The present invention is explained in greater detail in the following on the basis of preferred exemplary embodiments with reference to the drawings and the symbols and reference numerals used therein.
The heartbeat sequence is determined using a surface electrocardiogram (ECG) or from an intracardial electrogram (IEGM), which is measured using electrodes by an implant. The interval between two sequential heartbeats is generally defined via the so-called RR interval. This results as a chronological interval between two significant beats (so-called R waves) in the ECG or IEGM. These characteristic signals represent the contraction of the cardiac muscle in the course of the beat cycle.
A continuous measurement of R waves over a longer period of time provides a sequence of RR intervals which is referred to as a time array. A detail of such a time array is shown in
For implants and in less complex external devices, e.g., transportable ECG measuring units carried by the patient, which may generally process smaller amounts of data than the complete ECG signal, the large quantities of recorded RR intervals occurring in long-term measurements are frequently too large for efficient data processing using the curves of the individual R waves resolved in morphological detail. The starting data for more extensive analysis are therefore frequently not the time arrays themselves, but rather the heart rate variability (HRV) as a chronological sequence of the occurring interval lengths. These data are shown in
The mean beat period is known to be subjected to day/night oscillations, which are to be considered in an analysis of the HRV.
The irregular oscillations of the RR intervals occurring in HRV data sets carry information about the regulation mechanisms of the cardiovascular system, so that they are used according to the present invention to detect differences between regular physiological behavior and pathological changes. The most important mechanisms used as a basis allow classification according to respiratory sinus arrhythmia, blood-pressure oscillations, thermoregulation, and renin-angiotensin system, which are influenced by vagotonia, sympathicotonia, and catecholamine level.
In the framework of a spectral HRV analysis, it is typical to define an array of frequency bands. The most important influencing factors may be coarsely assigned empirically to these bands:
The basis for the diagnosis according to the present invention of a sleep apnea is the fact that the rhythmic fluctuations of the sympathicotonia having period durations between 20 and 80 seconds result in a correlated oscillation of the RR interval in a corresponding spectral range (usually used: 0.005 Hz to 0.03 Hz). This long-wave fluctuation is theoretically always expected to be pronounced in the event of complete apnea, because it is a necessary result of temporary respiratory arrest. It is to be assumed that the amplitude and frequency of the oscillation may vary individually by at least a factor of two, but this oscillation is so generally present that it represents the approach according to the present invention for a sensitive detection of apnea.
Known methods for an analysis of the long-wave oscillation component are wavelet transformation, Hilbert transformation, and Fourier transformation. However, the interpretation is difficult, because either a discriminator must be connected downstream, fixed limits must be predefined, or derived parameters having arbitrary limits must be used.
To overcome these difficulties, in the method according to the present invention, features of the spectral power density are detected in the time range using the autocorrelation function
N is the number of measured points, RR(i) is the standardized RR interval measured as the number i, and τ is a time shift, which the RR signal shifts in relation to itself. The variable τ passes through the range of integers from τ=0 up to a physiologically advisable upper limit of, for example τ=120 at step width τ. The step width
τ does not necessarily have to be equal to one, but is selected in this way for the following description as a special case. Larger values of the step width reduce the computing effort.
The autocorrelation function has the essential property, in the event of a shift τ, which results in a relative congruence equality of the signal with itself, of having a maximum. In contrast, if the shift results in a mutual curve of shifted and unshifted signal, C(τ) assumes a minimum. The autocorrelation function is always maximum in the event of zero shift, i.e., identity.
Because the main identifier of apnea is the occurrence of long-wave oscillations of the RR interval in the time range between 20 and 120 beats, in the event of existing respiratory interference, a local maximum of C(τ) is expected in the event of shifts of τ in this range. Therefore, the sequence for apnea detection may be subdivided into the following steps:
In contrast, if the patient is free of apnea, the long-wave maximum is missing, in addition, a local maximum is to be expected during the oscillations of the blood-pressure variability (LF) or the respiratory sinus arrhythmia (HF). This results because the typical oscillations are undisturbed and, in addition, because the normal state is distinguished by a reduced sympathicotonia in relation to sleep apnea. These oscillations cause a maximum of the autocorrelation function at approximately τ<15.
