. The left atrial disc, the right atrial disc, and the martensitic shape memory material optionally are integrally formed from a common frame with one another.
Under another aspect, a method of performing a procedure is provided. The method may include implanting a transatrial gate through an opening in an atrial septum of a heart. The transatrial gate may include a left atrial disc including a first self-expanding superelastic material, and a right atrial disc including a second self-expanding superelastic material. The transatrial gate also may include a martensitic shape-memory material that is heat set to completely occlude passage between the left and right atrial discs. The method may include expanding the martensitic shape-memory material to allow passage between the left and right atrial discs.
In some examples, the material includes blood. In some examples, the material includes an instrument. In some examples, the method includes using the instrument to perform an additional procedure in a left atrium of the heart. In some examples, the additional procedure includes RF ablation, left atrial appendage closure, MitraClip implantation, mitral valve replacement, or mitral valve repair. In some examples, the martensitic shape-memory material is provided as a mesh. In some examples, the martensitic shape-memory material is expanded using a balloon. In some examples, the method further includes, after the expanding, closing the martensitic shape-memory material by application of heat. The left atrial disc, the right atrial disc, and the martensitic shape memory material optionally are integrally formed from a common frame with one another.
Under yet another aspect, an apparatus is provided. The apparatus includes a device that includes a proximal portion configured to be disposed in a first atrium of a heart, and a distal portion configured to be disposed in a second atrium of a heart and including a first self-expanding superelastic material. The device further includes an intermediate portion disposed between the proximal portion and the distal portion and configured to be disposed in an atrial septum between the first atrium and the second atrium. The intermediate portion includes a malleable shape-memory material. The apparatus further includes a catheter and at least one constricting flexible longitudinal element. The first self-expanding superelastic material may have a predetermined fully expanded dimension. The intermediate portion may have a first dimension suitable for deployment through the catheter, may be expandable to a second dimension for fixation within the septum, may be thermally transitionable to a third dimension, and may be mechanically re-expandable to a fourth dimension. The device may be removable by drawing the device into the catheter using the at least one constricting flexible longitudinal element.
In some examples, the proximal portion is flared. In some examples, the distal portion is flared. In some examples, the proximal portion includes a second self-expanding superelastic material. The proximal portion, the distal portion, and the intermediate portion optionally are integrally formed from a common frame with one another.
Under another aspect, a method is provided that includes through a catheter, deploying a device through an atrial septum of a heart. The device may include a proximal portion disposed in a first atrium of the heart, and a distal portion disposed in a second atrium of the heart and comprising a first self-expanding superelastic material. The device may include an intermediate portion disposed between the proximal portion and the distal portion and disposed in the atrial septum between the first atrium and the second atrium. The intermediate portion may include a malleable shape-memory material. The first self-expanding superelastic material may have a predetermined fully expanded dimension. The intermediate portion may have a first dimension when deployed through the catheter. The method may include expanding the intermediate portion to a second dimension for fixation within the septum. The method may include thermally transitioning the intermediate portion to a third dimension. The method may include mechanically re-expanding the intermediate portion to a fourth dimension. The method may include removing the device by drawing the device into the catheter using the at least one constricting flexible longitudinal element.
In some examples, the proximal portion is flared. In some examples, the distal portion is flared. In some examples, the proximal portion includes a second self-expanding superelastic material. The proximal portion, the distal portion, and the intermediate portion optionally are integrally formed from a common frame with one another.
The present disclosure provides devices with dimensions that can be reduced and increased in vivo, and methods of making and using the same.
For example, the present devices may be permanently or temporarily implantable in a human body and include one or more components which can be adjusted for size, larger or smaller, after implantation. The need for such adjustable devices may arise, for example, in the treatment of pulmonary artery hypertension (PAH) or heart failure (HF). In PAH, placing a shunt in the interatrial septum allows excessive blood pressure in the right atrium to be relieved by allowing some blood to flow from the right atrium to the left atrium through an orifice. In HF, placing a shunt in the interatrial septum allows excessive blood pressure in the left atrium to be relieved by allowing some blood to flow from the left atrium into the right atrium through an orifice. In both PAH and HF, interatrial shunting has been shown to effectively reduce symptoms and increase exercise tolerance. Interatrial shunting also may reduce the need for hospitalization and even improve life expectancy.
However, if the orifice of the interatrial shunt is too small, too little blood may be transferred and the shunt may be relatively ineffective and provide little or no clinical benefit. In contradistinction, shunting too much blood (“over-shunting”) through too large of an orifice may lead to severe or even fatal complications over time. For example, in PAH patients, over-shunting may result in systemic oxygen desaturation and its sequalae including cyanosis, polycythemia with increased blood viscosity, end organ ischemia, and potentially death. In HF patients, over-shunting may result in pulmonary hypertension, right ventricular failure, and potentially death.
At present, there is no known way to predict the response of a given patient to a particular shunt orifice size. As is previously known, a shunt orifice may be increased in vivo, for example by dilating a suitably designed shunt by expanding an inflatable balloon catheter or other similar mechanically expansive means within the shunt, providing however, that the shunt is made from a malleable material and will remain expanded due to plastic deformation or some other physical property, whereby when the balloon or other expansive means is removed, the amount of elastic spring back or recoil will be low enough so that the desired increment in orifice size is achieved. One drawback of this approach is that the orifice size can only be increased. If the shunt starts out too large or if is made too large by balloon dilatation but the patient needs a smaller shunt, there is no way to go back to a smaller size orifice except by providing another, smaller shunt or placing a smaller shunt within the lumen of original shunt. This technique is known as “shunt-in-shunt.” As such, finding a suitable shunt orifice size for a given patient has been a trial and error process in which the shunt orifice size is selected according to the patient's response, which may be observed for a period of time which may be as short as a few minutes or as long as many months, and the shunt orifice size increased (e.g., by balloon dilatation) or reduced (by providing a new, smaller shunt) depending on the patient's response. As such, opportunities to increase or reduce the size of the shunt are very limited and may not be repeatable. Furthermore, the extent to which an inflatable balloon catheter can expand a shunt orifice may be limited by the maximum size of the balloon. Thus, what is needed is a means to repeatedly and non-traumatically adjust the orifice size of shunts, and other implantable devices, in vivo, and in both directions, bigger or smaller.
Provided herein are devices with cross sectional areas that may be easily reduced in vivo, and expanded in vivo, in any order, as clinically necessary. In particular, some examples of the present devices include a self-expanding superelastic (austenitic phase) material as well as a malleable shape-memory (martensitic phase) material. When the device is implanted in the human body, e.g., by transporting the device in a compressed state within a sheath to a desired location and then removing the sheath, the self-expanding superelastic material may automatically deploy to its desired size, while the malleable shape-memory material initially may remain in a reduced size state. The cross sectional area of the malleable shape-memory material then may be expanded and reduced in vivo as desired so as to obtain a cross sectional area that is suitable for treating the patient, e.g., by providing a suitable fluid flow rate therethrough, or so as to appropriately fixate the device within the patient while allowing for repositioning to improve effectiveness of the treatment. A wide variety of devices may be prepared using components respectively including self-expanding superelastic materials and malleable shape-memory materials, such as exemplified herein.
For example,
For example,
In some examples, reducing the dimension of a shape memory material-based component herein always returns that component to its heat-set (annealed) dimension, D0, determined at the time of manufacture by heat setting within a jig. Once the dimension is thus reduced it may be then expanded, for example by balloon dilation, to an intermediate dimension. Additionally, note that although in some examples D0 and D1 may be approximately the same as one another, in other examples D0 may be smaller than D1, while in still other examples D0 may be larger than D1. Although
Note that as used herein, “inner dimension” refers to the transverse dimension between inner walls of a device component, e.g., along line A-A indicated in
In the nonlimiting examples shown in
In some examples, the self-expanding superelastic material of first component 110 and the malleable shape-memory material of second component 120 may include different materials than one another, or may include the same material as one another but having different phases than one another. For example, first component 110 and second component 120 independently may include one or more materials selected from the group consisting of nickel titanium (NiTi), also known as NITINOL, other shape memory alloys, self-expanding materials, superelastic materials, polymers, and the like. For example, first component 110 may include a NITINOL alloy having an austenitic finish temperature (Af) that is sufficiently below body temperature that the material is in an austenitic, superelastic phase while in the human body. In one nonlimiting example, the self-expanding superelastic material of first component 110 includes NITINOL having an Af of less than 37° C. For example, the Af of the NITINOL of the self-expanding superelastic material may be between 5-20° C. First component 110 and second component 120 optionally may be integrally formed from a common frame with one another. For example, first component 110 and second component 120 may be initially cut and processed as a single unit from the same tubing, sheet, or other suitable configuration of frame as one another. Portions of that common frame may be heat treated differently than one another so as to define first component 110 and second component 120, e.g., in a manner similar to that described with reference to
Second component 120 may include a NITINOL alloy having an austenitic phase transition temperature Af that is slightly above body temperature such that the material remains in its martensitic, shape-memory phase while in the body unless and until it is heated to or above its Af, for example by the injection of warm or hot saline (or other fluid) into the fluid within or flowing through second component 120, or by applying heat through electrical energy such as with an RF energy source. In one nonlimiting example, the malleable shape-memory material of second component 120 includes NITINOL having an austenitic finish temperature (Af) of greater than 37° C. For example, the Af of the NITINOL of the malleable shape-memory material of second component 120 may be between 45-60° C., e.g., from 50-55° C. In some examples, the warm or hot saline (or other fluid) may be injected sufficiently close to second component 120 to heat that component to or above its Af, using a side-hole catheter positioned through device 100. In other examples, a pair of RF electrodes may be brought into contact with device 100, e.g., via a catheter, and actuated at a sufficient voltage and frequency to heat component 120 to or above its Af. In still other examples, any other suitable means of locally applying heat to device 100, such as a laser, magnetic inductance, electrical resistance, or the like, may be used. Heating device 100 using electrical resistance may include contacting the device with a pair of electrodes, e.g., via a catheter, and passing a current through the device that causes heating of the device. Heating device 100 using a laser may include irradiating the device with light from a laser that may be introduced by a catheter. Heating device 100 using magnetic inductance may include passing an alternating magnetic field through the device that induces eddy currents inside the device which heat the device. Note that in blood vessels having a particularly high rate of blood flow (e.g., 2-5 L/min), such as the aorta or internal iliac artery, it may be useful to heat device 100 using direct heating methods, such as using RF energy, a laser, magnetic inductance, or electrical resistance, instead of saline which may be washed away by the high blood flow rate before sufficiently heating the device.
Alternatively, device 100 may include a single NITINOL alloy (common frame) that has been heat treated to produce a lower Af in a region corresponding to first component 110, and that has been heat treated to produce a higher Af in a region corresponding to second component 120, such that first component 110 and second component 120 are integrally formed with one another. The malleable shape-memory material of second component 120 may be expandable and contractible using any suitable technique. For example, the malleable shape-memory material of second component 120 may be mechanically expanded, e.g., using balloon dilatation such as known in the art. Additionally, or alternatively, malleable shape-memory material of second component 120 may be thermally contracted, e.g., using saline at a temperature at or above the Af of that material, or otherwise heated such as with RF energy or the use of a laser, magnetic inductance, electrical resistance, or the like in a manner such as described above.
Optionally, first component 110 may be configured to engage a lumen in the body, for example in a manner such as described with reference to
It will be appreciated that the present devices may include any suitable number of components including a self-expanding superelastic material, and any suitable number of components including a malleable shape-memory material. For example,
For example,
Although
In the nonlimiting examples shown in
In some examples, the first self-expanding superelastic material of first component 210, the malleable shape-memory material of second component 220, and the second self-expanding superelastic material of third component 211 may include different materials than one another, or may include the same material as one another but having different phases than one another. For example, first component 210, second component 220, and third component 211 independently may include one or more materials selected from the group consisting of nickel titanium (NiTi), also known as NITINOL, other shape memory alloys, self-expanding materials, superelastic materials, polymers, and the like. In one nonlimiting example, first component 210 and third component 211 each may include a NITINOL alloy having an Af that is sufficiently below body temperature that the material is in an austenitic, superelastic phase while in the human body in a manner such as described with reference to
In a manner such as described in greater detail with reference to
In addition to defining the rate of fluid flow through device 300, examples such as described with reference to
Based on the particular dimensions (and cross sectional areas) to which second component 320 and third component 321 independently are adjusted by expansion or contraction, different rates of fluid flow may be permitted through such components, thus providing an adjustable orifice for controlling the flow of fluid within the location of the human body in which device 300 is deployed. Although
In the nonlimiting examples shown in
In some examples, the self-expanding superelastic material of first component 310, the first malleable shape-memory material of second component 320, and the second malleable shape-memory material of third component 321 may include different materials than one another, or may include the same material as one another but having different phases than one another. For example, first component 310, second component 320, and third component 321 independently may include one or more materials selected from the group consisting of nickel titanium (NiTi), also known as NITINOL, other shape memory alloys, self-expanding materials, superelastic materials, polymers, and the like. In one nonlimiting example, first component 310 may include a NITINOL alloy having an Af that is sufficiently below body temperature that the material is in an austenitic, superelastic phase while in the human body in a manner such as described with reference to
In a manner such as described in greater detail with reference to
In the present devices, such as exemplified by devices 100, 200, 300 respectively described with reference to
For example,
Encapsulants 440, 441 may include any suitable biocompatible material, such as a polymer or a natural material. Examples of polymers suitable for use as an encapsulant include expanded polytetrafluoroethylene (ePTFE), silicone, polycarbonate urethane, DACRON (polyethylene terephthalate), Ultra High Molecular Weight Polyethylene (UHMWPE), and polyurethane. Examples of natural materials suitable for use as an encapsulant include pericardial tissue, e.g., from an equine, bovine, or porcine source, or human tissue such as human placenta or other human tissues. The biocompatible material is preferably smooth so as to inhibit thrombus formation, and optionally may be impregnated with carbon so as to promote tissue ingrowth. Alternatively, to promote tissue ingrowth and endothelization, the biocompatible material may form a mesh-like structure. The present devices may be encapsulated with a biocompatible material in a manner similar to that described in U.S. Patent Publication No. 2019/0110911 to Nae et al., entitled “Systems and Methods for Making Encapsulated Hourglass Shaped Stents,” the entire contents of which are incorporated by reference herein. For example, an inner surface of one of the present devices may be covered with a first graft layer, and an outer surface of the device may be covered with a second graft layer. The graft layers may be securely bonded together to form a monolithic layer of biocompatible material, e.g., may be sintered together to form a strong, smooth, substantially continuous coating that covers the inner and outer surfaces of the device. Portions of the coating then may be removed as desired from selected portions of the device using laser-cutting or mechanical cutting, for example.
In one example, the device is encapsulated with ePTFE. It will be understood by those skilled in the art that ePTFE materials have a characteristic microstructure consisting of nodes and fibrils, with the fibrils orientation being substantially parallel to the axis of longitudinal expansion. Expanded polytetrafluoroethylene materials may be made by ram extruding a compressed billet of particulate polytetrafluoroethylene and extrusion lubricant through an extrusion die to form sheet or tubular extrudates. The extrudate is then longitudinally expanded to form the node-fibril microstructure and heated to a temperature at or above the crystalline melt point of polytetrafluoroethylene, i.e., 327° C., for a period of time sufficient to sinter the ePTFE material. Heating may take place in a vacuum chamber to prevent or inhibit oxidation of the device. Alternatively, heating may take place in a nitrogen rich environment. A furnace may be used to heat the encapsulated device. Alternatively, or additionally, a mandrel upon which the encapsulated device rests may be used to heat the encapsulated device.
In addition to, or as an alternative to, any other method of joining components of the present device to one another, one or more of the components may be fully or partially inserted into another one or more of the components. For example,
In example device 501 illustrated in
Mechanical interference between components, e.g., such as described with reference to
It will be appreciated that devices such as described with reference to
Optionally, the Af of first component 610 and the Af of third component 611 each may be greater than the Af of second component 620. For example, first component 610 may correspond to first component 210 described with reference to
It will be appreciated that the present devices may be percutaneously implanted within any suitable portion of the human body, such as a body lumen (e.g., a blood vessel) or the heart. Similarly, it will be appreciated that the present devices suitably may be adjusted in vivo, after implantation, in such a manner as to adjust the flow of fluid in such a manner as to treat or ameliorate any suitable condition such as HF, PAH, aneurism, aortic valve stenosis, mitral valve stenosis, or to improve outcomes following cardiac valve repair (e.g., mitral valve repair) or following cardiac ablation (e.g., for treating atrial fibrillation). Some nonlimiting examples of devices for implantation at selected locations are described with reference to
In some examples, the present devices may be or include hourglass or “diabolo” shaped shunts, which optionally are encapsulated with biocompatible material, and which may be used for treating subjects suffering from disorders for which regulating fluid flow may be useful, such as CHF or PAH. In some examples, the hourglass shaped shunts may be specifically configured to be lodged securely in the atrial septum, for example in an opening through the fossa ovalis, to allow blood flow from the left atrium to the right when blood pressure in the left atrium exceeds that of the right atrium, or blood flow from the right atrium to the left when blood pressure in the right atrium exceeds that of the left atrium. As provided herein and described in greater detail with reference to
Referring now to
First component 710 may provide a first flared end region 702, third component 730 may provide a second end flared region 706, and second component 720 may provide a neck region 704 disposed between the first and second flared end regions. In the nonlimiting example shown in
Shunt 700 suitably may be formed in a manner such as described elsewhere herein. For example, in some configurations, shunt 700 is laser-cut from a single tube of NITINOL in a manner such as described with reference to device 600 illustrated in
The cross sectional area (and dimension) of the orifice provided by the malleable shape-memory central neck region may be increased or reduced so as to adjust the flow of fluid through shunt 700. For example, in a manner such as illustrated in
For example, heat from the saline may cause the malleable shape-memory material to transition to an austenitic phase, compressing the neck region back to its crimped (or otherwise heat set) dimension, following which the neck region cools to body temperature and transitions back to its martensitic phase. The saline may be delivered in any suitable manner, for example by a flexible catheter having one or more apertures (e.g., one side hole or multiple side-holes) through which hot saline may flow and that may be placed within the neck region, for example, over a guidewire through the neck region. In one nonlimiting example, the neck region may have its crimped inner dimension, typically 1-2 mm, at a first time, such as when initially deployed in a manner such as illustrated in
The particular configuration of shunt 700 may be selected so as to provide desired flow dynamics therethrough. For example,
Shunt 700 (or any other device provided herein) may be made using any suitable combination of techniques.
Additionally, or alternatively, shunt 700 (or any other device provided herein) may be made using a multi-material additive manufacturing process. For example, the higher Af component(s) which are to be malleable shape-memory material may be provided by using selective laser melting or an electron beam melting powder bed machine which has two or more powder-bins between which the machine could switch during the print process. The Af of a given component may be manipulated by the powder's chemical composition, e.g., different fractions of nickel titanium or of any other element(s) that may be present. For example, the higher the nickel percentage, the higher the Af. The Af of a given component also or alternatively may be manipulated by the powder's physical composition, e.g., particle sizes. For example, the smaller the powder dimension, the lower the Af. For further details of manipulating the Af of materials during a multi-material additive manufacturing process, see Horvay and Schade, “Development of nitinol alloys for additive manufacturing,” the entire contents of which are incorporated by reference herein. As another option, the multi-material may be achieved by liquid dispersion methodology (material jetting). For example, a 3-D printer may include two or more cartridges with different powder-liquid compositions in each, in a manner similar to that described for the powder-based example.
In an alternative configuration (not specifically illustrated), the martensitic frame including second component 1120 (corresponding to neck region 704) may be placed inside of the outer austenitic frame including first component 1110 (corresponding to first flared end region 702) and third component 1111 (corresponding to second flared end region 706). With proper mechanical interference, such as by laser spot welding interlocking shapes, the shorter martensitic frame may pull the center of the outer austenitic frame inward when heated above Af. For example, the martensitic inner frame may radially contact an inner surface of the neck so as to constrain the neck from contracting to a smaller dimension. The neck may self-contract responsive to the martensitic inner frame contracting to a smaller cross sectional area. An encapsulant may form an outer covering of first component 1110 and second component 1120.
However, the martensitic frame need not necessarily be welded or otherwise directly coupled to the austenitic frame. For example,
Furthermore, because there is no direct attachment between the inner and outer frames in device 1210, the inner martensitic frame 1120 may returned to its original predilated dimension by application of heat in a manner such as described above, while leaving the outer frame constrained only by contact with opening 1280, as shown in
Another way to provide a device for which the inner dimension may be reduced in-vivo is to place a shunt inside of another shunt. This “shunt-in-shunt” approach may be useful, for example, in the circumstance where it would be desired to change the inner shunt anytime after implanting the outer shunt. For example,
Illustratively, outer shunt 700 may be implanted in a patient at a first time, and may have a neck dimension that is initially expected to be suitable for the patient. If, at a later time, it may be determined that a different neck dimension would be more suitable for the patient, inner shunt 1360 may be implanted within outer shunt 700 so as to provide that neck dimension, which may be smaller or larger than the neck dimension of outer shunt 700. Inner shunt 1360 may be expanded and optionally contracted in a manner such as to define the rate of fluid flow through device 1300. For example, if it is desired to increase the rate of fluid flow through device 1300, inner shunt 1360 may be selected so as to have a larger dimension than device 700 and a hoop strength sufficient to suitably expand the dimension of device 700 and of any opening through which device 700 may be lodged. In such an example, inner shunt 1360 need not necessarily include a malleable shape-memory material, but instead may include a self-expanding superelastic material that may be heat-set so as to have a maximum neck dimension of suitable size and flared ends that respectively contact the flared ends for outer shunt 700 so as to inhibit the flow of blood between the two shunts. In another example, inner shunt 1360 may include a neck with a malleable shape-memory material with a heat-set minimum neck dimension of suitable size, and self-expanding superelastic flared ends that respectively contact the flared ends for outer shunt 700 so as to inhibit the flow of blood between the two shunts. The size of the neck of inner shunt 1360 may be increased and reduced in a manner such as described elsewhere herein. Optionally, inner shunt 1360 may be implanted at the same time as outer shunt 700, e.g., may be disposed within outer shunt 700, the two shunts crimped together and delivered through a sheath, and both deployed simultaneously with one another through the sheath.
It will be appreciated that the present devices may be used in any suitable part(s) of the human body, and are not limited to transatrial shunts. For example,
In some cases, following implantation the inner dimension of the blood vessel may increase which may result in an endoleak. To seal such endoleak, or for any other desired purpose, component C may be expanded (e.g., using balloon 1403 dilatation). As such, fluid flow through AAA 140 may be shunted through device 1400 in such a manner as to reduce the risk of rupture of the AAA. If it is desired to move device 1400, then the dimensions of components A and C may be reduced by applying heat in a manner such as described elsewhere herein. Device 1400 then may be removed, or may be moved to a new location as desired and the dimensions of one or both of components A and C again may be expanded so as to fixate the device in the blood vessel. It should be appreciated that the shape-memory material of component C (corresponding to third component 321) may have a first cross sectional area, which may be expanded, contracted (e.g., to a heat-set dimension), and then re-expanded. The cross sectional areas of component A (corresponding to second component 320) and C may be, but need not necessarily be, the same as one another. Component A (corresponding to second component 320) may be configured as an inlet, and component C (corresponding to third component 321) may be configured as an outlet fluidically coupled to the inlet via component B (corresponding to first component 310). Component A may be configured to engage a blood vessel in the human body, and component C may be configured to extend into an ostium of the blood vessel in a manner such illustrated in
It will be appreciated that any of the devices provided herein, not necessarily limited to the particularly illustrated examples, may be used in a method for adjustably regulating fluid flow. For example,
Method 1700 illustrated in
Method 1700 illustrated in
Accordingly, in examples provided herein, a fluid flow path through an implantable device may be both increased and reduced following implantation, allowing for repositioning of the device or a customized fluid flow that is appropriate to the particular patient's needs. In comparison, for previously known devices repositioning may not be possible, and the size of the fluid flow path either is selected prior to implantation or may be increased using balloon dilatation, providing limited options for achieving a desired hemodynamic result in a patient. In examples such as provided herein, the component(s) including self-expanding superelastic material(s) may assume their shape immediately upon implantation within the body, which may inhibit device migration and ensure accurate positioning. The component(s) including malleable shape-memory material(s) may be plastically deformable (e.g., expandable) at body temperature and may be returned to a heat-set dimension upon application of heat. The heat-set dimension of a malleable shape-memory component optionally may be larger than a crimped dimension of the component. Accordingly, in some examples a malleable shape-memory component may be expanded by suitably applying heat, e.g., as an alternative to an initial balloon dilatation after delivery of the crimped device. The malleable shape-memory component(s) repeatedly may be expanded and contracted, which may allow for adjustment of fluid flow through the device, or for the device to be repositioned, or a combination of such features.
For example, certain of the devices provided herein may be repositionable for fixation within a body lumen. As described above, the devices may include a first component including a self-expanding superelastic material, and a second component coupled to the first component and comprising a malleable shape-memory material, in a manner such as described with reference to
Accordingly, it will be appreciated that certain of the devices provided herein, not necessarily limited to the particularly illustrated examples, may be used in a method for adjustably fixating a device within a body lumen. For example,
Method 1800 also includes expanding the malleable shape-memory material to a second dimension to fixate the device within a body lumen (operation 1802), for example via balloon dilatation. Method 1800 also includes thermally contracting the malleable shape-memory material (operation 1803), for example via application of heat. Method 1800 also includes repositioning the device within the body lumen while the malleable shape-memory material is thermally contracted (operation 1804), for example by moving the device along a guidewire. Method 1800 also includes mechanically re-expanding the malleable shape-memory material to a third dimension to fixate the device within the body lumen (operation 1805), for example via balloon dilatation.
Although certain examples provided herein relate to permanently implantable devices for use in the human body, it should be appreciated that other examples relate to devices that are used only temporarily in the human body. Additionally, although certain examples herein primarily relate to changing the internal dimension of a device, it should be appreciated that other examples primarily relate to changing the external dimension of a device. For example,
In the example shown in
As shown in
In an example use of transatrial gate 2100 as transatrial channel that may be opened and closed, a guidewire is used to perform a transseptal puncture. The opening through atrial septum, which optionally is through the fossa ovalis, may be expanded using an introducer sheath and dilator. The dilator then is removed, keeping the sheath in place. A procedure then may be performed in the left atrium via the expanded opening, such as RF ablation, left atrial appendage (LAA) closure, MitraClip implantation, mitral valve replacement, mitral valve repair, or the like. The adjustable transatrial gate is implanted in a manner such as described with reference to
As noted above, the present devices may be permanently or temporarily implanted in the body. In a temporary implantation, the device may be configured for easy removal and may have a dimension that is adjustable in a manner such as described elsewhere herein, or may be permanently connected to the end of a catheter. For example,
Apparatus 28 includes device 21, which may be configured similarly as device 200 described with reference to
To facilitate removal of device 21 from the subject in a manner such as described further below with reference to
Alternatively to the example shown, a single wire 36 may form a loop that passes through all of the orifices 48, this single wire controlling the collapse of the entire proximal portion 44. In other words, by pulling on the two ends of this single wire, the entire proximal portion may be collapsed. In yet other examples, wires 36 do not form loops; rather, a separate wire is coupled to each leaf. For example, each leaf may be coupled to the distal end of a respective wire. Thus, for example, a device having six proximal leaves is coupled to six wires, one wire per leaf. Similarly, wires 36 may be formed as extensions of the leaves, such that each leaf has a wire extension that extends to the exterior of the subject. In such examples, the proximal portion of the device may be collapsed by pulling on the single proximal end of each of the wires.
In some cases, it may be beneficial to increase or reduce the cross sectional area of intermediate portion 42 while device 21 is inside the subject, e.g., in a manner such as described elsewhere herein. To allow the cross sectional area of intermediate portion 42 to be increased, delivery catheter 31 may include an enlarged central multipurpose lumen 39 through which an angioplasty balloon or other suitable balloon may be passed over a guidewire and inflated in a manner such as described elsewhere herein. To reduce the cross sectional area of intermediate portion 42, a catheter with one or more holes may be used to inject hot saline within device 21, in a manner such as described elsewhere herein, to heat intermediate portion 42. In some examples, the catheter with one or more holes is passed over a guidewire within delivery catheter 31. In other examples, the catheter with one or more holes is not passed over the guidewire but is introduced to device 21 separately from the guidewire through multipurpose lumen 39 of delivery catheter 31. It will be appreciated that to increase and reduce the cross sectional area of intermediate portion 42, e.g., to provide an appropriate flow rate through device 21 or to reposition device 21, processes of balloon expansion and heating may be repeated any suitable number of times.
In some examples, the adjustment of the cross sectional area of intermediate portion 42 of device 21 is based on pressure monitoring. For example, pressure sensors disposed on the device 21 may be used to acquire intra-atrial pressure measurements. A signal indicative of such pressure measurements may be transmitted outside the body via conductors 38 (also referred to as signal wires), shown schematically in
Alternatively or additionally, the cross sectional area of intermediate portion 42 may be adjusted in response to hemodynamic monitoring, such as by the application of flow imaging techniques such as pulsed wave (PW) or continuous wave (CW) Doppler echocardiography.
In some examples, to place the device 21 within the septum, the device is first collapsed and placed inside a delivery sheath 46 that has been inserted percutaneously into the vasculature of the subject, such as via a femoral vein of the subject, and is then passed through the vasculature into right atrium 30, e.g., via the inferior vena cava. (Alternatively, sheath 46 may be passed into the right atrium via the jugular vein and superior vena cava.) Subsequently, the distal end of the sheath is passed through the septum and into left atrium 32. Prior to passing the distal end of the sheath through the septum, a puncturing element may be used to create an opening in the septum, and, optionally, a dilator may be used to enlarge the opening, such that the distal end of the sheath may easily pass through the septum; in some examples, the dilator is configured and used in a manner such as described with reference to
Following the deployment of device 21, sheath 46 and catheter 31 may remain within the subject while device 21 is in place. For example, sheath 46 and catheter 31 may remain within the subject such that the distal end of the catheter is near the proximal portion of the device. The catheter may thus be used to deliver medication to the device site, pressure sensors in the catheter may be used to monitor the intra-atrial pressure, balloons may be introduced within device 21 to increase the cross sectional area of intermediate portion 42, or catheters with one or more holes may be introduced within device 21 to reduce the cross sectional area of intermediate portion 42. By way of example,
Device 21 helps relieve excess intra-atrial pressure, by allowing blood to flow from the higher-pressure atrium to the lower-pressure atrium, with a flow rate that may be increased or reduced based on the needs of the particular patient. Device 21 may thus be used as a temporary acute treatment of any relevant condition (e.g., pulmonary hypertension or congestive heart failure) for which the relief of excess pressure is beneficial, or, for example, to help prevent left ventricular dilation and remodeling following an acute myocardial insult. When device 21 is used as an acute treatment, the subject remains hospitalized until the subject's physician decides that sufficient treatment has been provided, at which point device 21 is removed from the subject in a manner such as described with reference to
In another embodiment, device 21 is used as temporary measurement device to determine the optimal size for a permanently implanted shunt to be subsequently implanted. In this embodiment, the cross sectional area of intermediate portion 42 of device 21 is adjusted while monitoring pressures and/or other physiological parameters as described for the acute treatment embodiment described above. Once the optimum cross sectional area has been determined, device 21 is removed from the subject in a manner such as described with reference to
Reference is now made to
In
In some examples, sheath 46 is advanced while proximal portion 44 is collapsing, such that, as proximal portion 44 continues to collapse, the catheter passes over device 21, until the distal end of the catheter crosses through the septum and reaches the distal portion of device 21. (In such examples, the state shown in
In some examples, proximal portion 44 may be provided in a malleable shape-memory phase at body temperature, heat set to a collapsed configuration similar to that shown in
It is noted that the apparatus and methods such as described with reference to
Accordingly, provided herein is an interatrial shunt for placement at an atrial septum of a patient's heart. The interatrial shunt may be configured similarly as one or more of device 200 described with reference to
The first and second regions that are superelastic may include NITINOL having an austenitic finish temperature (Af) between 5-20° C., e.g., in a manner such as described elsewhere herein. The neck region that is malleable may include NITINOL having an austenitic finish temperature (Af) between 45-60° C., e.g., in a manner such as described elsewhere herein. The neck region may be mechanically expandable, e.g., in a manner such as described elsewhere herein. The neck region may be thermally contractible, e.g., in a manner such as described elsewhere herein.
Also provided herein is an interatrial shunt for placement at an atrial septum of a patient's heart for adjustably regulating fluid flow therethrough. The interatrial shunt may be configured similarly as one or more of device 200 described with reference to
The malleable shape-memory material may be configured to be expanded in vivo such that the passageway expands from the cross-sectional area to a second cross-sectional area larger than the cross-sectional area, e.g., in a manner such as described elsewhere herein. The malleable shape-memory material may be configured to be contracted in vivo such that the passageway contracts from the second cross-sectional area to a third cross-sectional area smaller than the second cross-sectional area, e.g., in a manner such as described elsewhere herein. The cross-sectional area may be between 4.9 to 28.3 mm2 and the second cross-sectional area and the third cross-sectional area may be between 15.9 to 78.6 mm2. For example, for any of device 200 described with reference to
The malleable shape-memory material may include NITINOL having an austenitic finish temperature (Af) between 45-60° C., e.g., in a manner such as described elsewhere herein. The self-expanding superelastic material may include NITINOL having an austenitic finish temperature (Af) between 5-20° C., e.g., in a manner such as described elsewhere herein. The malleable shape-memory material may be mechanically expandable, e.g., in a manner such as described elsewhere herein. The malleable shape-memory material may be thermally contractible, e.g., in a manner such as described elsewhere herein. The cross-sectional area of the neck region may be smaller than respective cross-sectional areas of at least one of the first and second expandable end regions, e.g., in a manner such as described for device 200 described with reference to
The first and second expandable end regions and the neck region may comprise a diabolo-shaped shunt, e.g., in a manner such as device 700 described with reference to
Also provided herein is an interatrial shunt for adjustably regulating fluid flow in a heart having a first atrium, a second atrium, and an atrial septum. The interatrial shunt may be configured similarly as one or more of device 200 described with reference to
The self-expanding superelastic material may include NITINOL having an austenitic finish temperature (Af) between 5-20° C., and the malleable shape-memory material may include NITINOL having an austenitic finish temperature (Af) between 45-60° C., e.g., in a manner such as described elsewhere herein. The malleable shape-memory material may be mechanically expandable and thermally contractible, e.g., in a manner such as described elsewhere herein. The interatrial shunt may include a third region that includes a second self-expanding superelastic material, is configured to be placed in the second atrium, and is coupled to the second region, e.g., such as included in device 700 described with reference to
The following example is intended to be purely illustrative, and not limiting of the present invention.
While various illustrative embodiments of the invention are described above, it will be apparent to one skilled in the art that various changes and modifications may be made therein without departing from the invention. For example, although examples of the present devices are described as having two or three components, it should be understood that the present devices may include any suitable number of components that respectively include a self-expanding superelastic material or a malleable shape-memory material. The appended claims are intended to cover all such changes and modifications that fall within the true spirit and scope of the invention.
This application is a continuation of U.S. patent application Ser. No. 17/092,081, filed Nov. 6, 2020, which is a continuation of U.S. patent application Ser. No. 16/875,652, filed May 15, 2020, now U.S. Pat. No. 10,898,698, which claims the benefit of priority of U.S. Provisional Patent Application Ser. No. 63/019,777, filed May 4, 2020, the entire contents of each of which are incorporated by reference herein. This application is also a continuation-in-part of U.S. patent application Ser. No. 16/963,139, filed Jul. 17, 2020, which is a national phase application under 35 U.S.C. § 371 of PCT/IB2019/050452, filed Jan. 19, 2019, which claims the benefit of priority of U.S. Provisional Patent Application Ser. No. 62/619,748, filed Jan. 20, 2018, the entire contents of each of which are incorporated by reference herein. This application is also a continuation-in-part of International PCT Patent Application Serial No. PCT/IB2021/053594, filed Apr. 29, 2021, which is a continuation-in-part of U.S. patent application Ser. No. 17/092,081, filed Nov. 6, 2020, which is a continuation of U.S. patent application Ser. No. 16/875,652, filed May 15, 2020, now U.S. Pat. No. 10,898,698, which claims the benefit of priority of U.S. Provisional Patent Application Ser. No. 63/019,777, filed May 4, 2020, the entire contents of each of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3852334 | Dusza et al. | Dec 1974 | A |
3874388 | King et al. | Apr 1975 | A |
3952334 | Bokros et al. | Apr 1976 | A |
4484955 | Hochstein | Nov 1984 | A |
4601309 | Chang | Jul 1986 | A |
4617932 | Kornberg | Oct 1986 | A |
4662355 | Pieronne et al. | May 1987 | A |
4665906 | Jervis | May 1987 | A |
4705507 | Boyles | Nov 1987 | A |
4836204 | Landymore et al. | Jun 1989 | A |
4979955 | Smith | Dec 1990 | A |
4988339 | Vadher | Jan 1991 | A |
4995857 | Arnold | Feb 1991 | A |
5035702 | Taheri | Jul 1991 | A |
5035706 | Giantureo et al. | Jul 1991 | A |
5037427 | Harada et al. | Aug 1991 | A |
5089005 | Harada | Feb 1992 | A |
5186431 | Tamari | Feb 1993 | A |
5197978 | Hess | Mar 1993 | A |
5234447 | Kaster et al. | Aug 1993 | A |
5267940 | Moulder | Dec 1993 | A |
5290227 | Pasque | Mar 1994 | A |
5312341 | Turi | May 1994 | A |
5326374 | Ilbawi et al. | Jul 1994 | A |
5332402 | Teitelbaum | Jul 1994 | A |
5334217 | Das | Aug 1994 | A |
5378239 | Termin et al. | Jan 1995 | A |
5409019 | Wilk | Apr 1995 | A |
5429144 | Wilk | Jul 1995 | A |
5500015 | Deac | Mar 1996 | A |
5531759 | Kensey et al. | Jul 1996 | A |
5545210 | Hess et al. | Aug 1996 | A |
5556386 | Todd | Sep 1996 | A |
5578008 | Hara | Nov 1996 | A |
5584803 | Stevens et al. | Dec 1996 | A |
5597377 | Aldea | Jan 1997 | A |
5645559 | Hachtman et al. | Jul 1997 | A |
5655548 | Nelson et al. | Aug 1997 | A |
5662711 | Douglas | Sep 1997 | A |
5702412 | Popov et al. | Dec 1997 | A |
5725552 | Kotula et al. | Mar 1998 | A |
5741324 | Glastra | Apr 1998 | A |
5749880 | Banas et al. | May 1998 | A |
5779716 | Cano et al. | Jul 1998 | A |
5795307 | Krueger | Aug 1998 | A |
5810836 | Hussein et al. | Sep 1998 | A |
5824062 | Patke et al. | Oct 1998 | A |
5824071 | Nelson et al. | Oct 1998 | A |
5846261 | Kotula et al. | Dec 1998 | A |
5910144 | Hayashi | Jun 1999 | A |
5916193 | Stevens et al. | Jun 1999 | A |
5941850 | Shah et al. | Aug 1999 | A |
5957949 | Leonhardt et al. | Sep 1999 | A |
5990379 | Gregory | Nov 1999 | A |
6027518 | Gaber | Feb 2000 | A |
6039755 | Edwin et al. | Mar 2000 | A |
6039759 | Carpentier et al. | Mar 2000 | A |
6086610 | Duerig et al. | Jul 2000 | A |
6111520 | Allen et al. | Aug 2000 | A |
6117159 | Huebsch et al. | Sep 2000 | A |
6120534 | Ruiz | Sep 2000 | A |
6124523 | Banas et al. | Sep 2000 | A |
6126686 | Badylak et al. | Oct 2000 | A |
6165188 | Saadat et al. | Dec 2000 | A |
6210318 | Lederman | Apr 2001 | B1 |
6214039 | Banas et al. | Apr 2001 | B1 |
6217541 | Yu | Apr 2001 | B1 |
6221096 | Aiba et al. | Apr 2001 | B1 |
6231587 | Makower | May 2001 | B1 |
6242762 | Brown et al. | Jun 2001 | B1 |
6245099 | Edwin et al. | Jun 2001 | B1 |
6254564 | Wilk et al. | Jul 2001 | B1 |
6260552 | Mortier et al. | Jul 2001 | B1 |
6264684 | Banas et al. | Jul 2001 | B1 |
6270515 | Linden et al. | Aug 2001 | B1 |
6270526 | Cox | Aug 2001 | B1 |
6277078 | Porat et al. | Aug 2001 | B1 |
6278379 | Allen et al. | Aug 2001 | B1 |
6302892 | Wilk | Oct 2001 | B1 |
6306141 | Jervis | Oct 2001 | B1 |
6328699 | Eigler et al. | Dec 2001 | B1 |
6344022 | Jarvik | Feb 2002 | B1 |
6358277 | Duran | Mar 2002 | B1 |
6391036 | Berg et al. | May 2002 | B1 |
6398803 | Layne et al. | Jun 2002 | B1 |
6406422 | Landesberg | Jun 2002 | B1 |
6447539 | Nelson et al. | Sep 2002 | B1 |
6451051 | Drasler et al. | Sep 2002 | B2 |
6458153 | Bailey et al. | Oct 2002 | B1 |
6468303 | Amplatz et al. | Oct 2002 | B1 |
6475136 | Forsell | Nov 2002 | B1 |
6478776 | Rosenman et al. | Nov 2002 | B1 |
6485507 | Walak et al. | Nov 2002 | B1 |
6488702 | Besselink | Dec 2002 | B1 |
6491705 | Gifford, III et al. | Dec 2002 | B2 |
6497722 | Von Oepen | Dec 2002 | B1 |
6527698 | Kung et al. | Mar 2003 | B1 |
6544208 | Ethier et al. | Apr 2003 | B2 |
6547814 | Edwin et al. | Apr 2003 | B2 |
6562066 | Martin | May 2003 | B1 |
6572652 | Shaknovich | Jun 2003 | B2 |
6579314 | Lombardi et al. | Jun 2003 | B1 |
6589198 | Soltanpour et al. | Jul 2003 | B1 |
6616675 | Evard et al. | Sep 2003 | B1 |
6632169 | Korakianitis et al. | Oct 2003 | B2 |
6638303 | Campbell | Oct 2003 | B1 |
6641610 | Wolf et al. | Nov 2003 | B2 |
6652578 | Bailey et al. | Nov 2003 | B2 |
6685664 | Levin et al. | Feb 2004 | B2 |
6712836 | Berg et al. | Mar 2004 | B1 |
6719781 | Kim | Apr 2004 | B1 |
6740115 | Lombardi et al. | May 2004 | B2 |
6758858 | McCrea et al. | Jul 2004 | B2 |
6764507 | Shanley et al. | Jul 2004 | B2 |
6770087 | Layne et al. | Aug 2004 | B2 |
6797217 | McCrea et al. | Sep 2004 | B2 |
6890350 | Walak | May 2005 | B1 |
6923829 | Boyle et al. | Aug 2005 | B2 |
6970742 | Mann et al. | Nov 2005 | B2 |
7001409 | Amplatz | Feb 2006 | B2 |
7004966 | Edwin et al. | Feb 2006 | B2 |
7025777 | Moore | Apr 2006 | B2 |
7060150 | Banas et al. | Jun 2006 | B2 |
7083640 | Lombardi et al. | Aug 2006 | B2 |
7115095 | Eigler et al. | Oct 2006 | B2 |
7118600 | Dua et al. | Oct 2006 | B2 |
7137953 | Eigler et al. | Nov 2006 | B2 |
7147604 | Allen et al. | Dec 2006 | B1 |
7149587 | Wardle et al. | Dec 2006 | B2 |
7169160 | Middleman et al. | Jan 2007 | B1 |
7169172 | Levine et al. | Jan 2007 | B2 |
7195594 | Eigler et al. | Mar 2007 | B2 |
7208010 | Shanley et al. | Apr 2007 | B2 |
7226558 | Nieman et al. | Jun 2007 | B2 |
7245117 | Joy et al. | Jul 2007 | B1 |
7294115 | Wilk | Nov 2007 | B1 |
7306756 | Edwin et al. | Dec 2007 | B2 |
7402899 | Whiting et al. | Jul 2008 | B1 |
7439723 | Allen et al. | Oct 2008 | B2 |
7468071 | Edwin et al. | Dec 2008 | B2 |
7483743 | Mann et al. | Jan 2009 | B2 |
7498799 | Allen et al. | Mar 2009 | B2 |
7509169 | Eigler et al. | Mar 2009 | B2 |
7550978 | Joy et al. | Jun 2009 | B2 |
7578899 | Edwin et al. | Aug 2009 | B2 |
7590449 | Mann et al. | Sep 2009 | B2 |
7615010 | Najafi et al. | Nov 2009 | B1 |
7621879 | Eigler et al. | Nov 2009 | B2 |
7679355 | Allen et al. | Mar 2010 | B2 |
7717854 | Mann et al. | May 2010 | B2 |
7794473 | Tessmer et al. | Sep 2010 | B2 |
7839153 | Joy et al. | Nov 2010 | B2 |
7842083 | Shanley et al. | Nov 2010 | B2 |
7854172 | O'Brien et al. | Dec 2010 | B2 |
7862513 | Eigler et al. | Jan 2011 | B2 |
7914639 | Layne et al. | Mar 2011 | B2 |
7939000 | Edwin et al. | May 2011 | B2 |
7988724 | Salahieh et al. | Aug 2011 | B2 |
7993383 | Hartley et al. | Aug 2011 | B2 |
8012194 | Edwin et al. | Sep 2011 | B2 |
8016877 | Seguin et al. | Sep 2011 | B2 |
8021420 | Dolan | Sep 2011 | B2 |
8025625 | Allen | Sep 2011 | B2 |
8025668 | McCartney | Sep 2011 | B2 |
8043360 | McNamara et al. | Oct 2011 | B2 |
8070708 | Rottenberg et al. | Dec 2011 | B2 |
8091556 | Keren et al. | Jan 2012 | B2 |
8096959 | Stewart et al. | Jan 2012 | B2 |
8137605 | McCrea et al. | Mar 2012 | B2 |
8142363 | Eigler et al. | Mar 2012 | B1 |
8147545 | Avior | Apr 2012 | B2 |
8157852 | Bloom et al. | Apr 2012 | B2 |
8157860 | McNamara et al. | Apr 2012 | B2 |
8157940 | Edwin et al. | Apr 2012 | B2 |
8158041 | Colone | Apr 2012 | B2 |
8187321 | Shanley et al. | May 2012 | B2 |
8202313 | Shanley et al. | Jun 2012 | B2 |
8206435 | Shanley et al. | Jun 2012 | B2 |
8235916 | Whiting et al. | Aug 2012 | B2 |
8235933 | Keren et al. | Aug 2012 | B2 |
8246677 | Ryan | Aug 2012 | B2 |
8287589 | Otto et al. | Oct 2012 | B2 |
8298150 | Mann et al. | Oct 2012 | B2 |
8298244 | Garcia et al. | Oct 2012 | B2 |
8303511 | Eigler et al. | Nov 2012 | B2 |
8313524 | Edwin et al. | Nov 2012 | B2 |
8328751 | Keren et al. | Dec 2012 | B2 |
8337650 | Edwin et al. | Dec 2012 | B2 |
8348996 | Tuval et al. | Jan 2013 | B2 |
8357193 | Phan et al. | Jan 2013 | B2 |
8398708 | Meiri et al. | Mar 2013 | B2 |
8460366 | Rowe | Jun 2013 | B2 |
8468667 | Straubinger et al. | Jun 2013 | B2 |
8480594 | Eigler et al. | Jul 2013 | B2 |
8579966 | Seguin et al. | Nov 2013 | B2 |
8597225 | Kapadia | Dec 2013 | B2 |
8617337 | Layne et al. | Dec 2013 | B2 |
8617441 | Edwin et al. | Dec 2013 | B2 |
8652284 | Bogert et al. | Feb 2014 | B2 |
8665086 | Miller et al. | Mar 2014 | B2 |
8696611 | Nitzan et al. | Apr 2014 | B2 |
8790241 | Edwin et al. | Jul 2014 | B2 |
8882697 | Celermajer et al. | Nov 2014 | B2 |
8882798 | Schwab et al. | Nov 2014 | B2 |
8911489 | Ben-Muvhar | Dec 2014 | B2 |
9005155 | Sugimoto | Apr 2015 | B2 |
9034034 | Nitzan et al. | May 2015 | B2 |
9055917 | Mann et al. | Jun 2015 | B2 |
9060696 | Eigler et al. | Jun 2015 | B2 |
9067050 | Gallagher et al. | Jun 2015 | B2 |
9205236 | McNamara et al. | Dec 2015 | B2 |
9220429 | Nabutovsky et al. | Dec 2015 | B2 |
9358371 | McNamara et al. | Jun 2016 | B2 |
9393115 | Tabor et al. | Jul 2016 | B2 |
9456812 | Finch et al. | Oct 2016 | B2 |
9622895 | Cohen et al. | Apr 2017 | B2 |
9629715 | Nitzan et al. | Apr 2017 | B2 |
9681948 | Levi et al. | Jun 2017 | B2 |
9707382 | Nitzan et al. | Jul 2017 | B2 |
9713696 | Yacoby et al. | Jul 2017 | B2 |
9724499 | Rottenberg et al. | Aug 2017 | B2 |
9757107 | McNamara et al. | Sep 2017 | B2 |
9789294 | Taft et al. | Oct 2017 | B2 |
9918677 | Eigler et al. | Mar 2018 | B2 |
9943670 | Keren et al. | Apr 2018 | B2 |
9980815 | Nitzan et al. | May 2018 | B2 |
10045766 | McNamara et al. | Aug 2018 | B2 |
10047421 | Khan et al. | Aug 2018 | B2 |
10076403 | Eigler | Sep 2018 | B1 |
10105103 | Goldshtein et al. | Oct 2018 | B2 |
10111741 | Michalak | Oct 2018 | B2 |
10207087 | Keren et al. | Feb 2019 | B2 |
10207807 | Moran et al. | Feb 2019 | B2 |
10251740 | Eigler | Apr 2019 | B2 |
10251750 | Alexander et al. | Apr 2019 | B2 |
10265169 | Desrosiers et al. | Apr 2019 | B2 |
10299687 | Nabutovsky et al. | May 2019 | B2 |
10357320 | Beira | Jul 2019 | B2 |
10357357 | Levi et al. | Jul 2019 | B2 |
10368981 | Nitzan et al. | Aug 2019 | B2 |
10463490 | Rottenberg et al. | Nov 2019 | B2 |
10478594 | Yacoby et al. | Nov 2019 | B2 |
10548725 | Alkhatib et al. | Feb 2020 | B2 |
10561423 | Sharma | Feb 2020 | B2 |
10639459 | Nitzan et al. | May 2020 | B2 |
10744012 | Bonsignore | Aug 2020 | B2 |
10828151 | Nitzan et al. | Nov 2020 | B2 |
10835394 | Nae | Nov 2020 | B2 |
10898698 | Eigler | Jan 2021 | B1 |
10912645 | Rottenberg et al. | Feb 2021 | B2 |
10925706 | Eigler | Feb 2021 | B2 |
10940296 | Keren | Mar 2021 | B2 |
11109988 | Rosen | Sep 2021 | B2 |
11234702 | Eigler | Feb 2022 | B1 |
11253353 | Levi et al. | Feb 2022 | B2 |
11291807 | Eigler | Apr 2022 | B2 |
11304831 | Nae | Apr 2022 | B2 |
11311375 | Li | Apr 2022 | B2 |
20010021872 | Bailey et al. | Sep 2001 | A1 |
20020120277 | Hauschild et al. | Aug 2002 | A1 |
20020165479 | Wilk | Nov 2002 | A1 |
20020165606 | Wolf et al. | Nov 2002 | A1 |
20020169371 | Gilderdale | Nov 2002 | A1 |
20020169377 | Khairkhahan et al. | Nov 2002 | A1 |
20020173742 | Keren et al. | Nov 2002 | A1 |
20020183628 | Reich et al. | Dec 2002 | A1 |
20030028213 | Thill et al. | Feb 2003 | A1 |
20030045902 | Weadock | Mar 2003 | A1 |
20030100920 | Akin et al. | May 2003 | A1 |
20030125798 | Martin | Jul 2003 | A1 |
20030136417 | Fonseca et al. | Jul 2003 | A1 |
20030139819 | Beer et al. | Jul 2003 | A1 |
20030176914 | Rabkin et al. | Sep 2003 | A1 |
20030209835 | Chun et al. | Nov 2003 | A1 |
20030216679 | Wolf et al. | Nov 2003 | A1 |
20030216803 | Ledergerber | Nov 2003 | A1 |
20040010219 | McCusker et al. | Jan 2004 | A1 |
20040016514 | Nien | Jan 2004 | A1 |
20040073242 | Chanduszko | Apr 2004 | A1 |
20040077988 | Tweden et al. | Apr 2004 | A1 |
20040088045 | Cox | May 2004 | A1 |
20040093075 | Kuehne | May 2004 | A1 |
20040102797 | Golden et al. | May 2004 | A1 |
20040116999 | Ledergerber | Jun 2004 | A1 |
20040138743 | Myers et al. | Jul 2004 | A1 |
20040147869 | Wolf et al. | Jul 2004 | A1 |
20040147871 | Burnett | Jul 2004 | A1 |
20040147886 | Bonni | Jul 2004 | A1 |
20040147969 | Mann et al. | Jul 2004 | A1 |
20040162514 | Alferness et al. | Aug 2004 | A1 |
20040193261 | Berreklouw | Sep 2004 | A1 |
20040210190 | Kohler et al. | Oct 2004 | A1 |
20040210307 | Khairkhahan | Oct 2004 | A1 |
20040225352 | Osborne et al. | Nov 2004 | A1 |
20050003327 | Elian et al. | Jan 2005 | A1 |
20050033327 | Gainor et al. | Feb 2005 | A1 |
20050033351 | Newton | Feb 2005 | A1 |
20050065589 | Schneider et al. | Mar 2005 | A1 |
20050125032 | Whisenant et al. | Jun 2005 | A1 |
20050137682 | Justino | Jun 2005 | A1 |
20050148925 | Rottenberg et al. | Jul 2005 | A1 |
20050165344 | Dobak, III | Jul 2005 | A1 |
20050182486 | Gabbay | Aug 2005 | A1 |
20050267524 | Chanduszko | Dec 2005 | A1 |
20050283231 | Haug et al. | Dec 2005 | A1 |
20050288596 | Eigler et al. | Dec 2005 | A1 |
20050288706 | Widomski et al. | Dec 2005 | A1 |
20050288786 | Chanduszko | Dec 2005 | A1 |
20060009800 | Christianson et al. | Jan 2006 | A1 |
20060025857 | Bergheim et al. | Feb 2006 | A1 |
20060111660 | Wolf et al. | May 2006 | A1 |
20060116710 | Corcoran et al. | Jun 2006 | A1 |
20060122522 | Chavan et al. | Jun 2006 | A1 |
20060122647 | Callaghan et al. | Jun 2006 | A1 |
20060167541 | Lattouf | Jul 2006 | A1 |
20060184231 | Rucker | Aug 2006 | A1 |
20060212110 | Osborne et al. | Sep 2006 | A1 |
20060241745 | Solem | Oct 2006 | A1 |
20060256611 | Bednorz et al. | Nov 2006 | A1 |
20060282157 | Hill et al. | Dec 2006 | A1 |
20070010852 | Blaeser et al. | Jan 2007 | A1 |
20070021739 | Weber | Jan 2007 | A1 |
20070043435 | Seguin et al. | Feb 2007 | A1 |
20070129756 | Abbott et al. | Jun 2007 | A1 |
20070191863 | De Juan et al. | Aug 2007 | A1 |
20070213813 | Von Segesser et al. | Sep 2007 | A1 |
20070276413 | Nobles | Nov 2007 | A1 |
20070276414 | Nobles | Nov 2007 | A1 |
20070282157 | Rottenberg et al. | Dec 2007 | A1 |
20070299384 | Faul et al. | Dec 2007 | A1 |
20080034836 | Eigler et al. | Feb 2008 | A1 |
20080086205 | Gordy et al. | Apr 2008 | A1 |
20080125861 | Webler et al. | May 2008 | A1 |
20080177300 | Mas et al. | Jul 2008 | A1 |
20080262602 | Wilk et al. | Oct 2008 | A1 |
20080319525 | Tieu et al. | Dec 2008 | A1 |
20090030499 | Bebb et al. | Jan 2009 | A1 |
20090054976 | Tuval et al. | Feb 2009 | A1 |
20090125104 | Hoffman | May 2009 | A1 |
20090149947 | Frohwitter | Jun 2009 | A1 |
20090198315 | Boudjemline | Aug 2009 | A1 |
20090276040 | Rowe et al. | Nov 2009 | A1 |
20090319037 | Rowe et al. | Dec 2009 | A1 |
20100004740 | Seguin et al. | Jan 2010 | A1 |
20100022940 | Thompson | Jan 2010 | A1 |
20100057192 | Celermajer | Mar 2010 | A1 |
20100069836 | Satake | Mar 2010 | A1 |
20100070022 | Kuehling | Mar 2010 | A1 |
20100081867 | Fishler et al. | Apr 2010 | A1 |
20100100167 | Bortlein et al. | Apr 2010 | A1 |
20100121434 | Paul et al. | May 2010 | A1 |
20100179590 | Fortson et al. | Jul 2010 | A1 |
20100191326 | Alkhatib | Jul 2010 | A1 |
20100249909 | McNamara et al. | Sep 2010 | A1 |
20100249910 | McNamara et al. | Sep 2010 | A1 |
20100249915 | Zhang | Sep 2010 | A1 |
20100256548 | McNamara et al. | Oct 2010 | A1 |
20100256753 | McNamara et al. | Oct 2010 | A1 |
20100298755 | McNamara et al. | Nov 2010 | A1 |
20100324652 | Aurilia et al. | Dec 2010 | A1 |
20110022057 | Eigler et al. | Jan 2011 | A1 |
20110022157 | Essinger et al. | Jan 2011 | A1 |
20110054515 | Bridgeman et al. | Mar 2011 | A1 |
20110071623 | Finch et al. | Mar 2011 | A1 |
20110071624 | Finch et al. | Mar 2011 | A1 |
20110093059 | Fischell et al. | Apr 2011 | A1 |
20110112632 | Chau | May 2011 | A1 |
20110152923 | Fox | Jun 2011 | A1 |
20110190874 | Celermajer et al. | Aug 2011 | A1 |
20110218479 | Rottenberg et al. | Sep 2011 | A1 |
20110218480 | Rottenberg et al. | Sep 2011 | A1 |
20110218481 | Rottenberg et al. | Sep 2011 | A1 |
20110257723 | McNamara | Oct 2011 | A1 |
20110264203 | Dwork et al. | Oct 2011 | A1 |
20110276086 | Al-Qbandi et al. | Nov 2011 | A1 |
20110295182 | Finch et al. | Dec 2011 | A1 |
20110295183 | Finch et al. | Dec 2011 | A1 |
20110295362 | Finch et al. | Dec 2011 | A1 |
20110295366 | Finch et al. | Dec 2011 | A1 |
20110306916 | Nitzan et al. | Dec 2011 | A1 |
20110319806 | Wardle | Dec 2011 | A1 |
20120022507 | Najafi et al. | Jan 2012 | A1 |
20120022633 | Olson et al. | Jan 2012 | A1 |
20120035590 | Whiting et al. | Feb 2012 | A1 |
20120041422 | Whiting et al. | Feb 2012 | A1 |
20120046528 | Eigler et al. | Feb 2012 | A1 |
20120046739 | Von Oepen et al. | Feb 2012 | A1 |
20120053686 | McNamara et al. | Mar 2012 | A1 |
20120071918 | Amin et al. | Mar 2012 | A1 |
20120130301 | McNamara et al. | May 2012 | A1 |
20120165928 | Nitzan et al. | Jun 2012 | A1 |
20120179172 | Paul, Jr. et al. | Jul 2012 | A1 |
20120190991 | Bornzin et al. | Jul 2012 | A1 |
20120265296 | McNamara et al. | Oct 2012 | A1 |
20120271398 | Essinger et al. | Oct 2012 | A1 |
20120289882 | McNamara et al. | Nov 2012 | A1 |
20120290062 | McNamara et al. | Nov 2012 | A1 |
20130030521 | Nitzan et al. | Jan 2013 | A1 |
20130046373 | Cartledge et al. | Feb 2013 | A1 |
20130138145 | Von Oepen | May 2013 | A1 |
20130178783 | McNamara et al. | Jul 2013 | A1 |
20130178784 | McNamara et al. | Jul 2013 | A1 |
20130184633 | McNamara et al. | Jul 2013 | A1 |
20130184634 | McNamara et al. | Jul 2013 | A1 |
20130197423 | Keren et al. | Aug 2013 | A1 |
20130197547 | Fukuoka et al. | Aug 2013 | A1 |
20130197629 | Gainor et al. | Aug 2013 | A1 |
20130204175 | Sugimoto | Aug 2013 | A1 |
20130231737 | McNamara et al. | Sep 2013 | A1 |
20130261531 | Gallagher et al. | Oct 2013 | A1 |
20130281988 | Magnin et al. | Oct 2013 | A1 |
20130304192 | Chanduszko | Nov 2013 | A1 |
20140012181 | Sugimoto et al. | Jan 2014 | A1 |
20140012303 | Heipl | Jan 2014 | A1 |
20140012368 | Sugimoto et al. | Jan 2014 | A1 |
20140012369 | Murry, III et al. | Jan 2014 | A1 |
20140067037 | Fargahi | Mar 2014 | A1 |
20140094904 | Salahieh et al. | Apr 2014 | A1 |
20140128795 | Keren et al. | May 2014 | A1 |
20140128796 | Keren et al. | May 2014 | A1 |
20140163449 | Rottenberg et al. | Jun 2014 | A1 |
20140194971 | McNamara | Jul 2014 | A1 |
20140213959 | Nitzan et al. | Jul 2014 | A1 |
20140222144 | Eberhardt et al. | Aug 2014 | A1 |
20140249621 | Eidenschink | Sep 2014 | A1 |
20140257167 | Celermajer | Sep 2014 | A1 |
20140275916 | Nabutovsky et al. | Sep 2014 | A1 |
20140277045 | Fazio et al. | Sep 2014 | A1 |
20140277054 | McNamara et al. | Sep 2014 | A1 |
20140303710 | Zhang et al. | Oct 2014 | A1 |
20140350565 | Yacoby et al. | Nov 2014 | A1 |
20140350658 | Benary et al. | Nov 2014 | A1 |
20140350661 | Schaeffer | Nov 2014 | A1 |
20140350669 | Gillespie et al. | Nov 2014 | A1 |
20140357946 | Golden et al. | Dec 2014 | A1 |
20150005810 | Center et al. | Jan 2015 | A1 |
20150034217 | Vad | Feb 2015 | A1 |
20150039084 | Levi et al. | Feb 2015 | A1 |
20150066140 | Quadri et al. | Mar 2015 | A1 |
20150073539 | Geiger et al. | Mar 2015 | A1 |
20150112383 | Sherman et al. | Apr 2015 | A1 |
20150119796 | Finch | Apr 2015 | A1 |
20150127093 | Hosmer et al. | May 2015 | A1 |
20150142049 | Delgado et al. | May 2015 | A1 |
20150148731 | McNamara et al. | May 2015 | A1 |
20150148896 | Karapetian et al. | May 2015 | A1 |
20150157455 | Hoang et al. | Jun 2015 | A1 |
20150173897 | Raanani et al. | Jun 2015 | A1 |
20150182334 | Bourang et al. | Jul 2015 | A1 |
20150190229 | Seguin | Jul 2015 | A1 |
20150196383 | Johnson | Jul 2015 | A1 |
20150201998 | Roy et al. | Jul 2015 | A1 |
20150209143 | Duffy et al. | Jul 2015 | A1 |
20150230924 | Miller et al. | Aug 2015 | A1 |
20150238314 | Bortlein et al. | Aug 2015 | A1 |
20150245908 | Nitzan et al. | Sep 2015 | A1 |
20150272731 | Racchini et al. | Oct 2015 | A1 |
20150282790 | Quinn et al. | Oct 2015 | A1 |
20150282931 | Brunnett et al. | Oct 2015 | A1 |
20150313599 | Johnson et al. | Nov 2015 | A1 |
20150359556 | Vardi | Dec 2015 | A1 |
20160007924 | Eigler et al. | Jan 2016 | A1 |
20160022423 | McNamara et al. | Jan 2016 | A1 |
20160022970 | Forcucci et al. | Jan 2016 | A1 |
20160073907 | Nabutovsky et al. | Mar 2016 | A1 |
20160120550 | McNamara et al. | May 2016 | A1 |
20160129260 | Mann et al. | May 2016 | A1 |
20160157862 | Hernandez et al. | Jun 2016 | A1 |
20160166381 | Sugimoto et al. | Jun 2016 | A1 |
20160184561 | McNamara et al. | Jun 2016 | A9 |
20160206423 | O'Connor et al. | Jul 2016 | A1 |
20160213467 | Backus et al. | Jul 2016 | A1 |
20160220360 | Lin et al. | Aug 2016 | A1 |
20160220365 | Backus et al. | Aug 2016 | A1 |
20160262878 | Backus et al. | Sep 2016 | A1 |
20160262879 | Meiri et al. | Sep 2016 | A1 |
20160287386 | Alon et al. | Oct 2016 | A1 |
20160296325 | Edelman et al. | Oct 2016 | A1 |
20160361167 | Tuval et al. | Dec 2016 | A1 |
20160361184 | Tabor et al. | Dec 2016 | A1 |
20170035435 | Amin et al. | Feb 2017 | A1 |
20170113026 | Finch | Apr 2017 | A1 |
20170128705 | Forcucci et al. | May 2017 | A1 |
20170135685 | McNamara et al. | May 2017 | A9 |
20170165532 | Khan et al. | Jun 2017 | A1 |
20170216025 | Nitzan et al. | Aug 2017 | A1 |
20170224323 | Rowe et al. | Aug 2017 | A1 |
20170224444 | Viecilli et al. | Aug 2017 | A1 |
20170231766 | Hariton et al. | Aug 2017 | A1 |
20170273790 | Vettukattil et al. | Sep 2017 | A1 |
20170281339 | Levi et al. | Oct 2017 | A1 |
20170312486 | Nitzan et al. | Nov 2017 | A1 |
20170319823 | Yacoby et al. | Nov 2017 | A1 |
20170325956 | Rottenberg et al. | Nov 2017 | A1 |
20170340460 | Rosen | Nov 2017 | A1 |
20170348100 | Lane et al. | Dec 2017 | A1 |
20180099128 | McNamara et al. | Apr 2018 | A9 |
20180104053 | Alkhatib et al. | Apr 2018 | A1 |
20180125630 | Hynes et al. | May 2018 | A1 |
20180130988 | Nishikawa et al. | May 2018 | A1 |
20180243071 | Eigler et al. | Aug 2018 | A1 |
20180256865 | Finch et al. | Sep 2018 | A1 |
20180263766 | Nitzan et al. | Sep 2018 | A1 |
20180280667 | Keren | Oct 2018 | A1 |
20180344994 | Karavany et al. | Dec 2018 | A1 |
20190000327 | Doan et al. | Jan 2019 | A1 |
20190008628 | Eigler et al. | Jan 2019 | A1 |
20190015103 | Sharma | Jan 2019 | A1 |
20190015188 | Eigler et al. | Jan 2019 | A1 |
20190021861 | Finch | Jan 2019 | A1 |
20190110911 | Nae et al. | Apr 2019 | A1 |
20190239754 | Nabutovsky et al. | Aug 2019 | A1 |
20190254814 | Nitzan et al. | Aug 2019 | A1 |
20190262118 | Eigler et al. | Aug 2019 | A1 |
20190328513 | Levi et al. | Oct 2019 | A1 |
20190336163 | McNamara et al. | Nov 2019 | A1 |
20200060825 | Rottenberg et al. | Feb 2020 | A1 |
20200078196 | Rosen et al. | Mar 2020 | A1 |
20200078558 | Yacoby et al. | Mar 2020 | A1 |
20200085600 | Schwartz et al. | Mar 2020 | A1 |
20200197178 | Vecchio | Jun 2020 | A1 |
20200261705 | Nitzan et al. | Aug 2020 | A1 |
20200315599 | Nae et al. | Oct 2020 | A1 |
20200368505 | Nae et al. | Nov 2020 | A1 |
20210052378 | Nitzan et al. | Feb 2021 | A1 |
20210393421 | Rosen | Dec 2021 | A1 |
20220015901 | Dibie | Jan 2022 | A1 |
20220054266 | Kovalsky | Feb 2022 | A1 |
20220133463 | Korte | May 2022 | A1 |
Number | Date | Country |
---|---|---|
2003291117 | Apr 2009 | AU |
2378920 | Feb 2001 | CA |
1987777 | Nov 2008 | EP |
2238933 | Oct 2010 | EP |
2305321 | Apr 2011 | EP |
1965842 | Nov 2011 | EP |
3400907 | Nov 2018 | EP |
2827153 | Jan 2003 | FR |
WO-9531945 | Nov 1995 | WO |
WO-9727898 | Aug 1997 | WO |
WO-9960941 | Dec 1999 | WO |
WO-0044311 | Aug 2000 | WO |
WO-0050100 | Aug 2000 | WO |
WO-0110314 | Feb 2001 | WO |
WO-0226281 | Apr 2002 | WO |
WO-02071974 | Sep 2002 | WO |
WO-02087473 | Nov 2002 | WO |
WO-03053495 | Jul 2003 | WO |
WO-2005027752 | Mar 2005 | WO |
WO-2005074367 | Aug 2005 | WO |
WO-2006127765 | Nov 2006 | WO |
WO-2007083288 | Jul 2007 | WO |
WO-2008055301 | May 2008 | WO |
WO-2009029261 | Mar 2009 | WO |
WO-2010128501 | Nov 2010 | WO |
WO-2010129089 | Nov 2010 | WO |
WO-2010139771 | Dec 2010 | WO |
WO-2011062858 | May 2011 | WO |
WO-2013096965 | Jun 2013 | WO |
WO-2016178171 | Nov 2016 | WO |
WO-2017118920 | Jul 2017 | WO |
WO-2018158747 | Sep 2018 | WO |
WO-2019015617 | Jan 2019 | WO |
WO-2019085841 | May 2019 | WO |
WO-2019109013 | Jun 2019 | WO |
WO-2019142152 | Jul 2019 | WO |
WO-2019179447 | Sep 2019 | WO |
WO-2019218072 | Nov 2019 | WO |
WO-2020206062 | Oct 2020 | WO |
WO-2020257530 | Dec 2020 | WO |
WO-2021050589 | Mar 2021 | WO |
WO-2021113670 | Jun 2021 | WO |
WO-2021212011 | Oct 2021 | WO |
WO-2022046921 | Mar 2022 | WO |
WO-2022076601 | Apr 2022 | WO |
Entry |
---|
Abraham et al., “Hemodynamic Monitoring in Advanced Heart Failure: Results from the LAPTOP-HF Trial,” J Card Failure, 22:940 (2016) (Abstract Only). |
Abraham et al., “Sustained efficacy of pulmonary artery pressure to guide adjustment of chronic heart failure therapy: complete follow-up results from the CHAMPION randomised trial,” The Lancet, doi.org/10.1016/S0140-6736(15)00723-0 (2015). |
Abraham et al., “Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial,” The Lancet, DOI:10.1016/S0140-6736(11)60101-3 (2011). |
Abreu et al., “Doppler ultrasonography of the femoropopliteal segment in patients with venous ulcer,” J Vase Bras., 11(4):277-285 (2012). |
Adamson et al., “Ongoing Right Ventricular Hemodynamics in Heart Failure Clinical Value of Measurements Derived From an Implantable Monitoring System,” J Am Coll Cardiol., 41(4):565-571 (2003). |
Adamson et al., “Wireless Pulmonary Artery Pressure Monitoring Guides Management to Reduce Decompensation in Heart Failure With Preserved Ejection Fraction,” Circ Heart Fail., 7:935-944 (2014). |
Ambrosy et al. “The Global Health and Economic Burden of Hospitalizations for Heart Failure,” J Am Coll Cardiol., 63:1123-1133 (2014). |
Aminde et al., “Current diagnostic and treatment strategies for Lutembacher syndrome: the pivotal role of echocardiography,” Cardiovasc Diagn Ther., 5(2):122-132 (2015). |
Anderas E. “Advanced MEMS Pressure Sensors Operating in Fluids,” Digital Comprehensive Summaries of Uppsala Dissertation from the Faculty of Science and Technology 933. Uppsala ISBN 978-91-554-8369-2 (2012). |
Anderas et al., “Tilted c-axis Thin-Film Bulk Wave Resonant Pressure Sensors with Improved Sensitivity,” IEEE Sensors J., 12(8):2653-2654 (2012). |
Ando, et al., Left ventricular decompression through a patent foramen ovale in a patient with hypertrophic cardiomyopathy: A case report, Cardiovascular Ultrasound, 2: 1-7 (2004). |
Article 34 Amendments dated May 28, 2013 in Int'l PCT Patent Appl. Serial No. PCT/IB2012/001859 (0810). |
Article 34 Amendments dated Nov. 27, 2012 in Int'l PCT Patent Appl. Serial No. PCT/IL2011/000958 (0710). |
Ataya et al., “A Review of Targeted Pulmonary Arterial Hypertension-Specific Pharmacotherapy,” J. Clin. Med., 5(12):114 (2016). |
“Atrium Advanta V12, Balloon Expandable Covered Stent, Improving Patient Outcomes with An Endovascular Approach,” Brochure, 8 pages, Getinge (2017). |
Bannan et al., “Characteristics of Adult Patients with Atrial Septal Defects Presenting with Paradoxical Embolism.,” Catheterization and Cardiovascular Interventions, 74:1066-1069 (2009). |
Baumgartner et al., “ESC Guidelines for the management of grown-up congenital heart disease (new version 2010)—The Task Force on the Management of Grown-up Congenital Heart Disease of the European Society of Cardiology (ESC),” Eur Heart J., 31:2915-2957 (2010). |
Beemath et al., “Pulmonary Embolism as a Cause of Death in Adults Who Died With Heart Failure,” Am J Cardiol., 98:1073-1075 (2006). |
Benza et al., “Monitoring Pulmonary Arterial Hypertension Using an Implantable Hemodynamic Sensor,” CHEST, 156(6):1176-1186 (2019). |
Boehm, et al., “Balloon Atrial Septostomy: History and Technique,” Images Paeditr. Cardiol., 8(1):8-14(2006). |
Braunwald, Heart Disease, Chapter 6, pp. 186. |
Bridges, et al., “The Society of Thoracic Surgeons Practice Guideline Series: Transmyocardial Laser Revascularization,” Ann Thorac Surg., 77:1494-1502 (2004). |
Bristow, et al., “Improvement in cardiac myocite function by biological effects of medical therapy: a new concept in the treatment of heart failure,” European Heart Journal, 16 (Suppl.F): 20-31 (1995). |
Bruch et al., “Fenestrated Occluders for Treatment of ASD in Elderly Patients with Pulmonary Hypertension and/or Right Heart Failure,” J Interven Cardiol., 21(1):44-49 (2008). |
Burkhoff et al., “Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers,” Am J Physiol Heart Circ Physiol., 289:H501-H512 (2005). |
Butler et al. “Recognizing Worsening Chronic Heart Failure as an Entity and an End Point in Clinical Trials,” JAMA., 312(8):789-790 (2014). |
Case, et al., “Relief of High Left-Atrial Pressure in Left-Ventricular Failure,” Lancet, (pp. 841-842), Oct. 17, 1964. |
Chakko et al., “Clinical, radiographic, and hemodynamic correlations in chronic congestive heart failure: conflicting results may lead to inappropriate care,” Am J Medicine, 90:353-359 (1991) (Abstract Only). |
Chang et al., “State-of-the-art and recent developments in micro/nanoscale pressure sensors for smart wearable devices and health monitoring systems,” Nanotechnology and Precision Engineering, 3:43-52 (2020). |
Chen et al., “Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care,” Nature Communications, 5(1):1-10 (2014). |
Chen et al., “National and Regional Trends in Heart Failure Hospitalization and Mortality Rates for Medicare Beneficiaries, 1998-2008,” JAMA, 306(15):1669-1678 (2011). |
Chiche et al., “Prevalence of patent foramen ovale and stroke in pulmonary embolism patients,” Eur Heart J., 34:P1142 (2013) (Abstract Only). |
Chin et al., “The right ventricle in pulmonary hypertension,” Coron Artery Dis., 16(1):13-18 (2005) (Abstract Only). |
Chun et al., “Lifetime Analysis of Hospitalizations and Survival of Patients Newly Admitted With Heart Failure,” Circ Heart Fail., 5:414-421 (2012). |
Ciarka et al., “Atrial Septostomy Decreases Sympathetic Overactivity in Pulmonary Arterial Hypertension,” Chest, 131 (6):P1831-1837 (2007) (Abstract Only). |
Cleland et al., “The EuroHeart Failure survey programme—a survey on the quality of care among patients with heart failure in Europe—Part 1: patient characteristics and diagnosis,” Eur Heart J., 24:442-463 (2003). |
Clowes et al., “Mechanisms of Arterial Graft Healing—Rapid Transmural Capillary Ingrowth Provides a Source of Intimal Endothelium and Smooth Muscle in Porous PTFE Prostheses,” Am J Pathol., 123:220-230 (1986). |
Coats, et al., “Controlled Trial of Physical Training in Chronic Heart Failure: Exercise Performance, Hemodynamics, Ventilation, and Autonomic Function,” Circulation, 85: 2119-2131 (1992). |
Davies et al., “Abnormal left heart function after operation for atrial septal defect,” British Heart Journal, 32:747-753 (1970). |
Davies, et al., “Reduced Contraction and Altered Frequency Response of Isolated Ventricular Myocytes From Patients With Heart Failure, Circulation,” 92: 2540-2549 (1995). |
Del Trigo et al., “Unidirectional Left-to-Right Interatrial Shunting for Treatment of Patients with Heart Failure with Reduced Ejection Fraction: a Safety and Proof-of-Principle Cohort Study,” Lancet, 387:1290-1297 (2016). |
Della Lucia et al., “Design, fabrication and characterization of SAW pressure sensors for offshore oil and gas exploration,” Sensors and Actuators A: Physical, 222:322-328 (2015). |
Drazner et al., “Prognostic Importance of Elevated Jugular Venous Pressure and a Third Heart Sound in Patients with Heart Failure,” N Engl J Med., 345(8):574-81 (2001). |
Drazner et al., “Relationship between Right and Left-Sided Filling Pressures in 1000 Patients with Advanced Heart Failure,” Heart Lung Transplant, 18:1126-1132 (1999). |
Drexel, et al., “The Effects of Cold Work and Heat Treatment on the Properties of Nitinol Wire, Proceedings of the International Conference on Shape Memory and Superelastic Technologies, SMST 2006,” Pacific Grove, California, USA (pp. 447-454) May 7-11, 2006. |
Eigler et al., “Cardiac Unloading with an Implantable Interatrial Shunt in Heart Failure: Serial Observations in an Ovine Model of Ischemic Cardiomyopathy,” Structural Heart, 1:40-48 (2017). |
Eigler, et al., Implantation and Recovery of Temporary Metallic Stents in Canine Coronary Arteries, JACC, 22(4):1207-1213 (1993). |
Ennezat, et al., An unusual case of low-flow, low gradient severe aortic stenosis: Left-to-right shunt due to atrial septal defect, Cardiology, 113(2):146-148, (2009). |
Eshaghian et al., “Relation of Loop Diuretic Dose to Mortality in Advanced Heart Failure,” Am J Cardiol., 97:1759-1764 (2006). |
Ewert, et al., Acute Left Heart Failure After Interventional Occlusion of an Artial Septal Defect, Z Kardiol, 90(5): 362-366 (May 2001). |
Ewert, et al., Masked Left Ventricular Restriction in Elderly Patients With Atrial Septal Defects: A Contraindication for Closure?, Catheterization and Cardiovascular Intervention, 52:177-180 (2001). |
Extended European Search Report dated Jan. 8, 2015 in EP Patent Appl No. 10772089.8. (0530). |
Extended European Search Report dated Mar. 29, 2019 in EP Patent Appl. Serial No. EP16789391 (1830). |
Extended European Search Report dated Sep. 19, 2016 in EP Patent Appl. No. 16170281.6 (0731). |
Feldman et al., “Transcatheter Interatrial Shunt Device for the Treatment of Heart Failure with Preserved Ejection Fraction (REDUCE LAP-HF I [Reduce Elevated Left Atrial Pressure in Patients With Heart Failure]), A Phase 2, Randomized, Sham-Controlled Trial,” Circulation, 137:364-375 (2018). |
Ferrari et al., “Impact of pulmonary arterial hypertension (PAH) on the lives of patients and carers: results from an international survey,” Eur Respir J., 42:26312 (2013) (Abstract Only). |
Fonarow et al., “Characteristics, Treatments, and Outcomes of Patients With Preserved Systolic Function Hospitalized for Heart Failure,” J Am Coll Cardiol., 50(8):768-777 (2007). |
Fonarow et al., “Risk Stratification for In-Hospital Mortality in Acutely Decompensated Heart Failure: Classification and Regression Tree Analysis,” JAMA, 293(5):572-580 (2005). |
Fonarow, G., “The Treatment Targets in Acute Decompensated Heart Failure,” Rev Cardiovasc Med., 2:(2):S7-S12 (2001). |
Galie et al., “2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension—The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS),” European Heart Journal, 37:67-119 (2016). |
Galie et al., “Pulmonary arterial hypertension: from the kingdom of the near-dead to multiple clinical trial meta-analyses,” Eur Heart J., 31:2080-2086 (2010). |
Galipeau et al., “Surface acoustic wave microsensors and applications,” Smart Materials and Structures, 6(6):658-667 (1997) (Abstract Only). |
Geiran, et al., Changes in cardiac dynamics by opening an interventricular shunt in dogs, J. Surg. Res. 48(1):6-12 (1990). |
Gelernter-Yaniv, et al., Transcatheter ClosureoOf Left-to-Right Interatrial Shunts to Resolve Hypoxemia, Congenit. Heart Dis. 31(1): 47-53 (Jan. 2008). |
Geva et al., “Atrial septal defects,” Lancet, 383:1921-32 (2014). |
Gewillig, et al., Creation with a stent of an unrestrictive lasting atrial communication, Cardio. Young 12(4): 404-407 (2002). |
Gheorghiade et al., “Acute Heart Failure Syndromes, Current State and Framework for Future Research,” Circulation, 112:3958-3968 (2005). |
Gheorghiade et al., “Effects of Tolvaptan, a Vasopressin Antagonist, in Patients Hospitalized With Worsening Heart Failure A Randomized Controlled Trial,” JAMA., 291:1963-1971 (2004). |
Go et al. “Heart Disease and Stroke Statistics—2014 Update—A Report From the American Heart Association,” Circulation, 128:1-267 (2014). |
Guillevin et al., “Understanding the impact of pulmonary arterial hypertension on patients' and carers' lives,” Eur Respir Rev., 22:535-542 (2013). |
Guyton et al., “Effect of Elevated Left Atrial Pressure and Decreased Plasma Protein Concentration on the Development of Pulmonary Edema,” Circulation Research, 7:643-657 (1959). |
Hasenfub, et al., A Transcatheter Intracardiac Shunt Device for Heart Failure with Preserved Ejection Fraction (REDUCE LAP-HF): A Multicentre, Open-Label, Single-Arm, Phase 1 Trial, www.thelancet.com, 387:1298-1304 (2016). |
Hoeper et al., “Definitions and Diagnosis of Pulmonary Hypertension,” J Am Coll Cardiol., 62(5):D42-D50 (2013). |
Hogg et al., “Heart Failure With Preserved Left Ventricular Systolic Function. Epidemiology, Clinical Characteristics, and Prognosis,” J Am Coll Cardiol., 43(3):317-327 (2004). |
Howell et al., “Congestive heart failure and outpatient risk of venous thromboembolism: A retrospective, case-control study,” Journal of Clinical Epidemiology, 54:810-816 (2001). |
Huang et al., “Remodeling of the chronic severely failing ischemic sheep heart after coronary microembolization: functional, energetic, structural, and cellular responses,” Am J Physiol Heart Circ Physiol., 286:H2141-H2150 (2004). |
Humbert et al., “Pulmonary Arterial Hypertension in France—Results from a National Registry,” Am J Respir Crit Care Med., 173:1023-1030 (2006). |
International Search Report & Written Opinion dated Nov. 7, 2016 in Int'l PCT Patent Appl. Serial No. PCT/IB2016/052561 (1810). |
International Search Report & Written Opinion dated May 29, 2018 in Int'l PCT Patent Appl. Serial No. PCT/IB2018/051385 (1310). |
International Search Report & Written Opinion dated Feb. 6, 2013 in Int'l PCT Patent Appl. No. PCT/IB2012/001859, 12 pages (0810). |
International Search Report & Written Opinion dated Feb. 7, 2020 in Int'l PCT Patent Appl. Serial No. PCT/IB2019/060257 (1410). |
International Search Report & Written Opinion dated Feb. 9, 2022 in Int'l PCT Patent Appl. Serial No. PCT/IB2021/060473 (2010). |
International Search Report & Written Opinion dated May 13, 2019 in Int'l PCT Patent Appl. No. PCT/IB2019/050452 (1610). |
International Search Report & Written Opinion dated May 29, 2018 in Int'l PCT Patent Appl. Serial No. PCTIB2018/051355 (1310). |
International Search Report & Written Opinion dated Jul. 14, 2020 in Int'l PCT Patent Appl. Serial No. PCT/IB2020/053832 (1210). |
International Search Report & Written Opinion dated Jul. 20, 2020 in Int'l PCT Patent Appl. Serial No. PCT/IB2020/054699 (1710). |
International Search Report & Written Opinion dated Jul. 23, 2021 in Int'l PCT Patent Appl. Serial No. PCT/IB2021/053594 (1910). |
International Search Report & Written Opinion dated Aug. 12, 2020 in Int'l PCT Patent Appl. Serial No. PCT/IB2020/053118 (1010). |
International Search Report & Written Opinion dated Aug. 28, 2012 in Int'l PCT Patent Appl. No. PCT/IL2011/000958 (0710). |
International Search Report & Written Opinion dated Sep. 21, 2020 in Int'l PCT Patent Appl. Serial No. PCT/IB2020/054306 (1510). |
International Search Report & Written Opinion dated Oct. 11, 2017 in Int'l PCT Patent Appl. Serial No. PCT/IB2017/053188 (1110). |
International Search Report & Written Opinion dated Oct. 26, 2007 in Int'l PCT Patent Appl. Serial No. PCT/IB07/50234 (0610). |
International Search Report dated Apr. 7, 2008 in Int'l PCT Patent Appl. Serial No. PCT/IL05/00131 (0410). |
International Search Report dated Aug. 25, 2010 in Intl PCT Patent Appl. Serial No. PCT/IL2010/000354 (0510). |
ISR & Written Opinion dated Feb. 16, 2015 in Int'l PCT Patent Appl. Serial No. PCT/IB2014/001771 (0910). |
Jessup et al. “2009Focused Update: ACC/AHA Guidelines for the Diagnosis and Management of Heart Failure in Adults: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: Developed in Collaboration With the International Society for Heart and Lung Transplantation,” J. Am. Coll. Cardiol., 53:1343-1382 (2009). |
Jiang, G., “Design challenges of implantable pressure monitoring system,” Frontiers in Neuroscience, 4(29):1-4 (2010). |
Kane et al., “Integration of clinical and hemodynamic parameters in the prediction of long-term survival in patients with pulmonary arterial hypertension,” Chest, 139(6):1285-1293 (2011) (Abstract Only). |
Kaye et al., “Effects of an Interatrial Shunt on Rest and Exercise Hemodynamics: Results of a Computer Simulation in Heart Failure,” Journal of Cardiac Failure, 20(3): 212-221 (2014). |
Kaye et al., “One-Year Outcomes After Transcatheter Insertion of an Interatrial Shunt Device for the Management of Heart Failure With Preserved Ejection Fraction,” Circulation: Heart Failure, 9(12):e003662 (2016). |
Keogh et al., “Interventional and Surgical Modalities of Treatment in Pulmonary Hypertension,” J Am Coll Cardiol., 54:867-77 (2009). |
Khositseth et al., Transcatheter Amplatzer Device Closure of Atrial Septal Defect and Patent Foramen Ovale in Patients With Presumed Paradoxical Embolism, Mayo Clinic Proc., 79:35-41 (2004). |
Kramer, et al., Controlled Trial of Captopril in Chronic Heart Failure: A Rest and Exercise Hemodynamic Study, Circulation, 67(4): 807-816, 1983. |
Kretschmar et al., “Shunt Reduction With a Fenestrated Amplatzer Device,” Catheterization and Cardiovascular Interventions, 76:564-571 (2010). |
Kropelnicki et al., “CMOS-compatible ruggedized high-temperature Lamb wave pressure sensor,” J. Micromech. Microeng., 23:085018 pp. 1-9 (2013). |
Krumholz et al., “Patterns of Hospital Performance in Acute Myocardial Infarction and Heart Failure 30-Day Mortality and Readmission,” Circ Cardiovasc Qual Outcomes, 2:407-413 (2009). |
Kulkarni et al., “Lutembacher's syndrome,” J Cardiovasc Did Res., 3(2):179-181 (2012). |
Kurzyna et al., “Atrial Septostomy in Treatment of End-Stage Right Heart Failure in Patients With Pulmonary Hypertension,” Chest, 131:977-983 (2007). |
Lai et al., Bidirectional Shunt Through a Residual Atrial Septal Defect After Percutaneous Transvenous Mitral Commissurotomy, Cadiology, 83(3): 205-207 (1993). |
Lammers et al., “Efficacy and Long-Term Patency of Fenerstrated Amplatzer Devices in Children,” Catheter Cardiovasc Interv., 70:578-584 (2007). |
Lemmer, et al., Surgical Implications of Atrial Septal Defect Complicating Aortic Balloon Valvuloplasty, Ann. thorac. Surg, 48(2):295-297 (Aug. 1989). |
Lindenfeld et al. “Executive Summary: HFSA 2010 Comprehensive Heart Failure Practice Guideline,” J. Cardiac Failure, 16(6):475-539 (2010). |
Luo, Yi, Selective and Regulated RF Heating of Stent Toward Endohyperthermia Treatment of In-Stent Restenosis, A Thesis Submitted in Partial Fulfillment of The Requirements For The Degree of Master of Applied Science in The Faculty of Graduate and Postdoctoral Studies (Electrical and Computer Engineering), The University of British Columbia, Vancouver, Dec. 2014. |
Macdonald et al., “Emboli Enter Penetrating Arteries of Monkey Brain in Relation to Their Size,” Stroke, 26:1247-1251 (1995). |
Maluli et al., “Atrial Septostomy: A Contemporary Review,” Clin. Cardiol., 38(6):395-400 (2015). |
Maurer et al., “Rationale and Design of the Left Atrial Pressure Monitoring to Optimize Heart Failure Therapy Study (LAPTOP-HF),” Journal of Cardiac Failure., 21(6): 479-488 (2015). |
McClean et al., “Noninvasive Calibration of Cardiac Pressure Transducers in Patients With Heart Failure: An Aid to Implantable Hemodynamic Monitoring and Therapeutic Guidance,” J Cardiac Failure, 12(7):568-576 (2006). |
McLaughlin et al., “Management of Pulmonary Arterial Hypertension,” J Am Coll Cardiol., 65(18):1976-1997 (2015). |
McLaughlin et al., “Survival in Primary Pulmonary Hypertension—The Impact of Epoprostenol Therapy.,” Circulation, 106:1477-1482 (2002). |
Merriam-Webster OnLine Dictionary, Definition of “chamber”, printed Dec. 20, 2004. |
Mu et al., “Dual mode acoustic wave sensor for precise pressure reading,” Applied Physics Letters, 105:113507-1-113507-5 (2014). |
Nagaraju et al., “A 400μW Differential FBAR Sensor Interface IC with digital readout,” IEEE., pp. 218-221 (2015). |
Noordegraaf et al., “The role of the right ventricle in pulmonary arterial hypertension,” Eur Respir Rev., 20(122):243-253 (2011). |
O'Byrne et al., “The effect of atrial septostomy on the concentration of brain-type natriuretic peptide in patients with idiopathic pulmonary arterial hypertension,” Cardiology in the Young, 17(5):557-559 (2007) (Abstract Only). |
Oktay et al., “The Emerging Epidemic of Heart Failure with Preserved Ejection Fraction,” Curr Heart Fail Rep., 10(4):1-17 (2013). |
Owan et al., “Trends in Prevalence and Outcome of Heart Failure with Preserved Ejection Fraction,” N Engl J Med., 355:251-259 (2006). |
Paitazoglou et al., “Title: The AFR-Prelieve Trial: A prospective, non-randomized, pilot study to assess the Atrial Flow Regulator (AFR) in Heart Failure Patients with either preserved or reduced ejection fraction,” EuroIntervention, 28:2539-50 (2019). |
Park Blade Septostomy Catheter Instructions for Use, Cook Medical, 28 pages, Oct. 2015. |
Park, et al., Blade Atrial Septostomy: Collaborative Study, Circulation, 66(2):258-266 (1982). |
Partial Supplemental European Search Report dated Dec. 11, 2018 in EP Patent Appl. Serial No. 16789391.6 (1830). |
Peters et al., “Self-fabricated fenestrated Amplatzer occluders for transcatheter closure of atrial septal defect in patients with left ventricular restriction: midterm results,” Clin Res Cardiol., 95:88-92 (2006). |
Ponikowski et al., “2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC),” Eur Heart J., doi:10.1093/eurheartj/ehw128 (2016). |
Potkay, J. A., “Long term, implantable blood pressure monitoring systems,” Biomed Microdevices, 10:379-392 (2008). |
Pretorious et al., “An Implantable Left Atrial Pressure Sensor Lead Designed for Percutaneous Extraction Using Standard Techniques,” PACE, 00:1-8 (2013). |
Rajeshkumar et al., “Atrial septostomy with a predefined diameter using a novel occlutech atrial flow regulator improves symptoms and cardiac index in patients with severe pulmonary arterial hypertension,” Catheter Cardiovasc Interv., 1-9 (2017). |
Rich et al., “Atrial Septostomy as Palliative Therapy for Refractory Primary Pulmonary Hypertension,” Am J Cardiol., 51:1560-1561 (1983). |
Ritzema et al., “Direct Left Atrial Pressure Monitoring in Ambulatory Heart Failure Patients—Initial Experience With a New Permanent Implantable Device,” Circulation, 116:2952-2959 (2007). |
Ritzema et al., “Physician-Directed Patient Self-Management of Left Atrial Pressure in Advanced Chronic Heart Failure,” Circulation, 121:1086-1095 (2010). |
Roberts et al., “Integrated microscopy techniques for comprehensive pathology evaluation of an implantable left atrial pressure sensor,” J Histotechnology, 36(1):17-24 (2013). |
Rodes-Cabau et al., “Interatrial Shunting for Heart Failure Early and Late Results From the First-in-Human Experience With the V-Wave System,” J Am Coll Cardiol Intv., 11:2300-2310.doi:10.1016/j.cin.2018.07.001 (2018). |
Rosenquist et al., Atrial Septal Thickness and Area in Normal Heart Specimens and in Those With Ostium Secundum Atrial Septal Defects, J. Clin. Ultrasound, 7:345-348 (1979). |
Ross et al., “Interatrial Communication and Left Atrial Hypertension—A Cause of Continuous Murmur,” Circulation, 28:853-860 (1963). |
Rossignol, et al., Left-to-Right Atrial Shunting: New Hope for Heart Failure, www.thelancet.com, 387:1253-1255 (2016). |
Roven, Effect of Compromising Right Ventricular Function in Left Ventricular Failure by Means of Interatrial and Other Shunts 24:209-219 (Aug. 1969). |
Salehian, et al., Improvements in Cardiac Form and Function After Transcatheter Closure of Secundum Atrial Septal Defects, Journal of the American College of Cardiology, 45(4):499-504 (2005). |
Sandoval et al., “Effect of atrial septostomy on the survival of patients with severe pulmonary arterial hypertension,” Eur Respir J., 38:1343-1348 (2011). |
Sandoval et al., “Graded Balloon Dilation Atrial Septostomy in Severe Primary Pulmonary Hypertension—A Therapeutic Alternative for Patients Nonresponsive to Vasodilator Treatment,” JACC, 32(2):297-304 (1998). |
Schiff et al., “Decompensated heart failure: symptoms, patterns of onset, and contributing factors,” Am J. Med., 114(8):625-630 (2003) (Abstract Only). |
Schmitto, et al., Chronic Heart Failure Induced by Multiple Sequential Coronary Microembolization in sheep, The International Journal of Artificial Organs, 31(4):348-353 (2008). |
Schneider et al., “Fate of a Modified Fenestration of Atrial Septal Occluder Device after Transcatheter Closure of Atrial Septal Defects in Elderly Patients,” J Interven Cardiol., 24:485-490 (2011). |
Scholl et al., “Surface Acoustic Wave Devices for Sensor Applications,” Phys Status Solidi Appl Res., 185(1):47-58 (2001) (Abstract Only). |
Schubert, et al., Left ventricular Conditioning in the Elderly Patient to Prevent Congestive Heart Failure After Transcatheter Closure of the Atrial Septal Defect, Catheterization and Cardiovascular Interventions, 64(3): 333-337 (2005). |
Setoguchi et al., “Repeated hospitalizations predict mortality in the community population with heart failure,” Am Heart J., 154:260-266 (2007). |
Shah et al., “Heart Failure With Preserved, Borderline, and Reduced Ejection Fraction—5-Year Outcomes,” J Am Coll Cardiol., https://doi.org/10.1016/j.jacc.2017.08.074 (2017). |
Shah et al., “One-Year Safety and Clinical Outcomes of a Transcatheter Interatrial Shunt Device for the Treatment of Heart Failure With Preserved Ejection Fraction in the Reduce Elevated Left Atrial Pressure in Patients With Heart Failure (REDUCE LAP-HF I) Trial—A Randomized Clinical Trial,” JAMA Cardiol. doi:10.1001/jamacardio.2018.2936 (2018). |
Sitbon et al., “Selexipag for the Treatment of Pulmonary Arterial Hypertension.,” N Engl J Med., 373(26):2522-2533 (2015). |
Sitbon et al., “Epoprostenol and pulmonary arterial hypertension: 20 years of clinical experience,” Eur Respir Rev., 26:160055:1-14 (2017). |
Steimle et al., “Sustained Hemodynamic Efficacy of Therapy Tailored to Reduce Filling Pressures in Survivors With Advanced Heart Failure,” Circulation, 96:1165-1172 (1997). |
Stevenson et al., “The Limited Reliability of Physical Signs for Estimating Hemodynamics in Chronic Heart Failure,” JAMA, 261(6):884-888 (1989) (Abstract Only). |
Stormer, et al., Comparative Study of in Vitro Flow Characteristics Between a Human Aortic Valve and a Designed Aortic Valve and Six Corresponding Types of Prosthetic Heart Valves, European Surgical Research 8(2):117-131 (1976). |
Stumper, et al., Modified Technique of Stent Fenestration of the Atrial Septum, Heart, 89:1227-1230, (2003). |
Su et al., “A film bulk acoustic resonator pressure sensor based on lateral field excitation,” International Journal of Distributed Sensor Networks, 14(11):1-8 (2018). |
Supplementary European Search Report dated Nov. 13, 2009 in EP Patent Appl. Serial No. 05703174.2 (0430). |
Thenappan et al., “Evolving Epidemiology of Pulmonary Arterial Hypertension,” Am J Resp Critical Care Med., 186:707-709 (2012). |
Tomai et al., “Acute Left Ventricular Failure After Transcatheter Closure of a Secundum Atrial Septal Defect in a Patient With Coronary Artery Disease: A Critical Reappraisal,” Catheterization and Cardiovascular Interventions, 55:97-99 (2002). |
Torbicki et al., “Atrial Septostomy,” The Right Heart, 305-316 (2014). |
Trainor, et al., Comparative Pathology of an Implantable Left Atrial Pressure Sensor, ASAIO Journal, Clinical Cardiovascular/Cardiopulmonary Bypass, 59(5):486-492 (2013). |
Troost et al., “A Modified Technique of Stent Fenestration of the Interatrial Septum Improves Patients With Pulmonary Hypertension,” Catheterization and Cardiovascular Interventions, 73:173179 (2009). |
Troughton et al., “Direct Left Atrial Pressure Monitoring in Severe Heart Failure: Long-Term Sensor Performance,” J. of Cardiovasc. Trans. Res., 4:3-13 (2011). |
Vank-Noordegraaf et al., “Right Heart Adaptation to Pulmonary Arterial Hypertension—Physiology and Pathobiology,” J Am Coll Cardiol., 62(25):D22-33 (2013). |
Verel et al., “Comparison of left atrial pressure and wedge pulmonary capillary pressure—Pressure gradients between left atrium and left ventricle,” British Heart J., 32:99-102 (1970). |
Viaene et al., “Pulmonary oedema after percutaneous ASD-closure,” Acta Cardiol., 65(2):257-260 (2010). |
Wang et al., “A Low Temperature Drifting Acoustic Wave Pressure Sensor with an Integrated Vacuum Cavity for Absolute Pressure Sensing,” Sensors, 20(1788):1-13 (2020). |
Warnes et al., “ACC/AHA 2008 Guidelines for the Management of Adults With Congenital Heart Disease—A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Develop Guidelines on the Management of Adults With Congenital Heart Disease),” JACC, 52(23):e143-e263 (2008). |
Webb et al., “Atrial Septal Defects in the Adult Recent Progress and Overview,” Circulation, 114:1645-1653 (2006). |
Wiedemann, H.R., “Earliest description by Johann Friedrich Meckel, Senior (1750) of what is known today as Lutembacher syndrome (1916),” Am J Med Genet., 53(1):59-64 (1994) (Abstract Only). |
Written Opinion of the International Searching Authority dated Apr. 7, 2008 in Int'l PCT Patent Appl. Serial No. PCT/IL05/00131 (0410). |
Yantchev et al., “Thin Film Lamb Wave Resonators in Frequency Control and Sensing Applications: A Review,” Journal of Micromechanics and Microengineering, 23(4):043001 (2013). |
Zhang et al., “Acute left ventricular failure after transcatheter closure of a secundum atrial septal defect in a patient with hypertrophic cardiomyopathy,” Chin Med J., 124(4):618-621 (2011). |
Zhang et al., “Film bulk acoustic resonator-based high-performance pressure sensor integrated with temperature control system,” J Micromech Microeng., 27(4):1-10 (2017). |
Zhou, et al., Unidirectional Valve Patch for Repair of Cardiac Septal Defects with Pulmonary Hypertension, Annals of Thoracic Surgeons, 60:1245-1249, (1995). |
Borlaug, et al., Latent Pulmonary Vascular Disease May Alter The Response to Therapeutic Atrial Shunt Device in Heart Failure, Circulation (Mar. 2022). |
Flachskampf, et al., Influence of Orifice Geometry and Flow Rate on Effective Valve Area: An In Vitro Study, Journal of the American College of Cardiology, 15(5):1173-1180 (Apr. 1990). |
International Search Report & Written Opinion dated May 17, 2022 in Int'l PCT Patent Appl. Serial No. PCT/IB2022/051177 (2310). |
Kaye, et al., One-Year Outcomes After Transcatheter Insertion of an Interatrial Shunt Device for the Management of Heart Failure with Preserved Ejection Fraction, Circulation: Heart Failure, 9(12):e003662 (Dec. 2016). |
Shah, et al., Atrial Shunt Device For Heart Failure With Preserved and Mildly Reduced Ejection Fraction (REDUCE LAP-HF II): A Randomised, Multicentre, Blinded, Sham-Controlled Trial, The Lancet, 399(10330):1130-1140 (Mar. 2022). |
Number | Date | Country | |
---|---|---|---|
20220241565 A1 | Aug 2022 | US |
Number | Date | Country | |
---|---|---|---|
63019777 | May 2020 | US | |
62619748 | Jan 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17092081 | Nov 2020 | US |
Child | 17660384 | US | |
Parent | 16875652 | May 2020 | US |
Child | 17092081 | US | |
Parent | 17660384 | US | |
Child | 17092081 | US | |
Parent | 16875652 | May 2020 | US |
Child | 17092081 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16963139 | US | |
Child | 17660384 | US | |
Parent | 17660384 | Apr 2022 | US |
Child | 17660384 | US | |
Parent | PCT/IB2021/053594 | Apr 2021 | US |
Child | 17660384 | US | |
Parent | 17092081 | Nov 2020 | US |
Child | PCT/IB2021/053594 | US |