The present application relates generally to the fields of cancer cell or residual microtumor detection and elimination. More particularly, the present application relates to intraoperative diagnostic and elimination of cancer cells in vivo.
Despite continuous improvements in onco-surgery, residual micro-tumors (microscopic residual disease—MRD) remain a significant problem. In many aggressive cancers, including head and neck squamous cell carcinoma (HNSCC), brain, lung and breast cancer, and sarcomas, what appears to be a complete tumor resection may leave MRD behind, often as small as tens of cancer cells, that later causes lethal recurrence. Clinical standards such as palpation and radiographic imaging are not sensitive enough to detect MRD. Pathological analysis of surgical margins, the only currently available MRD diagnostics, is slow, often inaccurate and not always available. As a result, surgeons routinely resect large margins of normal tissue to remove potential MRD. Unfortunately, this approach often fails, causes high morbidity and reduces patients' quality of life and eligibility. Post-operative radiation or chemoradiation therapies further increase the morbidity and treatment cost, and reduce patients' quality of life. Further, MRD often becomes highly resistant to radiation or chemotherapy resulting in poor survival. Similar needs of detecting cancer cells exist in in ex vivo tissue grafts and in veterinary medicine.
Today's diagnostic technologies cannot detect MRD in solid tissue in vivo with single cancer cell sensitivity and in real time. “Real Time” as used herein includes a broad ordinary meaning recognizable to one of ordinary skill in the art which includes the providing of output information responsive to the described processing of input data sufficiently quickly to allow a caregiver to affect the environment in which they are operating, using the output information as feedback. In any event, “Real Time” as used herein includes at least electronic processing delay times. As a result, those diagnostic technologies are limited in any reduction in local recurrence and improvement in overall survival for MRD-complicated surgeries. For example, while optical approaches improved cancer detection in vivo including intraoperative fluorescent and optical scattering diagnostics, they detect only relatively large tumors at the surface while MRD can be located deeper in tissue and can be of a microscopic size. Photoacoustic methods detect tumors in depths up to 10-20 mm although with limited sensitivity in solid tissue (>1000 cells), speed and specificity for intraoperative detection of MRD in a surgical bed. Radio-fluorescent methods can detect deeper tumors but are not sensitive enough for MRD detection. Multi-spectral optoacoustic tomography is used intraoperatively, but is not sensitive or fast enough to detect MRD (which can be represented by tens of cancer cells) in vivo in solid tissue in real time, and did not show a good surgical outcome in MRD applications. Furthermore, standard surgery often cannot remove MRD even when identified by frozen section pathology without causing too high morbidity because MRD infiltrates into critical organs.
In addition, a tumor micro-environment (“TME”) could still exist after removal of cancer cells. Examples of TME include non-tumor targets that are biologically associated with a tumor, such as tumor blood vasculature and other components that are understood by one of ordinary skill in the art. Blood flow in the vasculature may cause tumor metastases of cancer cells or recurrence of tumor.
The present disclosure provides the ability to intraoperatively detect and precisely eliminate tumor and MRD in vivo in real time in resectable and in unresectable cases, and to intraoperatively detect and precisely eliminate TME, including tumor blood vasculature, either as a stand-alone or an intraoperative adjuvant treatment of residual tumor, to significantly improve the treatment outcome, treatment eligibility and quality of life for cancer patients and would reduce surgical morbidity. The present disclosure also provides the ability to detect cancer cells in tissue grafts and in veterinary medicine.
An objective of various embodiments of the present disclosure is to provide a plasmonic nanobubbles (“PNB”s)-guided in vivo and ex vivo diagnosis of tumors, microtumors, cancer cells, MRD and TME with high speed and cancer specificity in real time during a surgery. In some embodiments, the diagnosis can be applied to resectable tumors, unresectable tumors, or both or any specific target cells. In some embodiments, the diagnosis can be applied to TME. In some embodiments, the diagnosis can be applied to both tumor cells and TME. In accordance various embodiments disclosed herein, a process for noninvasive PNB-guided intraoperative detection of cancer cells in vivo comprises administering to a patient nanoparticles conjugated with cancer-specific antibodies (or other ligands) at a predetermined time prior to a diagnostic procedure; performing the diagnostic procedure comprising directing a first pulsed source of electromagnetic radiation having a predetermined level of energy against a first location on the patient to generate a first group of PNBs around the nanoparticles clustered in the cancer cells; detecting a first pressure pulse emitted by the first group of PNBs with an acoustic detector; transmitting a signal from the first pressure pulse to a signal processing unit to register a first acoustic time-response; and comparing the first acoustic time-response with a PNB-negative time-response to determine whether the first acoustic time-response meets a PNB-positive threshold. In accordance with various embodiments disclosed herein, the nanoparticles are capable of absorption and plasmonic conversion of electromagnetic radiation with wavelength in the near infrared region into the localized heat in and around plasmonic nanoparticle. In accordance with various embodiments disclosed herein, the electromagnetic radiation comprises a short laser pulse.
In some embodiments of the present disclosure, a system configured to noninvasively determine in real time a presence, a location and a depth of unwanted cells including cancer cells or microtumors or tumor-specific vasculature in tissue using PNBs during an intraoperative diagnostic procedure is provided. The system can include a plurality of bioconjugated nanoparticles configured to be administered to a patient at a predetermined time prior to a diagnostic procedure, a source of electromagnetic radiation configured to provide a plurality of pulses at a plurality of energy levels to tissue at a measurement site, an acoustic detector configured to output signals responsive to a plurality of pressure pulses emitted by PNBs from at least some of the bioconjugated nanoparticles in the cancer cells, and a signal processor configured to receive said signals or one or more pre-processed signals responsive to said signals and configured to process said signals or said one or more pre-processed signals. The bioconjugated nanoparticles can comprise a plurality of nanoparticles and a plurality of cancer-specific or tumor-associated vasculature-specific ligands configured to attach to and cluster in said unwanted cells. The processing can include determining a first acoustic time-response from said signals or said pre-processed signals corresponding to pulse of said source at a first energy level, comparing said first acoustic time-response with a PNB-negative time-response, when said comparison is negative, outputting notification indicia usable by a caregiver to determine the presence of said unwanted cells at a first depth in said tissue at said measurement site, and when said presence of said cancer cells is determined, additionally determining another acoustic time-response from said signals or said pre-processed signals corresponding to pulses of said source at an increased energy level. The increased energy level can be configured to cause said pulses of said source to reach tissue at an increased depth. The processing additionally can include comparing said another acoustic time-response with said PNB-negative time-response, when said comparison is negative, additionally outputting notification indicia usable by said caregiver to determine the presence of said unwanted cells at the increased depth in said tissue at said measurement site, and repeating said additionally determining, comparing and outputting until said additional comparing is positive.
In some embodiments of the present disclosure, a noninvasive real-time process to determine a presence, a location and a depth of cancer in tissue using plasmonic nanobubbles (“PNBs”) is disclosed. The process can include administering bioconjugated nanoparticles to a patient, the bioconjugated nanoparticles comprising a plurality of nanoparticles and a plurality of bonded cancer-specific or tumor-associated vasculature-specific ligands; emitting with a laser source a laser pulse at an energy to tissue at a measurement site of said patient to generate a group of PNBs; detecting with a detector one or more pressure pulses from said group of PNBs; transmitting to a signal processor signals responsive to said detected sounds; processing with said signal processor said signal, said processing including determining a time-response; comparing the time-response to a threshold; when said time-response is less than said threshold, outputting indicia to a monitor reviewed by a caregiver, said indicia usable to conclude cancer cells exist in said tissue at a depth; and when said time-response is less than said threshold, increasing said energy of said laser pulse and repeating said detecting, transmitting, and said processing to determine whether said cancer cells exist in said tissue at an increase of said depth.
In some embodiments of the present disclosure, a system usable in the resection of cancer cells or microtumors that improves therapeutic efficacy and reduced morbidity of standard surgery is disclosed. The system can include a source of electromagnetic radiation, a PNB probe configured to irradiate tissue of a patient including bioconjugated nanoparticles to produce PNBs in said tissue, a detector configured to output a signal responsive to pressure pulses of said PNBs, and a signal processor configured to process information responsive to said signals to generate an output usable by a clinician to determine whether to resect portions of said tissue defined by a footprint of said PNB probe. Said source can be configured to, when needed, provide said PNB probe increasing levels of radiation pulses to reach increasing depths of said tissue. The system can further comprise a surgical apparatus configured to position or house said PNB probe. Said surgical apparatus can comprise a robotic surgical arm. Said surgical apparatus can comprise a laparoscopic tool. Said surgical apparatus can comprise an endoscope.
In some embodiments of the present disclosure, a process that guides a surgeon in the resection of cancer cells or microtumors is provided. The process can include irradiating with a PNB probe having a source of electromagnetic radiation tissue of a patient including bioconjugated nanoparticles to produce plasmonic nanobubbles (“PNB”) in said tissue, outputting from a detector a signal responsive to pressure pulses of said PNBs, processing with a digital signal processor information responsive to said signals; and generating an output usable by a surgeon to determine whether to resect portions of said tissue defined by a footprint of said PNB probe. Said source can be configured to, when needed, provide said PNB probe increasing levels of radiation pulses to reach increasing depths of said tissue. Said irradiating, outputting, processing, and generating can repeat with each resection of said portion of said tissue to monitor outcome of a previous resection. Said generating an output can comprise generating said output directing said surgeon to relocate said PNB probe to a different portion of said tissue. Said generating an output can comprise generating said output directing said surgeon to resect more of said portion even when said processing does not indicate detection of said PNBs. Said generating an output can comprise generating said output directing said surgeon to probe deeper into said portions of said tissue. Probing deeper can comprise said irradiating, outputting, processing, and generating using an increased energy of said radiation. Said processing using said increased energy can comprise comparing a peak-to-peak amplitude of said signals to a cancer-free signal. Said processing using said increased energy can comprise determining a time delay between an activation of said source and a detection of said pressure pulses and comparing said delay with known delay information. Said irradiating using said increased energy can comprise pulsing said source at a laser pulse fluence of between 10 and 120 mJ/cm2. Said pulsing said source at said laser pulse fluence can comprise pulsing said source at about 60 mJ/cm2. Said irradiating can comprise pulsing said source for a duration not exceeding about 100 ps. Said irradiating can comprise pulsing said source for a duration of about 30 ps. Said energy levels can exceed a PNB generation threshold.
In some embodiments of the present disclosure, a system for eliminating non-operable cancer cells or tumor-specific vasculature to improve the outcome in unresectable cases with a PNB “nano-surgery” mode is disclosed.
In some embodiments of the present disclosure, a system for eliminating non-operable unwanted cells including one or more of cancer cells or tumor-associated vasculature is disclosed. The system can comprise a source of electromagnetic radiation, a PNB probe configured to irradiate tissue of a patient including bioconjugated nanoparticles to produce plasmonic nanobubbles (“PNBs”) in said tissue, said source configured to provide said PNB probe increasing levels of radiation pulses including increasing detection-level radiation and increasing destruction-level radiation, a detector configured to output a signal responsive to pressure pulses of said PNBs, and a signal processor configured to process information responsive to said signals and to increase the level of the laser pulse energy or fluence from detection-level radiation to destruction-level radiation to selectively destroy said unwanted cells by a mechanical impact generated from an explosive effect of the PNBs. The signal processor can be further configured to increase the detection-level radiation, when needed, and correspondingly to increase the destruction-level radiation. The signal processor can be further configured to monitor destruction of said cancer cells through a peak-to-peak amplitude of an output of said signal processor. The signal processor can be further configured to cause said increase until said pressure pulses of said PNBs indicate no further cancer cells in said tissue. The detection-level radiation can exceed a PNB generation threshold. The detection-level radiation can be between 10 and 120 mJ/cm2 for an about 25 ps pulse. The detection-level radiation can be 60 mJ/cm2 for an about 25 ps pulse. Said destruction-level radiation is sufficient to generate PNBs with a size exceeding a cancer cell damage threshold. At least some PNBs of the system can be of a size exceeding a cancer cell damage threshold and some PNBs can be of a size below a cancer damage threshold after said destruction-level radiation. The destruction-level radiation can be between 40 and 400 mJ/cm2 for an about 25 ps pulse. The destruction-level radiation can be 120 mJ/cm2 for an about 25 ps pulse. The source can be configured to provide said radiation pulses with a duration not exceeding about 100 ps. The source can be configured to provide said radiation pulses with a duration of about 30 ps. The signal processor can be further configured to generate an output directing a surgeon to relocate said PNB probe to a different portion of said tissue. The signal processor can be further configured to generate an output directing a surgeon to increase the level of the laser pulse energy or fluence from said detection-level radiation to said destruction-level radiation even when said output does not indicate detection of said PNBs. The signal processor can be further configured to generate an output directing a surgeon to probe deeper into said portions of said tissue. Probing deeper can comprise increasing said detection-level radiation. The bioconjugated nanoparticles can be configured to produce PNBs in cancer cells. The bioconjugated nanoparticles can be configured to produce PNBs in tumor-associated vasculature. The bioconjugated nanoparticles can be configured to produce PNBs in one or more of cancer cells or tumor-associated vasculature, wherein a first group of bioconjugated nanoparticles can be configured to attach to and cluster in said cancer cells and a second group of bioconjugated nanoparticles can be configured to attach to and cluster in said tumor-associated vasculature. The first and second groups of bioconjugated nanoparticles can be the same. The first and second groups of bioconjugated nanoparticles can be different.
In some embodiments, a cancer detection system configured to noninvasively determine a presence of unwanted cancerous material in tissue using plasmonic nanobubbles (“PNBs”) is disclosed, said cancer detection system returning post-electronic processing results to an operator at least at each measurement site during a cancer detection procedure. Said cancer detection system can comprise a plurality of bioconjugated nanoparticles configured to be administered to a patient at a predetermined time prior to said cancer detection procedure, the bioconjugated nanoparticles comprising a plurality of nanoparticles and a plurality of cancerous material-specific ligands configured to attach to and cluster in said unwanted cancerous material; a source of electromagnetic radiation configured to provide a plurality of radiation pulses at a plurality of energy levels to said tissue at said measurement site; and an acoustic detector configured to output signals responsive to a plurality of pressure pulses emitted by PNBs from at least some of the bioconjugated nanoparticles when said tissue includes said unwanted cancerous material; and one or more signal processors operably communicating with said acoustic detector and configured to receive said output signals or one or more pre-processed signals responsive to said signals, configured to electronically process said signals or said one or more pre-processed signals, and configured to notify said operator with a result of said processing at each measurement site, said processing including determining a first acoustic time-response responsive to said signals or said pre-processed signals corresponding to one or more of said pulses of said source at a first energy level; comparing said first acoustic time-response with a PNB-negative time-response to determine a detection of the PNBs; and when a sufficient amount of said presence is determined, returning a positive result for said presence of said unwanted cancerous material. The system can be configured to noninvasively determine a depth of unwanted cancerous material, wherein said one or more signal processors electronically process said signals or said one or more pre-processed signals. The processing can further include determining another acoustic time-response responsive to said signals or said pre-processed signals corresponding to one or more of said pulses of said source at an increased energy level, the increased energy level configured to cause said pulses of said source to reach tissue at an increased depth; comparing said another acoustic time-response with said PNB-negative time-response; when said comparison is negative, additionally returning a positive result for said presence of said unwanted cancerous material at the increased depth in said tissue at said measurement site; and repeating said determining using said increasing energy levels, comparing and returning until said additional comparing is positive and said one or more processors return a negative result for said unwanted cancerous material at the increased depth. Said cancerous material can include cancer cells, cancerous microtumors, or cancerous tumor associated vasculature. Said source can provide said plurality of said pulses, at least some of said pulses provided at wavelengths between about 600 and about 1,500 nm. Said source can provide said plurality of said pulses, at least some of said pulses provided at a wavelength of about 782 nm. Said source can provide said plurality of said pulses, at least some of said pulses having a duration not exceeding about 100 ps. Said duration can be about 30 ps. The system can further comprise a medical apparatus configured to position or house said source. Said medical apparatus can comprise a robotic arm. Said medical apparatus can comprise a laparoscopic tool. Said medical apparatus can comprise an endoscope. The cancerous material-specific ligands can comprise an antibody. The antibody can comprise different antibodies.
In some embodiments, a noninvasive process to determine cancer in tissue using plasmonic nanobubbles (“PNBs”) is disclosed. Said process can comprise administering bioconjugated nanoparticles to a patient, the bioconjugated nanoparticles comprising a plurality of nanoparticles and a plurality of bonded cancer-specific or tumor-associated vasculature-specific ligands; emitting from a laser source a laser pulse at an energy to tissue at a measurement site of said patient; detecting with a detector one or more pressure pulses from a group of PNBs, if any, responsive to said laser pulse; electronically processing with one or more signal processors, one or more signals responsive to said detecting, said processing can include electronically determining a time-response; electronically comparing the time-response to a threshold; and when said time-response is greater than said threshold, outputting indicia to a monitor, said indicia usable to conclude one or more of cancer cells or tumor-specific vasculature exist in said tissue. When said time-response is greater than said threshold, the process can further comprise increasing said energy of said laser pulse and repeating said detecting, transmitting, and said processing to determine whether said cancer cells or tumor-specific vasculature exist in said tissue at an increase of said depth. Said repeating can terminate when said time-response is less than said threshold. When said time-response is greater than said threshold, the process can further comprise generating an output usable by a surgeon to determine whether to resect portions of said tissue defined by a footprint of said PNB probe. Said emitting, outputting, processing, and generating can repeat with each resection of said portion of said tissue.
The drawings and following associated descriptions are provided to illustrate embodiments of the present disclosure and do not limit the scope of the claims. Corresponding numerals indicate corresponding parts.
Aspects of the disclosure are provided with respect to the figures and various embodiments. One of skill in the art will appreciate, however, that other embodiments and configurations of the devices and methods disclosed herein will still fall within the scope of this disclosure even if not described in the same detail as some other embodiments. Aspects of various embodiments discussed do not limit scope of the disclosure herein, which is instead defined by the claims following this description.
The term “energy” in this disclosure includes its broad ordinary meaning understood by an artisan, and also is shorthand for “fluence,” which has its broad ordinary meaning understood by an artisan to include energy per area squared.
Combining the intraoperative detection of single cancer cells in a surgical bed, real-time elimination of MRD and prediction of the surgical outcome is the ultimate desire for surgical oncologists. Embodiments of this disclosure can achieve this and other multi-functionality through a PNB technology with high cancer cell sensitivity, specificity, speed and translational potential.
The application of plasmonic nanobubbles (PNBs) technology to target cancer cells ex vivo has been described, for example, in U.S. Pat. No. 7,999,161 to Oraevsky et al., the contents of which are incorporated herein by reference in their entirety.
Cancer Cell Detection and Elimination
Turning to
With continued reference to
For example, a plurality of laser pulses can be applied in succession at the same location on a patient, each pulse having a higher level of energy than a previous pulse to reach deeper in the tissue. As shown in
The process as illustrated in
This multi-pulse diagnosis process can be used at a diagnostic stage or intraoperatively during an onco-surgery. At the diagnostic stage, the multi-pulse diagnosis process can inform a clinician if the tumor is superficial or subcutaneous, potentially influencing the adoption of treatment modes. In a surgery, PNBs can not only detect deeper tumors, but also indicate the depth of the tumor, thus helping a surgeon to plan the follow-up resection. Furthermore, the PNB generation depth via the time-delay from the laser pulse can be independently monitored in addition to the peak-to-peak amplitude of the PNB spike in the time-response (obtained under specific level of the laser fluence). This diagnosis process also does not require time-consuming signal reconstruction (unlike photoacoustic or tomographic diagnostic processes) because both the PNB signal amplitude and time-delay can be directly read from the primary signal (time-response).
In some embodiments, the laser pulse can have a constant fluence or energy level during a diagnosis or PNB detection procedure. One or more of the following can be varied for probing cancer cells at different depths when the laser pulse is kept at the same fluence or energy level: cluster size of the nanoparticles, type of cancer-specific ligands, or a combination thereof. Cluster size of the nanoparticles formed inside the cancer cells can be controlled by varying one or more of nanoparticle composition (solid or hollow), shape, size, or a combination thereof. In this application, the size of nanoparticle may vary from about 10 nm to about 400 nm. The nanoparticles may have various shapes, including but not limited to a solid sphere, a hollow sphere, solid or hollow structures of different shape such as cube, pyramid, or irregular shape. The nanoparticles can be gold nanoparticles, or of other suitable materials, which may be chosen by a skilled artisan in view of the disclosure herein. The cancer-specific ligands in this disclosure can include but are not limited to antibody, peptide(s), aptamer(s), or any molecular ligand.
In some embodiments, a plurality of acoustic detectors can be placed at various locations around the tissue. If cancer cells are present, time-responses from the plurality of acoustic detectors can be used to provide estimated location of the cancer cells in a two-dimensional or three-dimensional manner. For example, a depth and lateral positions of the cancer cells can be estimated.
The threshold fluence for detecting the PNB can depend on the tumor and nanoparticle properties. The value of the detection threshold fluence may also be affected by levels of aggressiveness of the cancer cells. For example, a low laser pulse threshold fluence of PNB generation and detection can indicate highly aggressive cancer cells, whereas an increased threshold fluence can indicate less aggressive cells, including indolent cancer cells. This is because highly aggressive cancer cells can have a greater amount of energy available for internalizing the bioconjugated nanoparticles and therefore can form large clusters of nanoparticles inside the highly aggressive cancer cells. In contrast, less aggressive or indolent cancer cells may form medium-sized nanoparticle clusters inside these cells, and normal or non-cancer cells may only non-specifically internalize single nanoparticles. As described above, the PNB size, measured by its lifetime, can be determined by the nanoparticle cluster size. Therefore, a lower laser pulse fluence can generate a detectable PNB in the highly aggressive cancer cells. A higher laser pulse fluence can generate a detectable PNB in the less aggressive cancer cells. And a still higher laser pulse fluence can generate a detectable PNB in the normal cells. Additional details of the relationship of PNB generation threshold fluence and the aggressiveness of the cancer cells are described in Lukianova-Hleb, Ekaterina Y., et al., “On-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubbles,” Nature medicine 20.7 (2014): 778-784, the entirety of which is incorporated herein by reference.
The lower PNB generation threshold fluence of highly aggressive cancer cells than less aggressive cancer cells can provide an advantage of using PNBs for cancer detection and removal. Specifically, in traditional forms of cancer treatment, such as chemotherapy, the highly aggressive cancer cells can be more resistant to the treatment than the less aggressive cancer cells. In the embodiments of the disclosure herein, the highly aggressive cancer cells are more susceptible to detection and destruction (see below) because a lower laser pulse fluence is required to generate PNBs in the highly aggressive cancer cells.
Turning to
In some embodiments, laser pulses of a plurality of wavelengths can be applied to a location on a patient in the presence of bioconjugated nanoparticles. As described above, laser pulse wavelength for generating PNBs can depend on the type of tumor and nanoparticles. For example, PNBs of a first size can be generated in a first group of cancer cells having clusters of a first type of nanoparticles by exposure laser pulse(s) of a first wavelength, and PNBs of a second size can be generated in a second group of cancer cells having clusters of a second type of nanoparticles by exposure to laser pulse(s) of a second wavelength. In some embodiments, the first and second groups of cancer cells differ in level of aggressiveness. In some embodiments, the first and second types of cancer cells differ in types. In some embodiments, the first and second groups of cancer cells differ in both aggressiveness and types. In some embodiments, laser pulse(s) of the first and second wavelengths can be applied simultaneous to cells pre-treated with the first and second types of nanoparticles. If both the first and second groups of cancer cells are present, a synergistic PNB that is greater in size than a summation of the first and second sizes can be detected. If only one of the first and second groups of cancer cells are present, only the PNB of the first or second size can be detected. In some embodiments, laser pulses of more than two different wavelengths can be applied simultaneous to cells pretreated with more than two types of nanoparticles. This mechanism, also called a “rainbow” mechanism, can be configured to detect cancer cells of various types, levels of aggressiveness, or both. Additional details of the rainbow mechanism are described in Lukianova-Hleb, Ekaterina Y., et al., “Tunable plasmonic nanoprobes for theranostics of prostate cancer,” Theranostics 1 (2011): 3-17, the entirety of which is incorporated herein by reference.
An artisan will recognize from the disclosure herein that by manipulating some or all of the energy levels of one or more the laser sources, the wavelengths of one or more radiation pulses, the size, type, shape, composition, construction or the like of the nanoparticles, the method of delivery of the same to the patient, or the specific methodology of applying the laser pulses, the system may electronically determine and report a wide variety of useful information to a caregiver, including existence, location, or depth of unwanted tissue, type of unwanted tissue, or characteristics of the unwanted tissue including a measure of aggressiveness, and the like.
More specifically,
The procedure at the step 536 can be a standard “macro” surgery using the macro-surgical resection tool 228 (
In the case of a PNB-positive time-response, the same location where the PNB-positive time-response was detected can be exposed to additional laser pulses of EDestruction, for example, at about 40 to 400 mJ/cm2, to cause destruction of the detected cancer cells by explosive effect of the PNBs. In some embodiments, laser pulses at maximal safe energy can be applied to cause maximal destruction of detected residual cancer cells by PNBs without affecting neighboring healthy tissues. The PNB nano-surgery can also be monitored in real time via the PNB signals using the diagnosis process described above and the “detect PNB-nanosurgery-detect PNB” loop can be repeated until the time-response reports no PNBs (indicating all cancer cells have been destroyed).
In an embodiment of the present invention, options can be available in the case of a PNB-negative signal from the first single laser pulse. One option is to move the PNB probe to a new location. Another option is to apply cell destruction-level laser pulse fluence to ensure removal of residual cancer cells at a margin of the primary section. Yet another option is to apply additional pulses of increasing energy levels to reach deeper into the tissue. A person of ordinary skill in the art will recognize from the disclosure herein still other options. In one embodiment, a caregiver chooses from the three options. In another embodiment, a computer program chooses from the options by comparing the time-response with a threshold or a look-up table. For unresectable therapy-resistant tumors or MRD, the PNB-induced selective mechanical destruction of residual cancer cells not only improves the surgical outcome, but can also replace toxic chemo- and radiation therapies, thus improving the quality of patients' life and making surgical treatment possible for currently ineligible patients.
Tumor Micro Environment (TME) Detection & Elimination
Cancer cells can sometimes survive even after the macro- and nano-surgery described herein. The tumor micro-environment (“TME”) can also survive with these cancer cells. The TME can include non-tumor targets that are biologically associated with a tumor, such as tumor-specific blood vasculature and other components that are understood by one of ordinary skill in the art. As shown in
Embodiments of TME detection and elimination using the PNB technology will now be described using tumor-specific vasculature as an example, although a skilled artisan will understand from the description herein that the embodiments of TME detection and elimination disclosed herein can be applied to any type of TME. Tumor-specific vasculature can differ from normal blood vessels, such as by expressing on the wall of the vessel tumor-specific receptors. Examples of tumor-specific receptors on the vessel wall can include VEGF-A, VCAM-1, avb3 integrins, and the like. By administrating nanoparticles conjugated to the vascular-specific ligand that target these receptors, the PNB technology described above for detecting and eliminating cancer cells can be used to detect and eliminate the tumor-specific vasculature. More specifically, as shown in
The process as illustrated in
Combination of Cancer Cell and TME Detection and Elimination
In some embodiments, in addition to using the PNB-induced destruction of the TME as a stand-alone treatment, the PNB-induced destruction of the tumor-specific vasculature and disruption of the blood supply and flow can be an intra-operative adjuvant treatment to the direct treatment of unresectable/residual tumors. As shown in
The process as illustrated in
Examples of aspects of the embodiments of the present disclosure will now be described. More details of aspects of the embodiments of the present disclosure are provided in Appendices A and B.
HNSCC is a very aggressive and lethal cancer whose surgery is challenged by resectable and unresectable MRD which later often cause lethal local recurrence. This cancer was modelled with aggressive and resistant HN31 cells obtained from J. Myers' laboratory, UT MD Anderson Cancer Center (Houston, TX) and tested for Mycoplasma contamination before their use. HNSCC overexpress Epidermal Growth Factor Receptor, against which there is a clinically-approved antibody, Panitumumab. Four cancer models of increasing complexity were used. To verify acoustic detection of PNBs, intact or gold conjugate-pretreated HNSCC cells in transparent media (model 1) were used. To study acoustic detection of cancer cells in solid tissue (model 2), a precise amount of gold conjugate-pretreated cancer cells was injected into a specific depth of a chicken breast with a nano-syringe. In the 3rd, in vivo model (model 3), pretreated and intact cancer cells were similarly injected into the surgical bed of anesthetized mice (athymic nude, strain CRL-490, 6 weeks age). To study the intraoperative detection and elimination of MRD (model 4), a deeply-seeded xenograft HNSCC tumor was established in the mouse. The tumor was grown to 5-6 mm size to ensure its infiltration into the normal tissue underneath and to achieve a mature vascularization (important for the systemic delivery of gold conjugates). To establish MRD intraoperatively, the tumor was grossly resected using aseptic surgery. The nest of the resected primary tumor was considered to have MRD as had been verified previously by observing almost 100% local recurrence after resecting the primary tumor. The area of the surgical bed outside a >3 mm margin around the tumor nest was considered as MRD-negative location. Presence of MRD after resection of the primary tumor was confirmed with standard pathology, such as H&E staining in
To form in vivo intracellular clusters of gold colloids as PNB sources, several universal and previously verified mechanisms were used: leaky tumor micro-vasculature and the small size of the gold colloid conjugates (60 nm spheres) enable them to reach the tumor with the help of an effect called “enhanced permeability and retention” as shown in
The low doses of gold colloids employed are associated with negligible systemic toxicity. 60 nm spheres (NanoComposix, Inc, San Diego, CA) were used to covalently conjugate (VanPelt Biosciences LLC (Ijamsville, MD)) to the clinically-approved anti-Epidermal Growth Factor Receptor antibody, Panitumumab (Vectibix, Amgen Inc., Thousand Oaks, CA). This antibody is used in clinic against HNSCC. To form gold clusters in vitro, gold conjugates were incubated with cells for 24 h under physiological conditions at the concentration of gold conjugate suspension corresponding to the optical density of 0.08 (measured at the maximum of the optical spectrum as shown in
As a result of this optimization, the following optimal combination was determined: primary tumors should be above 5 mm, and Panitumumab antibody should be used to target gold, 24 hours are required to achieve clustering, and 60 nm gold spheres at a dose of 4 mg/kg.
The toxicity of gold conjugates in vivo has been measured short term (24 and 72 h after administration) and long term (over 1 month). Three animals were studied for each time-point. To determine short-term toxicity, the harvested liver, kidney, spleen and lung were analyzed for necrosis, apoptosis and other standard signs of toxicity via standard pathology. The harvested organs (kidney, lung, liver, heart) were placed in 10% neutral buffered formalin and fixed for up to 48 hours. Organs were then processed routinely and coil sections were stained with hematoxylin and eosin (H&E). Sections were examined by a board certified veterinary pathologist. Regions of normal tumor/organ and necrotic tumor/organ were delineated. The metric of tissue damage was the % of necrosis, defined as the ratio of the area of grossly necrotic tissue to the total area of tissue in a given section. Long-term toxicity was monitored by measuring animal weight and behavior. More sophisticated methods were not applied because the gold nanoparticles and their low doses used were safe: no signs of toxicity were observed for the period >2 months. The short- and long-term toxicity in vivo was verified. The histological evaluation of organs harvested at 24 h and 72 h from intact and gold-treated mice (
PNBs were generated around clusters of gold spheres with single near-infrared laser (NIR) pulses (782 nm, 30 ps, Ekspla PL2251/OPG03, Ekspla UAB, Lithuania). As shown in
The laser fluence was measured through the acquisition of the beam image in the target plane (to obtain the beam diameter, we used the imagers Andor Luca EMCDD (Andor technology Ltd, Belfast, UK) and Spiricon (Ophir-Spiricon LLC, N. Logan, UT) and pulse energy meter (Ophir-Spiricon LLC, N. Logan, UT). Single cell experiments used a photothermal microscope. In the in vivo experiments, the laser pulse was delivered to the tissue via a custom endoscope in an experimental setup as shown in
To detect PNBs optically with a single PNB sensitivity and resolution, an optical scattering method was used. A continuous probe laser beam (633 nm, 05-STP-901, Melles Griot, Rochester, NY) was focused on the PNB source and its axial intensity was monitored after the object with a high-speed photodetector (FPD 510-FV, Menlo Systems GmbH, Martinsried, Germany) connected to a digital oscilloscope (LeCroy 42×s, Teledyne LeCroy, Chestnut Ridge, NY). The vapor-liquid boundary of a PNB scatters the incident probe laser beam thus reducing its axial intensity. The expansion and collapse of a PNB creates a specific dip-shaped pattern in the time-response of the intensity of the probe laser to a single pump laser pulse. Its duration, or lifetime, characterizes the maximal diameter of a PNB. This method directly detects individual PNBs, but only in optically transparent media.
To detect PNBs in opaque tissue (
To establish a PNB diagnostic mechanism, PNBs were first generated and detected in individual gold-pretreated (60 nm spheres conjugated to Panitumumab) HNSCC cells in transparent media. PNBs were simultaneously detected optically and acoustically in response to a single laser pulse (782 nm, 30 ps) of variable fluence above the PNB generation threshold (which was found to be 10-15 mJ/cm2 for gold-pretreated HNSCC cells). Above the threshold fluence, the optical signal typical for PNBs (
Next, transparent cell media was replaced by a chicken breast to model intraoperative conditions of solid tissue (
Individual gold-pretreated or intact cancer cells (3 and 10) were injected to the depth of 1 mm into the surgical bed of an anesthetized mouse (
The single pulse diagnosis processes described above are limited in solid tissues by the strong optical attenuation of the laser fluence with the tissue depth. In most of the experiments, single pulses were used at a single level of laser fluence. This is sufficient for the diagnostics of superficial MRD in surgical margins within 1-2 mm depth (which is still better than any of optical diagnosis processes whose sensitivity is limited by tens of micrometers of solid tissue depth for microscopic tumors or single cancer cells). To better accommodate the laser fluence attenuation in deeper tissues, the diagnosis process was further modified by applying two pulses in the same location, the next pulse having a higher fluence (
The intraoperative application of PNBs depends upon the successful clustering of gold conjugates in cancer cells. In this example, systemic mechanism of in vivo gold clustering was optimized. For the combination of 60 nm gold spheres covalently conjugated to Panitumumab antibody (
Twenty-four hours after systemic administration of gold conjugates, PNBs were applied for the intraoperative detection and elimination of MRD in animal groups that modelled resectable and unresectable MRD. After gross resection of the primary tumor (
In Group 2 (unresectable MRD), after resecting the primary tumor, the surgical bed was scanned with PNB probe and acoustic time-responses to each pulse were collected in real time (see the surgical process shown in
PNB-guided surgery of resectable MRD was tested in Group 3 (see the surgical process shown in
In these examples, PNBs demonstrated the unique intraoperative combination of both detecting and eliminating MRD. To determine the prognostic potential of intraoperative PNBs, we compared the Diagnostic Indexes for MRD-positive (
Unlike other thermal or mechanical events, the mechanical impact of PNB is localized within the cell where the PNB is generated and is precisely controlled with the fluence of the laser pulse. According to this data, a surface fluence of 70 mJ/cm2 is safe to normal cells and even allows further increase in the fluence. In the in vitro clonogenic study of HN31 and normal cells, their identical treatment with gold and laser pulses resulted in high safety and viability of normal cells up to the laser pulse fluence levels of 140 mJ/cm2 (while cancer cells were effectively destroyed with the mechanical impact of intracellular PNBs). This single cancer cell specificity of the mechanical impact of PNBs was tested in a simple experiment with the mixture of identically gold- and laser-treated normal and HNSCC cells. In this experiment, cancer and normal cells were identically pretreated in vitro with gold conjugates as described above, and 24 h later were mixed and exposed to a single broad laser pulse (which simultaneously irradiated both normal and cancer cells). Only a cancer cell explodes while adjacent normal cells remain intact and survive the laser impact and the generation of the PNB in cancer cell. This cluster-threshold PNB mechanism was verified in vivo in the primary tumor model described above. The gold cluster size was correlated with PNB metrics for tumors and normal tissues: the cluster size in vivo (directly measured with TEM in the tumor and normal adjacent tissue) was correlated to the PNB lifetime in the tissue slices harvested from a tumor and normal adjacent tissue and the amplitude of acoustic time-response. Both PNB metrics revealed the high tumor specificity of PNBs which correlated to the TEM data for gold clusters. This result was in line with the dependence of the PNB generation threshold upon the gold cluster size: the lowest around large clusters (in tumors) and the highest around single nanoparticles in adjacent normal tissue. In the current study, the gold clustering method was further verified with the results of the PNB diagnostics (
As shown in the table below, multi-spectral optoacoustic tomography (MSOT) is not sensitive or fast enough to detect MRD (which can be represented by tens of cancer cells) in vivo in solid tissue in real time, and did not show a good surgical outcome in MRD applications when compared to the PNB technology for in vivo intraoperative management of MRD.
New clinically-relevant gold spheres (240 nm) were tested in HNSCC cancer cells for the generation of PNBs on the epithelial wall of the tumor-specific vasculature under excitation with a 1064 nm laser pulse. Compared to the 782 nm pulses/60 nm nanoparticles, the tissue penetration depth can be improved 2-3 fold, and technical complexity of the laser reduced by half without increasing the cost of the laser system. New nanoparticle/laser wavelength combination showed the efficacy similar to that for the combination of 782 nm laser pulses/60 nm nanoparticles, as illustrated by the lifetime of PNBs generated in cancer cells treated with standard and new combination in
Additional embodiments of the present disclosure, such as system and process for intraoperatively detecting and precisely eliminate TME including but not limited to tumor blood vasculature are provided in Appendices A and B. In one embodiment, vasculature-specific bioconjugated nanoparticles are administered to tissue. The bioconjugated nanoparticles comprise nanoparticles conjugated with vascular-specific ligands. After a predetermined time delay, such as 24 hours, laser pulses with a wavelength or fluence sufficient for creating vasculature-specific PNBs are applied to the tissue to cause destruction of tumor-vasculature.
Although the foregoing has been described in terms of certain specific embodiments, other embodiments will be apparent to those of ordinary skill in the art from the disclosure herein. Moreover, the described embodiments have been presented by way of example only, and are not intended to limit the scope of the disclosure. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms without departing from the spirit thereof. Accordingly, other combinations, omissions, substitutions, and modifications will be apparent to the skilled artisan in view of the disclosure herein. Thus, the present disclosure is not limited by the disclosed embodiments, but is defined by reference to the appended claims. The accompanying claims and their equivalents are intended to cover forms or modifications as would fall within the scope and spirit of the disclosure.
Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise”, “comprising”, and the like, are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense, that is to say, in the sense of “including, but not limited to”.
Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements, and/or steps are included or are to be performed in any particular embodiment.
Language of degree used herein, such as the terms “approximately,” “about,” “generally,” and “substantially” as used herein represent a value, amount, or characteristic close to the stated value, amount, or characteristic that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, “generally,” and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount.
The present application is a continuation of U.S. patent application Ser. No. 15/430,321, filed Feb. 10, 2017, entitled “DIAGNOSIS, REMOVAL, OR MECHANICAL DAMAGING OF TUMOR USING PLASMONIC NANOBUBBLES,” which claims priority benefit under 35 U.S.C. § 119(e) to U.S. Patent Application No. 62/294,833, entitled “INTRAOPERATIVE DIAGNOSIS OF TUMORS AND RESIDUAL MICRO-TUMORS AND TUMOR MICRO-ENVIRONMENT WITH PLASMONIC NANOBUBBLES,” filed Feb. 12, 2016, U.S. Patent Application No. 62/294,831, entitled “INTRAOPERATIVE DIAGNOSIS OF TUMORS AND RESIDUAL MICRO-TUMORS AND TUMOR MICRO-ENVIRONMENT WITH PLASMONIC NANOBUBBLES,” filed Feb. 12, 2016, and to U.S. Patent Application No. 62/294,824, entitled “INTRAOPERATIVE DIAGNOSIS OF TUMORS AND RESIDUAL MICRO-TUMORS AND TUMOR MICRO-ENVIRONMENT WITH PLASMONIC NANOBUBBLES,” filed Feb. 12, 2016; each of the foregoing applications is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4174504 | Chenausky | Nov 1979 | A |
4818710 | Sutherland | Apr 1989 | A |
4960128 | Gordon et al. | Oct 1990 | A |
4964408 | Hink et al. | Oct 1990 | A |
5319355 | Russek | Jun 1994 | A |
5337744 | Branigan | Aug 1994 | A |
5341805 | Stavridi et al. | Aug 1994 | A |
D353195 | Savage et al. | Dec 1994 | S |
D353196 | Savage et al. | Dec 1994 | S |
5377676 | Vari et al. | Jan 1995 | A |
D359546 | Savage et al. | Jun 1995 | S |
5431170 | Mathews | Jul 1995 | A |
5436499 | Namavar et al. | Jul 1995 | A |
D361840 | Savage et al. | Aug 1995 | S |
D362063 | Savage et al. | Sep 1995 | S |
D363120 | Savage et al. | Oct 1995 | S |
5456252 | Vari et al. | Oct 1995 | A |
5479934 | Imran | Jan 1996 | A |
5482036 | Diab et al. | Jan 1996 | A |
5494043 | O'Sullivan et al. | Feb 1996 | A |
5533511 | Kaspari et al. | Jul 1996 | A |
5561275 | Savage et al. | Oct 1996 | A |
5590649 | Caro et al. | Jan 1997 | A |
5602924 | Durand et al. | Feb 1997 | A |
5638816 | Kiani-Azarbayjany et al. | Jun 1997 | A |
5638818 | Diab et al. | Jun 1997 | A |
5645440 | Tobler et al. | Jul 1997 | A |
5671914 | Kalkhoran et al. | Sep 1997 | A |
5726440 | Kalkhoran et al. | Mar 1998 | A |
D393830 | Tobler et al. | Apr 1998 | S |
5743262 | Lepper, Jr. et al. | Apr 1998 | A |
5747806 | Khalil et al. | May 1998 | A |
5750994 | Schlager | May 1998 | A |
5758644 | Diab et al. | Jun 1998 | A |
5760910 | Lepper, Jr. et al. | Jun 1998 | A |
5890929 | Mills et al. | Apr 1999 | A |
5919134 | Diab | Jul 1999 | A |
5987343 | Kinast | Nov 1999 | A |
5997343 | Mills et al. | Dec 1999 | A |
6002952 | Diab et al. | Dec 1999 | A |
6010937 | Karam et al. | Jan 2000 | A |
6027452 | Flaherty et al. | Feb 2000 | A |
6040578 | Malin et al. | Mar 2000 | A |
6066204 | Haven | May 2000 | A |
6115673 | Malin et al. | Sep 2000 | A |
6124597 | Shehada et al. | Sep 2000 | A |
6128521 | Marro et al. | Oct 2000 | A |
6129675 | Jay | Oct 2000 | A |
6144868 | Parker | Nov 2000 | A |
6152754 | Gerhardt et al. | Nov 2000 | A |
6184521 | Coffin, IV et al. | Feb 2001 | B1 |
6232609 | Snyder et al. | May 2001 | B1 |
6241683 | Macklem et al. | Jun 2001 | B1 |
6253097 | Aronow et al. | Jun 2001 | B1 |
6255708 | Sudharsanan et al. | Jul 2001 | B1 |
6280381 | Malin et al. | Aug 2001 | B1 |
6285896 | Tobler et al. | Sep 2001 | B1 |
6308089 | von der Ruhr et al. | Oct 2001 | B1 |
6317627 | Ennen et al. | Nov 2001 | B1 |
6321100 | Parker | Nov 2001 | B1 |
6334065 | Al-Ali et al. | Dec 2001 | B1 |
6360114 | Diab et al. | Mar 2002 | B1 |
6368283 | Xu et al. | Apr 2002 | B1 |
6411373 | Garside et al. | Jun 2002 | B1 |
6415167 | Blank et al. | Jul 2002 | B1 |
6430437 | Marro | Aug 2002 | B1 |
6430525 | Weber et al. | Aug 2002 | B1 |
6463311 | Diab | Oct 2002 | B1 |
6470199 | Kopotic et al. | Oct 2002 | B1 |
6487429 | Hockersmith et al. | Nov 2002 | B2 |
6505059 | Kollias et al. | Jan 2003 | B1 |
6525386 | Mills et al. | Feb 2003 | B1 |
6526300 | Kiani et al. | Feb 2003 | B1 |
6534012 | Hazen et al. | Mar 2003 | B1 |
6542764 | Al-Ali et al. | Apr 2003 | B1 |
6580086 | Schulz et al. | Jun 2003 | B1 |
6584336 | Ali et al. | Jun 2003 | B1 |
6587196 | Stippick et al. | Jul 2003 | B1 |
6587199 | Luu | Jul 2003 | B1 |
6595316 | Cybulski et al. | Jul 2003 | B2 |
6597932 | Tian et al. | Jul 2003 | B2 |
6606511 | Ali et al. | Aug 2003 | B1 |
6635559 | Greenwald et al. | Oct 2003 | B2 |
6639668 | Trepagnier | Oct 2003 | B1 |
6640116 | Diab | Oct 2003 | B2 |
6640117 | Makarewicz et al. | Oct 2003 | B2 |
6658276 | Kiani et al. | Dec 2003 | B2 |
6661161 | Lanzo et al. | Dec 2003 | B1 |
6697656 | Al-Ali | Feb 2004 | B1 |
6697658 | Al-Ali | Feb 2004 | B2 |
RE38476 | Diab et al. | Mar 2004 | E |
RE38492 | Diab et al. | Apr 2004 | E |
6738652 | Mattu et al. | May 2004 | B2 |
6760607 | Al-Ali | Jul 2004 | B2 |
6788965 | Ruchti et al. | Sep 2004 | B2 |
6816241 | Grubisic | Nov 2004 | B2 |
6822564 | Al-Ali | Nov 2004 | B2 |
6850787 | Weber et al. | Feb 2005 | B2 |
6850788 | Al-Ali | Feb 2005 | B2 |
6876931 | Lorenz et al. | Apr 2005 | B2 |
6920345 | Al-Ali et al. | Jul 2005 | B2 |
6934570 | Kiani et al. | Aug 2005 | B2 |
6943348 | Coffin, IV | Sep 2005 | B1 |
6956649 | Acosta et al. | Oct 2005 | B2 |
6961598 | Diab | Nov 2005 | B2 |
6970792 | Diab | Nov 2005 | B1 |
6985764 | Mason et al. | Jan 2006 | B2 |
6990364 | Ruchti et al. | Jan 2006 | B2 |
6998247 | Monfre et al. | Feb 2006 | B2 |
7003338 | Weber et al. | Feb 2006 | B2 |
7015451 | Dalke et al. | Mar 2006 | B2 |
7027849 | Al-Ali | Apr 2006 | B2 |
D526719 | Richie, Jr. et al. | Aug 2006 | S |
7096052 | Mason et al. | Aug 2006 | B2 |
7096054 | Abdul-Hafiz et al. | Aug 2006 | B2 |
D529616 | Deros et al. | Oct 2006 | S |
7133710 | Acosta et al. | Nov 2006 | B2 |
7142901 | Kiani et al. | Nov 2006 | B2 |
7225006 | Al-Ali et al. | May 2007 | B2 |
RE39672 | Shehada et al. | Jun 2007 | E |
7230708 | Lapotko et al. | Jun 2007 | B2 |
7254429 | Schurman et al. | Aug 2007 | B2 |
7254431 | Al-Ali et al. | Aug 2007 | B2 |
7254434 | Schulz et al. | Aug 2007 | B2 |
7274955 | Kiani et al. | Sep 2007 | B2 |
D554263 | Al-Ali et al. | Oct 2007 | S |
7280858 | Al-Ali et al. | Oct 2007 | B2 |
7289835 | Mansfield et al. | Oct 2007 | B2 |
7292883 | De Felice et al. | Nov 2007 | B2 |
7341559 | Schulz et al. | Mar 2008 | B2 |
7343186 | Lamego et al. | Mar 2008 | B2 |
D566282 | Al-Ali et al. | Apr 2008 | S |
7356365 | Schurman | Apr 2008 | B2 |
7371981 | Abdul-Hafiz | May 2008 | B2 |
7373193 | Al-Ali et al. | May 2008 | B2 |
7377794 | Al-Ali et al. | May 2008 | B2 |
7395158 | Monfre et al. | Jul 2008 | B2 |
7415297 | Al-Ali et al. | Aug 2008 | B2 |
7438683 | Al-Ali et al. | Oct 2008 | B2 |
7483729 | Al-Ali et al. | Jan 2009 | B2 |
D587657 | Al-Ali et al. | Mar 2009 | S |
7500950 | Al-Ali et al. | Mar 2009 | B2 |
7509494 | Al-Ali | Mar 2009 | B2 |
7510849 | Schurman et al. | Mar 2009 | B2 |
7514725 | Wojtczuk et al. | Apr 2009 | B2 |
7519406 | Blank et al. | Apr 2009 | B2 |
D592507 | Wachman et al. | May 2009 | S |
7530942 | Diab | May 2009 | B1 |
7593230 | Abul-Haj et al. | Sep 2009 | B2 |
7596398 | Al-Ali et al. | Sep 2009 | B2 |
7606608 | Blank et al. | Oct 2009 | B2 |
7620674 | Ruchti et al. | Nov 2009 | B2 |
D606659 | Kiani et al. | Dec 2009 | S |
7629039 | Eckerbom et al. | Dec 2009 | B2 |
7640140 | Ruchti et al. | Dec 2009 | B2 |
7647083 | Al-Ali et al. | Jan 2010 | B2 |
D609193 | Al-Ali et al. | Feb 2010 | S |
D614305 | Al-Ali et al. | Apr 2010 | S |
7697966 | Monfre et al. | Apr 2010 | B2 |
7698105 | Ruchti et al. | Apr 2010 | B2 |
RE41317 | Parker | May 2010 | E |
RE41333 | Blank et al. | May 2010 | E |
7729733 | Al-Ali et al. | Jun 2010 | B2 |
7761127 | Al-Ali et al. | Jul 2010 | B2 |
7764982 | Dalke et al. | Jul 2010 | B2 |
D621516 | Kiani et al. | Aug 2010 | S |
7791155 | Diab | Sep 2010 | B2 |
RE41912 | Parker | Nov 2010 | E |
7880626 | Al-Ali et al. | Feb 2011 | B2 |
7909772 | Popov et al. | Mar 2011 | B2 |
7919713 | Al-Ali et al. | Apr 2011 | B2 |
7937128 | Al-Ali | May 2011 | B2 |
7937129 | Mason et al. | May 2011 | B2 |
7941199 | Kiani | May 2011 | B2 |
7957780 | Lamego et al. | Jun 2011 | B2 |
7962188 | Kiani et al. | Jun 2011 | B2 |
7976472 | Kiani | Jul 2011 | B2 |
7990382 | Kiani | Aug 2011 | B2 |
7999161 | Oraevsky et al. | Aug 2011 | B2 |
8008088 | Bellott et al. | Aug 2011 | B2 |
RE42753 | Kiani-Azarbayjany et al. | Sep 2011 | E |
8028701 | Al-Ali et al. | Oct 2011 | B2 |
8048040 | Kiani | Nov 2011 | B2 |
8050728 | Al-Ali et al. | Nov 2011 | B2 |
RE43169 | Parker | Feb 2012 | E |
8118620 | Al-Ali et al. | Feb 2012 | B2 |
8130105 | Al-Ali et al. | Mar 2012 | B2 |
8182443 | Kiani | May 2012 | B1 |
8190223 | Al-Ali et al. | May 2012 | B2 |
8203438 | Kiani et al. | Jun 2012 | B2 |
8203704 | Merritt et al. | Jun 2012 | B2 |
8219172 | Schurman et al. | Jul 2012 | B2 |
8224411 | Al-Ali et al. | Jul 2012 | B2 |
8229532 | Davis | Jul 2012 | B2 |
8233955 | Al-Ali et al. | Jul 2012 | B2 |
8243272 | Adams | Aug 2012 | B2 |
8255026 | Al-Ali | Aug 2012 | B1 |
8265723 | McHale et al. | Sep 2012 | B1 |
8274360 | Sampath et al. | Sep 2012 | B2 |
8280473 | Al-Ali | Oct 2012 | B2 |
8315683 | Al-Ali et al. | Nov 2012 | B2 |
RE43860 | Parker | Dec 2012 | E |
8346330 | Lamego | Jan 2013 | B2 |
8353842 | Al-Ali et al. | Jan 2013 | B2 |
8355766 | MacNeish, III et al. | Jan 2013 | B2 |
8374665 | Lamego | Feb 2013 | B2 |
8388353 | Kiani et al. | Mar 2013 | B2 |
8401602 | Kiani | Mar 2013 | B2 |
8414499 | Al-Ali et al. | Apr 2013 | B2 |
8418524 | Al-Ali | Apr 2013 | B2 |
8428967 | Olsen et al. | Apr 2013 | B2 |
8430817 | Al-Ali et al. | Apr 2013 | B1 |
8437825 | Dalvi et al. | May 2013 | B2 |
8455290 | Siskavich | Jun 2013 | B2 |
8457707 | Kiani | Jun 2013 | B2 |
8471713 | Poeze et al. | Jun 2013 | B2 |
8473020 | Kiani et al. | Jun 2013 | B2 |
8509867 | Workman et al. | Aug 2013 | B2 |
8515509 | Bruinsma et al. | Aug 2013 | B2 |
8523781 | Al-Ali | Sep 2013 | B2 |
D692145 | Al-Ali et al. | Oct 2013 | S |
8571617 | Reichgott et al. | Oct 2013 | B2 |
8571618 | Lamego et al. | Oct 2013 | B1 |
8571619 | Al-Ali et al. | Oct 2013 | B2 |
8577431 | Lamego et al. | Nov 2013 | B2 |
8584345 | Al-Ali et al. | Nov 2013 | B2 |
8588880 | Abdul-Hafiz et al. | Nov 2013 | B2 |
8630691 | Lamego et al. | Jan 2014 | B2 |
8641631 | Sierra et al. | Feb 2014 | B2 |
8652060 | Al-Ali | Feb 2014 | B2 |
8666468 | Al-Ali | Mar 2014 | B1 |
8670811 | O'Reilly | Mar 2014 | B2 |
RE44823 | Parker | Apr 2014 | E |
RE44875 | Kiani et al. | Apr 2014 | E |
8688183 | Bruinsma et al. | Apr 2014 | B2 |
8690799 | Telfort et al. | Apr 2014 | B2 |
8702627 | Telfort et al. | Apr 2014 | B2 |
8712494 | MacNeish, III et al. | Apr 2014 | B1 |
8715206 | Telfort et al. | May 2014 | B2 |
8723677 | Kiani | May 2014 | B1 |
8740792 | Kiani et al. | Jun 2014 | B1 |
8755535 | Telfort et al. | Jun 2014 | B2 |
8755872 | Marinow | Jun 2014 | B1 |
8764671 | Kiani | Jul 2014 | B2 |
8768423 | Shakespeare et al. | Jul 2014 | B2 |
8771204 | Telfort et al. | Jul 2014 | B2 |
8781544 | Al-Ali et al. | Jul 2014 | B2 |
8790268 | Al-Ali | Jul 2014 | B2 |
8801613 | Al-Ali et al. | Aug 2014 | B2 |
8821397 | Al-Ali et al. | Sep 2014 | B2 |
8821415 | Al-Ali et al. | Sep 2014 | B2 |
8830449 | Lamego et al. | Sep 2014 | B1 |
8840549 | Al-Ali et al. | Sep 2014 | B2 |
8852094 | Al-Ali et al. | Oct 2014 | B2 |
8852994 | Wojtczuk et al. | Oct 2014 | B2 |
8897847 | Al-Ali | Nov 2014 | B2 |
8911377 | Al-Ali | Dec 2014 | B2 |
8989831 | Al-Ali et al. | Mar 2015 | B2 |
8998809 | Kiani | Apr 2015 | B2 |
9066666 | Kiani | Jun 2015 | B2 |
9066680 | Al-Ali et al. | Jun 2015 | B1 |
9095316 | Welch et al. | Aug 2015 | B2 |
9106038 | Telfort et al. | Aug 2015 | B2 |
9107625 | Telfort et al. | Aug 2015 | B2 |
9131881 | Diab et al. | Sep 2015 | B2 |
9138180 | Coverston et al. | Sep 2015 | B1 |
9153112 | Kiani et al. | Oct 2015 | B1 |
9155497 | Plumley et al. | Oct 2015 | B1 |
9192329 | Al-Ali | Nov 2015 | B2 |
9192351 | Telfort et al. | Nov 2015 | B1 |
9195385 | Al-Ali et al. | Nov 2015 | B2 |
9211095 | Al-Ali | Dec 2015 | B1 |
9218454 | Kiani et al. | Dec 2015 | B2 |
9245668 | Vo et al. | Jan 2016 | B1 |
9267572 | Barker et al. | Feb 2016 | B2 |
9277880 | Poeze et al. | Mar 2016 | B2 |
9307928 | Al-Ali et al. | Apr 2016 | B1 |
9323894 | Kiani | Apr 2016 | B2 |
D755392 | Hwang et al. | May 2016 | S |
9326712 | Kiani | May 2016 | B1 |
9392945 | Al-Ali et al. | Jul 2016 | B2 |
9408542 | Kinast et al. | Aug 2016 | B1 |
9436645 | Al-Ali et al. | Sep 2016 | B2 |
9445759 | Lamego et al. | Sep 2016 | B1 |
9474474 | Lamego et al. | Oct 2016 | B2 |
9480435 | Olsen | Nov 2016 | B2 |
9510779 | Poeze et al. | Dec 2016 | B2 |
9517024 | Kiani et al. | Dec 2016 | B2 |
9532722 | Lamego et al. | Jan 2017 | B2 |
9560996 | Kiani | Feb 2017 | B2 |
9579039 | Jansen et al. | Feb 2017 | B2 |
9622692 | Lamego et al. | Apr 2017 | B2 |
D788312 | Al-Ali et al. | May 2017 | S |
9649054 | Lamego et al. | May 2017 | B2 |
9697928 | Al-Ali et al. | Jul 2017 | B2 |
9717458 | Lamego et al. | Aug 2017 | B2 |
9724016 | Al-Ali et al. | Aug 2017 | B1 |
9724024 | Al-Ali | Aug 2017 | B2 |
9724025 | Kiani et al. | Aug 2017 | B1 |
9749232 | Sampath et al. | Aug 2017 | B2 |
9750442 | Olsen | Sep 2017 | B2 |
9750461 | Telfort | Sep 2017 | B1 |
9775545 | Al-Ali et al. | Oct 2017 | B2 |
9778079 | Al-Ali et al. | Oct 2017 | B1 |
9782077 | Lamego et al. | Oct 2017 | B2 |
9787568 | Lamego et al. | Oct 2017 | B2 |
9808188 | Perea et al. | Nov 2017 | B1 |
9839379 | Al-Ali et al. | Dec 2017 | B2 |
9839381 | Weber et al. | Dec 2017 | B1 |
9847749 | Kiani et al. | Dec 2017 | B2 |
9848800 | Lee et al. | Dec 2017 | B1 |
9861298 | Eckerbom et al. | Jan 2018 | B2 |
9861305 | Weber et al. | Jan 2018 | B1 |
9877650 | Muhsin et al. | Jan 2018 | B2 |
9891079 | Dalvi | Feb 2018 | B2 |
9924897 | Abdul-Hafiz | Mar 2018 | B1 |
9936917 | Poeze et al. | Apr 2018 | B2 |
9955937 | Telfort | May 2018 | B2 |
9965946 | Al-Ali et al. | May 2018 | B2 |
D820865 | Muhsin et al. | Jun 2018 | S |
9986952 | Dalvi et al. | Jun 2018 | B2 |
D822215 | Al-Ali et al. | Jul 2018 | S |
D822216 | Barker et al. | Jul 2018 | S |
10010276 | Al-Ali et al. | Jul 2018 | B2 |
10086138 | Novak, Jr. | Oct 2018 | B1 |
10111591 | Dyell et al. | Oct 2018 | B2 |
D833624 | DeJong et al. | Nov 2018 | S |
10123729 | Dyell et al. | Nov 2018 | B2 |
D835282 | Barker et al. | Dec 2018 | S |
D835283 | Barker et al. | Dec 2018 | S |
D835284 | Barker et al. | Dec 2018 | S |
D835285 | Barker et al. | Dec 2018 | S |
10149616 | Al-Ali et al. | Dec 2018 | B2 |
10154815 | Al-Ali et al. | Dec 2018 | B2 |
10159412 | Lamego et al. | Dec 2018 | B2 |
10188348 | Al-Ali et al. | Jan 2019 | B2 |
RE47218 | Al-Ali | Feb 2019 | E |
RE47244 | Kiani et al. | Feb 2019 | E |
RE47249 | Kiani et al. | Feb 2019 | E |
10205291 | Scruggs et al. | Feb 2019 | B2 |
10226187 | Al-Ali et al. | Mar 2019 | B2 |
10231657 | Al-Ali et al. | Mar 2019 | B2 |
10231670 | Blank et al. | Mar 2019 | B2 |
RE47353 | Kiani et al. | Apr 2019 | E |
10279247 | Kiani | May 2019 | B2 |
10292664 | Al-Ali | May 2019 | B2 |
10299720 | Brown et al. | May 2019 | B2 |
10327337 | Schmidt et al. | Jun 2019 | B2 |
10327713 | Barker et al. | Jun 2019 | B2 |
10332630 | Al-Ali | Jun 2019 | B2 |
10383520 | Wojtczuk et al. | Aug 2019 | B2 |
10383527 | Al-Ali | Aug 2019 | B2 |
10388120 | Muhsin et al. | Aug 2019 | B2 |
D864120 | Forrest et al. | Oct 2019 | S |
10441181 | Telfort et al. | Oct 2019 | B1 |
10441196 | Eckerbom et al. | Oct 2019 | B2 |
10448844 | Al-Ali et al. | Oct 2019 | B2 |
10448871 | Al-Ali et al. | Oct 2019 | B2 |
10456038 | Lamego et al. | Oct 2019 | B2 |
10463340 | Telfort et al. | Nov 2019 | B2 |
10471159 | Lapotko et al. | Nov 2019 | B1 |
10505311 | Al-Ali et al. | Dec 2019 | B2 |
10524738 | Olsen | Jan 2020 | B2 |
10532174 | Al-Ali | Jan 2020 | B2 |
10537285 | Shreim et al. | Jan 2020 | B2 |
10542903 | Al-Ali et al. | Jan 2020 | B2 |
10555678 | Dalvi et al. | Feb 2020 | B2 |
10568553 | O'Neil et al. | Feb 2020 | B2 |
10608817 | Haider et al. | Mar 2020 | B2 |
D880477 | Forrest et al. | Apr 2020 | S |
10617302 | Al-Ali et al. | Apr 2020 | B2 |
10617335 | Al-Ali et al. | Apr 2020 | B2 |
10637181 | Al-Ali et al. | Apr 2020 | B2 |
D886849 | Muhsin et al. | Jun 2020 | S |
D887548 | Abdul-Hafiz et al. | Jun 2020 | S |
D887549 | Abdul-Hafiz et al. | Jun 2020 | S |
10667764 | Ahmed et al. | Jun 2020 | B2 |
D890708 | Forrest et al. | Jul 2020 | S |
10721785 | Al-Ali | Jul 2020 | B2 |
10736518 | Al-Ali et al. | Aug 2020 | B2 |
10750984 | Pauley et al. | Aug 2020 | B2 |
D897098 | Al-Ali | Sep 2020 | S |
10779098 | Iswanto et al. | Sep 2020 | B2 |
10827961 | Iyengar et al. | Nov 2020 | B1 |
10828007 | Telfort et al. | Nov 2020 | B1 |
10832818 | Muhsin et al. | Nov 2020 | B2 |
10849554 | Shreim et al. | Dec 2020 | B2 |
10856750 | Indorf et al. | Dec 2020 | B2 |
D906970 | Forrest et al. | Jan 2021 | S |
D908213 | Abdul-Hafiz et al. | Jan 2021 | S |
10918281 | Al-Ali et al. | Feb 2021 | B2 |
10932705 | Muhsin et al. | Mar 2021 | B2 |
10932729 | Kiani et al. | Mar 2021 | B2 |
10939878 | Kiani et al. | Mar 2021 | B2 |
10956950 | Al-Ali et al. | Mar 2021 | B2 |
D916135 | Indorf et al. | Apr 2021 | S |
D917046 | Abdul-Hafiz et al. | Apr 2021 | S |
D917550 | Indorf et al. | Apr 2021 | S |
D917564 | Indorf et al. | Apr 2021 | S |
D917704 | Al-Ali et al. | Apr 2021 | S |
10987066 | Chandran et al. | Apr 2021 | B2 |
10991135 | Al-Ali et al. | Apr 2021 | B2 |
D919094 | Al-Ali et al. | May 2021 | S |
D919100 | Al-Ali et al. | May 2021 | S |
11006867 | Al-Ali | May 2021 | B2 |
D921202 | Al-Ali et al. | Jun 2021 | S |
11024064 | Muhsin et al. | Jun 2021 | B2 |
11026604 | Chen et al. | Jun 2021 | B2 |
D925597 | Chandran et al. | Jul 2021 | S |
D927699 | Al-Ali et al. | Aug 2021 | S |
11076777 | Lee et al. | Aug 2021 | B2 |
11114188 | Poeze et al. | Sep 2021 | B2 |
D933232 | Al-Ali et al. | Oct 2021 | S |
D933233 | Al-Ali et al. | Oct 2021 | S |
D933234 | Al-Ali et al. | Oct 2021 | S |
11145408 | Sampath et al. | Oct 2021 | B2 |
11147518 | Al-Ali et al. | Oct 2021 | B1 |
11185262 | Al-Ali et al. | Nov 2021 | B2 |
11191484 | Kiani et al. | Dec 2021 | B2 |
D946596 | Ahmed | Mar 2022 | S |
D946597 | Ahmed | Mar 2022 | S |
D946598 | Ahmed | Mar 2022 | S |
D946617 | Ahmed | Mar 2022 | S |
11272839 | Al-Ali et al. | Mar 2022 | B2 |
11289199 | Al-Ali | Mar 2022 | B2 |
RE49034 | Al-Ali | Apr 2022 | E |
11298021 | Muhsin et al. | Apr 2022 | B2 |
D950580 | Ahmed | May 2022 | S |
D950599 | Ahmed | May 2022 | S |
D950738 | Al-Ali et al. | May 2022 | S |
D957648 | Al-Ali | Jul 2022 | S |
11382567 | O'Brien et al. | Jul 2022 | B2 |
11389093 | Triman et al. | Jul 2022 | B2 |
11406286 | Al-Ali et al. | Aug 2022 | B2 |
11417426 | Muhsin et al. | Aug 2022 | B2 |
11439329 | Lamego | Sep 2022 | B2 |
11445948 | Scruggs et al. | Sep 2022 | B2 |
D965789 | Al-Ali et al. | Oct 2022 | S |
D967433 | Al-Ali et al. | Oct 2022 | S |
11464410 | Muhsin | Oct 2022 | B2 |
11504058 | Sharma et al. | Nov 2022 | B1 |
11504066 | Dalvi et al. | Nov 2022 | B1 |
D971933 | Ahmed | Dec 2022 | S |
D973072 | Ahmed | Dec 2022 | S |
D973685 | Ahmed | Dec 2022 | S |
D973686 | Ahmed | Dec 2022 | S |
D974193 | Forrest et al. | Jan 2023 | S |
D979516 | Al-Ali et al. | Feb 2023 | S |
D980091 | Forrest et al. | Mar 2023 | S |
11596363 | Lamego | Mar 2023 | B2 |
11627919 | Kiani et al. | Apr 2023 | B2 |
11637437 | Al-Ali et al. | Apr 2023 | B2 |
D985498 | Al-Ali et al. | May 2023 | S |
11653862 | Dalvi et al. | May 2023 | B2 |
D989112 | Muhsin et al. | Jun 2023 | S |
D989327 | Al-Ali et al. | Jun 2023 | S |
11678829 | Al-Ali et al. | Jun 2023 | B2 |
11679579 | Al-Ali | Jun 2023 | B2 |
11684296 | Vo et al. | Jun 2023 | B2 |
11692934 | Normand et al. | Jul 2023 | B2 |
11701043 | Al-Ali et al. | Jul 2023 | B2 |
D997365 | Hwang | Aug 2023 | S |
11721105 | Ranasinghe et al. | Aug 2023 | B2 |
11730379 | Ahmed et al. | Aug 2023 | B2 |
D998625 | Indorf et al. | Sep 2023 | S |
D998630 | Indorf et al. | Sep 2023 | S |
D998631 | Indorf et al. | Sep 2023 | S |
D999244 | Indorf et al. | Sep 2023 | S |
D999245 | Indorf et al. | Sep 2023 | S |
D999246 | Indorf et al. | Sep 2023 | S |
11766198 | Pauley et al. | Sep 2023 | B2 |
D1000975 | Al-Ali et al. | Oct 2023 | S |
11803623 | Kiani et al. | Oct 2023 | B2 |
11832940 | Diab et al. | Dec 2023 | B2 |
D1013179 | Al-Ali et al. | Jan 2024 | S |
11872156 | Telfort et al. | Jan 2024 | B2 |
11879960 | Ranasinghe et al. | Jan 2024 | B2 |
11883129 | Olsen | Jan 2024 | B2 |
D1022729 | Forrest et al. | Apr 2024 | S |
11951186 | Krishnamani et al. | Apr 2024 | B2 |
11974833 | Forrest et al. | May 2024 | B2 |
11986067 | Al-Ali et al. | May 2024 | B2 |
11986289 | Dalvi et al. | May 2024 | B2 |
11986305 | Al-Ali et al. | May 2024 | B2 |
12004869 | Kiani et al. | Jun 2024 | B2 |
12014328 | Wachman et al. | Jun 2024 | B2 |
D1036293 | Al-Ali et al. | Jul 2024 | S |
D1037462 | Al-Ali et al. | Jul 2024 | S |
12029844 | Pauley et al. | Jul 2024 | B2 |
12048534 | Vo et al. | Jul 2024 | B2 |
12064217 | Ahmed et al. | Aug 2024 | B2 |
12066426 | Lapotko et al. | Aug 2024 | B1 |
D1041511 | Indorf et al. | Sep 2024 | S |
D1042596 | DeJong et al. | Sep 2024 | S |
D1042852 | Hwang | Sep 2024 | S |
12076159 | Belur Nagaraj et al. | Sep 2024 | B2 |
12082926 | Sharma et al. | Sep 2024 | B2 |
D1044828 | Chandran et al. | Oct 2024 | S |
12106752 | Campbell et al. | Oct 2024 | B2 |
12114974 | Al-Ali et al. | Oct 2024 | B2 |
20010034477 | Mansfield et al. | Oct 2001 | A1 |
20010039483 | Brand et al. | Nov 2001 | A1 |
20020010401 | Bushmakin et al. | Jan 2002 | A1 |
20020058864 | Mansfield et al. | May 2002 | A1 |
20020133080 | Apruzzese et al. | Sep 2002 | A1 |
20030013975 | Kiani | Jan 2003 | A1 |
20030018243 | Gerhardt et al. | Jan 2003 | A1 |
20030144582 | Cohen et al. | Jul 2003 | A1 |
20030156288 | Barnum et al. | Aug 2003 | A1 |
20030212312 | Coffin, IV et al. | Nov 2003 | A1 |
20040106163 | Workman, Jr. et al. | Jun 2004 | A1 |
20050055276 | Kiani et al. | Mar 2005 | A1 |
20050234317 | Kiani | Oct 2005 | A1 |
20060073719 | Kiani | Apr 2006 | A1 |
20060189871 | Al-Ali et al. | Aug 2006 | A1 |
20060241459 | Tai | Oct 2006 | A1 |
20070073116 | Kiani et al. | Mar 2007 | A1 |
20070180140 | Welch et al. | Aug 2007 | A1 |
20070244377 | Cozad et al. | Oct 2007 | A1 |
20080064965 | Jay et al. | Mar 2008 | A1 |
20080094228 | Welch et al. | Apr 2008 | A1 |
20080103375 | Kiani | May 2008 | A1 |
20080221418 | Al-Ali et al. | Sep 2008 | A1 |
20080247425 | Welford | Oct 2008 | A1 |
20090000614 | Carrano | Jan 2009 | A1 |
20090036759 | Ault et al. | Feb 2009 | A1 |
20090093687 | Telfort et al. | Apr 2009 | A1 |
20090095926 | MacNeish, III | Apr 2009 | A1 |
20090141997 | Lee et al. | Jun 2009 | A1 |
20090247984 | Lamego et al. | Oct 2009 | A1 |
20090275844 | Al-Ali | Nov 2009 | A1 |
20090304033 | Ogilvy et al. | Dec 2009 | A1 |
20100004518 | Vo et al. | Jan 2010 | A1 |
20100030040 | Poeze et al. | Feb 2010 | A1 |
20100099964 | O'Reilly et al. | Apr 2010 | A1 |
20100121163 | Vestel et al. | May 2010 | A1 |
20100222774 | Hegg et al. | Sep 2010 | A1 |
20100234718 | Sampath et al. | Sep 2010 | A1 |
20100268042 | Wang | Oct 2010 | A1 |
20100270257 | Wachman et al. | Oct 2010 | A1 |
20110028806 | Merritt et al. | Feb 2011 | A1 |
20110028809 | Goodman | Feb 2011 | A1 |
20110040197 | Welch et al. | Feb 2011 | A1 |
20110082711 | Poeze et al. | Apr 2011 | A1 |
20110087081 | Kiani et al. | Apr 2011 | A1 |
20110118561 | Tari et al. | May 2011 | A1 |
20110137297 | Kiani et al. | Jun 2011 | A1 |
20110172498 | Olsen et al. | Jul 2011 | A1 |
20110172508 | Chickering, III et al. | Jul 2011 | A1 |
20110176127 | Kanda et al. | Jul 2011 | A1 |
20110189701 | Kim | Aug 2011 | A1 |
20120046593 | Oraevsky et al. | Feb 2012 | A1 |
20120069860 | Inbar | Mar 2012 | A1 |
20120123231 | O'Reilly | May 2012 | A1 |
20120165629 | Merritt et al. | Jun 2012 | A1 |
20120165801 | Bragagna et al. | Jun 2012 | A1 |
20120209084 | Olsen et al. | Aug 2012 | A1 |
20120226117 | Lamego et al. | Sep 2012 | A1 |
20120283524 | Kiani et al. | Nov 2012 | A1 |
20130023775 | Lamego et al. | Jan 2013 | A1 |
20130060147 | Welch et al. | Mar 2013 | A1 |
20130096405 | Garfio | Apr 2013 | A1 |
20130296672 | O'Neil et al. | Nov 2013 | A1 |
20130345921 | Al-Ali et al. | Dec 2013 | A1 |
20140012224 | Zhang | Jan 2014 | A1 |
20140049190 | Oh | Feb 2014 | A1 |
20140120167 | Lapotko | May 2014 | A1 |
20140163353 | Razansky et al. | Jun 2014 | A1 |
20140166076 | Kiani et al. | Jun 2014 | A1 |
20140180160 | Brown et al. | Jun 2014 | A1 |
20140182385 | Oh et al. | Jul 2014 | A1 |
20140187973 | Brown et al. | Jul 2014 | A1 |
20140273188 | Mohan | Sep 2014 | A1 |
20140275871 | Lamego et al. | Sep 2014 | A1 |
20140275872 | Merritt et al. | Sep 2014 | A1 |
20140316217 | Purdon et al. | Oct 2014 | A1 |
20140316218 | Purdon et al. | Oct 2014 | A1 |
20140323897 | Brown et al. | Oct 2014 | A1 |
20140323898 | Purdon et al. | Oct 2014 | A1 |
20150005600 | Blank et al. | Jan 2015 | A1 |
20150011907 | Purdon et al. | Jan 2015 | A1 |
20150072337 | Lapotko et al. | Mar 2015 | A1 |
20150073241 | Lamego | Mar 2015 | A1 |
20150080754 | Purdon et al. | Mar 2015 | A1 |
20150099950 | Al-Ali et al. | Apr 2015 | A1 |
20150351841 | Whiteside et al. | Dec 2015 | A1 |
20160166185 | Liepmann et al. | Jun 2016 | A1 |
20160196388 | Lamego | Jul 2016 | A1 |
20160287141 | Sidlesky | Oct 2016 | A1 |
20160341747 | Ewert | Nov 2016 | A1 |
20160341945 | Ou et al. | Nov 2016 | A1 |
20160367173 | Dalvi et al. | Dec 2016 | A1 |
20170016827 | Gervais et al. | Jan 2017 | A1 |
20170024748 | Haider | Jan 2017 | A1 |
20170173632 | Al-Ali | Jun 2017 | A1 |
20170251974 | Shreim et al. | Sep 2017 | A1 |
20180000351 | Zharov | Jan 2018 | A1 |
20180136193 | Messerschmidt | May 2018 | A1 |
20180242926 | Muhsin et al. | Aug 2018 | A1 |
20180247712 | Muhsin et al. | Aug 2018 | A1 |
20180326208 | Ingman et al. | Nov 2018 | A1 |
20180344228 | Yelin | Dec 2018 | A1 |
20180356418 | Capocasale | Dec 2018 | A1 |
20190239787 | Pauley et al. | Aug 2019 | A1 |
20190320906 | Olsen | Oct 2019 | A1 |
20190345478 | Lapotko et al. | Nov 2019 | A1 |
20190374713 | Kiani et al. | Dec 2019 | A1 |
20190388069 | Weber et al. | Dec 2019 | A1 |
20200060869 | Telfort et al. | Feb 2020 | A1 |
20200111552 | Ahmed | Apr 2020 | A1 |
20200113520 | Abdul-Hafiz et al. | Apr 2020 | A1 |
20200138368 | Kiani et al. | May 2020 | A1 |
20200163597 | Dalvi et al. | May 2020 | A1 |
20200196877 | Vo et al. | Jun 2020 | A1 |
20200253474 | Muhsin et al. | Aug 2020 | A1 |
20200253544 | Belur Nagaraj et al. | Aug 2020 | A1 |
20200275841 | Telfort et al. | Sep 2020 | A1 |
20200288983 | Telfort et al. | Sep 2020 | A1 |
20200321793 | Al-Ali et al. | Oct 2020 | A1 |
20200329983 | Al-Ali et al. | Oct 2020 | A1 |
20200329984 | Al-Ali et al. | Oct 2020 | A1 |
20200329993 | Al-Ali et al. | Oct 2020 | A1 |
20200330037 | Al-Ali et al. | Oct 2020 | A1 |
20210022628 | Telfort et al. | Jan 2021 | A1 |
20210104173 | Pauley et al. | Apr 2021 | A1 |
20210113121 | Diab et al. | Apr 2021 | A1 |
20210117525 | Kiani et al. | Apr 2021 | A1 |
20210118581 | Kiani et al. | Apr 2021 | A1 |
20210121582 | Krishnamani et al. | Apr 2021 | A1 |
20210161465 | Barker et al. | Jun 2021 | A1 |
20210236729 | Kiani et al. | Aug 2021 | A1 |
20210256267 | Ranasinghe et al. | Aug 2021 | A1 |
20210256835 | Ranasinghe et al. | Aug 2021 | A1 |
20210275101 | Vo et al. | Sep 2021 | A1 |
20210290060 | Ahmed | Sep 2021 | A1 |
20210290072 | Forrest | Sep 2021 | A1 |
20210290080 | Ahmed | Sep 2021 | A1 |
20210290120 | Al-Ali | Sep 2021 | A1 |
20210290177 | Novak, Jr. | Sep 2021 | A1 |
20210290184 | Ahmed | Sep 2021 | A1 |
20210296008 | Novak, Jr. | Sep 2021 | A1 |
20210330228 | Olsen et al. | Oct 2021 | A1 |
20210386382 | Olsen et al. | Dec 2021 | A1 |
20210402110 | Pauley et al. | Dec 2021 | A1 |
20220026355 | Normand et al. | Jan 2022 | A1 |
20220039707 | Sharma et al. | Feb 2022 | A1 |
20220053892 | Al-Ali et al. | Feb 2022 | A1 |
20220071562 | Kiani | Mar 2022 | A1 |
20220096603 | Kiani et al. | Mar 2022 | A1 |
20220151521 | Krishnamani et al. | May 2022 | A1 |
20220218244 | Kiani et al. | Jul 2022 | A1 |
20220287574 | Telfort et al. | Sep 2022 | A1 |
20220296161 | Al-Ali et al. | Sep 2022 | A1 |
20220361819 | Al-Ali et al. | Nov 2022 | A1 |
20220379059 | Yu et al. | Dec 2022 | A1 |
20220392610 | Kiani et al. | Dec 2022 | A1 |
20230028745 | Al-Ali | Jan 2023 | A1 |
20230038389 | Vo | Feb 2023 | A1 |
20230045647 | Vo | Feb 2023 | A1 |
20230058052 | Al-Ali | Feb 2023 | A1 |
20230058342 | Kiani | Feb 2023 | A1 |
20230069789 | Koo et al. | Mar 2023 | A1 |
20230087671 | Telfort et al. | Mar 2023 | A1 |
20230110152 | Forrest et al. | Apr 2023 | A1 |
20230111198 | Yu et al. | Apr 2023 | A1 |
20230115397 | Vo et al. | Apr 2023 | A1 |
20230116371 | Mills et al. | Apr 2023 | A1 |
20230135297 | Kiani et al. | May 2023 | A1 |
20230138098 | Telfort et al. | May 2023 | A1 |
20230145155 | Krishnamani et al. | May 2023 | A1 |
20230147750 | Barker et al. | May 2023 | A1 |
20230210417 | Al-Ali et al. | Jul 2023 | A1 |
20230222805 | Muhsin et al. | Jul 2023 | A1 |
20230222887 | Muhsin et al. | Jul 2023 | A1 |
20230226331 | Kiani et al. | Jul 2023 | A1 |
20230284916 | Telfort | Sep 2023 | A1 |
20230284943 | Scruggs et al. | Sep 2023 | A1 |
20230301562 | Scruggs et al. | Sep 2023 | A1 |
20230346993 | Kiani et al. | Nov 2023 | A1 |
20230368221 | Haider | Nov 2023 | A1 |
20230371893 | Al-Ali et al. | Nov 2023 | A1 |
20230389837 | Krishnamani et al. | Dec 2023 | A1 |
20240016418 | Devadoss et al. | Jan 2024 | A1 |
20240016419 | Devadoss et al. | Jan 2024 | A1 |
20240047061 | Al-Ali et al. | Feb 2024 | A1 |
20240049310 | Al-Ali et al. | Feb 2024 | A1 |
20240049986 | Al-Ali et al. | Feb 2024 | A1 |
20240081656 | DeJong et al. | Mar 2024 | A1 |
20240122486 | Kiani | Apr 2024 | A1 |
20240180456 | Al-Ali | Jun 2024 | A1 |
20240188872 | Al-Ali et al. | Jun 2024 | A1 |
20240245855 | Vo et al. | Jul 2024 | A1 |
20240260894 | Olsen | Aug 2024 | A1 |
20240267698 | Telfort et al. | Aug 2024 | A1 |
20240277233 | Ai-Ali | Aug 2024 | A1 |
20240277280 | Al-Ali | Aug 2024 | A1 |
20240298920 | Fernkbist et al. | Sep 2024 | A1 |
20240306985 | