Devices with nanocrystals and methods of formation

Information

  • Patent Grant
  • 8921914
  • Patent Number
    8,921,914
  • Date Filed
    Monday, August 5, 2013
    11 years ago
  • Date Issued
    Tuesday, December 30, 2014
    9 years ago
Abstract
Devices can be fabricated using a method of growing nanoscale structures on a semiconductor substrate. According to various embodiments, nucleation sites can be created on a surface of the substrate. The creation of the nucleation sites may include implanting ions with an energy and a dose selected to provide a controllable distribution of the nucleation sites across the surface of the substrate. Nanoscale structures may be grown using the controllable distribution of nucleation sites to seed the growth of the nanoscale structures. According to various embodiments, the nanoscale structures may include at least one of nanocrystals, nanowires, or nanotubes. According to various nanocrystal embodiments, the nanocrystals can be positioned within a gate stack and function as a floating gate for a nonvolatile device. Other embodiments are provided herein.
Description
TECHNICAL FIELD

This application relates generally to semiconductor devices and device fabrication and, more particularly, to forming nanocrystals and other nanostructures.


BACKGROUND

The semiconductor device industry has a market driven need to reduce the size and cost of integrated circuits (ICs), including persistent memory devices such as floating gate memory and flash memory. As the dimensions of the memory devices are reduced, the voltage used to program the gates is reduced for reliability reasons associated with the thinner gate dielectric thickness. The thinner gate dielectrics for the smaller IC dimensions may have problems with leakage current levels, and thus the length of time the individual gate can retain the programmed charge may not be sufficient.


The floating gate of flash memory devices can be replaced with small crystals. These small crystals have been referred to as nanocrystals. The nanocrystals are located over the channel region, and separated from the channel region by a gate dielectric. The nanocrystals should be distributed and be capable of holding a sufficient charge so that, if programmed to hold a charge, the nanocrystals will control the channel region below the nanocrystals as well as the region between the nanocrystals. Too few nanocrystals, over the entire channel or a portion of the channel, may not be able to control the channel. Too many nanocrystals, over the entire channel or a portion of the channel, may result in a leakage path in the gate dielectric such that some of the charge stored on the nanocrystals may be lost.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates an embodiment of a floating gate transistor.



FIG. 2 shows a top view of a transistor channel region for a floating gate transistor embodiment.



FIG. 3 illustrates an embodiment of a transistor having one or more levels of nanocrystal floating gates.



FIG. 4 illustrates an embodiment of ion implantation nucleation.



FIG. 5 is a block diagram of an embodiment of an electronic system.



FIG. 6 is a diagram of an embodiment of an electronic system having devices.





DETAILED DESCRIPTION

The following detailed description refers to the accompanying drawings that show, by way of illustration, specific aspects and embodiments in which the present invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the present invention. Other embodiments may be utilized and structural, logical, and electrical changes may be made without departing from the scope of the present invention. The various embodiments are not necessarily mutually exclusive, as some embodiments can be combined with one or more other embodiments to form new embodiments. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims, along with the full scope of equivalents to which such claims are entitled.


The terms “wafer” and “substrate” used in the following description include any structure having an exposed surface with which to form an integrated circuit (IC) structure or a micro electro-mechanical (MEM) structure. The term “substrate” is understood to include semiconductor wafers. The term “substrate” is also used to refer to semiconductor structures during processing, and may include other layers that have been fabricated thereupon. Both wafer and substrate include doped and undoped semiconductors, epitaxial semiconductor layers supported by a base semiconductor or insulator, as well as other semiconductor structures well known to one skilled in the art. The term “conductor” is understood to generally include n-type and p-type semiconductors and the term “insulator” or “dielectric” is defined to include any material that is less electrically conductive than the materials referred to as conductors or as semiconductors. The term “high work function” is understood to generally include all materials having a higher work function than that of heavily doped polycrystalline silicon. The term “high dielectric constant” is understood to generally include all materials having a higher dielectric constant than the 3.9 value of silicon dioxide. The term “horizontal” as used in this application is defined as a plane parallel to the conventional plane or surface of a wafer or substrate, regardless of the orientation of the wafer or substrate. The term “vertical” refers to a direction perpendicular to the horizontal as defined above. Prepositions, such as “on”, “side” (as in “sidewall”), “higher”, “lower”, “over” and “under” are defined with respect to the conventional plane or surface being on the top surface of the wafer or substrate, regardless of the orientation of the wafer or substrate.


Disclosed herein, among other things, is a method for providing a controllable distribution of the nucleation sites across the surface of the substrate for use in growing nanoscale structures. Thus, the density and spatial distribution of nanostructures, such as nanocrystals, can be controlled. In nonvolatile memory embodiments where the nanocrystals function as a floating gate, the distribution and size of the nanocrystals is sufficiently uniform to hold a charge sufficient to control the channel region.


An aspect relates to a method of growing nanoscale structures on a semiconductor substrate. According to various embodiments, nucleation sites are created on a surface of the substrate. The creation of the nucleation sites includes implanting ions with an energy and a dose selected to provide a controllable distribution of the nucleation sites across the surface of the substrate. Nanoscale structures are grown using the controllable distribution of nucleation sites to seed the growth of the nanoscale structures. According to various embodiments, the nanoscale structures include at least one of nanocrystals, nanowires and nanotubes. According to various nanocrystal embodiments, the nanocrystals are positioned within a gate stack and function as a floating gate for a nonvolatile device.


An aspect relates to a method of growing nanocrystals on a semiconductor substrate. According to various embodiments, nucleation sites are created on a surface of the substrate. The creation of the nucleation sites includes including implanting ions with an energy and a dose selected to provide a controllable distribution of the nucleation sites across the surface of the substrate. Material is deposited to grow nanocrystals using the controllable distribution of nucleation sites to seed the growth of the nanocrystals.


The present subject matter provides a method for creating nucleation sites with a controllable density and distribution for use in growing nanoscale structures.


The processes illustrated in this disclosure can be used to provide devices with nanoscale structures with a controllable density and distribution. Examples of nanoscale structures include nanocrystals, nanowires, and nanotubes. To simplify the disclosure, a non-volatile memory embodiment with a floating gate formed by nanocrystals is discussed below. Those of ordinary skill in the art will understand, upon reading and comprehending this disclosure, how to control the density and distribution of nanostructures, such as nanocrystals, nanowires and nanotubes.


A gate dielectric in a transistor has both a physical gate dielectric thickness and what may be referred to as an equivalent oxide thickness, using the silicon dioxide (SiO2) gate dielectric as the standard of comparison. The equivalent oxide thickness is a measure of the electrical properties of the gate dielectric, such as capacitance per unit area. Equivalent oxide thickness refers to the thickness of a theoretical SiO2 layer that would have the same electrical properties as the dielectric layer, and is often useful when dealing with gate dielectrics having dielectric constants that are higher than the 3.9 value of silicon dioxide. High dielectric constant materials are useful in transistors of reduced dimensions. The physical thickness of the high dielectric may be much larger than the electrical equivalent value, and thus higher transistor speed may be obtained without the increased leakage rate and decreased reliability that would be found in an equivalent silicon dioxide gate dielectric. For example, a dielectric material with a dielectric constant of 10 would have a physical thickness of 2.5 nanometers to provide the same speed performance as a silicon dioxide thickness of only 1.0 nanometer, and would have better leakage characteristics due to the greater physical thickness. A high dielectric constant gate dielectric may be useful in the present subject matter, including the reduced leakage current values from the individual nanocrystals of the floating gate to the substrate, resulting in increased data retention values. High work function material may be useful in the present subject matter by adjusting the tunneling barrier to adjust the programming barriers and speed.



FIG. 1 illustrates an embodiment of a floating gate transistor 100 having a substrate 102, a source diffusion region 104 having an opposite doping type from the substrate, and a drain diffusion region 106, having the same doping type as the source region 104. The area of the substrate 102 between the source 104 and the drain 106 is known as the channel. The channel allows conduction between the source and drain if the gate 112 has an appropriate charge. The amount of charge on the gate 112 needed to allow conduction depends on factors including the thickness and dielectric constant of the gate insulator 110, the doping level of the substrate 102 and the channel 108, and leakage between the gate 112 and the substrate. The gate 112 in the present embodiment is what is known as a floating gate that has no direct electrical connection to any signal, electrode or substrate, and is formed of many small closely spaced nanoparticles in non contacting proximity to one another. These small closely spaced nanoparticles may be known as nanocrystals and act as a single electrode if the spaces between the nanocrystals are small enough to control the region of the channel 108 surrounding the nanocrystal. A floating gate formed from nanocrystals has also been referred to as a floating plate. The transistor 100 also includes an inter-gate dielectric layer 114 and a control electrode 120, which may be formed of any gate electrode material. The control electrode is connected to signal over conductor 122.


Nanocrystals such as those of floating electrode 112 may be grown in a number of ways using well known methods such as atomic layer deposition (ALD), chemical vapor deposition (CVD), plasma enhanced CVD (PECVD), physical vapor deposition (PVD), and spin coating. Various nanocrystal embodiments include metals and various nanocrystal embodiments include insulators. For example, the nanocrystals may be made of any gate electrode material, including high work function materials. Various nanocrystal embodiments include platinum (Pt), various nanocrystal embodiments include rhodium (Rh), various nanocrystal embodiments include ruthenium (Ru), various nanocrystal embodiments include palladium (Pd), various nanocrystal embodiments include cobalt (Co), various nanocrystal embodiments include silicon (Si), various nanocrystal embodiments include titanium (Ti), various nanocrystal embodiments include zirconium (Zr), various nanocrystal embodiments include hafnium (Hf), various nanocrystal embodiments include tantalum (Ta), various nanocrystal embodiments include tungsten (W), various nanocrystal embodiments include tantalum nitride (TaN), various nanocrystal embodiments include titanium nitride (TiN), various nanocrystal embodiments include tungsten nitride (WN), various nanocrystal embodiments include titanium oxide (TiOX), various nanocrystal embodiments include cobalt oxide (CoOX), various nanocrystal embodiments include ruthenium oxide (RuOX), various nanocrystal embodiments include hafnium oxide (HfOX), various nanocrystal embodiments include aluminum oxide (Al2O3), various nanocrystal embodiments include tungsten oxide (WOX), various nanocrystal embodiments include titanium carbide (TiC), various nanocrystal embodiments include tantalum carbide (TaC), various nanocrystal embodiments include tungsten carbide (WC), and various nanocrystal embodiments include various combinations of these materials.


If the nanocrystals of floating gate 112 are substantially in direct electrical contact with one another, then the floating gate will function as a single gate electrode. If there is a leakage path somewhere in the gate insulator 110, then the charge stored in the gate electrode 112 will disappear over time, and the data retention of the transistor 100 will be unacceptable. Even if the entire floating gate 112 does not discharge, but a substantial portion of the gate electrode 112 has a leakage path, then the channel region will block or limit current flow in the region of the channel 108 corresponding to the leakage path, and the transistor 100 will either be non-conductive, or conductive at a level too low for proper operation.


With respect to nonvolatile memory embodiments with floating gates formed from nanocrystals, it is desired to have the floating gate nanocrystals close enough together to electrically control the space between the nanocrystals, but not to have the nanocrystals be too large or to be in direct electrical contact with each other. For example, one sub-50 nm nonvolatile memory embodiment has approximately 100 nanocrystals in a 40 by 40 nanometer channel region, with the nanocrystals being around 2 nanometers in size and about 2 nanometers in separation from one another. Other embodiments are anticipated to accommodate other device dimensions, and other structures with nanocrystal distributions are contemplated.


One method to provide control of the size and spacing of the nanocrystals provides nucleation sites to initiate the ALD or CVD chemical reactions to begin to form nanocrystals. The nucleation sites may be formed by damage locations in the top surface of the gate dielectric, or by ion implantation of atoms into or onto the top surface of the dielectric. Normal energy ion implantation energies such as fifteen thousand electron volts (15 KeV) using boron ions may result in inadequate dielectric damage at the surface and undesirable amounts of damage deeper in the gate dielectric, resulting in leakage paths or short circuits due to the relatively high speed of the ion. Low energy ion implantation resulting in ions or atoms that stick out of the surface of the gate dielectric may most efficiently form the nucleation sites.



FIG. 2 shows a top view of a transistor channel region for a floating gate transistor embodiment. The illustrated transistor 200 has a source diffusion region 204, a drain diffusion region 206, and a channel region 208. A gate dielectric is not shown for simplicity. A number of nanocrystals 212 are distributed substantially evenly over the entire area of the channel 208. In the illustration, none of the nanocrystals are touching one another. According to a sub-50 nm nonvolatile memory embodiment, the channel region is about 40 nanometers on a side and contains about 100 nanocrystals having a size of about 2 nanometers and a spacing of about 2 nanometers. Not all of the nanocrystals will be exactly 2 nanometers and have a 2 nanometer spacing, nor will every nanocrystal be electrically isolated as shown in the figure. However, the present subject matter is capable of providing nanocrystals with substantially even distribution in size and in spacing. If the spacing becomes too large, then regions of the channel 208 will not be turned on as programmed, resulting in either lower source 204 to drain 206 conduction, or an open circuit. Leakage paths can potentially develop if the nanocrystals 212 are too large or in direct electrical contact. Such leakage paths across the gate dielectric will reduce the charge stored by the corresponding nanocrystals, and potentially result in regions of the channel 208 that are not as conductive as desired, and potentially result in reduced data retention periods.



FIG. 3 illustrates an embodiment of a transistor having one or more levels of nanocrystal floating gates. In this illustrative embodiment the nanocrystals are shown as individual elements with a first layer of nanocrystals 312 and a second layer of nanocrystals 316. The present subject matter has embodiments having only a single layer of nanocrystals 312, or two, three or even more individual layers of nanocrystals. Each of the individual layers of nanocrystals may have a controlled size crystal and a substantially uniform distribution of electrically isolated nanocrystals. This illustrative embodiment has a transistor 300 formed on a substrate 302, which may be a silicon substrate of either P type or N type, an epitaxial layer grown on a silicon substrate or on an insulative substrate such as sapphire. The substrate may also be all other semiconductive material such as amorphous silicon, polycrystalline silicon, germanium, gallium arsenide, or any other compound semiconductor and still be within the inventive subject matter. The substrate has a source region 304 and a drain region 306 with a channel region 308 between the source and drain. There is a gate dielectric 310, which may be silicon oxide, silicon nitride, silicon oxynitride, or any other dielectric or insulative material, including high dielectric constant materials such as alumina, titanium dioxide, hafnium dioxide, tantalum dioxide, barium titanate, and the like. The gate dielectric 310 separates the floating gate electrode 312 from the channel region and the source and drain regions. The gate electrode 312 in this embodiment is formed of individual nanocrystals 312 of material capable of storing a charge. For example, the nanocrystals can be formed from any gate electrode material, such as polysilicon, refractory metals such as tungsten, high work function materials such as silicon carbide, or other conductive material or semiconductor material capable of forming nanocrystals with the desired properties to function as the floating gate of a floating gate nonvolatile memory device. The nanocrystals also can be formed from insulators, such as RuOX, CoOX, TiO2 and the like. The first floating gate 312 has spaces 313 between each of the nanocrystals so that the nanocrystals are electrically isolated from each other. The first layer of nanocrystals has a first inter-gate dielectric layer 314, which may be formed of any dielectric material as above, upon which a second layer of nanocrystals 316 is formed as above with reference to the first layer of nanocrystals 312. The second layer of nanocrystals 316 has spaces 317 separating the nanocrystals. The second layer of nanocrystals has a second inter-gate dielectric layer 318 formed as above, which separates the second nanocrystal layer from the control gate 320, which is connected to an input signal 322 from either an adjacent transistor or from an external source. The formation of the dielectric layers can use a variety of processes, such as chemical vapor deposition, atomic layer deposition, evaporation, and the like, as may be appropriate for the dielectric type and size. Any dielectric deposition technique may be used which results in very conformal coverage of nanocrystals and which provides a good quality dielectric with degradation of the nanocrystals. Degradation of nanocrystals may occur because of the temperature or corrosiveness of the deposition temperature. There may be additional layers of nanocrystal floating gates formed in the same manner. Such transistors as those discussed in FIGS. 1 to 3 may be used in logic devices as local memory, as non-volatile memory arrays such as flash memory, or in almost any electronic device. Some embodiments will treat the nanocrystals, such as illustrated at 312 or 316, before depositing their corresponding subsequent intergate dielectric, such as illustrated at 314 and 318. For example, the nanocrystals can be oxidized.


For floating gate embodiments, the size of the nanocrystals can range from about 0.5 nanometers to about 5 nanometers, and the average spacing between nanocrystals can range from about 0.5 nanometers to about 5 nanometers. It is expected that approximately 80% or more of the nanocrystals will fall within these ranges. According to various sub-50 nm nonvolatile memory embodiments, an average size of the nanocrystals is 2 nanometers with a spacing between nanocrystals of about 2 nanometers. According to various embodiments, the electrically isolated nanocrystals have a maximum diameter of 4.0 nanometers and a density of greater than one nanocrystal per 15 square nanometers.



FIG. 4 illustrates an embodiment of ion implantation nucleation. The transistor is shown in an intermediate step of the manufacturing process, when a device having a semiconductive substrate 402 with source 404 and drain 406 formed on a surface of the substrate. The drawing is meant to illustrate the implantation of nucleation sites, and is not drawn to scale. There is a channel region 408 and a gate insulator layer 410. The nucleation sites may be formed over the entire wafer as shown, or only over the channel region 408 by simple photo-masking or other well known masking procedures, to limit the ion implantation to the channel region of the gate dielectric 410. The nucleation sites may be damage locations in the top surface of the gate dielectric 410 caused by the passage of relatively heavy ions such as argon, or they may be atoms of the ion implanted material sticking up from the gate dielectric surface as shown. The depth range of the implanted ion should be small to cause the ions to stop at the top surfaces, or at least near the top surface to avoid excessive gate dielectric damage. For example, according to various embodiments, the implanted ions do not travel past the top 1 nanometer of the gate dielectric layer 410 or do not travel past the top ⅕ of the gate dielectric layer 410.


The ions 412 may be formed by any method of ion formation and acceleration, including plasma systems such as plasma doping systems (PLAD). The ion energy should be low enough to prevent any of the ions 412 from moving fast enough in the direction indicated by the arrows toward the gate dielectric 410 to penetrate the gate dielectric layer. Various types of ions may be used, such as typical dopant species such as boron, phosphorous or arsenic. The ions may be of the material that will form the nanocrystals, or the ions may be of inert gases such as argon, neon, helium and xenon, or the ions may be semiconductor materials such as silicon, carbon, germanium or other ions. The dose of the ion has an affect on the uniformity of the distribution of eventual nanocrystals grown and on the size of the nanocrystals.


Typical ion energies depend upon the mass of the ion, and should be set to partially embed the ions 412 into the surface of the gate dielectric 410 either partially, as shown with ion 414, entirely embedded forming a persistent defect in the surface of the gate dielectric, as shown with ion 416, or slightly so as to remain entirely on the surface of the gate dielectric, as shown with ion 418. Typical ion energies found with PLAD are a few dozen electron volts (eV). Typical ion densities expressed in the number of ions per unit surface area are in the 1012 ions/cm2 levels. The ions should preferably be deposited in a discontinuous layer on the surface of the gate dielectric 410. According to various floating gate embodiments for sub-50 nm memories, the range of energies for implanting boron ion(s) into a silicon dioxide gate dielectric extend from approximately 0.01 KeV to approximately 2.0 KeV with a dose of ranging from approximately 1E11 ions/cm2 to approximately 1E14 ions/cm2. The energy and dose ranges depend on the ions and the gate dielectric. Thus, appropriate energies and doses can be selected to implant a variety of ions on the surface or shallowly below the surface of a variety of gate dielectrics.


Structures such as shown in FIG. 1, 2, 3 or 4 may be used in any integrated circuit or transistor devices, such as flash memory devices as well as other memory, logic or information handling devices and systems. Embodiments of these information handling devices include wireless systems, telecommunication systems, computers and integrated circuits.



FIG. 5 is a block diagram of an embodiment of an electronic system. The illustrated electronic system 500 has one or more devices having portions of the circuits with non-volatile memory devices, with nanocrystals as disclosed herein. Electronic system 500 includes a controller 502, a bus 504, and an electronic device 506, where bus 504 provides electrical conductivity between controller 502 and electronic device 506. In various embodiments, controller 502 and/or electronic device 506 include an embodiment for a portion of the device design used for nanocrystal floating gate transistors as previously discussed herein. Electronic system 500 may include, but is not limited to, information handling devices, wireless systems, telecommunication systems, fiber optic systems, electro-optic systems, and computers.