In an expanded embodiment of the method according to the present invention, the significance of the oscillations established using autocorrelation in the apnea range may be increased for delimitation in relation to other events having influence on the HRV: the apnea band is embedded in the VLF band and may also partially overlap with the LF band, so that a small or also moderate increase of the power density in the apnea band, inter alia, may also be attributed to other physiological phenomena. This may occur, for example, if a pronounced vagotonia exists, which significantly strengthens the VLF component. In such a case, however, the fluctuation of the RR intervals as a whole is significantly increased, which is not the case in the event of an apnea. Thus, in the event of a slight increase of the power density in the apnea band, if a significant increase of the HRV overall fluctuation is detected in parallel, for which methods are known, apnea is to be precluded as the sole cause.
Establishing an apnea using the suggested autocorrelation method has the essential advantage that a diagnosis may be performed solely from RR data using only one parameter (localization of a maximum in the apnea band). For this purpose, only very simple data processing operations (multiplication and summation of integers) are necessary. This requires only little data processing resources and may therefore also be managed by devices having restricted functional scope. These particularly also include implants (cardiac pacemakers, defibrillators, etc.) and wearable devices, which are integrated in a diagnostic telemetry system, for example.
If a sleep apnea has been established using autocorrelation methods, in an expanded embodiment of the method according to the present invention, the diagnostic procedure may be refined to direct detection of individual apnea events. For such prompt sensing in the minute range, it is necessary to already prepare an analysis from a relatively small data field (RR log of a few minutes), which is then performed cyclically, e.g., in a minute cycle. To be able to detect long-wave oscillations correctly on such a short time scale, a two-stage algorithm which is intentionally kept simple is used according to the present invention, because the data processing required for this purpose may also be performed using simple means. Firstly, components of higher frequency oscillations are removed from the signal. This may be performed using a sliding mean-value filter which requires particularly few computing operations, for example. If sufficient resources are present, higher performance filter operations (e.g., recursive mean-value filter) may also be used to improve the selectivity of the low-pass filter. The total energy of the remaining signal is then a measure of the presence of long-wave oscillations. This total energy is ascertained, for example, by summation of the absolute value differences of sequential RR intervals, according to
N describing the number of intervals in the period of time of a minute, for example. If the summation value S thus obtained is above a predefined threshold θ, this is evaluated as a signal for a current apnea.
The threshold value to be input previously may typically not be specified from general experiential values, but rather is a function of the individual data of the particular patient. Because previously the diagnosis of a sleep apnea has been performed using analysis of long-term HRV data (at least 24 hours), the patient-related base intervals of the heart rate and their circadian changes (compare
The method may also be used to detect a current sequence of apnea events and thus to be able to engage with treatment immediately, for example. For this purpose, the analysis, as shown in
The method presented here according to the present invention for diagnosing sleep apnea is particularly suitable for implementation in devices having restricted resources. It is particularly advantageous that the particular critical parameter may be adapted to the available technical resources. For example, the increment for the shift of the autocorrelation function may be increased, which causes a direct reduction of the processing outlay. Therefore, even in the event of restricted computing capacity, measurements may even be executed over multiple days and, in spite of fewer operations per cycle, a statistically relevant correlation statement may be generated.
The present invention allows the characterization of an apnea status and automatic recognition of changes which occur. For example, a rapid diagnostic opinion may be reached by telemetric transmission of little data. The amount of data to be externally transmitted is additionally very small and thus allows checking of the patient status without problems, e.g., in a 24-hour rhythm. Complex analysis of morphology criteria, which is susceptible to error, is dispensed with, because only the easily available RR interval is used.
An apparatus for implementing the method according to the present invention does not require any special effort, so that it is also suitable for wearable devices and particularly also for implants. The calculations to be performed for this purpose in an implant, for example, relate to a few simple numeric operations, the algorithm to be used for determining the autocorrelation function and the sum of the absolute value differences of sequential RR intervals is restricted to a calculation of interval values. The data storage in the implant requires few bytes. Functions of this type may already be performed by very simple data processing components. The energy consumption is correspondingly low.
In an expanded embodiment of the present invention, means for implementing the method according to the present invention are integrated as an algorithm on corresponding miniaturized data processing components in analysis devices, in particular implants, for example, as application-specific integrated circuits (ASICs) or microprocessors (μP). Therefore, the individual analysis sequences are also possible in the implants themselves. An existing apnea may then be detected by the implant itself and the corresponding information may be transmitted as a signal for further diagnosis.
In addition to the detection of sleep apnea, the improvement of continuous monitoring in the event of CHF is advantageous. The recognition of progressive or acute worsening of the CHF illness is the focus point, because progress of the illness may result in increased central sleep apnea, on the other hand, an existing sleep apnea may also have a negative effect on the CHF illness course.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 041 372.5 | Aug 2006 | DE | national |
10 2007 010 353.2 | Mar 2007 | DE | national |