FIG. 6 depicts a diagram of an embodiment of a system 600 having a controller 602 and a memory 606. Controller 602 and/or memory 606 include a portion of the circuit for selectively heating the device to a desired temperature. System 600 also includes an electronic apparatus 608, and a bus 604, where bus 604 may provide electrical conductivity and data transmission between controller 602 and electronic apparatus 608, and between controller 602 and memory 606. Bus 604 may include an address, a data bus, and a control bus, each independently configured. Bus 604 also uses common conductive lines for providing address, data, and/or control, the use of which may be regulated by controller 602. In an embodiment, electronic apparatus 608 includes additional memory devices configured similarly to memory 606. An embodiment includes an additional peripheral device or devices 610 coupled to bus 604. In an embodiment controller 602 is a processor. Any of controller 602, memory 606, bus 604, electronic apparatus 608, and peripheral device or devices 610 may include a nonvolatile memory in accordance with the disclosed embodiments. System 600 may include, but is not limited to, information handling devices, telecommunication systems, and computers. Peripheral devices 610 may include displays, additional memory, or other control devices operating in with controller 602 and/or memory 606.


The present subject matter provides a method for creating nucleation sites with a controllable density and distribution for use in growing nanoscale structures. The nucleation sites are created using low energy ion implantation techniques to create the nucleation sites at or near the top surface of material in which the ions are implanted. Thus, the processes illustrated in this disclosure are able to seed the growth of nanoscale structures, such as nanocrystals, nanowires and nanotubes, such that the resulting nanoscale structures have a controllable density and distribution. Nanocrystals can be used for a variety of purposes, such as storing charge, enhancing tunneling, and channeling current to increase current density. The floating gate embodiment provided above is an example of a device where the nanocrystals are used to store charge. Such charge storing nanocrystals can also be used to selectively store charge in a body of a transistor in a nonvolatile memory design, such as illustrated in, for example, U.S. Patent Application Publication 2004/0041208, entitled “One Transistor SOI Non-Volatile Random Access Memory Cell”. Some embodiments may use nanocrystals to enhance tunneling, such as may be beneficial between a control gate and a floating gate. Enhanced charge tunneling is illustrated in, for example, U.S. Patent Application Publication 2003/0042534, entitled “Scalable Flash/NV Structure and Device with Extended Endurance”. Additionally, nanocrystals can be used to provide a path for a locally high current density, such as may be useful for fast ionic or phase change memory devices. Thus, a locally high current density can be provided for a relatively large electrode.


Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement that is calculated to achieve the same purpose may be substituted for the specific embodiments shown. This application is intended to cover any adaptations or variations of embodiments of the present invention, including but not limited to. It is to be understood that the above description is intended to be illustrative, and not restrictive, and that the phraseology or terminology employed herein is for the purpose of description and not of limitation. Combinations of the above embodiments and other embodiments will be apparent to those of skill in the art upon studying the above description. The scope of the present invention includes any other applications in which embodiments of the above structures and fabrication methods are used. The scope of the embodiments of the present invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.

Claims
  • 1. An electronic device comprising: a substrate having a pair of diffused regions with a diffusion type opposite that of the substrate;a plurality of dielectric layers disposed over the substrate, the plurality of dielectric layers comprising ion nucleation sites embedded in a surface of the plurality of dielectric layers;a plurality of layers of electrically isolated nanocrystals disposed upon the plurality of dielectric layers, each electrically isolated nanocrystal disposed from a respective ion implanted material of the ion nucleation sites, the ion implanted material being of a material different from the electrically isolated nanocrystals, each layer of the plurality of layers of electrically isolated nanocrystals vertically spaced from the other layers of electrically isolated nanocrystals; anda control gate disposed above the plurality of dielectric layers.
  • 2. The electronic device of claim 1 wherein at least one of the plurality of dielectric layers does not comprise any nanocrystals.
  • 3. The electronic device of claim 2 wherein the at least one of the plurality of dielectric layers without the nanocrystals is disposed between the substrate and the plurality of dielectric layers with the electrically isolated nanocrystals.
  • 4. The electronic device of claim 3 wherein the at least one of the plurality of dielectric layers without the nanocrystals comprises one of silicon oxide, silicon nitride, silicon oxynitride, alumina, titanium dioxide, hafnium dioxide, tantalum dioxide, or barium titanate.
  • 5. The electronic device of claim 1 wherein the electrically isolated nanocrystals comprise one of metal nanocrystals, insulating nanocrystals, or combinations of metal nanocrystals and insulating nanocrystals.
  • 6. The electronic device of claim 1 wherein the substrate comprises one of amorphous silicon, polycrystalline silicon, germanium, or a compound semiconductor.
  • 7. The electronic device of claim 1 wherein the plurality of electrically isolated nanocrystals are disposed over the substrate between the pair of diffused regions.
  • 8. The electronic device of claim 1 wherein adjacent layers of the plurality of layers of electrically isolated nanocrystals are separated by a dielectric layer.
  • 9. The electronic device of claim 1 wherein the electronic device is a non-volatile memory device.
  • 10. The method of claim 1 wherein the nanocrystals comprise platinum (Pt), rhodium (Rh), ruthenium (Ru), palladium (Pd), cobalt (Co), silicon (Si), titanium (Ti), zirconium (Zr), hafnium (Hf), tantalum (Ta), tungsten (W), tantalum nitride (TaN), titanium nitride (TiN), tungsten nitride (WN), titanium oxide (TiOX), cobalt oxide (CoOX), ruthenium oxide (RuOX), hafnium oxide (HfOX), aluminum oxide (Al2O3), tungsten oxide (WOX), titanium carbide (TiC), tantalum carbide (TaC), or tungsten carbide (WC).
  • 11. The method of claim 1 wherein the nanocrystals comprise combinations of two or more of platinum (Pt), rhodium (Rh), ruthenium (Ru), palladium (Pd), cobalt (Co), silicon (Si), titanium (Ti), zirconium (Zr), hafnium (Hf), tantalum (Ta), tungsten (W), tantalum nitride (TaN), tungsten nitride (WN), titanium nitride (TiN), titanium oxide (TiOX), cobalt oxide (CoOX), ruthenium oxide (RuOX), hafnium oxide (HfOX), aluminum oxide (Al2O3), tungsten oxide (WOX), titanium carbide (TiC), tantalum carbide (TaC), or tungsten carbide (WC).
  • 12. A system comprising: a controller; andan electronic device coupled to the controller, the electronic device comprising a plurality of floating gate transistors, each floating gate transistor comprising: a source and a drain formed in a substrate and separated laterally from each other by a region;a plurality of gate dielectrics disposed above the substrate;a plurality of layers of isolated nucleation sites, each layer disposed in different gate dielectrics;a plurality of layers of electrically isolated nanocrystals, each layer disposed on a top surface of the different gate dielectrics with a substantially even statistical distribution above and across the region, each electrically isolated nanocrystal disposed from a respective ion implanted material of the ion nucleation sites, the ion implanted material being of a material different from the electrically isolated nanocrystals;an inter-gate dielectric disposed over the plurality of gate dielectrics; andforming a control gate electrode disposed over the inter-gate dielectric.
  • 13. The system of claim 12 wherein the plurality of gate dielectrics comprise a first thickness and the inter-gate dielectric comprises a second thickness that is different than the first thickness.
  • 14. The system of claim 12 wherein at least 80% of the electrically isolated nanocrystals have diameters within a range of approximately 0.5 nanometers to approximately 5 nanometers, and are separated from each other by a separation distance within a range from approximately 0.5 nanometers to approximately 5 nanometers.
  • 15. The system of claim 12 wherein the nucleation sites in the gate dielectrics are substantially all on a top surface of the gate dielectrics.
  • 16. The system of claim 12 wherein each electrically isolated nanocrystal is attached to its respective dielectric layer by its respective ion nucleation site formed by a defect including at least one of boron, nitrogen, neon, argon, krypton, platinum, ruthenium, rhodium, palladium, titanium, zirconium, hafnium, silicon, germanium, cobalt, or tantalum.
  • 17. The system of claim 12 wherein the ion implanted material is located above the top ⅕ of each of the gate dielectric layers.
  • 18. The system of claim 12 wherein the ion implanted material comprises inert gases or semiconductor materials.
  • 19. The system of claim 18 wherein the inert gases comprise argon, neon, helium or xenon and the semiconductor materials comprise silicon, carbon, or germanium.
  • 20. The system of claim 12 wherein each layer of electrically isolated nanocrystals comprises a floating gate.
  • 21. A memory cell comprising: a channel region;a first dielectric material adjacent to the channel region;a plurality of nanoscale structures, each of the plurality of nanoscale structures seeded from ion implanted material of a respective nucleation site of a plurality of nucleation sites at least partially embedded in a surface of the first dielectric material opposite the channel region, the ion implanted material being of a material different from the plurality of nanoscale structures;a second dielectric material adjacent to the plurality of nanoscale structures; anda control gate adjacent to the second dielectric material.
  • 22. The memory cell of claim 21, wherein the nanoscale structures comprise at least one of nanocrystals, nanowires and nanotubes.
  • 23. The memory cell of claim 21, wherein the nanoscale structures comprises nanocrystals, and wherein the nanocrystals function as a floating gate of the memory cell.
  • 24. The memory cell of claim 21, wherein the nanoscale structures comprise ruthenium nanocrystals.
  • 25. The memory cell of claim 21, wherein the nucleation sites comprise atoms of the ion implanted material sticking out from the surface of the first dielectric material.
  • 26. The memory cell of claim 21, wherein the nucleation sites comprise ions sticking out from the surface of the first dielectric material.
  • 27. The memory cell of claim 21, wherein the channel region comprises polycrystalline silicon.
  • 28. The memory cell of claim 21, wherein the channel region comprises silicon.
  • 29. The memory cell of claim 21, wherein the channel region is between a source region and a drain region.
  • 30. The memory cell of claim 21, wherein the plurality of nanoscale structures comprise a plurality of electrically isolated nanoscale structures.
  • 31. The memory cell of claim 21, wherein the plurality of nanoscale structures are disposed upon the first dielectric material.
  • 32. The memory cell of claim 21, wherein at least one of the plurality of nucleation sites at least partially embedded in a surface of the first dielectric material is only partially embedded into the surface of the first dielectric material.
  • 33. The memory cell of claim 21, wherein at least one of the plurality of nucleation sites at least partially embedded in the surface of the first dielectric material is entirely embedded into the surface of the first dielectric material.
  • 34. The memory cell of claim 21, wherein the ion implanted material of the plurality of nucleation sites is in the top 1 nanometer of the first dielectric material.
  • 35. The memory cell of claim 21, wherein the ion implanted material of the plurality of nucleation sites is in the top ⅕th of the first dielectric material.
  • 36. The memory cell of claim 21, wherein sizes of the plurality of nanoscale structures range from about 0.5 nanometers to about 5 nanometers.
  • 37. The memory cell of claim 21, wherein average spacings between adjacent nanoscale structures of the plurality of nanoscale structures range from about 0.5 nanometers to about 5 nanometers.
  • 38. The memory cell of claim 21, wherein a density of the plurality of nanoscale structures is greater than one nanoscale structure per 15 square nanometers.
  • 39. A transistor comprising: a channel region;first dielectric material adjacent to the channel region;a plurality of nanoscale structures, each of the plurality of nanoscale structures seeded from ion implanted material of a respective nucleation site of a plurality of nucleation sites at least partially embedded in a surface of the first dielectric material opposite the channel region, the ion implanted material being of a material different from the plurality of nanoscale structures;second dielectric material adjacent to the plurality of nanoscale structures; anda control gate adjacent to the second dielectric.
  • 40. A memory device comprising a plurality of memory cells, wherein each of the memory cells comprises: a channel region;first dielectric material adjacent to the channel region;a plurality of nanoscale structures, each of the plurality of nanoscale structures seeded from ion implanted material of a respective nucleation site of a plurality of nucleation sites at least partially embedded in a surface of the first dielectric material opposite the channel region, the ion implanted material being of a material different from the plurality of nanoscale structures;second dielectric material adjacent to the plurality of nanoscale structures; anda control gate adjacent to the second dielectric.
PRIORITY APPLICATIONS

This is a continuation of U.S. application Ser. No. 13/614,794, filed Sep. 13, 2012, now issued as U.S. Pat. No. 8,501,563, that is a divisional of U.S. application Ser. No. 13/088,777, filed Apr. 18, 2011, now issued as U.S. Pat. No. 8,288,818, which is a divisional of U.S. application Ser. No. 11/185,113, filed Jul. 20, 2005, now issued as U.S. Pat. No. 7,927,948, all of which are incorporated herein by reference in their entirety.

US Referenced Citations (2150)
Number Name Date Kind
2501563 Colbert et al. Mar 1950 A
3357961 Makowski et al. Dec 1967 A
3381114 Nakanuma Apr 1968 A
3407479 Fordemwalt et al. Oct 1968 A
3457123 Van Pul Jul 1969 A
3471754 Hoshi et al. Oct 1969 A
3478230 Otter, Jr. et al. Nov 1969 A
3488633 King et al. Jan 1970 A
3506438 Krock et al. Apr 1970 A
3571918 Haberecchi Mar 1971 A
3595644 Hill et al. Jul 1971 A
3641516 Casrucci et al. Feb 1972 A
3665423 Nakamuma et al. May 1972 A
3676718 Anderson et al. Jul 1972 A
3689357 Jordan Sep 1972 A
3738817 Benjamin Jun 1973 A
3743550 Masumoto et al. Jul 1973 A
3816673 Miya Jun 1974 A
3833386 Wood et al. Sep 1974 A
3877054 Boulin et al. Apr 1975 A
3903232 Wood et al. Sep 1975 A
3926568 Benjamin et al. Dec 1975 A
3953566 Gore Apr 1976 A
3956195 Topchiashvili et al. May 1976 A
3959191 Kehr et al. May 1976 A
3962153 Gore Jun 1976 A
3964085 Kahng et al. Jun 1976 A
4017322 Kawai et al. Apr 1977 A
4051354 Choate Sep 1977 A
4058430 Suntola et al. Nov 1977 A
4096227 Gore Jun 1978 A
4137200 Wood et al. Jan 1979 A
4152627 Priel et al. May 1979 A
4209357 Gorin et al. Jun 1980 A
4215156 Dalal et al. Jul 1980 A
4217601 DeKeersmaecker et al. Aug 1980 A
4292093 Ownby et al. Sep 1981 A
4293679 Cogliano Oct 1981 A
4295150 Adam Oct 1981 A
4302620 Chu Nov 1981 A
4305640 Cullis et al. Dec 1981 A
4308421 Bogese, II Dec 1981 A
4333808 Bhattacharyya et al. Jun 1982 A
4339305 Jones Jul 1982 A
4344156 Eaton et al. Aug 1982 A
4345366 Brower Aug 1982 A
4355377 Sud et al. Oct 1982 A
4358397 Chu Nov 1982 A
4368350 Perelman Jan 1983 A
4372032 Collins et al. Feb 1983 A
4390586 Lemelson Jun 1983 A
4394673 Thompson et al. Jul 1983 A
4399424 Rigby Aug 1983 A
4403083 Marans et al. Sep 1983 A
4412902 Michikami et al. Nov 1983 A
4413022 Suntola et al. Nov 1983 A
4482516 Bowman et al. Nov 1984 A
4484308 Lewandowski et al. Nov 1984 A
4491482 Hori Jan 1985 A
4507673 Aoyama et al. Mar 1985 A
4510603 Catiller Apr 1985 A
4513389 Devchoudhury Apr 1985 A
4556975 Smith et al. Dec 1985 A
4561173 Te Velde Dec 1985 A
4562555 Ouchi et al. Dec 1985 A
4567579 Patel et al. Jan 1986 A
4575825 Ozaki et al. Mar 1986 A
4590042 Drage May 1986 A
4603403 Toda Jul 1986 A
4604162 Sobczak Aug 1986 A
4608215 Gonczy et al. Aug 1986 A
4613549 Tanaka Sep 1986 A
4618947 Tran et al. Oct 1986 A
4636833 Nishioka et al. Jan 1987 A
4636986 Pinkham Jan 1987 A
4640871 Hayashi et al. Feb 1987 A
4641313 Tobin et al. Feb 1987 A
4645622 Kock Feb 1987 A
4647947 Takeoka et al. Mar 1987 A
4649522 Kirsch Mar 1987 A
4661833 Mizutani Apr 1987 A
4663831 Birrittella et al. May 1987 A
4667313 Pinkham et al. May 1987 A
4672240 Smith et al. Jun 1987 A
4673962 Chatterjee et al. Jun 1987 A
4685089 Patel et al. Aug 1987 A
4688078 Hseih Aug 1987 A
4689741 Redwine et al. Aug 1987 A
4693211 Ogami et al. Sep 1987 A
4694562 Iwasaki et al. Sep 1987 A
4707811 Takemae et al. Nov 1987 A
4725877 Brasen et al. Feb 1988 A
4725887 Field Feb 1988 A
4737472 Schaber et al. Apr 1988 A
4749888 Sakai et al. Jun 1988 A
4750839 Wang et al. Jun 1988 A
4757360 Faraone et al. Jul 1988 A
4761768 Turner et al. Aug 1988 A
4764482 Hsu Aug 1988 A
4766569 Turner et al. Aug 1988 A
4767641 Kieser et al. Aug 1988 A
4780424 Holler Oct 1988 A
4788667 Nakano et al. Nov 1988 A
4799199 Scales et al. Jan 1989 A
4818720 Iwasaki Apr 1989 A
4847213 Pfiester Jul 1989 A
4847758 Olson et al. Jul 1989 A
4857478 Niwano et al. Aug 1989 A
4864375 Teng et al. Sep 1989 A
4870622 Aria et al. Sep 1989 A
4870923 Sugimoto Oct 1989 A
4875192 Matsumoto Oct 1989 A
4888733 Mobley Dec 1989 A
4891794 Hush et al. Jan 1990 A
4894801 Saito et al. Jan 1990 A
4896293 McElroy Jan 1990 A
4902533 White et al. Feb 1990 A
4902640 Sachitano et al. Feb 1990 A
4920065 Chin et al. Apr 1990 A
4920071 Thomas Apr 1990 A
4920396 Shinohara et al. Apr 1990 A
4926224 Redwine May 1990 A
4926314 Dhuey May 1990 A
4929570 Howell May 1990 A
4933743 Thomas et al. Jun 1990 A
4933910 Olson et al. Jun 1990 A
4939559 DiMaria et al. Jul 1990 A
4940636 Brock et al. Jul 1990 A
4947221 Stewart et al. Aug 1990 A
4948937 Blank et al. Aug 1990 A
4954854 Dhong et al. Sep 1990 A
4958088 Farah-Bakhsh et al. Sep 1990 A
4958318 Harari Sep 1990 A
4960726 Lechaton et al. Oct 1990 A
4961004 Bryan et al. Oct 1990 A
4962058 Cronin et al. Oct 1990 A
4962476 Kawada Oct 1990 A
4962879 Goesele et al. Oct 1990 A
4963753 Bryan et al. Oct 1990 A
4963754 Bryan et al. Oct 1990 A
4966861 Mieno et al. Oct 1990 A
4967085 Bryan et al. Oct 1990 A
4967087 Bryan et al. Oct 1990 A
4972086 Bryan et al. Nov 1990 A
4972516 Bryan et al. Nov 1990 A
4975014 Rufin et al. Dec 1990 A
4975588 Bryan et al. Dec 1990 A
4980559 Bryan et al. Dec 1990 A
4980560 Bryan et al. Dec 1990 A
4983847 Bryan et al. Jan 1991 A
4984217 Sato Jan 1991 A
4987089 Roberts Jan 1991 A
4988880 Bryan et al. Jan 1991 A
4990282 Bryan et al. Feb 1991 A
4992205 Bryan et al. Feb 1991 A
4993027 McGraw et al. Feb 1991 A
4993358 Mahawili Feb 1991 A
4994205 Bryan et al. Feb 1991 A
4996003 Bryan et al. Feb 1991 A
5001526 Gotou Mar 1991 A
5006192 Deguchi Apr 1991 A
5006909 Kosa Apr 1991 A
5008034 Bryan et al. Apr 1991 A
5010386 Groover, III Apr 1991 A
5017504 Nishimura et al. May 1991 A
5017791 Bryan et al. May 1991 A
5019728 Sanwo et al. May 1991 A
5021355 Dhong et al. Jun 1991 A
5021999 Kohda et al. Jun 1991 A
5027171 Reedy et al. Jun 1991 A
5028977 Kenneth et al. Jul 1991 A
5032545 Doan et al. Jul 1991 A
5034623 McAdams Jul 1991 A
5037773 Lee et al. Aug 1991 A
5042011 Casper et al. Aug 1991 A
5045493 Kameyama et al. Sep 1991 A
5049516 Arima Sep 1991 A
5053351 Fazan et al. Oct 1991 A
5055319 Bunshah et al. Oct 1991 A
5057447 Paterson Oct 1991 A
5057896 Gotou Oct 1991 A
5058066 Yu Oct 1991 A
5059549 Furuhatta Oct 1991 A
5071782 Mori Dec 1991 A
5072269 Hieda Dec 1991 A
5073519 Rodder Dec 1991 A
5075536 Towe et al. Dec 1991 A
5080928 Klinedinst et al. Jan 1992 A
5083296 Hara et al. Jan 1992 A
5084606 Bailey et al. Jan 1992 A
5089084 Chhabra et al. Feb 1992 A
5095218 Bryan et al. Mar 1992 A
5097291 Suzuki Mar 1992 A
5100825 Fazan et al. Mar 1992 A
5102817 Chatterjee et al. Apr 1992 A
5103288 Sakamoto et al. Apr 1992 A
5110752 Lu May 1992 A
5111430 Morie May 1992 A
5119329 Evans et al. Jun 1992 A
5121360 West et al. Jun 1992 A
5122848 Lee et al. Jun 1992 A
5122856 Komiya Jun 1992 A
5126975 Handy et al. Jun 1992 A
5128382 Elliott, Jr. et al. Jul 1992 A
5128962 Kerslake et al. Jul 1992 A
5132234 Kim et al. Jul 1992 A
5135879 Richardson Aug 1992 A
5135889 Allen Aug 1992 A
5137780 Nichols et al. Aug 1992 A
5149596 Smith et al. Sep 1992 A
5153880 Owen et al. Oct 1992 A
5155704 Walther et al. Oct 1992 A
5156987 Sandhu et al. Oct 1992 A
5158463 Kim et al. Oct 1992 A
5158986 Cha et al. Oct 1992 A
5158989 Ogitani et al. Oct 1992 A
5165046 Hesson Nov 1992 A
5171713 Matthews Dec 1992 A
5173442 Carey Dec 1992 A
5177028 Manning Jan 1993 A
5177576 Kimura et al. Jan 1993 A
5191404 Wu et al. Mar 1993 A
5192704 McDavid et al. Mar 1993 A
5192871 Ramakrishnan et al. Mar 1993 A
5192992 Kim et al. Mar 1993 A
5196356 Won et al. Mar 1993 A
5198029 Dutta et al. Mar 1993 A
5202278 Mathews et al. Apr 1993 A
5202587 McLaury Apr 1993 A
5208169 Shah et al. May 1993 A
5208657 Chatterjee et al. May 1993 A
5210723 Bates et al. May 1993 A
5212442 O'Toole et al. May 1993 A
5216266 Ozaki Jun 1993 A
5223001 Saeki Jun 1993 A
5223081 Doan Jun 1993 A
5223808 Lee et al. Jun 1993 A
5229647 Gnadinger Jul 1993 A
5234535 Beyer et al. Aug 1993 A
5235545 McLaury Aug 1993 A
5237689 Behnke Aug 1993 A
5241211 Tashiro Aug 1993 A
5242666 Aoki Sep 1993 A
5245522 Kawaguchi et al. Sep 1993 A
5245578 McLaury Sep 1993 A
5253196 Shimabukuro Oct 1993 A
5253357 Allen et al. Oct 1993 A
5254499 Sandhu et al. Oct 1993 A
5260646 Ong Nov 1993 A
5265050 McLaury Nov 1993 A
5266510 Lee Nov 1993 A
5266514 Tuan et al. Nov 1993 A
5267200 Tobita Nov 1993 A
5268865 Takasugi Dec 1993 A
5272367 Dennison et al. Dec 1993 A
5274249 Xi et al. Dec 1993 A
5278460 Casper Jan 1994 A
5280205 Green et al. Jan 1994 A
5280594 Young et al. Jan 1994 A
5282177 McLaury Jan 1994 A
5283762 Fujishima Feb 1994 A
5286991 Hui et al. Feb 1994 A
5293560 Harari Mar 1994 A
5294571 Fujishiro et al. Mar 1994 A
5295095 Josephson Mar 1994 A
5298447 Hong Mar 1994 A
5301278 Bowater et al. Apr 1994 A
5302461 Anthony Apr 1994 A
5303555 Chrysler et al. Apr 1994 A
5304622 Ikai et al. Apr 1994 A
5305284 Iwase Apr 1994 A
5307320 Farrer et al. Apr 1994 A
5311478 Zagar et al. May 1994 A
5311481 Casper et al. May 1994 A
5316962 Matsuo et al. May 1994 A
5317535 Talreja et al. May 1994 A
5319759 Chan Jun 1994 A
5320880 Sandhu et al. Jun 1994 A
5323350 McLaury Jun 1994 A
5323352 Miyata et al. Jun 1994 A
5324683 Fitch et al. Jun 1994 A
5324980 Kusunoki Jun 1994 A
5325330 Morgan Jun 1994 A
5325502 McLaury Jun 1994 A
5327380 Kersh, III et al. Jul 1994 A
5331593 Merritt et al. Jul 1994 A
5333305 Neufeld Jul 1994 A
5334356 Baldwin et al. Aug 1994 A
5335336 Kametani Aug 1994 A
5336922 Sakamoto Aug 1994 A
5339276 Takasugi Aug 1994 A
5340843 Tsuruta et al. Aug 1994 A
5341033 Koker Aug 1994 A
5347177 Lipp Sep 1994 A
5349559 Park et al. Sep 1994 A
5349566 Merritt et al. Sep 1994 A
5350738 Hase et al. Sep 1994 A
5352998 Tanino Oct 1994 A
5353431 Doyle et al. Oct 1994 A
5354699 Ikeda et al. Oct 1994 A
5357469 Sommer et al. Oct 1994 A
5358884 Violette Oct 1994 A
5360751 Lee Nov 1994 A
5360769 Thakur et al. Nov 1994 A
5361002 Casper Nov 1994 A
5362981 Sato et al. Nov 1994 A
5363330 Kobayashi et al. Nov 1994 A
5363550 Aitken et al. Nov 1994 A
5365477 Cooper, Jr. et al. Nov 1994 A
5369622 McLaury Nov 1994 A
5373227 Keeth Dec 1994 A
5376575 Kim et al. Dec 1994 A
5376593 Sandhu et al. Dec 1994 A
5379255 Shah Jan 1995 A
5379261 Jones, Jr. Jan 1995 A
5381368 Morgan et al. Jan 1995 A
5382533 Ahmad et al. Jan 1995 A
5382540 Sharma et al. Jan 1995 A
5386385 Stephens, Jr. Jan 1995 A
5388069 Kokubo Feb 1995 A
5391510 Hsu et al. Feb 1995 A
5391911 Beyer et al. Feb 1995 A
5392239 Margulis et al. Feb 1995 A
5392245 Manning Feb 1995 A
5393704 Huang et al. Feb 1995 A
5394535 Ohuchi Feb 1995 A
5396093 Lu Mar 1995 A
5399516 Bergendahl et al. Mar 1995 A
5400292 Fukiage et al. Mar 1995 A
5406527 Honma Apr 1995 A
5408742 Zaidel et al. Apr 1995 A
5409858 Thakur et al. Apr 1995 A
5410169 Yamamoto et al. Apr 1995 A
5410504 Ward Apr 1995 A
5410670 Hansen et al. Apr 1995 A
5411912 Sakamoto May 1995 A
5414287 Hong May 1995 A
5414288 Fitch et al. May 1995 A
5416041 Schwalke May 1995 A
5418389 Watanabe May 1995 A
5421953 Nagakubo et al. Jun 1995 A
5422499 Manning Jun 1995 A
5424993 Lee et al. Jun 1995 A
5426603 Nakamura et al. Jun 1995 A
5427972 Shimizu et al. Jun 1995 A
5429966 Wu et al. Jul 1995 A
5430670 Rosenthal Jul 1995 A
5432739 Pein Jul 1995 A
5434815 Smarandoiu et al. Jul 1995 A
5434878 Lawandy Jul 1995 A
5436869 Yoshida Jul 1995 A
5438009 Yang et al. Aug 1995 A
5438539 Mori Aug 1995 A
5438544 Makino Aug 1995 A
5439524 Cain et al. Aug 1995 A
5439833 Hebert et al. Aug 1995 A
5440158 Sung-Mu Aug 1995 A
5441591 Imthurn et al. Aug 1995 A
5444013 Akram et al. Aug 1995 A
5444279 Lee Aug 1995 A
5444303 Greenwood et al. Aug 1995 A
5445699 Kamikawa et al. Aug 1995 A
5445986 Hirota Aug 1995 A
5445999 Thakur et al. Aug 1995 A
5448199 Park Sep 1995 A
5449427 Wojnarowski et al. Sep 1995 A
5449433 Donohoe Sep 1995 A
5449941 Yamazaki et al. Sep 1995 A
5450026 Morano Sep 1995 A
5450355 Hush Sep 1995 A
5452253 Choi Sep 1995 A
5452259 McLaury Sep 1995 A
5452261 Chung et al. Sep 1995 A
5454107 Lehman et al. Sep 1995 A
5455444 Hsue Oct 1995 A
5455445 Kurtz et al. Oct 1995 A
5455489 Bhargava Oct 1995 A
5457649 Eichman et al. Oct 1995 A
5457654 McLaury Oct 1995 A
5457659 Schaefer Oct 1995 A
5460316 Hefele Oct 1995 A
5460988 Hong Oct 1995 A
5461003 Havemann et al. Oct 1995 A
5465232 Ong et al. Nov 1995 A
5466625 Hsieh et al. Nov 1995 A
5467306 Kaya et al. Nov 1995 A
5470802 Gnade et al. Nov 1995 A
5473814 White Dec 1995 A
5474947 Chang et al. Dec 1995 A
5477485 Bergemont et al. Dec 1995 A
5480048 Kitamura et al. Jan 1996 A
5483094 Sharma et al. Jan 1996 A
5483487 Sung-Mu Jan 1996 A
5483498 Hotta Jan 1996 A
5485422 Bauer et al. Jan 1996 A
5485428 Lin Jan 1996 A
5486493 Jeng Jan 1996 A
5487049 Hang Jan 1996 A
5488612 Heybruck Jan 1996 A
5490112 Hush et al. Feb 1996 A
5492853 Jeng et al. Feb 1996 A
5493140 Iguchi Feb 1996 A
5493532 McClure Feb 1996 A
5494844 Suzuki Feb 1996 A
5495441 Hong Feb 1996 A
5496597 Soininen et al. Mar 1996 A
5497017 Gonzales Mar 1996 A
5497117 Nakajima et al. Mar 1996 A
5497494 Combs et al. Mar 1996 A
5498558 Kapoor Mar 1996 A
5499355 Krishnamohan et al. Mar 1996 A
5504022 Nakanishi et al. Apr 1996 A
5504357 Kim et al. Apr 1996 A
5504376 Sugahara et al. Apr 1996 A
5506814 Hush et al. Apr 1996 A
5508219 Bronner et al. Apr 1996 A
5508542 Geiss et al. Apr 1996 A
5508543 Hartstein et al. Apr 1996 A
5508544 Shah Apr 1996 A
5510645 Fitch et al. Apr 1996 A
5510758 Fujita et al. Apr 1996 A
5511020 Hu et al. Apr 1996 A
5513148 Zagar Apr 1996 A
5516588 van den Berg et al. May 1996 A
5519236 Ozaki May 1996 A
5521536 Yamashita et al. May 1996 A
5522064 Aldereguia et al. May 1996 A
5522932 Wong et al. Jun 1996 A
5523261 Sandhu Jun 1996 A
5525530 Watabe Jun 1996 A
5526320 Zagar et al. Jun 1996 A
5528062 Hsieh et al. Jun 1996 A
5530581 Cogan Jun 1996 A
5530668 Chern et al. Jun 1996 A
5532618 Hardee et al. Jul 1996 A
5539279 Takeuchi et al. Jul 1996 A
5539779 Nagahori Jul 1996 A
5541871 Nishimura et al. Jul 1996 A
5541872 Lowrey et al. Jul 1996 A
5546344 Fawcett Aug 1996 A
5550770 Kuroda Aug 1996 A
5552638 O'Connor et al. Sep 1996 A
5554305 Wojnarowski et al. Sep 1996 A
5554870 Fitch et al. Sep 1996 A
5561814 Glew et al. Oct 1996 A
5562952 Nakahigashi et al. Oct 1996 A
5563083 Pein Oct 1996 A
5572052 Kashihara et al. Nov 1996 A
5572459 Wilson et al. Nov 1996 A
5574299 Kim Nov 1996 A
5585020 Becker et al. Dec 1996 A
5587609 Murakami et al. Dec 1996 A
5589410 Sato et al. Dec 1996 A
5593912 Rajeevakumar Jan 1997 A
5593926 Fujihira Jan 1997 A
5595606 Fujikawa et al. Jan 1997 A
5598376 Merritt et al. Jan 1997 A
5599396 Sandhu Feb 1997 A
5600587 Koike Feb 1997 A
5600592 Atsumi et al. Feb 1997 A
5602777 Nawaki et al. Feb 1997 A
5608246 Yeager et al. Mar 1997 A
5610864 Manning Mar 1997 A
5614026 Williams Mar 1997 A
5616934 Dennison et al. Apr 1997 A
5618575 Peter Apr 1997 A
5618761 Eguchi et al. Apr 1997 A
5619051 Endo Apr 1997 A
5619159 Sasaki et al. Apr 1997 A
5619642 Nielsen et al. Apr 1997 A
5621681 Moon Apr 1997 A
5625233 Cabral, Jr. et al. Apr 1997 A
5627781 Hayashi et al. May 1997 A
5627785 Gilliam et al. May 1997 A
5636170 Seyyedy Jun 1997 A
5637518 Prall et al. Jun 1997 A
5640342 Gonzalez Jun 1997 A
5640364 Merritt et al. Jun 1997 A
5640507 Lipe Jun 1997 A
5644540 Manning Jul 1997 A
5646583 Seabury et al. Jul 1997 A
5646900 Tsukude et al. Jul 1997 A
5651130 Hinkle et al. Jul 1997 A
5652061 Jeng et al. Jul 1997 A
5652724 Manning Jul 1997 A
5656548 Zavracky et al. Aug 1997 A
5661695 Zagar et al. Aug 1997 A
5662834 Schulz et al. Sep 1997 A
5668773 Zagar et al. Sep 1997 A
5670790 Katoh et al. Sep 1997 A
5673561 Moss Oct 1997 A
5674563 Tarui et al. Oct 1997 A
5674574 Atwell et al. Oct 1997 A
5675549 Ong et al. Oct 1997 A
5677867 Hazani Oct 1997 A
5691209 Liberkowski Nov 1997 A
5691230 Forbes Nov 1997 A
5696008 Tamaki et al. Dec 1997 A
5698022 Glassman et al. Dec 1997 A
5701666 DeHaven et al. Dec 1997 A
5705415 Orlowski et al. Jan 1998 A
5706247 Merritt et al. Jan 1998 A
5710057 Kenney Jan 1998 A
5711812 Chapek et al. Jan 1998 A
5714336 Simons et al. Feb 1998 A
5714766 Chen et al. Feb 1998 A
5721859 Manning Feb 1998 A
5726070 Hong et al. Mar 1998 A
5729047 Ma Mar 1998 A
5729504 Cowles Mar 1998 A
5729709 Harness Mar 1998 A
5731720 Suzuki et al. Mar 1998 A
5735960 Sandhu et al. Apr 1998 A
5739524 Fally Apr 1998 A
5739544 Yuki et al. Apr 1998 A
5739567 Wong Apr 1998 A
5740104 Forbes Apr 1998 A
5744374 Moon Apr 1998 A
5745334 Hoffarth et al. Apr 1998 A
5745499 Ong Apr 1998 A
5747880 Havemann et al. May 1998 A
5749937 Detering et al. May 1998 A
5751021 Teraguchi May 1998 A
5754477 Forbes May 1998 A
5756404 Friedenreich et al. May 1998 A
5757044 Kubota May 1998 A
5765214 Sywyk Jun 1998 A
5768192 Eitan Jun 1998 A
5770022 Chang et al. Jun 1998 A
5772153 Abaunza et al. Jun 1998 A
5772760 Gruen et al. Jun 1998 A
5785787 Wojnarowski et al. Jul 1998 A
5786630 Bhansali et al. Jul 1998 A
5789030 Rolfson Aug 1998 A
5792269 Deacon et al. Aug 1998 A
5795808 Park Aug 1998 A
5798200 Matsuura et al. Aug 1998 A
5798548 Fujiwara Aug 1998 A
5801105 Yano et al. Sep 1998 A
5801401 Forbes Sep 1998 A
5804607 Hedrick et al. Sep 1998 A
5810923 Yano et al. Sep 1998 A
5811984 Long et al. Sep 1998 A
5821621 Jeng Oct 1998 A
5822256 Bauer et al. Oct 1998 A
5827571 Lee et al. Oct 1998 A
5828080 Yano et al. Oct 1998 A
5828605 Peng et al. Oct 1998 A
5840897 Kirlin et al. Nov 1998 A
5841075 Hanson Nov 1998 A
5844317 Bertolet et al. Dec 1998 A
5849628 Sandhu et al. Dec 1998 A
5851880 Ikegami Dec 1998 A
5852306 Forbes Dec 1998 A
5856688 Lee et al. Jan 1999 A
5864923 Rouanet et al. Feb 1999 A
5869369 Hong Feb 1999 A
5874134 Rao et al. Feb 1999 A
5874760 Burns, Jr. et al. Feb 1999 A
5878314 Takaya et al. Mar 1999 A
5879459 Gadgil et al. Mar 1999 A
5879787 Petefish Mar 1999 A
5879794 Korleski Mar 1999 A
5880601 Kanazawa et al. Mar 1999 A
5880991 Hsu et al. Mar 1999 A
5882779 Lawandy Mar 1999 A
5885864 Ma Mar 1999 A
5886368 Forbes et al. Mar 1999 A
5888868 Yamazaki et al. Mar 1999 A
5891773 Saitoh Apr 1999 A
5891797 Farrar Apr 1999 A
5892249 Courtright et al. Apr 1999 A
5897363 Gonzalez et al. Apr 1999 A
5907170 Forbes et al. May 1999 A
5909618 Forbes et al. Jun 1999 A
5910684 Sandhu et al. Jun 1999 A
5910880 DeBoer et al. Jun 1999 A
5912313 McIntosh et al. Jun 1999 A
5912488 Kim et al. Jun 1999 A
5912797 Schneemeyer et al. Jun 1999 A
5916365 Sherman Jun 1999 A
5923056 Lee et al. Jul 1999 A
5936274 Forbes et al. Aug 1999 A
5937295 Chen et al. Aug 1999 A
5939146 Lavernia Aug 1999 A
5943262 Choi Aug 1999 A
5945704 Schrems et al. Aug 1999 A
5950925 Fukunaga et al. Sep 1999 A
5952039 Hong Sep 1999 A
5952692 Nakazato et al. Sep 1999 A
5953626 Hause et al. Sep 1999 A
5958140 Arami et al. Sep 1999 A
5959465 Beat Sep 1999 A
5959896 Forbes Sep 1999 A
5962132 Chang et al. Oct 1999 A
5962959 Iwasaki et al. Oct 1999 A
5963833 Thakur Oct 1999 A
5969383 Chang et al. Oct 1999 A
5972847 Feenstra et al. Oct 1999 A
5973352 Noble Oct 1999 A
5973355 Shirai et al. Oct 1999 A
5973356 Noble et al. Oct 1999 A
5981350 Geusic et al. Nov 1999 A
5986932 Ratnakumar et al. Nov 1999 A
5989511 Gruen et al. Nov 1999 A
5989958 Forbes Nov 1999 A
5990605 Yoshikawa et al. Nov 1999 A
5991225 Forbes et al. Nov 1999 A
5994240 Thakur Nov 1999 A
5994777 Farrar Nov 1999 A
5998264 Wu Dec 1999 A
5998528 Tsipursky et al. Dec 1999 A
6005790 Chan et al. Dec 1999 A
6008103 Hoepfner Dec 1999 A
6009011 Yamauchi Dec 1999 A
6010969 Vaartstra Jan 2000 A
6013548 Burns, Jr. et al. Jan 2000 A
6013553 Wallace et al. Jan 2000 A
6013566 Thakur et al. Jan 2000 A
6017820 Ting et al. Jan 2000 A
6018174 Schrems et al. Jan 2000 A
6019848 Frankel et al. Feb 2000 A
6020024 Maiti et al. Feb 2000 A
6020243 Wallace et al. Feb 2000 A
6022787 Ma Feb 2000 A
6023124 Chuman et al. Feb 2000 A
6023125 Yoshikawa et al. Feb 2000 A
6025034 Strutt et al. Feb 2000 A
6025225 Forbes et al. Feb 2000 A
6025228 Ibok et al. Feb 2000 A
6025627 Forbes et al. Feb 2000 A
6027960 Kusumoto et al. Feb 2000 A
6027961 Maiti et al. Feb 2000 A
6031263 Forbes et al. Feb 2000 A
6034015 Lin et al. Mar 2000 A
6034389 Burns et al. Mar 2000 A
6034882 Johnson et al. Mar 2000 A
6037245 Matsuda Mar 2000 A
6040218 Lam Mar 2000 A
6040243 Li et al. Mar 2000 A
6043146 Watanabe et al. Mar 2000 A
6044016 Itoh Mar 2000 A
6046059 Shen et al. Apr 2000 A
6054349 Nakajima et al. Apr 2000 A
6057271 Kenjiro et al. May 2000 A
6059885 Ohashi et al. May 2000 A
6060743 Sugiyama et al. May 2000 A
6060755 Ma et al. May 2000 A
6063705 Vaartstra May 2000 A
6066869 Noble et al. May 2000 A
6066922 Iwasaki May 2000 A
6069380 Chou et al. May 2000 A
6069816 Nishimura May 2000 A
6072209 Noble et al. Jun 2000 A
6075383 Terletzki Jun 2000 A
6075691 Duenas et al. Jun 2000 A
6077745 Burns, Jr. et al. Jun 2000 A
6077792 Farrar Jun 2000 A
RE36760 Bloomquist et al. Jul 2000 E
6083793 Wu Jul 2000 A
6087222 Jung Lin et al. Jul 2000 A
6088216 Laibowitz et al. Jul 2000 A
6090636 Geusic et al. Jul 2000 A
6093623 Forbes Jul 2000 A
6093944 VanDover Jul 2000 A
6103419 Saidi et al. Aug 2000 A
6104061 Forbes et al. Aug 2000 A
6108240 Lavi et al. Aug 2000 A
6110529 Gardiner et al. Aug 2000 A
6110544 Yang et al. Aug 2000 A
6111285 Al-Shareef et al. Aug 2000 A
6114252 Donohoe et al. Sep 2000 A
6114722 Jan et al. Sep 2000 A
6114725 Furukawa et al. Sep 2000 A
6115281 Aggarwal et al. Sep 2000 A
6115401 Scobey et al. Sep 2000 A
6120531 Zhou et al. Sep 2000 A
6121654 Likharev et al. Sep 2000 A
6124729 Noble et al. Sep 2000 A
6125062 Ahn et al. Sep 2000 A
6127287 Hurley et al. Oct 2000 A
6129928 Sarangapani et al. Oct 2000 A
6130503 Negishi et al. Oct 2000 A
6133621 Gaibotti et al. Oct 2000 A
6134175 Forbes et al. Oct 2000 A
6135175 Gaudreault et al. Oct 2000 A
6137025 Ebbinghaus et al. Oct 2000 A
6140181 Forbes et al. Oct 2000 A
6140200 Eldridge Oct 2000 A
6141237 Eliason et al. Oct 2000 A
6141238 Forbes et al. Oct 2000 A
6141248 Forbes et al. Oct 2000 A
6141260 Ahn et al. Oct 2000 A
6143582 Vu et al. Nov 2000 A
6143616 Geusic et al. Nov 2000 A
6143631 Chapek Nov 2000 A
6143636 Forbes et al. Nov 2000 A
6144155 Yoshikawa et al. Nov 2000 A
6146959 DeBoer et al. Nov 2000 A
6146976 Stecher et al. Nov 2000 A
6147443 Yoshikawa et al. Nov 2000 A
6150188 Geusic et al. Nov 2000 A
6150687 Noble et al. Nov 2000 A
6150724 Wenzel et al. Nov 2000 A
6153468 Forbes et al. Nov 2000 A
6154280 Borden Nov 2000 A
H1924 Zabinski et al. Dec 2000 H
6157061 Kawata Dec 2000 A
6159874 Tews et al. Dec 2000 A
6160739 Wong Dec 2000 A
6161500 Kopacz et al. Dec 2000 A
6162712 Baum et al. Dec 2000 A
6163049 Bui Dec 2000 A
6165837 Kawakubo et al. Dec 2000 A
6165890 Kohl et al. Dec 2000 A
6166401 Forbes Dec 2000 A
6166487 Negishi et al. Dec 2000 A
6169306 Gardner et al. Jan 2001 B1
6171900 Sun Jan 2001 B1
6172305 Tanahashi Jan 2001 B1
6174366 Ihantola Jan 2001 B1
6174677 Vo-Dinh Jan 2001 B1
6174784 Forbes Jan 2001 B1
6174809 Kang et al. Jan 2001 B1
6182604 Goeckner et al. Feb 2001 B1
6184146 Donohoe et al. Feb 2001 B1
6184549 Furukawa et al. Feb 2001 B1
6184550 Van Buskirk et al. Feb 2001 B1
6184612 Negishi et al. Feb 2001 B1
6185122 Johnson et al. Feb 2001 B1
6187484 Glass et al. Feb 2001 B1
6191443 Al-Shareef et al. Feb 2001 B1
6191448 Forbes et al. Feb 2001 B1
6191459 Hofmann et al. Feb 2001 B1
6191470 Forbes et al. Feb 2001 B1
6194237 Kim et al. Feb 2001 B1
6194262 Noble Feb 2001 B1
6195156 Miyammoto et al. Feb 2001 B1
6198168 Geusic et al. Mar 2001 B1
6200873 Schrems et al. Mar 2001 B1
6200893 Sneh Mar 2001 B1
6203613 Gates et al. Mar 2001 B1
6203726 Danielson et al. Mar 2001 B1
6204529 Lung et al. Mar 2001 B1
6206972 Dunham Mar 2001 B1
6207522 Hunt et al. Mar 2001 B1
6207589 Ma et al. Mar 2001 B1
6208164 Noble et al. Mar 2001 B1
6208881 Champeau Mar 2001 B1
6210999 Gardner et al. Apr 2001 B1
6211015 Noble Apr 2001 B1
6211035 Moise et al. Apr 2001 B1
6211039 Noble Apr 2001 B1
6212103 Ahrens et al. Apr 2001 B1
6212314 Ford Apr 2001 B1
6214707 Thakur et al. Apr 2001 B1
6217645 Vaartstra Apr 2001 B1
6218293 Kraus et al. Apr 2001 B1
6218449 Planche et al. Apr 2001 B1
6219299 Forbes et al. Apr 2001 B1
6222788 Forbes et al. Apr 2001 B1
6224690 Andricacos et al. May 2001 B1
6225163 Bergemont May 2001 B1
6225168 Gardner et al. May 2001 B1
6225237 Vaartstra May 2001 B1
6226599 Namiki May 2001 B1
6229175 Uchida May 2001 B1
6230651 Ni et al. May 2001 B1
6232643 Forbes et al. May 2001 B1
6232847 Marcy, 5th et al. May 2001 B1
6238976 Noble et al. May 2001 B1
6243300 Sunkavalli Jun 2001 B1
6245604 Violette et al. Jun 2001 B1
6245658 Buynoski Jun 2001 B1
6246606 Forbes et al. Jun 2001 B1
6249020 Forbes et al. Jun 2001 B1
6249460 Forbes et al. Jun 2001 B1
6252267 Noble, Jr. Jun 2001 B1
6252793 Allen et al. Jun 2001 B1
6255712 Clevenger et al. Jul 2001 B1
6255852 Forbes et al. Jul 2001 B1
6258637 Wilk et al. Jul 2001 B1
6259198 Yanagisawa et al. Jul 2001 B1
6265279 Radens et al. Jul 2001 B1
6269023 Derhacobian et al. Jul 2001 B1
6270835 Hunt et al. Aug 2001 B1
6271142 Gruening et al. Aug 2001 B1
6273951 Vaartstra Aug 2001 B1
6274479 Srinivasan Aug 2001 B1
6274937 Ahn et al. Aug 2001 B1
6277448 Strutt et al. Aug 2001 B2
6278230 Yoshizawa et al. Aug 2001 B1
6281042 Ahn et al. Aug 2001 B1
6281054 Yeo Aug 2001 B1
6281144 Cleary et al. Aug 2001 B1
6282080 DeBoer et al. Aug 2001 B1
6285123 Yamada et al. Sep 2001 B1
6287979 Zhou et al. Sep 2001 B1
6289842 Tompa Sep 2001 B1
6290491 Shahvandi et al. Sep 2001 B1
6291314 Henley et al. Sep 2001 B1
6291341 Sharan et al. Sep 2001 B1
6291364 Gealy et al. Sep 2001 B1
6291866 Wallace et al. Sep 2001 B1
6294420 Tsu et al. Sep 2001 B1
6294813 Forbes et al. Sep 2001 B1
6296943 Watanabe Oct 2001 B1
6297095 Muralidhar et al. Oct 2001 B1
6297103 Ahn et al. Oct 2001 B1
6297516 Forrest et al. Oct 2001 B1
6297527 Agarwal et al. Oct 2001 B1
6297539 Ma et al. Oct 2001 B1
6300193 Forbes Oct 2001 B1
6300203 Buynoski et al. Oct 2001 B1
6300255 Venkataranan et al. Oct 2001 B1
6302964 Umotoy et al. Oct 2001 B1
6303481 Park Oct 2001 B2
6303500 Jiang et al. Oct 2001 B1
6306708 Peng Oct 2001 B1
6307775 Forbes et al. Oct 2001 B1
6310375 Schrems Oct 2001 B1
6310376 Ueda et al. Oct 2001 B1
6312999 Chivukula et al. Nov 2001 B1
6313015 Lee et al. Nov 2001 B1
6313035 Sandhu et al. Nov 2001 B1
6313046 Juengling et al. Nov 2001 B1
6313495 Shen et al. Nov 2001 B1
6313518 Ahn et al. Nov 2001 B1
6313531 Geusic et al. Nov 2001 B1
6316275 Hopfner Nov 2001 B2
6316800 Al-Shareef et al. Nov 2001 B1
6316873 Ito et al. Nov 2001 B1
6317175 Salerno et al. Nov 2001 B1
6317357 Forbes Nov 2001 B1
6317364 Guterman et al. Nov 2001 B1
6320091 Ebbinghaus et al. Nov 2001 B1
6323081 Marsh Nov 2001 B1
6323511 Marsh Nov 2001 B1
6323844 Yeh et al. Nov 2001 B1
6329286 Vaartstra Dec 2001 B1
6331282 Manthiram et al. Dec 2001 B1
6331465 Forbes et al. Dec 2001 B1
6333556 Juengling et al. Dec 2001 B1
6335536 Goeckner et al. Jan 2002 B1
6335554 Yoshikawa Jan 2002 B1
6337805 Forbes et al. Jan 2002 B1
6341084 Numata et al. Jan 2002 B2
6342445 Marsh Jan 2002 B1
6342454 Hawker et al. Jan 2002 B1
6344403 Madhukar et al. Feb 2002 B1
6346477 Kaloyeros et al. Feb 2002 B1
6347749 Moore et al. Feb 2002 B1
6348386 Gilmer Feb 2002 B1
6348709 Graettinger et al. Feb 2002 B1
6350649 Jeong et al. Feb 2002 B1
6350672 Sun Feb 2002 B1
6350704 Ahn et al. Feb 2002 B1
6351411 Forbes et al. Feb 2002 B2
6352591 Yieh et al. Mar 2002 B1
6352818 Hsieh Mar 2002 B1
6353554 Banks Mar 2002 B1
6355561 Sandhu et al. Mar 2002 B1
6359310 Gonzalez et al. Mar 2002 B1
6365470 Maeda Apr 2002 B1
6365519 Kraus et al. Apr 2002 B2
6368398 Vaartstra Apr 2002 B2
6368518 Vaartstra Apr 2002 B1
6368941 Chen et al. Apr 2002 B1
6372567 Tews et al. Apr 2002 B1
6373740 Forbes et al. Apr 2002 B1
6377070 Forbes Apr 2002 B1
6380294 Babinec et al. Apr 2002 B1
6380579 Nam et al. Apr 2002 B1
6380765 Forbes et al. Apr 2002 B1
6381124 Whitcher et al. Apr 2002 B1
6381168 Forbes Apr 2002 B2
6387712 Yano et al. May 2002 B1
6388376 Negishi et al. May 2002 B1
6391769 Lee et al. May 2002 B1
6392257 Ramdani et al. May 2002 B1
6395650 Callegari et al. May 2002 B1
6396099 Joo et al. May 2002 B2
6398923 Ireland et al. Jun 2002 B1
6399979 Noble et al. Jun 2002 B1
6400070 Yamada et al. Jun 2002 B1
6400552 Al-Shareef et al. Jun 2002 B2
6403414 Marsh Jun 2002 B2
6403494 Chu et al. Jun 2002 B1
6404027 Hong et al. Jun 2002 B1
6404124 Sakemura et al. Jun 2002 B1
6407424 Forbes Jun 2002 B2
6407435 Ma et al. Jun 2002 B1
6413827 Farrar Jul 2002 B2
6414476 Yagi Jul 2002 B2
6414543 Beigel et al. Jul 2002 B1
6417537 Yang et al. Jul 2002 B1
6418050 Forbes Jul 2002 B2
6420230 Derderian et al. Jul 2002 B1
6420261 Kudo Jul 2002 B2
6420262 Farrar Jul 2002 B1
6420279 Ono et al. Jul 2002 B1
6420778 Sinyansky Jul 2002 B1
6423613 Geusic Jul 2002 B1
6423649 Gealy et al. Jul 2002 B2
6424001 Forbes et al. Jul 2002 B1
6426292 Vaartstra Jul 2002 B2
6429065 Forbes Aug 2002 B2
6429237 Tooley Aug 2002 B1
6432779 Hobbs et al. Aug 2002 B1
6433382 Orlowski et al. Aug 2002 B1
6433408 Anjo et al. Aug 2002 B1
6433413 Farrar Aug 2002 B1
6433553 Goeckner et al. Aug 2002 B1
6433993 Hunt et al. Aug 2002 B1
6434041 Forbes et al. Aug 2002 B2
6436203 Kaizuka et al. Aug 2002 B1
6436749 Tonti et al. Aug 2002 B1
6437381 Gruening et al. Aug 2002 B1
6437389 Forbes et al. Aug 2002 B1
6438031 Fastow Aug 2002 B1
6440801 Furukawa et al. Aug 2002 B1
6441417 Zhang et al. Aug 2002 B1
6441421 Clevenger et al. Aug 2002 B1
6444039 Nguyen Sep 2002 B1
6444042 Yang et al. Sep 2002 B1
6444592 Ballantine et al. Sep 2002 B1
6444895 Nikawa Sep 2002 B1
6445023 Vaartstra et al. Sep 2002 B1
6445030 Wu et al. Sep 2002 B1
6447764 Bayer et al. Sep 2002 B1
6447848 Chow et al. Sep 2002 B1
6448192 Kaushik Sep 2002 B1
6448601 Forbes et al. Sep 2002 B1
6449188 Fastow Sep 2002 B1
6451641 Halliyal et al. Sep 2002 B1
6451662 Chudzik et al. Sep 2002 B1
6451695 Sneh Sep 2002 B2
6452229 Krivokapic Sep 2002 B1
6452759 Urai Sep 2002 B2
6454912 Ahn et al. Sep 2002 B1
6455717 Vaartstra Sep 2002 B1
6456531 Wang et al. Sep 2002 B1
6456535 Forbes et al. Sep 2002 B2
6456536 Sobek et al. Sep 2002 B1
6458431 Hill et al. Oct 2002 B2
6458645 DeBoer et al. Oct 2002 B2
6458701 Chae et al. Oct 2002 B1
6459618 Wang Oct 2002 B1
6461436 Campbell et al. Oct 2002 B1
6461905 Wang et al. Oct 2002 B1
6461914 Roberts et al. Oct 2002 B1
6461931 Eldridge Oct 2002 B1
6461970 Yin Oct 2002 B1
6465298 Forbes et al. Oct 2002 B2
6465334 Buynoski et al. Oct 2002 B1
6465370 Schrems et al. Oct 2002 B1
6465853 Hobbs et al. Oct 2002 B1
6472302 Lee Oct 2002 B1
6472321 Srinivasan et al. Oct 2002 B2
6472632 Peterson et al. Oct 2002 B1
6472702 Shen Oct 2002 B1
6472803 Yoshizawa et al. Oct 2002 B1
6475857 Kim et al. Nov 2002 B1
6475859 Tews et al. Nov 2002 B1
6476434 Noble et al. Nov 2002 B1
6482740 Soininen et al. Nov 2002 B2
6486027 Noble et al. Nov 2002 B1
6486703 Noble et al. Nov 2002 B2
6487121 Thurgate et al. Nov 2002 B1
6489648 Iwasaki et al. Dec 2002 B2
6492233 Forbes et al. Dec 2002 B2
6492241 Rhodes et al. Dec 2002 B1
6492288 Shindo Dec 2002 B2
6495436 Ahn et al. Dec 2002 B2
6495458 Marsh Dec 2002 B2
6496034 Forbes et al. Dec 2002 B2
6498063 Ping Dec 2002 B1
6498065 Forbes et al. Dec 2002 B1
6498362 Forbes et al. Dec 2002 B1
6500496 Goeckner et al. Dec 2002 B1
6503818 Jang Jan 2003 B1
6504207 Chen et al. Jan 2003 B1
6504214 Yu et al. Jan 2003 B1
6504755 Katayama et al. Jan 2003 B1
6506666 Marsh Jan 2003 B2
6509234 Krivokapic Jan 2003 B1
6509280 Choi Jan 2003 B2
6509599 Wurster et al. Jan 2003 B1
6511873 Ballantine et al. Jan 2003 B2
6511905 Lee et al. Jan 2003 B1
6514348 Miyamoto Feb 2003 B2
6514820 Ahn et al. Feb 2003 B2
6514828 Ahn et al. Feb 2003 B2
6514842 Prall et al. Feb 2003 B1
6515510 Noble et al. Feb 2003 B2
6518121 Al-Shareef et al. Feb 2003 B2
6518610 Yang et al. Feb 2003 B2
6518615 Geusic et al. Feb 2003 B1
6518634 Kaushik et al. Feb 2003 B1
6521911 Parsons et al. Feb 2003 B2
6521943 Mine et al. Feb 2003 B1
6521950 Shimabukuro et al. Feb 2003 B1
6521956 Lee Feb 2003 B1
6521958 Forbes et al. Feb 2003 B1
6524867 Yang et al. Feb 2003 B2
6524901 Trivedi Feb 2003 B1
6526191 Geusic et al. Feb 2003 B1
6527866 Matijasevic et al. Mar 2003 B1
6527918 Goeckner et al. Mar 2003 B2
6528858 Yu et al. Mar 2003 B1
6531324 Hsu et al. Mar 2003 B2
6531354 Maria et al. Mar 2003 B2
6531727 Forbes et al. Mar 2003 B2
6533867 Doppelhammer Mar 2003 B2
6534357 Basceri Mar 2003 B1
6534420 Ahn et al. Mar 2003 B2
6537613 Senzaki et al. Mar 2003 B1
6538330 Forbes Mar 2003 B1
6541079 Bojarczuk, Jr. et al. Apr 2003 B1
6541280 Kaushik et al. Apr 2003 B2
6541353 Sandhu et al. Apr 2003 B1
6542229 Kalal et al. Apr 2003 B1
6544846 Ahn et al. Apr 2003 B2
6544875 Wilk Apr 2003 B1
6544888 Lee Apr 2003 B2
6545314 Forbes et al. Apr 2003 B2
6545338 Bothra et al. Apr 2003 B1
6551893 Zheng et al. Apr 2003 B1
6551929 Kori et al. Apr 2003 B1
6552383 Ahn et al. Apr 2003 B2
6552387 Eitan Apr 2003 B1
6552388 Wilk et al. Apr 2003 B2
6552952 Pascucci Apr 2003 B2
6555858 Jones et al. Apr 2003 B1
6555879 Krivokapic et al. Apr 2003 B1
6559014 Jeon May 2003 B1
6559472 Sandhu et al. May 2003 B2
6559491 Forbes et al. May 2003 B2
6562491 Jeon May 2003 B1
6563160 Clevenger et al. May 2003 B2
6566147 Basceri et al. May 2003 B2
6566682 Forbes May 2003 B2
6567303 Hamilton et al. May 2003 B1
6567312 Torii et al. May 2003 B1
6569757 Weling et al. May 2003 B1
6570248 Ahn et al. May 2003 B1
6570787 Wang et al. May 2003 B1
6572836 Schulz et al. Jun 2003 B1
6573199 Sandhu et al. Jun 2003 B2
6574143 Nakazato Jun 2003 B2
6574144 Forbes Jun 2003 B2
6574968 Symko et al. Jun 2003 B1
6580124 Cleeves et al. Jun 2003 B1
6586349 Jeon et al. Jul 2003 B1
6586785 Flagan et al. Jul 2003 B2
6586792 Ahn et al. Jul 2003 B2
6586797 Forbes et al. Jul 2003 B2
6587408 Jacobson et al. Jul 2003 B1
6590252 Kutsunai et al. Jul 2003 B2
6592661 Thakur et al. Jul 2003 B1
6592839 Gruen et al. Jul 2003 B2
6592942 Van Wijck Jul 2003 B1
6593610 Gonzalez Jul 2003 B2
6596583 Agarwal et al. Jul 2003 B2
6596617 King et al. Jul 2003 B1
6596636 Sandhu et al. Jul 2003 B2
6596651 Gealy et al. Jul 2003 B2
6597037 Forbes et al. Jul 2003 B1
6600339 Forbes et al. Jul 2003 B2
6602053 Subramanian et al. Aug 2003 B2
6602338 Chen et al. Aug 2003 B2
6602720 Hsu et al. Aug 2003 B2
6603080 Jensen Aug 2003 B2
6608378 Ahn et al. Aug 2003 B2
6613656 Li Sep 2003 B2
6613695 Pomarede et al. Sep 2003 B2
6613702 Sandhu et al. Sep 2003 B2
6614092 Eldridge et al. Sep 2003 B2
6617634 Marsh et al. Sep 2003 B2
6617639 Wang et al. Sep 2003 B1
6620670 Song et al. Sep 2003 B2
6620752 Messing et al. Sep 2003 B2
6627260 Derderian et al. Sep 2003 B2
6627503 Ma et al. Sep 2003 B2
6627508 DeBoer et al. Sep 2003 B1
6628355 Takahara Sep 2003 B1
6630383 Ibok et al. Oct 2003 B1
6630713 Geusic Oct 2003 B2
6632279 Ritala et al. Oct 2003 B1
6638575 Chen et al. Oct 2003 B1
6638810 Bakli et al. Oct 2003 B2
6638859 Sneh et al. Oct 2003 B2
6639267 Eldridge Oct 2003 B2
6639268 Forbes et al. Oct 2003 B2
6641887 Lida et al. Nov 2003 B2
6642567 Marsh Nov 2003 B1
6642573 Halliyal et al. Nov 2003 B1
6642782 Beigel et al. Nov 2003 B2
6645569 Cramer et al. Nov 2003 B2
6645882 Halliyal et al. Nov 2003 B1
6646307 Yu et al. Nov 2003 B1
6652924 Sherman Nov 2003 B2
6653209 Yamagata Nov 2003 B1
6653591 Peterson et al. Nov 2003 B1
6656371 Drewes Dec 2003 B2
6656764 Wang et al. Dec 2003 B1
6656792 Choi et al. Dec 2003 B2
6656835 Marsh et al. Dec 2003 B2
6660578 Karlsson et al. Dec 2003 B1
6660631 Marsh Dec 2003 B1
6660660 Haukka et al. Dec 2003 B2
6661058 Ahn et al. Dec 2003 B2
6664154 Bell et al. Dec 2003 B1
6664806 Forbes et al. Dec 2003 B2
6669823 Sarkas et al. Dec 2003 B1
6669996 Ueno et al. Dec 2003 B2
6670284 Yin Dec 2003 B2
6670719 Eldridge et al. Dec 2003 B2
6673701 Marsh et al. Jan 2004 B1
6674138 Halliyal et al. Jan 2004 B1
6674167 Ahn et al. Jan 2004 B1
6676595 Delfino Jan 2004 B1
6677204 Cleeves et al. Jan 2004 B2
6677250 Campbell et al. Jan 2004 B2
6677640 Sandhu et al. Jan 2004 B1
6679315 Cosley et al. Jan 2004 B2
6680505 Ohba et al. Jan 2004 B2
6680508 Rudeck Jan 2004 B1
6682602 Vaartstra Jan 2004 B2
6682969 Basceri et al. Jan 2004 B1
6683005 Sandhu et al. Jan 2004 B2
6683011 Smith et al. Jan 2004 B2
6686212 Conley, Jr. et al. Feb 2004 B1
6686654 Farrar et al. Feb 2004 B2
6689192 Phillips et al. Feb 2004 B1
6689657 Gealy et al. Feb 2004 B2
6689660 Noble et al. Feb 2004 B1
6690055 Uhlenbrock et al. Feb 2004 B1
6692898 Ning Feb 2004 B2
6696332 Visokay et al. Feb 2004 B2
6696724 Verhaar Feb 2004 B2
6699745 Banerjee et al. Mar 2004 B1
6699747 Ruff et al. Mar 2004 B2
6700132 Chuman et al. Mar 2004 B2
6703279 Lee Mar 2004 B2
6706115 Leskela et al. Mar 2004 B2
6709912 Ang et al. Mar 2004 B1
6709968 Eldridge et al. Mar 2004 B1
6709978 Geusic et al. Mar 2004 B2
6709989 Ramdani et al. Mar 2004 B2
6710538 Ahn et al. Mar 2004 B1
6713162 Takaya et al. Mar 2004 B2
6713329 Wagner et al. Mar 2004 B1
6713812 Hoefler et al. Mar 2004 B1
6713846 Senzaki Mar 2004 B1
6714455 Banks Mar 2004 B2
6717211 Gonzalez et al. Apr 2004 B2
6720216 Forbes Apr 2004 B2
6720221 Ahn et al. Apr 2004 B1
6723577 Geusic et al. Apr 2004 B1
6723606 Flagan et al. Apr 2004 B2
6725670 Smith et al. Apr 2004 B2
6727105 Brug et al. Apr 2004 B1
6727169 Raaijmakers et al. Apr 2004 B1
6728092 Hunt et al. Apr 2004 B2
6730163 Vaartstra May 2004 B2
6730164 Vaartstra et al. May 2004 B2
6730367 Sandhu May 2004 B2
6730575 Eldridge May 2004 B2
6731531 Forbes et al. May 2004 B1
6734480 Chung et al. May 2004 B2
6734510 Forbes et al. May 2004 B2
6737740 Forbes et al. May 2004 B2
6737887 Forbes et al. May 2004 B2
6740605 Shiraiwa et al. May 2004 B1
6740928 Yoshii et al. May 2004 B2
6744063 Yoshikawa et al. Jun 2004 B2
6744093 Agarwal et al. Jun 2004 B2
6746893 Forbes et al. Jun 2004 B1
6746916 Agarwal et al. Jun 2004 B2
6746930 Yang et al. Jun 2004 B2
6746934 Sandhu et al. Jun 2004 B2
6747347 Farrar et al. Jun 2004 B2
6750066 Cheung et al. Jun 2004 B1
6750126 Visokay et al. Jun 2004 B1
6753567 Maria et al. Jun 2004 B2
6753568 Nakazato et al. Jun 2004 B1
6754108 Forbes Jun 2004 B2
6755886 Phillips Jun 2004 B2
6756237 Xiao et al. Jun 2004 B2
6756292 Lee et al. Jun 2004 B2
6756298 Ahn et al. Jun 2004 B2
6756567 Suen Jun 2004 B1
6759081 Huganen et al. Jul 2004 B2
6759151 Lee Jul 2004 B1
6760257 Huang et al. Jul 2004 B2
6762114 Chambers Jul 2004 B1
6764901 Noble Jul 2004 B2
6764919 Yu et al. Jul 2004 B2
6764941 Yang et al. Jul 2004 B2
6767419 Branagan Jul 2004 B1
6767582 Elers Jul 2004 B1
6767749 Kub et al. Jul 2004 B2
6767795 Ahn et al. Jul 2004 B2
6768175 Morishita et al. Jul 2004 B1
6770536 Wilk et al. Aug 2004 B2
6770923 Nguyen et al. Aug 2004 B2
6770954 Lee Aug 2004 B2
6773981 Al-Shareef et al. Aug 2004 B1
6773984 Srividya et al. Aug 2004 B2
6774050 Ahn et al. Aug 2004 B2
6774061 Coffa et al. Aug 2004 B2
6777353 Putkonen Aug 2004 B2
6777715 Geusic et al. Aug 2004 B1
6777739 Agarwal et al. Aug 2004 B2
6778441 Forbes et al. Aug 2004 B2
6780704 Raaijmakers et al. Aug 2004 B1
6784045 Price et al. Aug 2004 B1
6784101 Yu et al. Aug 2004 B1
6784508 Tsunashima et al. Aug 2004 B2
6785120 Basceri et al. Aug 2004 B1
6787122 Zhou Sep 2004 B2
6787370 Forbes Sep 2004 B2
6787413 Ahn Sep 2004 B2
6787463 Mardian et al. Sep 2004 B2
6787888 Forbes et al. Sep 2004 B2
6787906 Yang et al. Sep 2004 B1
6787992 Chuman et al. Sep 2004 B2
6790755 Jeon Sep 2004 B2
6790791 Ahn et al. Sep 2004 B2
6794255 Forbes et al. Sep 2004 B1
6794315 Klemperer et al. Sep 2004 B1
6794709 Ahn et al. Sep 2004 B2
6794735 Forbes et al. Sep 2004 B2
6797561 Ko et al. Sep 2004 B2
6800567 Cho Oct 2004 B2
6801415 Slaughter et al. Oct 2004 B2
6803275 Park et al. Oct 2004 B1
6803311 Choi Oct 2004 B2
6803326 Ahn et al. Oct 2004 B2
6804136 Forbes Oct 2004 B2
6806187 Graettinger et al. Oct 2004 B2
6806211 Shinriki et al. Oct 2004 B2
6808978 Kim Oct 2004 B2
6808983 Hill Oct 2004 B2
6812100 Ahn et al. Nov 2004 B2
6812110 Basceri et al. Nov 2004 B1
6812137 Forbes et al. Nov 2004 B2
6812157 Gadgil Nov 2004 B1
6812513 Geusic et al. Nov 2004 B2
6812516 Noble, Jr. et al. Nov 2004 B2
6815781 Vyvoda Nov 2004 B2
6815804 Forbes Nov 2004 B2
6818067 Doering et al. Nov 2004 B2
6818937 Noble et al. Nov 2004 B2
6821563 Yudovsky Nov 2004 B2
6821862 Cho Nov 2004 B2
6821873 Visokay et al. Nov 2004 B2
6828045 Tokailin et al. Dec 2004 B1
6828191 Wurster et al. Dec 2004 B1
6828632 Bhattacharyya Dec 2004 B2
6828656 Forbes et al. Dec 2004 B2
6830676 Deevi Dec 2004 B2
6831310 Mathew et al. Dec 2004 B1
6831315 Raaijmakers et al. Dec 2004 B2
6833285 Ahn et al. Dec 2004 B1
6833308 Ahn et al. Dec 2004 B2
6833317 Forbes et al. Dec 2004 B2
6835111 Ahn et al. Dec 2004 B2
6838404 Hentges et al. Jan 2005 B2
6839280 Chindalore et al. Jan 2005 B1
6842370 Forbes Jan 2005 B2
6844203 Ahn et al. Jan 2005 B2
6844256 Forbes et al. Jan 2005 B2
6844260 Sarigiannis et al. Jan 2005 B2
6844319 Poelstra et al. Jan 2005 B1
6844604 Lee et al. Jan 2005 B2
6846574 Subramanian Jan 2005 B2
6846738 Forbes et al. Jan 2005 B2
6849908 Hirano et al. Feb 2005 B2
6849948 Chen et al. Feb 2005 B2
6852167 Ahn Feb 2005 B2
6852613 Forbes et al. Feb 2005 B2
6852645 Colombo et al. Feb 2005 B2
6853587 Forbes Feb 2005 B2
6858120 Ahn et al. Feb 2005 B2
6858444 Ahn et al. Feb 2005 B2
6858865 Ahn et al. Feb 2005 B2
6858894 Srividya et al. Feb 2005 B2
6859093 Beigel Feb 2005 B1
6863727 Elers et al. Mar 2005 B1
6863933 Cramer et al. Mar 2005 B2
6864191 Yoon Mar 2005 B2
6864527 DeBoer et al. Mar 2005 B2
6867097 Ramsbey et al. Mar 2005 B1
6869877 Rhodes et al. Mar 2005 B2
6873539 Fazan et al. Mar 2005 B1
6878602 Basceri et al. Apr 2005 B2
6878624 Bruley et al. Apr 2005 B1
6881994 Lee et al. Apr 2005 B2
6884706 Forbes et al. Apr 2005 B2
6884719 Chang et al. Apr 2005 B2
6884739 Ahn et al. Apr 2005 B2
6887758 Chindalore et al. May 2005 B2
6888739 Forbes May 2005 B2
6890843 Forbes et al. May 2005 B2
6893984 Ahn et al. May 2005 B2
6894944 Ishibashi et al. May 2005 B2
6896617 Daly May 2005 B2
6900116 Forbes et al. May 2005 B2
6900122 Ahn et al. May 2005 B2
6900481 Jin et al. May 2005 B2
6903003 Forbes et al. Jun 2005 B2
6903367 Forbes Jun 2005 B2
6903444 Forbes et al. Jun 2005 B2
6905994 Ohsato et al. Jun 2005 B2
6906402 Forbes et al. Jun 2005 B2
6906953 Forbes Jun 2005 B2
6912158 Forbes Jun 2005 B2
6914278 Forbes et al. Jul 2005 B2
6914800 Ahn et al. Jul 2005 B2
6916668 Spielberger et al. Jul 2005 B2
6917112 Basceri et al. Jul 2005 B2
6919266 Ahn et al. Jul 2005 B2
6921702 Ahn et al. Jul 2005 B2
6927136 Lung et al. Aug 2005 B2
6929830 Tei et al. Aug 2005 B2
6930059 Conley, Jr. et al. Aug 2005 B2
6930346 Ahn et al. Aug 2005 B2
6933225 Werkhoven et al. Aug 2005 B2
6949433 Hidehiko et al. Sep 2005 B1
6950340 Bhattacharyya Sep 2005 B2
6952032 Forbes et al. Oct 2005 B2
6953730 Ahn et al. Oct 2005 B2
6955968 Forbes et al. Oct 2005 B2
6958265 Steimle et al. Oct 2005 B2
6958302 Ahn et al. Oct 2005 B2
6958937 Forbes Oct 2005 B2
6960538 Ahn et al. Nov 2005 B2
6963103 Forbes Nov 2005 B2
6970053 Akram et al. Nov 2005 B2
6979855 Ahn et al. Dec 2005 B2
6982230 Cabral, Jr. et al. Jan 2006 B2
6984591 Buchanan et al. Jan 2006 B1
6989565 Aronowitz et al. Jan 2006 B1
6989573 Ahn et al. Jan 2006 B2
6991984 Ingersoll et al. Jan 2006 B2
6995057 Forbes et al. Feb 2006 B2
6995437 Kinoshita et al. Feb 2006 B1
6996009 Forbes Feb 2006 B2
7005391 Min et al. Feb 2006 B2
7005697 Batra et al. Feb 2006 B2
7012297 Bhattacharyya Mar 2006 B2
7012311 Ohmi et al. Mar 2006 B2
7015525 Forbes et al. Mar 2006 B2
7018868 Yang et al. Mar 2006 B1
7019351 Eppich et al. Mar 2006 B2
7025894 Hess et al. Apr 2006 B2
7026694 Ahn et al. Apr 2006 B2
7037574 Paranjpe et al. May 2006 B2
7037862 Ahn et al. May 2006 B2
7041530 Nunoshita et al. May 2006 B2
7042043 Forbes et al. May 2006 B2
7045406 Huotari et al. May 2006 B2
7045430 Ahn et al. May 2006 B2
7049192 Ahn et al. May 2006 B2
7057244 Andreoni et al. Jun 2006 B2
7064048 Lai et al. Jun 2006 B2
7064058 Ahn et al. Jun 2006 B2
7067840 Klauk et al. Jun 2006 B2
7068544 Forbes et al. Jun 2006 B2
7071066 Wang et al. Jul 2006 B2
7074380 Iwaki et al. Jul 2006 B2
7074673 Forbes Jul 2006 B2
7075829 Forbes Jul 2006 B2
7081421 Ahn et al. Jul 2006 B2
7084078 Ahn et al. Aug 2006 B2
7087954 Forbes Aug 2006 B2
7101770 Forbes Sep 2006 B2
7101778 Forbes et al. Sep 2006 B2
7101813 Ahn et al. Sep 2006 B2
7109079 Schaeffer, III et al. Sep 2006 B2
7112841 Eldridge et al. Sep 2006 B2
7122414 Huotari Oct 2006 B2
7122415 Jang et al. Oct 2006 B2
7122464 Vaartstra Oct 2006 B2
7129553 Ahn et al. Oct 2006 B2
7132329 Hong et al. Nov 2006 B1
7135369 Ahn et al. Nov 2006 B2
7135421 Ahn et al. Nov 2006 B2
7135734 Eldridge et al. Nov 2006 B2
7138336 Lee et al. Nov 2006 B2
7141278 Koh et al. Nov 2006 B2
7144771 Nam et al. Dec 2006 B2
7148106 Joo et al. Dec 2006 B2
7154138 Hofmann et al. Dec 2006 B2
7154354 Akram et al. Dec 2006 B2
7154778 Forbes Dec 2006 B2
7160577 Ahn et al. Jan 2007 B2
7160817 Marsh Jan 2007 B2
7166886 Forbes Jan 2007 B2
7169673 Ahn et al. Jan 2007 B2
7183186 Ahn et al. Feb 2007 B2
7187587 Forbes Mar 2007 B2
7192824 Ahn et al. Mar 2007 B2
7192892 Ahn et al. Mar 2007 B2
7195999 Forbes et al. Mar 2007 B2
7199023 Ahn et al. Apr 2007 B2
7202562 Farrar Apr 2007 B2
7205218 Ahn et al. Apr 2007 B2
7211492 Forbes et al. May 2007 B2
7214994 Forbes et al. May 2007 B2
7221017 Forbes et al. May 2007 B2
7221586 Forbes et al. May 2007 B2
7235501 Ahn et al. Jun 2007 B2
7235854 Ahn et al. Jun 2007 B2
7250338 Bhattacharyya Jul 2007 B2
7274067 Forbes Sep 2007 B2
7279413 Park et al. Oct 2007 B2
7285261 Mukhopadhyay Oct 2007 B2
7297617 Farrar et al. Nov 2007 B2
7301172 Atwater et al. Nov 2007 B2
7301221 Farrar et al. Nov 2007 B2
7306994 Tsunashima et al. Dec 2007 B2
7309664 Marzolin et al. Dec 2007 B1
7312494 Ahn et al. Dec 2007 B2
7316962 Govindarajan Jan 2008 B2
7323423 Brask et al. Jan 2008 B2
7326980 Ahn et al. Feb 2008 B2
7365027 Ahn et al. Apr 2008 B2
7388246 Ahn et al. Jun 2008 B2
7390756 Ahn et al. Jun 2008 B2
7399675 Chindalore et al. Jul 2008 B2
7402876 Ahn et al. Jul 2008 B2
7405454 Ahn et al. Jul 2008 B2
7410910 Ahn et al. Aug 2008 B2
7411237 Ahn et al. Aug 2008 B2
7432548 Forbes et al. Oct 2008 B2
7435657 Shin Oct 2008 B2
7482619 Seol et al. Jan 2009 B2
7498230 Ahn et al. Mar 2009 B2
7508025 Eldridge et al. Mar 2009 B2
7510983 Ahn et al. Mar 2009 B2
7517783 Ahn et al. Apr 2009 B2
7531869 Ahn et al. May 2009 B2
7545241 Wakabayashi et al. Jun 2009 B2
7554161 Ahn et al. Jun 2009 B2
7557375 Richardson et al. Jul 2009 B2
7560395 Ahn Jul 2009 B2
7560793 Derderian et al. Jul 2009 B2
7563730 Forbes et al. Jul 2009 B2
7572695 Ahn et al. Aug 2009 B2
7575978 Kraus et al. Aug 2009 B2
7588988 Ahn et al. Sep 2009 B2
7592251 Ahn et al. Sep 2009 B2
7595528 Duan et al. Sep 2009 B2
7601649 Ahn et al. Oct 2009 B2
7602030 Ahn et al. Oct 2009 B2
7605030 Forbes et al. Oct 2009 B2
7611959 Ahn et al. Nov 2009 B2
7615438 Ahn et al. Nov 2009 B2
7625794 Ahn et al. Dec 2009 B2
7662729 Ahn et al. Feb 2010 B2
7670646 Ahn et al. Mar 2010 B2
7687409 Ahn et al. Mar 2010 B2
7700989 Ahn et al. Apr 2010 B2
7719065 Ahn et al. May 2010 B2
7727905 Ahn et al. Jun 2010 B2
7763362 Jablonski et al. Jul 2010 B2
7776762 Ahn et al. Aug 2010 B2
7858464 Chae et al. Dec 2010 B2
7863667 Ahn et al. Jan 2011 B2
7899552 Atanasoska et al. Mar 2011 B2
7908016 Atanasoska et al. Mar 2011 B2
7915174 Ahn et al. Mar 2011 B2
7927948 Sandhu et al. Apr 2011 B2
7989290 Marsh et al. Aug 2011 B2
7999334 Ahn et al. Aug 2011 B2
8071476 Ahn et al. Dec 2011 B2
8076249 Ahn et al. Dec 2011 B2
8084808 Ahn et al. Dec 2011 B2
8093666 Ahn et al. Jan 2012 B2
8110469 Gealy et al. Feb 2012 B2
8125038 Ahn et al. Feb 2012 B2
8154066 Ahn et al. Apr 2012 B2
8178413 Ahn et al. May 2012 B2
8211388 Woodfield et al. Jul 2012 B2
8278225 Ahn et al. Oct 2012 B2
8288809 Ahn et al. Oct 2012 B2
8288818 Sandhu et al. Oct 2012 B2
8314456 Marsh et al. Nov 2012 B2
8367506 Ahn et al. Feb 2013 B2
8399320 Ahn et al. Mar 2013 B2
8399365 Ahn et al. Mar 2013 B2
8405167 Ahn et al. Mar 2013 B2
8445952 Ahn et al. May 2013 B2
8455959 Ahn et al. Jun 2013 B2
8501563 Sandhu et al. Aug 2013 B2
20010000428 Abadeer et al. Apr 2001 A1
20010002280 Sneh May 2001 A1
20010002582 Dunham Jun 2001 A1
20010005625 Sun et al. Jun 2001 A1
20010009383 Nakayama et al. Jul 2001 A1
20010009695 Saanila et al. Jul 2001 A1
20010010957 Forbes et al. Aug 2001 A1
20010011740 DeBoer et al. Aug 2001 A1
20010012698 Hayashi et al. Aug 2001 A1
20010013621 Nakazato Aug 2001 A1
20010014526 Clevenger et al. Aug 2001 A1
20010017369 Iwasaki et al. Aug 2001 A1
20010017577 Toko et al. Aug 2001 A1
20010019876 Juengling et al. Sep 2001 A1
20010024387 Raaijmakers et al. Sep 2001 A1
20010030352 Ruf et al. Oct 2001 A1
20010034117 Eldridge et al. Oct 2001 A1
20010040430 Ito et al. Nov 2001 A1
20010041250 Werkhoven et al. Nov 2001 A1
20010042505 Vaartstra Nov 2001 A1
20010050438 Juengling et al. Dec 2001 A1
20010051406 Weimer et al. Dec 2001 A1
20010051442 Katsir et al. Dec 2001 A1
20010052752 Ghosh et al. Dec 2001 A1
20010053082 Chipalkatti et al. Dec 2001 A1
20010053096 Forbes et al. Dec 2001 A1
20010053577 Forbes et al. Dec 2001 A1
20010055838 Walker et al. Dec 2001 A1
20020000593 Nishiyama et al. Jan 2002 A1
20020001219 Forbes et al. Jan 2002 A1
20020001971 Cho Jan 2002 A1
20020002216 Tooley Jan 2002 A1
20020003252 Iyer Jan 2002 A1
20020003403 Ghosh et al. Jan 2002 A1
20020004276 Ahn et al. Jan 2002 A1
20020004277 Ahn et al. Jan 2002 A1
20020004279 Agarwal et al. Jan 2002 A1
20020008324 Shinkawata Jan 2002 A1
20020013052 Visokay Jan 2002 A1
20020014647 Seidl et al. Feb 2002 A1
20020019116 Sandhu et al. Feb 2002 A1
20020019125 Juengling et al. Feb 2002 A1
20020020429 Selbrede Feb 2002 A1
20020022156 Bright Feb 2002 A1
20020024108 Lucovsky et al. Feb 2002 A1
20020027264 Forbes et al. Mar 2002 A1
20020028541 Lee et al. Mar 2002 A1
20020036939 Tsai et al. Mar 2002 A1
20020037320 Denes et al. Mar 2002 A1
20020037603 Eldridge et al. Mar 2002 A1
20020046993 Peterson et al. Apr 2002 A1
20020051859 Iida et al. May 2002 A1
20020053869 Ahn et al. May 2002 A1
20020058578 Shindo May 2002 A1
20020068466 Lee et al. Jun 2002 A1
20020074565 Flagan et al. Jun 2002 A1
20020076070 Yoshikawa et al. Jun 2002 A1
20020083464 Tomsen et al. Jun 2002 A1
20020084480 Basceri et al. Jul 2002 A1
20020086507 Park et al. Jul 2002 A1
20020086521 Ahn et al. Jul 2002 A1
20020086555 Ahn et al. Jul 2002 A1
20020089023 Yu et al. Jul 2002 A1
20020089063 Ahn et al. Jul 2002 A1
20020090806 Ahn et al. Jul 2002 A1
20020094632 Agarwal et al. Jul 2002 A1
20020105087 Forbes et al. Aug 2002 A1
20020106536 Lee et al. Aug 2002 A1
20020109138 Forbes Aug 2002 A1
20020109158 Forbes et al. Aug 2002 A1
20020109163 Forbes et al. Aug 2002 A1
20020111001 Ahn Aug 2002 A1
20020113261 Iwasaki et al. Aug 2002 A1
20020117704 Gonzalez Aug 2002 A1
20020117963 Chuman et al. Aug 2002 A1
20020119297 Forrest et al. Aug 2002 A1
20020119916 Hassan Aug 2002 A1
20020120297 Shadduck Aug 2002 A1
20020122885 Ahn Sep 2002 A1
20020125490 Chuman et al. Sep 2002 A1
20020130338 Ahn et al. Sep 2002 A1
20020130378 Forbes et al. Sep 2002 A1
20020132374 Basceri et al. Sep 2002 A1
20020135048 Ahn et al. Sep 2002 A1
20020137250 Nguyen et al. Sep 2002 A1
20020137271 Forbes et al. Sep 2002 A1
20020142536 Zhang et al. Oct 2002 A1
20020142569 Chang et al. Oct 2002 A1
20020142590 Pan et al. Oct 2002 A1
20020145845 Hunt et al. Oct 2002 A1
20020145901 Forbes et al. Oct 2002 A1
20020146916 Irino et al. Oct 2002 A1
20020148566 Kitano et al. Oct 2002 A1
20020155688 Ahn Oct 2002 A1
20020155689 Ahn Oct 2002 A1
20020164420 Derderian et al. Nov 2002 A1
20020167057 Ahn et al. Nov 2002 A1
20020167089 Ahn et al. Nov 2002 A1
20020170671 Matsuhita et al. Nov 2002 A1
20020172799 Subramanian Nov 2002 A1
20020175423 Forbes et al. Nov 2002 A1
20020176293 Forbes et al. Nov 2002 A1
20020176989 Knudsen et al. Nov 2002 A1
20020177244 Hsu et al. Nov 2002 A1
20020177282 Song Nov 2002 A1
20020187091 Deevi Dec 2002 A1
20020190251 Kunitake et al. Dec 2002 A1
20020190294 Iizuka et al. Dec 2002 A1
20020192366 Cramer et al. Dec 2002 A1
20020192919 Bothra Dec 2002 A1
20020192974 Ahn et al. Dec 2002 A1
20020192975 Ahn Dec 2002 A1
20020192979 Ahn Dec 2002 A1
20020193040 Zhou Dec 2002 A1
20020195056 Sandhu et al. Dec 2002 A1
20020196405 Colgan et al. Dec 2002 A1
20020197793 Dornfest et al. Dec 2002 A1
20020197856 Matsuse et al. Dec 2002 A1
20020197881 Ramdani et al. Dec 2002 A1
20030001190 Basceri et al. Jan 2003 A1
20030001194 DeBoer et al. Jan 2003 A1
20030001212 Hu et al. Jan 2003 A1
20030001241 Chakrabarti et al. Jan 2003 A1
20030003621 Rhodes et al. Jan 2003 A1
20030003635 Paranjpe et al. Jan 2003 A1
20030003702 Ahn Jan 2003 A1
20030004051 Kim et al. Jan 2003 A1
20030008243 Ahn et al. Jan 2003 A1
20030008461 Forbes et al. Jan 2003 A1
20030015769 DeBoer et al. Jan 2003 A1
20030017717 Ahn Jan 2003 A1
20030020169 Ahn et al. Jan 2003 A1
20030020180 Ahn et al. Jan 2003 A1
20030020429 Masaki et al. Jan 2003 A1
20030025142 Rhodes et al. Feb 2003 A1
20030026697 Subramanian et al. Feb 2003 A1
20030027360 Hsu et al. Feb 2003 A1
20030030074 Walker et al. Feb 2003 A1
20030030093 Agarwal et al. Feb 2003 A1
20030032238 Kim et al. Feb 2003 A1
20030032270 Snyder et al. Feb 2003 A1
20030040196 Lim et al. Feb 2003 A1
20030042512 Gonzalez Mar 2003 A1
20030042526 Weimer Mar 2003 A1
20030042527 Forbes et al. Mar 2003 A1
20030042528 Forbes Mar 2003 A1
20030042534 Bhattacharyya Mar 2003 A1
20030043633 Forbes et al. Mar 2003 A1
20030043637 Forbes et al. Mar 2003 A1
20030045060 Ahn et al. Mar 2003 A1
20030045078 Ahn et al. Mar 2003 A1
20030045082 Eldridge et al. Mar 2003 A1
20030048666 Eldridge et al. Mar 2003 A1
20030048745 Yoshikawa et al. Mar 2003 A1
20030049900 Forbes et al. Mar 2003 A1
20030049942 Haukka et al. Mar 2003 A1
20030052356 Yang et al. Mar 2003 A1
20030052358 Weimer Mar 2003 A1
20030059535 Luo et al. Mar 2003 A1
20030062261 Shindo Apr 2003 A1
20030064607 Leu et al. Apr 2003 A1
20030067046 Iwasaki et al. Apr 2003 A1
20030068848 Hsu et al. Apr 2003 A1
20030072882 Ninisto et al. Apr 2003 A1
20030082296 Elers et al. May 2003 A1
20030089314 Matsuki et al. May 2003 A1
20030096490 Borland et al. May 2003 A1
20030102501 Yang et al. Jun 2003 A1
20030104666 Bojarczuk, Jr. et al. Jun 2003 A1
20030106490 Jallepally et al. Jun 2003 A1
20030107402 Forbes et al. Jun 2003 A1
20030108612 Xu et al. Jun 2003 A1
20030119246 Ahn Jun 2003 A1
20030119291 Ahn et al. Jun 2003 A1
20030119313 Yang et al. Jun 2003 A1
20030124748 Summerfelt et al. Jul 2003 A1
20030124791 Summerfelt et al. Jul 2003 A1
20030124794 Girardie Jul 2003 A1
20030130127 Hentges et al. Jul 2003 A1
20030132491 Ahn Jul 2003 A1
20030134038 Paranjpe Jul 2003 A1
20030134475 Hofmann et al. Jul 2003 A1
20030136995 Geusic et al. Jul 2003 A1
20030139039 Ahn et al. Jul 2003 A1
20030141560 Sun Jul 2003 A1
20030142569 Forbes Jul 2003 A1
20030143801 Basceri et al. Jul 2003 A1
20030148577 Merkulov et al. Aug 2003 A1
20030148627 Aoki et al. Aug 2003 A1
20030152700 Asmussen et al. Aug 2003 A1
20030157764 Ahn et al. Aug 2003 A1
20030159653 Dando et al. Aug 2003 A1
20030161081 Girardie Aug 2003 A1
20030161782 Kim Aug 2003 A1
20030162399 Singh et al. Aug 2003 A1
20030162587 Tanamoto et al. Aug 2003 A1
20030170389 Sandhu Sep 2003 A1
20030170450 Stewart et al. Sep 2003 A1
20030172872 Thakur et al. Sep 2003 A1
20030173652 Forbes et al. Sep 2003 A1
20030173653 Forbes et al. Sep 2003 A1
20030174529 Forbes et al. Sep 2003 A1
20030175411 Kodas et al. Sep 2003 A1
20030176023 Forbes et al. Sep 2003 A1
20030176025 Forbes et al. Sep 2003 A1
20030176049 Hegde et al. Sep 2003 A1
20030176050 Forbes et al. Sep 2003 A1
20030176052 Forbes et al. Sep 2003 A1
20030176053 Forbes et al. Sep 2003 A1
20030179521 Girardie Sep 2003 A1
20030181039 Sandhu et al. Sep 2003 A1
20030181060 Asai et al. Sep 2003 A1
20030183156 Dando et al. Oct 2003 A1
20030183306 Hehmann et al. Oct 2003 A1
20030183901 Kanda et al. Oct 2003 A1
20030185980 Endo Oct 2003 A1
20030185983 Morfill et al. Oct 2003 A1
20030193061 Osten Oct 2003 A1
20030194853 Jeon Oct 2003 A1
20030194861 Mardian et al. Oct 2003 A1
20030194862 Mardian Oct 2003 A1
20030196513 Phillips et al. Oct 2003 A1
20030203626 Derderian et al. Oct 2003 A1
20030205742 Hsu et al. Nov 2003 A1
20030207032 Ahn et al. Nov 2003 A1
20030207540 Ahn et al. Nov 2003 A1
20030207564 Ahn et al. Nov 2003 A1
20030207566 Forbes et al. Nov 2003 A1
20030207593 Derderian et al. Nov 2003 A1
20030209324 Fink Nov 2003 A1
20030213987 Basceri Nov 2003 A1
20030216038 Madhukar et al. Nov 2003 A1
20030218199 Forbes et al. Nov 2003 A1
20030222300 Basceri et al. Dec 2003 A1
20030224600 Cao et al. Dec 2003 A1
20030227033 Ahn et al. Dec 2003 A1
20030228747 Ahn et al. Dec 2003 A1
20030230479 Sarkas et al. Dec 2003 A1
20030231992 Sarkas et al. Dec 2003 A1
20030232511 Metzner et al. Dec 2003 A1
20030234420 Forbes Dec 2003 A1
20030235064 Batra et al. Dec 2003 A1
20030235066 Forbes Dec 2003 A1
20030235076 Forbes Dec 2003 A1
20030235961 Metzner et al. Dec 2003 A1
20040000150 Symko et al. Jan 2004 A1
20040004244 Ahn et al. Jan 2004 A1
20040004245 Forbes et al. Jan 2004 A1
20040004247 Forbes et al. Jan 2004 A1
20040004859 Forbes et al. Jan 2004 A1
20040005982 Park et al. Jan 2004 A1
20040007171 Ritala et al. Jan 2004 A1
20040009118 Phillips et al. Jan 2004 A1
20040009678 Asai et al. Jan 2004 A1
20040009679 Yeo et al. Jan 2004 A1
20040012043 Gealy et al. Jan 2004 A1
20040013009 Tsunoda et al. Jan 2004 A1
20040014060 Hoheisel et al. Jan 2004 A1
20040016944 Ahn et al. Jan 2004 A1
20040023461 Ahn et al. Feb 2004 A1
20040023516 Londergan et al. Feb 2004 A1
20040028811 Cho et al. Feb 2004 A1
20040032773 Forbes Feb 2004 A1
20040033661 Yeo et al. Feb 2004 A1
20040033681 Ahn et al. Feb 2004 A1
20040033701 Ahn et al. Feb 2004 A1
20040036129 Forbes et al. Feb 2004 A1
20040038525 Meng et al. Feb 2004 A1
20040038554 Ahn Feb 2004 A1
20040040494 Vaartstra et al. Mar 2004 A1
20040041208 Bhattacharyya Mar 2004 A1
20040041591 Forbes Mar 2004 A1
20040042128 Slaughter et al. Mar 2004 A1
20040042256 Forbes Mar 2004 A1
20040043541 Ahn et al. Mar 2004 A1
20040043557 Haukka et al. Mar 2004 A1
20040043559 Srividya et al. Mar 2004 A1
20040043569 Ahn et al. Mar 2004 A1
20040043577 Hill Mar 2004 A1
20040043578 Marsh Mar 2004 A1
20040043635 Vaartstra Mar 2004 A1
20040045807 Sarkas et al. Mar 2004 A1
20040046130 Rao et al. Mar 2004 A1
20040051139 Kanda et al. Mar 2004 A1
20040055892 Oh et al. Mar 2004 A1
20040058385 Abel et al. Mar 2004 A1
20040065171 Hearley et al. Apr 2004 A1
20040065255 Yang et al. Apr 2004 A1
20040066484 Tokailin et al. Apr 2004 A1
20040070649 Hess et al. Apr 2004 A1
20040075111 Chidambarrao et al. Apr 2004 A1
20040075130 Nam et al. Apr 2004 A1
20040076035 Saito et al. Apr 2004 A1
20040077177 Andreoni et al. Apr 2004 A1
20040086897 Mirkin et al. May 2004 A1
20040087124 Kubota et al. May 2004 A1
20040092073 Cabral, Jr. et al. May 2004 A1
20040094801 Liang et al. May 2004 A1
20040099889 Frank et al. May 2004 A1
20040102002 Sandhu et al. May 2004 A1
20040104439 Haukka et al. Jun 2004 A1
20040104442 Feudel et al. Jun 2004 A1
20040106249 Huotari Jun 2004 A1
20040107906 Collins et al. Jun 2004 A1
20040108587 Chudzik et al. Jun 2004 A1
20040110347 Yamashita Jun 2004 A1
20040110348 Ahn et al. Jun 2004 A1
20040110391 Ahn et al. Jun 2004 A1
20040115883 Iwata et al. Jun 2004 A1
20040126649 Chen et al. Jul 2004 A1
20040127001 Colburn et al. Jul 2004 A1
20040130951 Forbes Jul 2004 A1
20040131795 Kuo et al. Jul 2004 A1
20040131865 Kim et al. Jul 2004 A1
20040135186 Yamamoto Jul 2004 A1
20040135951 Stumbo et al. Jul 2004 A1
20040135997 Chan et al. Jul 2004 A1
20040140513 Forbes et al. Jul 2004 A1
20040144980 Ahn et al. Jul 2004 A1
20040145001 Kanda et al. Jul 2004 A1
20040147098 Mazen et al. Jul 2004 A1
20040149759 Moser et al. Aug 2004 A1
20040156578 Geusic et al. Aug 2004 A1
20040158028 Buhler Aug 2004 A1
20040159863 Eldridge et al. Aug 2004 A1
20040160830 Forbes Aug 2004 A1
20040161899 Luo et al. Aug 2004 A1
20040164357 Ahn et al. Aug 2004 A1
20040164365 Ahn et al. Aug 2004 A1
20040165412 Forbes Aug 2004 A1
20040166628 Park et al. Aug 2004 A1
20040168627 Conley, Jr. et al. Sep 2004 A1
20040169453 Ahn et al. Sep 2004 A1
20040171280 Conley, Jr. et al. Sep 2004 A1
20040175882 Ahn et al. Sep 2004 A1
20040178439 Ahn et al. Sep 2004 A1
20040183108 Ahn Sep 2004 A1
20040185630 Forbes et al. Sep 2004 A1
20040185654 Ahn Sep 2004 A1
20040189175 Ahn et al. Sep 2004 A1
20040196620 Knudsen et al. Oct 2004 A1
20040197946 Vaartstra et al. Oct 2004 A1
20040198069 Metzner et al. Oct 2004 A1
20040202032 Forbes Oct 2004 A1
20040203254 Conley, Jr. et al. Oct 2004 A1
20040206957 Inoue et al. Oct 2004 A1
20040212426 Beigel Oct 2004 A1
20040214399 Ahn et al. Oct 2004 A1
20040217410 Meng et al. Nov 2004 A1
20040217478 Yamamoto et al. Nov 2004 A1
20040219783 Ahn et al. Nov 2004 A1
20040222476 Ahn et al. Nov 2004 A1
20040224466 Basceri et al. Nov 2004 A1
20040224467 Basceri et al. Nov 2004 A1
20040224468 Hwang Nov 2004 A1
20040224505 Nguyen et al. Nov 2004 A1
20040224527 Sarigiannis et al. Nov 2004 A1
20040229745 Miyauchi et al. Nov 2004 A1
20040233010 Akram et al. Nov 2004 A1
20040235313 Frank et al. Nov 2004 A1
20040245085 Srinivasan Dec 2004 A1
20040248398 Ahn et al. Dec 2004 A1
20040251815 Tokailin et al. Dec 2004 A1
20040251841 Negishi et al. Dec 2004 A1
20040258192 Angeliu et al. Dec 2004 A1
20040262700 Ahn et al. Dec 2004 A1
20040264236 Chae et al. Dec 2004 A1
20040266107 Chindalore et al. Dec 2004 A1
20040266117 Hwang Dec 2004 A1
20040266217 Kim et al. Dec 2004 A1
20050006727 Forbes et al. Jan 2005 A1
20050007817 Forbes et al. Jan 2005 A1
20050007820 Chindalore et al. Jan 2005 A1
20050009335 Dean et al. Jan 2005 A1
20050009370 Ahn Jan 2005 A1
20050011748 Beck et al. Jan 2005 A1
20050017327 Forbes et al. Jan 2005 A1
20050019365 Frauchiger et al. Jan 2005 A1
20050019836 Vogel et al. Jan 2005 A1
20050020017 Ahn et al. Jan 2005 A1
20050023574 Forbes et al. Feb 2005 A1
20050023578 Bhattacharyya Feb 2005 A1
20050023584 Derderian et al. Feb 2005 A1
20050023594 Ahn et al. Feb 2005 A1
20050023595 Forbes et al. Feb 2005 A1
20050023602 Forbes et al. Feb 2005 A1
20050023603 Eldridge et al. Feb 2005 A1
20050023613 Bhattacharyya Feb 2005 A1
20050023624 Ahn et al. Feb 2005 A1
20050023625 Ahn et al. Feb 2005 A1
20050023626 Ahn et al. Feb 2005 A1
20050023627 Ahn et al. Feb 2005 A1
20050023650 Forbes et al. Feb 2005 A1
20050023664 Chudzik et al. Feb 2005 A1
20050024092 Forbes Feb 2005 A1
20050024945 Forbes Feb 2005 A1
20050026349 Forbes et al. Feb 2005 A1
20050026351 Farrar Feb 2005 A1
20050026360 Geusic et al. Feb 2005 A1
20050026374 Ahn et al. Feb 2005 A1
20050026375 Forbes Feb 2005 A1
20050026458 Basceri et al. Feb 2005 A1
20050029545 Forbes et al. Feb 2005 A1
20050029547 Ahn et al. Feb 2005 A1
20050029604 Ahn et al. Feb 2005 A1
20050029605 Ahn et al. Feb 2005 A1
20050030803 Forbes et al. Feb 2005 A1
20050030825 Ahn Feb 2005 A1
20050031785 Carlisle et al. Feb 2005 A1
20050032292 Ahn et al. Feb 2005 A1
20050032299 Basceri et al. Feb 2005 A1
20050032342 Forbes et al. Feb 2005 A1
20050034662 Ahn Feb 2005 A1
20050035430 Beigel Feb 2005 A1
20050036370 Forbes Feb 2005 A1
20050037374 Melker et al. Feb 2005 A1
20050037563 Ahn Feb 2005 A1
20050037574 Sugiyama Feb 2005 A1
20050040034 Landgraf et al. Feb 2005 A1
20050041455 Beigel et al. Feb 2005 A1
20050041503 Chindalore et al. Feb 2005 A1
20050048414 Harnack et al. Mar 2005 A1
20050048570 Weber et al. Mar 2005 A1
20050048796 Numasawa et al. Mar 2005 A1
20050051824 Iizuka et al. Mar 2005 A1
20050051828 Park et al. Mar 2005 A1
20050053826 Wang et al. Mar 2005 A1
20050054165 Ahn et al. Mar 2005 A1
20050059213 Steimle et al. Mar 2005 A1
20050061785 Schroder et al. Mar 2005 A1
20050062659 Packer Mar 2005 A1
20050064185 Buretea et al. Mar 2005 A1
20050070098 Bruley Mar 2005 A1
20050070126 Senzaki Mar 2005 A1
20050077519 Ahn et al. Apr 2005 A1
20050082599 Forbes Apr 2005 A1
20050085040 Forbes Apr 2005 A1
20050085152 Tokailin et al. Apr 2005 A1
20050087134 Ahn Apr 2005 A1
20050093054 Jung et al. May 2005 A1
20050112874 Skarp et al. May 2005 A1
20050118807 Kim et al. Jun 2005 A1
20050124109 Quevedo-Lopez et al. Jun 2005 A1
20050124174 Ahn et al. Jun 2005 A1
20050124175 Ahn et al. Jun 2005 A1
20050138262 Forbes Jun 2005 A1
20050140462 Akram et al. Jun 2005 A1
20050145911 Forbes et al. Jul 2005 A1
20050145957 Ahn et al. Jul 2005 A1
20050145959 Forbes Jul 2005 A1
20050146938 Forbes Jul 2005 A1
20050151184 Lee et al. Jul 2005 A1
20050151261 Kellar et al. Jul 2005 A1
20050157549 Mokhlesi et al. Jul 2005 A1
20050158973 Ahn et al. Jul 2005 A1
20050164521 Ahn et al. Jul 2005 A1
20050169054 Forbes Aug 2005 A1
20050173755 Forbes Aug 2005 A1
20050181624 Kammler et al. Aug 2005 A1
20050190617 Forbes et al. Sep 2005 A1
20050199947 Forbes Sep 2005 A1
20050202659 Li et al. Sep 2005 A1
20050212041 Wu et al. Sep 2005 A1
20050212119 Shero et al. Sep 2005 A1
20050215015 Ahn et al. Sep 2005 A1
20050218462 Ahn et al. Oct 2005 A1
20050227442 Ahn et al. Oct 2005 A1
20050260357 Olsen et al. Nov 2005 A1
20050265063 Forbes Dec 2005 A1
20050266700 Jursich et al. Dec 2005 A1
20050277256 Ahn et al. Dec 2005 A1
20050280067 Ahn et al. Dec 2005 A1
20050285220 Farrar Dec 2005 A1
20050285225 Ahn et al. Dec 2005 A1
20050285226 Lee Dec 2005 A1
20060000412 Ahn et al. Jan 2006 A1
20060001049 Forbes Jan 2006 A1
20060001151 Ahn et al. Jan 2006 A1
20060002192 Forbes et al. Jan 2006 A1
20060003517 Ahn et al. Jan 2006 A1
20060008966 Forbes et al. Jan 2006 A1
20060019033 Muthukrishnan et al. Jan 2006 A1
20060019501 Jin et al. Jan 2006 A1
20060023513 Forbes et al. Feb 2006 A1
20060024975 Ahn et al. Feb 2006 A1
20060027882 Mokhlesi Feb 2006 A1
20060028867 Forbes et al. Feb 2006 A1
20060028869 Forbes et al. Feb 2006 A1
20060035405 Park et al. Feb 2006 A1
20060043492 Ahn et al. Mar 2006 A1
20060043504 Ahn et al. Mar 2006 A1
20060046322 Farrar et al. Mar 2006 A1
20060046383 Chen et al. Mar 2006 A1
20060046384 Joo et al. Mar 2006 A1
20060046505 Ahn et al. Mar 2006 A1
20060046522 Ahn et al. Mar 2006 A1
20060054943 Li et al. Mar 2006 A1
20060063318 Datta et al. Mar 2006 A1
20060081895 Lee et al. Apr 2006 A1
20060081911 Batra et al. Apr 2006 A1
20060105523 Afzali-Ardakani et al. May 2006 A1
20060110883 Min May 2006 A1
20060118853 Takata et al. Jun 2006 A1
20060118949 Farrar Jun 2006 A1
20060119224 Keolian et al. Jun 2006 A1
20060125026 Li et al. Jun 2006 A1
20060125030 Ahn et al. Jun 2006 A1
20060128168 Ahn et al. Jun 2006 A1
20060131702 Forbes et al. Jun 2006 A1
20060148180 Ahn et al. Jul 2006 A1
20060170032 Bhattacharyya Aug 2006 A1
20060176645 Ahn et al. Aug 2006 A1
20060177975 Ahn et al. Aug 2006 A1
20060183272 Ahn et al. Aug 2006 A1
20060186458 Forbes et al. Aug 2006 A1
20060189079 Merchant et al. Aug 2006 A1
20060189154 Ahn et al. Aug 2006 A1
20060194438 Rao et al. Aug 2006 A1
20060223337 Ahn et al. Oct 2006 A1
20060228868 Ahn et al. Oct 2006 A1
20060231889 Chen et al. Oct 2006 A1
20060237764 Ahn et al. Oct 2006 A1
20060237803 Zhu et al. Oct 2006 A1
20060244082 Ahn et al. Nov 2006 A1
20060244100 Ahn et al. Nov 2006 A1
20060244108 Forbes Nov 2006 A1
20060245984 Kulkarni et al. Nov 2006 A1
20060246741 Ahn et al. Nov 2006 A1
20060252202 Dai et al. Nov 2006 A1
20060252211 Ahn et al. Nov 2006 A1
20060255470 Ahn et al. Nov 2006 A1
20060257563 Doh et al. Nov 2006 A1
20060258097 Forbes et al. Nov 2006 A1
20060261376 Forbes et al. Nov 2006 A1
20060261397 Ahn et al. Nov 2006 A1
20060261438 Forbes Nov 2006 A1
20060261448 Forbes et al. Nov 2006 A1
20060263972 Ahn et al. Nov 2006 A1
20060263981 Forbes Nov 2006 A1
20060264064 Ahn et al. Nov 2006 A1
20060264066 Bartholomew et al. Nov 2006 A1
20060267113 Tobin et al. Nov 2006 A1
20060270147 Ahn et al. Nov 2006 A1
20060273411 Triyoso et al. Dec 2006 A1
20060274580 Forbes Dec 2006 A1
20060281330 Ahn et al. Dec 2006 A1
20060284246 Forbes et al. Dec 2006 A1
20070007560 Forbes et al. Jan 2007 A1
20070007635 Forbes et al. Jan 2007 A1
20070010060 Forbes et al. Jan 2007 A1
20070010061 Forbes et al. Jan 2007 A1
20070018214 Ahn Jan 2007 A1
20070018342 Sandhu et al. Jan 2007 A1
20070020835 Ahn et al. Jan 2007 A1
20070020856 Sadd et al. Jan 2007 A1
20070023894 Farrar Feb 2007 A1
20070027882 Kulkarni Feb 2007 A1
20070037415 Ahn et al. Feb 2007 A1
20070045676 Forbes et al. Mar 2007 A1
20070045752 Forbes et al. Mar 2007 A1
20070046402 Mukaiyama et al. Mar 2007 A1
20070047319 Bhattacharyya Mar 2007 A1
20070048926 Ahn Mar 2007 A1
20070048953 Gealy et al. Mar 2007 A1
20070048989 Ahn et al. Mar 2007 A1
20070049023 Ahn et al. Mar 2007 A1
20070049051 Ahn et al. Mar 2007 A1
20070049054 Ahn et al. Mar 2007 A1
20070059881 Ahn et al. Mar 2007 A1
20070059929 Cho et al. Mar 2007 A1
20070087563 Ahn et al. Apr 2007 A1
20070090439 Ahn et al. Apr 2007 A1
20070090440 Ahn et al. Apr 2007 A1
20070090441 Ahn et al. Apr 2007 A1
20070092989 Kraus et al. Apr 2007 A1
20070099366 Ahn et al. May 2007 A1
20070101929 Ahn et al. May 2007 A1
20070103068 Bawendi et al. May 2007 A1
20070105312 Min May 2007 A1
20070105313 Forbes May 2007 A1
20070111544 Ahn May 2007 A1
20070128736 Chang et al. Jun 2007 A1
20070134931 Ahn et al. Jun 2007 A1
20070134942 Ahn et al. Jun 2007 A1
20070141784 Wager, III et al. Jun 2007 A1
20070141832 Farrar Jun 2007 A1
20070151861 Xi et al. Jul 2007 A1
20070158765 Ahn et al. Jul 2007 A1
20070178643 Forbes et al. Aug 2007 A1
20070181931 Ahn et al. Aug 2007 A1
20070187772 Ahn et al. Aug 2007 A1
20070187831 Ahn et al. Aug 2007 A1
20070228442 Kakimoto Oct 2007 A1
20070228526 Shimizu et al. Oct 2007 A1
20070234949 Ahn et al. Oct 2007 A1
20070254488 Huotari et al. Nov 2007 A1
20070287261 Raaijmakers et al. Dec 2007 A1
20070298536 Ren Dec 2007 A1
20080014689 Cleavelin et al. Jan 2008 A1
20080029790 Ahn et al. Feb 2008 A1
20080032424 Ahn et al. Feb 2008 A1
20080042211 Bhattacharyya et al. Feb 2008 A1
20080048225 Ahn et al. Feb 2008 A1
20080057659 Forbes Mar 2008 A1
20080057690 Forbes Mar 2008 A1
20080087890 Ahn et al. Apr 2008 A1
20080087945 Forbes et al. Apr 2008 A1
20080110486 Tsakalakos et al. May 2008 A1
20080121962 Forbes et al. May 2008 A1
20080121969 Sandhu et al. May 2008 A1
20080124907 Forbes et al. May 2008 A1
20080124908 Forbes et al. May 2008 A1
20080157171 Majhi et al. Jul 2008 A1
20080191350 Ahn et al. Aug 2008 A1
20080191351 Ahn et al. Aug 2008 A1
20080193791 Ahn et al. Aug 2008 A1
20080194094 Ahn et al. Aug 2008 A1
20080217676 Ahn et al. Sep 2008 A1
20080220618 Ahn et al. Sep 2008 A1
20080224115 Bakkers et al. Sep 2008 A1
20080246114 Abrokwah et al. Oct 2008 A1
20080296650 Ahn et al. Dec 2008 A1
20090004801 Ahn et al. Jan 2009 A1
20090032910 Ahn et al. Feb 2009 A1
20090075035 O'Brien et al. Mar 2009 A1
20090090952 Olsen et al. Apr 2009 A1
20090173991 Marsh et al. Jul 2009 A1
20090218612 Forbes et al. Sep 2009 A1
20090302371 Kraus et al. Dec 2009 A1
20100006918 Ahn et al. Jan 2010 A1
20100015462 Jablonski et al. Jan 2010 A1
20100029054 Ahn et al. Feb 2010 A1
20100044771 Ahn et al. Feb 2010 A1
20100052033 Ahn et al. Mar 2010 A1
20100176442 Ahn et al. Jul 2010 A1
20100224944 Ahn et al. Sep 2010 A1
20100301406 Ahn et al. Dec 2010 A1
20110079273 Arango et al. Apr 2011 A1
20110140075 Zhou et al. Jun 2011 A1
20110210386 Sandhu et al. Sep 2011 A1
20110255212 Liu et al. Oct 2011 A1
20110278661 Marsh et al. Nov 2011 A1
20110298028 Ahn et al. Dec 2011 A1
20120074487 Ahn et al. Mar 2012 A1
20120088373 Ahn et al. Apr 2012 A1
20120108052 Ahn et al. May 2012 A1
20120196448 Ahn et al. Aug 2012 A1
20120202358 Gealy et al. Aug 2012 A1
20130012031 Ahn et al. Jan 2013 A1
20130012034 Ahn et al. Jan 2013 A1
20130017655 Sandhu et al. Jan 2013 A1
20130153986 Ahn Jun 2013 A1
Foreign Referenced Citations (47)
Number Date Country
1169029 Dec 1997 CN
19507562 Sep 1995 DE
578856 Jul 1992 EP
0540993 May 1993 EP
0547890 Jun 1993 EP
0681315 Nov 1995 EP
1096042 May 2001 EP
1122795 Aug 2001 EP
1124262 Aug 2001 EP
1324376 Jul 2003 EP
1358678 Nov 2003 EP
2158995 Nov 1985 GB
2355597 Apr 2001 GB
61139057 Jun 1986 JP
62199019 Sep 1987 JP
63066963 Mar 1988 JP
63125508 May 1988 JP
03028162 Feb 1991 JP
3116774 May 1991 JP
3222367 Oct 1991 JP
4-92416 Mar 1992 JP
4162628 Jun 1992 JP
4230023 Aug 1992 JP
5090169 Apr 1993 JP
6224431 Aug 1994 JP
6302828 Oct 1994 JP
07-320996 Dec 1995 JP
8255878 Oct 1996 JP
09-293845 Nov 1997 JP
11335849 Dec 1999 JP
2000192241 Jul 2000 JP
01044420 Feb 2001 JP
2001230505 Aug 2001 JP
2001332546 Nov 2001 JP
200378075 Oct 2003 KR
WO-9620482 Jul 1996 WO
WO-9907000 Feb 1999 WO
WO-9917371 Apr 1999 WO
WO-0197257 Dec 2001 WO
WO-0231875 Apr 2002 WO
WO-0233729 Apr 2002 WO
WO-0243115 May 2002 WO
WO-03063250 Jul 2003 WO
WO-03083947 Oct 2003 WO
WO-2004079796 Sep 2004 WO
WO-2006026716 Mar 2006 WO
WO-2006112793 Oct 2006 WO
Non-Patent Literature Citations (141)
Entry
““Rossini, Pentium, PCI-ISA, Chip Set””, Symphony Laboratories,, (1995), pp. 1-123.
“‘Green’ Chiller Technology Rolled Out for Earth Day”, Penn State News Release, http://www.sciencedaily.com/releases/2004/04/040421232304.htm, (Apr. 22, 2004).
“Application Specific DRAM”, Toshiba America Electronic Components, Inc., (1994), C178, C-260, C 218.
“Fundamentals of Sonic Cleaning”, [Online]. Retrieved from the Internet: <URL: http://www.icknowledge.com/misc—technology/Megasonic.pdf>, (Archived Apr. 20, 2003), 1 pg.
“Hyper Page Mode DRAM”, Electronic Engineering, 66(813), Woolwich, London, GB, (Sep. 1994), 47-48.
“Hyper Page Mode DRAM”, 8029 Electronic Engineering 66, No. 813, Woolwich, London GB, (Sep. 1994), 47-48.
“Hyper Page Mode DRAM”, Electronic Engineering, 66(813), (Sep. 1994), 47-48.
“Improved Metallurgy for Wiring Very Large Scale Integrated Circuits”, International Technology Disclosures, 4, Abstract, (1986), 1 page.
“Improved Metallurgy for Wiring Very Large Scale Integrated Circuits”, International Technology Disclosures, vol. 4, No. 9, (1986), p. 2.
“International Application Serial No. PCT/US 03/17730, International Search Report mailed Oct. 22, 2003”, 6 pgs.
“International Application Serial No. PCT/US2005/031159, International Search Report mailed Jan. 24, 2006”, 7 pgs.
“International Search Report, for Application No. PCT/US2004/006685, date mailed Nov. 23, 2004”, 77 pages.
“International Technology for Semiconductor Roadmap, 1999 edition”, Semiconductor Industry Association, [Online]. Retrieved from the Internet: <URL: http://public.itrs.net/Files/2001ITRS/Links/1999—SIA—Roadmap/>, (1999), 371 pgs.
“International Technology Roadmap for Semiconductors, 2001 Edition”, Organized by International SEMATECH, [Online]. Retrieved from the Internet: <URL: http://public.itrs.net/Files/2001ITRS/Home.html>, (2001), 469 pages.
“Megasonics—Sage Solvent Alternatives Guide”, Research Triangle Institute, [Online]. Retrieved from the Internet: <URL: http://clean.rti.org/alt.cfm?id=me&cat=ov>, (Mar. 15, 1995).
“Micron Semiconductor, Inc.”, 1994 DRAM Data Book, entire book.
“Packaging”, Electronic Materials Handbook, vol. 1, ASM International, (1989), pp. 105, 768-769.
“Praseodymium Oxide, Pr2O3 for Optical Coating”, Technical Publication by CERAC about Praseodymium Oxide, http://www.cerac.com/pubs/proddata/pr2o3.htm, (Sep. 21, 2005), 1-2.
“Samsung Synchronous DRAM”, Samsung Electronics, Revision 1, (Mar. 1993), 1-16.
“Synchronous DRAM 2 MEG X 8 SDRAM”, Micron Semiconductors, Inc., (1994), 1-18.
“Thin Solid Films, Elsevier Science”, [Online]. Retrieved from the Internet: <URL: http://202.114.9.3/xueke/wldz/ak/thin.htm>.
“What is megasonics cleaning?”, ProSys, Inc., [Online]. Retrieved from the Internet: <URL: http://www.prosysmeg.com/technology/articles/megasonics—cleaning.php>, (Copyright 1997-2004).
Aaltonen, Titta, et al., “Atomic Layer Deposition of Iridium Thin Films”, Journal of the Electrochemical Society, 151(8), (2004), G489-G492.
Aaltonen, Titta, et al., “Atomic Layer Deposition of Ruthenium Thin Films from Ru(thd)3 and Oxygen”, Chemical Vapor Deposition, 10(4), (Sep. 2004), 215-219.
Aaltonen, Titta, et al., “Ruthenium Thin Films Grown by Atomic Layer Deposition”, Chemical Vapor Deposition, 9(1), (Jan. 2003), 45-49.
Aarik, J., et al., “Atomic layer growth of epitaxial TiO/sub 2/ thin films from TiCl/sub 4/ and H/sub 2/O on alpha-Al/sub 2/O/sub 3/ substrates”, Journal of Crystal Growth, 242(1-2), (2002), 189-198.
Aarik, J., et al., “Phase transformations in hafnium dioxide thin films grown by atomic layer deposition at high temperatures”, Applied Surface Science, 173(1-2), (Mar. 2001), 15-21.
Aarik, Jaan, et al., “Anomalous effect of temperature on atomic layer deposition of titanium dioxide”, Journal of Crystal Growth, 220(4), (Dec. 2000), 531-537.
Aarik, Jaan, et al., “Atomic layer deposition of TiO2 thin films from Til4 and H2O”, Applied Surface Science 193, (2002), 277-286.
Aarik, Jaan, et al., “Hafnium tetraiodide and oxygen as precursors for atomic layer deposition of hafnium oxide thin films”, Thin Solid Films, 418(2), (Oct. 15, 2002), 69-72.
Aarik, Jaan, “Influence of substrate temperature on atomic layer growth and properties of HfO/sub 2/ thin films”, Thin Solid Films, 340(1-2), (1999), 110-116.
Aarik, Jaan, et al., “Texture development in nanocrystalline hafnium dioxide thin films grown by atomic layer deposition”, Journal of Crystal Growth, 220(1-2), (Nov. 15, 2000), 105-113.
Abbas, S. A., et al., “N-Channel Igfet Design Limitations Due to Hot Electron Trapping”, Technical Digest, International Electron Devices Meeting,, Washington, DC, (Dec. 1975), 35-38.
Abe, T, “Silicon Wafer-Bonding Process Technology for SOI Structures”, Extended Abstracts of the 22nd (1990 International) Conference on Solid State Devices and Materials, (1990), 853-856.
Adelmann, C, et al., “Atomic-layer epitaxy of GaN quantum wells and quantum dots on (0001) AIN”, Journal of Applied Physics, 91(8), (Apr. 15, 2002), 5498-5500.
Adler, E., et al., “The Evolution of IBM CMOS DRAM Technology”, IBM Journal of Research & Development, 39(1-2), (Jan.-Mar. 1995), 167-188.
Afanas'ev, V, et al., “Electron energy barriers between (100)Si and ultrathin stacks of SiO2, Al2O3, and ZrO3 and ZrO2 insulators”, Applied Physics Letters, 78(20), (May 14, 2001), 3073-3075.
Agarwal, Vikas, “A service creation environment based on end to end composition of Web services”, Proceedings of the 14th international conference on World Wide Web, (2005), 128-137.
Ahn, Seong-Deok, et al., “Surface Morphology Improvement of Metalorganic Chemical Vapor Deposition Al Films by Layered Deposition of Al and Ultrathin TiN”, Japanese Journal of Applied Physics, Part 1 (Regular Papers, Short Notes & Review Papers), 39(6A), (Jun. 2000), 3349-3354.
Akasaki, Isamu, et al., “Effects of AlN buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga1&#8722;xAlxN (0 <×0.4) films grown on sapphire substrate by MOVPE”, Journal of Crystal Growth, 98(1-2), (Nov. 1, 1989), 209-219.
Alen, Petra, et al., “Atomic Layer deposition of Ta(Al)N(C) thin films using trimethylaluminum as a reducing agent”, Journal of the Electrochemical Society, 148(10), (Oct. 2001), G566-G571.
Alers, G. B., et al., “Intermixing at the tantalum oxide/silicon interface in gate dielectric structures”, Applied Physics Letters, 73(11), (Sep. 14, 1998), 1517-1519.
Alivisatos, A. P., “Semiconductor Clusters, Nanocrystals, and quantum Dots”, Science, 271, (Feb. 16, 1996), 933-937.
Alok, D., et al., “Electrical Properties of Thermal Oxide Grown on N-type 6H-Silicon Carbide”, Applied Physics Letters, 64, (May 23, 1994), 2845-2846.
American Society for Metals, “Metals Handbook”, Properties and Selection: Nonferrous Alloys and Pure Metals, Ninth Edition, vol. 2, Metals Park, Ohio :, (1979), 157, 395.
Anwander, Reiner, et al., “Volatile Donor-Functionalized Alkoxy Derivatives of Lutetium and Their Structural Characterization”, Inorganic Chemistry, 36(16), (Jul. 30, 1997), 3545-3552.
Apostolopoulos, G., et al., “Complex admittance analysis for La[sub 2]Hf[sub 2]O[sub 7]/SiO[sub 2] high-k dielectric stacks”, Applied Physics Letters, 84(2), (Jan. 12, 2004), 260-262.
Arnoldussen, Thomas C, “A Modular Transmission Line/Reluctance Head Model”, IEEE Transactions on Magnetics, 24, (Nov. 1988), 2482-2484.
Arya, S. P.S., et al., “Conduction properties of thin Al/sub 2/O/sub 3/ films”, Thin Solid Films, 91(4), (May 28, 1982), 363-374.
Asai, S., “Technology Challenges for Integration Near and Below 0.1 micrometer”, Proceedings of the IEEE, 85(4), Special Issue on Nanometer-Scale Science & Technology, (Apr. 1997), 505-520.
Asari, K, et al., “Multi-mode and multi-level technologies for FeRAM embedded reconfigurable hardware”, Solid-State Circuits Conference, 1999. Digest of Technical Papers. ISSCC. 1999 IEEE International, (Feb. 15-17, 1999), 106-107.
Aspinall, Helen C., et al., “Growth of Praseodymium Oxide and Praseodymium Silicate Thin Films by Liquid Injection MOCVD”, Chemical Vapor Deposition, 10(2), (Mar. 2004), 83-89.
Atanassova, E., et al., “Breakdown Fields and Conduction Mechanisms in thin Ta2O5 Layers on Si for high density DRAMs”, Microelectronics Reliability, 42, (2002), 157-173.
Auberton-Herve, A. J., “SOI: Materials to Systems”, Digest of the International Electron Device Meeting, San Francisco, (Dec. 1996), 3-10.
Bai, Y., et al., “Photosensitive Polynorbornene as a Dielectric Material for Packaging Applications”, Proceedings of the 2001 International Symposium on Advanced Packaging Materials, (2001), 322-326.
Baldwin, G. L., et al., “The Electronic Conduction Mechanism of Hydrogenated Nanocrystalline Silicon Films”, Proc. 4th Int. Conf. on Solid-State and Int. Circuit Tech, Beijing, (1995), 66-68.
Ballister, Stephen C, et al., “Shipboard Electronics Thermoacoustic Cooler”, Report No. A415003, Naval Postgraduate School, Monterey, CA, Abstract, (Jun. 1995).
Banerjee, S., “Applications of silicon-germanium-carbon in MOS and bipolar transistors”, Proceedings of the SPIE—The International Society for Optical Engineering, 3212, (1997), 118-128.
Banerjee, S. K., et al., “Characterization of Trench Transistors for 3-D Memories”, 1986 Symposium on VLSI Technology, Digest of Technical Papers, San Diego, CA, (May 1986), 79-80.
Bauer, M., et al., “A Multilevel-Cell 32 Mb Flash Memory”, Digest IEEE, Solid-State Circuits Conf.,, (1995), 440.
Beensh-Marchwicka, G., et al., “Preparation of thermosensitive magnetron sputtered thin films”, Vacuum, 53(1-2), (May 1999), 47-52.
Bendoraitis, J G, et al., “Optical energy gaps in the monoclinic oxides of hafnium and zirconium and their solid solutions”, Journal of Physical Chemistry, 69(10), (1965), 3666-3667.
Bengtsson, Stefan, et al., “Interface charge control of directly bonded silicon structures”, J. Appl. Phys., 66(3), (Aug. 1989), 1231-1239.
Benjamin, M., “UV Photoemission Study of Heteroepitaxial AlGaN Films Grown on 6H-SiC”, Applied Surface Science, 104/105, (Sep. 1996), 455-460.
Britton, J, et al., “Metal-nitride-oxide IC memory retains data for meter reader”, Electronics, 45(22), (Oct. 23, 1972), 119-23.
Choi, S. C., et al., “Epitaxial growth of Y2O3 films on Si(100) without an interfacial oxide layer”, Applied Physics Letters, vol. 71, No. 7, (Aug. 18, 1997), 903-905.
Cricchi, J R, et al., “Hardened MNOS/SOS electrically reprogrammable nonvolatile memory”, IEEE Transactions on Nuclear Science, 24(6), (Dec. 1977), 2185-9.
Dover, V., et al., “Deposition of Uniform Zr-Sn-Ti-O Films by On-Axis Reactive Sputtering”, IEEE Electron Device Letters, vol. 19, No. 9, (Sep. 1998), 329-331.
Engelhardt, M., “Modern Applications of Plasma Etching and Patterning in Silicon Process Technology”, Contributions to Plasma Physics, 39(5), (1999), 473-478.
Ferris-Prabhu, A V, “Tunnelling theories of non-volatile semiconductor memories”, Physica Status Solidi A, 35(1), (May 16, 1976), 243-50.
Fisch, D E, et al., “Analysis of thin film ferroelectric aging”, Proc. IEEE Int. Reliability Physics Symp., (1990), 237-242.
Forsgren, Katarina, “CVD and ALD of Group IV- and V-Oxides for Dielectric Applications”, Comprehensive Summaries of Uppsala Dissertation from the Faculty of Science and Technology, 665, (2001), 665.
Foster, R., et al., “High Rate Low-Temperature Selective Tungsten”, In: Tungsten and Other Refractory Metals for VLSI Applications III, V.A. Wells, ed., Materials Res. Soc., Pittsburgh, PA, (1988), 69-72.
Kalavade, Pranav, et al., “A novel sub-10 nm transistor”, 58th DRC. Device Research Conference. Conference Digest, (Jun. 19-21, 2000), 71-72.
Kohyama, Y., et al., “Buried Bit-Line Cell for 64MB DRAMs”, 1990 Symposium on VLSI Technology, Digest of Technical Papers, Honolulu, HI, (Jun. 4-7, 1990), 17-18.
Kolliopoulou, S, et al., “Hybrid silicon-organic nanoparticle memory device”, Journal of Applied Physics, 94(8), (2003), 5234-5239.
Krauter, G., et al., “Room Temperature Silicon Wafer Bonding with Ultra-Thin Polymer Films”, Advanced Materials, 9(5), (1997), 417-420.
Lee, C., et al., “Self-Assembly of Metal Nanocrystals on Ultrathin Oxide for Nonvolatile Memory Applications”, J. Elect. Mater; vol. 34(1), (Jan. 2005), 1-11.
Leskela, M, “ALD precursor chemistry: Evolution and future challenges”, Journal de Physique IV (Proceedings), 9(8), (Sep. 1999), 837-852.
Liu, Z., et al., “Metal Nanocrystal Memories—Part I: Device Design and Fabrication”, IEEE Trans. Elect. Dev; vol. 49(9), (Sep. 2002), 1606-1613.
Marlid, Bjorn, et al., “Atomic layer deposition of BN thin films”, Thin Solid Films, 402(1-2), (Jan. 2002), 167-171.
Min, J., “Metal-organic atomic-layer deposition of titanium-silicon-nitride films”, Applied Physics Letters, 75(11), (1999), 1521-1523.
Molnar, R., “Growth of Gallium Nitride by Electron-Cyclotron Resonance Plasma-Assisted Molecular-Beam Epitaxy: The Role of Charged Species”, Journal of Applied Physics, 76(8), (Oct. 1994), 4587-4595.
Nakajima, Anri, “Soft breakdown free atomic-layer-deposited silicon-nitride/SiO/sub 2/ stack gate dielectrics”, International Electron Devices Meeting. Technical Digest, (2001), 6.5.1-4.
Pankove, J., “Photoemission from GaN”, Applied Physics Letters, 25(1), (Jul. 1, 1974), 53-55.
Papadas, C., “Modeling of the Intrinsic Retention Characteristics of FLOTOX EEPROM Cells Under Elevated Temperature Conditions”, IEEE Transaction on Electron Devices, 42, (Apr. 1995), 678-682.
Puurunen, R L, et al., “Growth of aluminum nitride on porous silica by atomic layer chemical vapour deposition”, Applied Surface Science, 165(2-3), (Sep. 12, 2000), 193-202.
Rao, K. V., et al., “Trench Capacitor Design Issues in VLSI DRAM Cells”, 1986 IEEE International Electron Devices Meeting, Technical Digest, Los Angeles, CA, (Dec. 7-10, 1986), 140-143.
Reidy, S., et al., “Comparison of two surface preparations used in the homoepitaxial growth of silicon films by plasma enhanced chemical vapor deposition”, J. Vac. Sci. Technol. B 21(3), (May/Jun.), 970-974.
Rhee, H. S, et al., “Cobalt Metallorganic Chemical Vapor Deposition and Formation of Epitaxial CoSI2 Layer on Si(100) Substrate”, Journal of Electrochemical Society,146(6), (1999), 2720-2724.
RRR1MO, “U.S. Appl. No. 12/781,649, Response filed May 4, 2012 to Restriction Requirement mailed Apr. 4, 2012”, 5 pgs.
Saito, Y, et al., “High-Integrity Silicon Oxide Grown at Low-temperature by Atomic Oxygen Generated in High-Density Krypton Plasma”, Extended Abstracts of the 1999 International Conference on Solid State Devices and Materials, (1999), 152-153.
Sneh, Ofer, “Thin film atomic layer deposition equipment for semiconductor processing”, Thin Solid Films, 402(1-2), Preparation and Characterization, Elsevier Sequoia, NL, vol. 402, No. 1-2, (2002), 248-261.
Su, D. K., et al., “Experimental Results and Modeling Techniques for Substrate Noise in Mixed-Signal Integrated Circuits”, IEEE Journal of Solid-State Circuits, 28(4), (Apr. 1993), 420-430.
Suntola, T., “Atomic Layer Epitaxy”, Handbook of Crystal Growth, 3; Thin Films of Epitaxy, Part B: Growth Mechanics and Dynamics, Amsterdam, (1994), 601-663.
Suntola, Tuomo, “Atomic layer epitaxy”, Thin Solid Films, 216(1), (Aug. 28, 1992), 84-89.
Watanabe, H., “A Novel Stacked Capacitor with Porous-Si Electrodes for High Density DRAMs”, 1993 Symposium on VLSI Technology, Digest of Technical Papers, Kyoto, Japan, (1993), 17-18.
Webb, Bucknell C, “High-frequency permeability of laminated and unlaminated, narrow, thin-film magnetic stripes (invited)”, Journal of Applied Physics, (1991), 5611, 5613, 5615.
Wei, L S, et al., “Trapping, emission and generation in MNOS memory devices”, Solid-State Electronics, 17(6), (Jun. 1974), 591-8.
White, M H, et al., “Characterization of thin-oxide MNOS memory transistors”, IEEE Transactions on Electron Devices, ED-19(12), (Dec. 1972), 1280-1288.
White, M H, “Direct tunneling in metal-nitride-oxide-silicon (MNOS) structures”, Programme of the 31st physical electronics conference, (1971), 1.
Wilk, G. D, “High-K gate dielectrics: Current status and materials properties considerations”, Journal of Applied Physics, 89(10), (May 2001), 5243-5275.
Wilk, G. D., “High-K gate dielectrics: Current status and materials properties considerations”, Journal of Applied Physics, 89(10), (May 2001), 5243-5275.
Wilk, G. D., et al., “Stable zirconium silicate gate dielectrics deposited directly on silicon”, Applied Physics Letters, vol. 76, No. 1, (Jan. 3, 1000), 112-114.
Williams, Paul A., et al., “Novel Mononuclear Alkoxide Precursors for the MOCVD of ZrO2 and HfO2 Thin Films”, Chemical Vapor Deposition, 8(4), (Jul. 2002), 163-170.
Wolf, S., et al., Silicon Processing for the VLSI Era—vol. 4: Deep-Submicron Process Technology, Lattice Press, Sunset Beach, CA, (2002), p. 98, 146 173-174.
Wolf, Stanley, “Ion Implantation for VLSI”, Silicon Processing for the VLSI Era, vol. 1, Lattice Press, Sunset Beach CA, (1986), 280-330.
Wolf, Stanley, et al., “Silicon Processing for the VLSI Era—vol. I: Process Technology”, Second Edition, Lattice Press, Sunset Beach, California, (2000), 443.
Wolf, Stanley, “Silicon Processing for the VLSI Era, vol. 1”, Lattice Press, Sunset Beach, CA, (1986), 308-311.
Wolfram, G, et al., “Existence range, structural and dielectric properties of ZrxTiySnzO4 ceramics (x+y=2)”, Materials Research Bulletin, 16(11), (Nov. 1981), 1455-63.
Wood, S W, “Ferroelectric memory design”, M.A.Sc. thesis, University of Toronto, (1992).
Xiang, Wenfeng, et al., “Characteristics of LaAlO3/Si(100) deposited under various oxygen pressures”, Journal of Applied Physics, vol. 20, No. 1, (Jan. 1, 2003), 533-536.
Xiaoli, Yuan, “Effects of interface traps in silicon-quantum-dots-based memory structures”, Physica E, 8(2), (Aug. 2000), 189-193(5).
Xuan, Peiqi, et al., “60nm Planarized Ultra-thin Body Solid Phase Epitaxy MOSFETs”, IEEE Device Research Conference, Conference Digest. 58th DRC, (Jun. 19-21, 2000), 67-68.
Yagishita, Atsushi, et al., “Dynamic threshold voltage damascene metal gate MOSFET (DT-DMG-MOS) with low threshold voltage, high drive current and uniform electrical characteristics”, International Electron Devices Meeting 2000. Technical Digest. IEDM, (Dec. 2000), 663-666.
Yamada, T., et al., “A New Cell Structure with a Spread Source/Drain (SSD) MOSFET and a Cylindrical Capacitor for 64-Mb DRAM's”, IEEE Transactions on Electron Devices, 38, (Nov. 1991), 2481-2486.
Yamada, T., et al., “Spread Source/Drain (SSD) MOSFET Using Selective Silicon Growth for 64Mbit DRAMs”, 1989 IEEE International Electron Devices Meeting, Technical Digest, Washington, D.C., (Dec. 3-6, 1989), 35-38.
Yamaguchi, Takeshi, et al., “Band Diagram and Carrier Conduction Mechanism in ZrO2/Zr-silicate/Si MIS Structure Fabricated by Pulsed-laser-ablation Deposition”, Electron Devices Meeting, 2000. IEDM Technical Digest. International, (2000), 19-22.
Yamaguchi, Takeshi, et al., “Study on Zr-Silicate Interfacial Layer of ZrO2-MIS Structure Fabricated by Pulsed Laser Ablation Deposition Method”, Solid State Devices and Materials, (2000), 228-229.
Yamamoto, K., “Effect of Hf metal predeposition on the properties of sputtered HfO2/Hf stacked gate dielectrics”, Applied Physics Letters, 81, (Sep. 9, 2002), 2053-2055.
Yan, J., “Structural and electrical characterization of TiO/sub 2/ grown from titanium tetrakis-isopropoxide (TTIP) and TTIP/H/sub 2/O ambients”, Journal of Vacuum Science & Technology B (Microelectronics and Nanometer Structures), 14(3), (May-Jun. 1996), 1706-1711.
Yan, L., “High quality, high-k gate dielectric: amorphous LaAlO3 thin films grown on Si(100) without Si interfacial layer”, Appl. Phys. A 77, (2003), 721-724.
Yee, A., et al., “The Effect of Nitrogen on Pulsed Laser Deposition of Amorphous Silicon Carbide Films: Properties and Structure”, J. Materials Research, 11, (1996), 1979-1986.
Yeh, Ching-Fa, et al., “The advanced improvement of PN mesa junction diode prepared by silicon-wafer direct bonding”, 1991 International Symposium on VLSI Technology, Systems, and Applications, 1991. Proceedings of Technical Papers, (May 22-24, 1991), 136-140.
Yih, C. M., et al., “A Consistent Gate and Substrate Current Model for Sub-Micron MOSFET's by Considering Energy Transport”, Int'l Symp. on VLSI Tech., Systems and Applic., Taiwan, (1995), 127-130.
Yoder, M, “Wide bandgap semiconductor materials and devices”, IEEE Transactions on Electron Devices, 43(10), (Oct. 1996), 1633-1636.
Yoshikawa, K., “Impact of Cell Threshold Voltage Distribution in the Array of Flash Memories on Scaled and Multilevel Flash Cell Design”, 1996 Symposium on VLSI Technology, Digest of Technical Papers, Honolulu, HI, (Jun. 11-13, 1996), 240-241.
Youm, Minsoo, “Metal oxide semiconductor field effect transistor characteristics with iridium gate electrode on atomic layer deposited ZrO2 high-k dielectrics”, Jpn. J. Appl. Phys., vol. 42, (Aug. 2003), 5010-5013.
Yu, Xiongfei, et al., “High Mobility and Excellent Electrical Stability of MOSFETs Using a Novel HfTaO Gate Dielectric”, 2004 Symposium on VLSI Technology Digest of Technical Papers, (Jun. 15-17, 2004), 110-111.
Yun, Sun Jin, “Effect of plasma on characteristics of zirconium oxide films deposited by plasma-enhanced atomic layer deposition”, Electrochemical and Solid-State Letters, 8 (11), (2005), F47-F50.
Zhang, H, et al., “High permitivity thin film nanolaminates”, Journal of Applied Physics, 87(4), (Feb. 2000), 1921-1924.
Zhang, H., “Atomic Layer Deposition of High Dielectric Constant Nanolaminates”, Journal of the Electrochemical Society, 148(4), (Apr. 2001), F63-F66.
Zhang, Hongguo, et al., “Investigation on Structure and Properties of Low-Temperature Sintered Composite Ferrites”, Materials Research Bulletin, 35, (2000), 2207-2215.
Zhao, X., et al., “Nanocrystalline Si: a material constructed by Si quantum dots”, Materials Science and Engineering B, 35(1-2), Proceedings of the First International Conference on Low Dimensional Structures and Devices, Singapore, (Dec. 1995), 467-471.
Zhao, Xinyuan, et al., “First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide”, Physical Review B, vol. 65, (2002), 233106-1 through 233106-4.
Zhenxing, Yue, et al., “Low-Temperature Sinterable Cordicrite Glass-ceramics”, High Technology Letters (China), 10 (115), (2000), 96-97.
Zhong, Huicai, et al., “Electrical Properties of Ru and RuO2 Gate Electrodes for Si-PMOSFET with ZrO2 and Zr-Silicate Dielectrics”, Journal of Electronic Materials, 30(12), (Dec. 2001), 1493-1498.
Zhu, W J, et al., “Current transport in metal/hafnium oxide/silicon structure”, IEEE Electron Device Letters, 23, (2002), 97-99.
Zhu, W, et al., “HfO2 and HfAlO for CMOS: Thermal Stability and Current Transport”, IEEE International Electron Device Meeting 2001, (2001), 463-466.
Zucker, O, et al., “Application of Oxygen Plasma Processing to Silicon Direct Bonding”, Sensors and Actuators A, 36, (1993), 227-231.
US 6,827,790, 12/2004, Gealy et al. (withdrawn).
Related Publications (1)
Number Date Country
20130323895 A1 Dec 2013 US
Divisions (2)
Number Date Country
Parent 13088777 Apr 2011 US
Child 13614794 US
Parent 11185113 Jul 2005 US
Child 13088777 US
Continuations (1)
Number Date Country
Parent 13614794 Sep 2012 US
Child 13959455 US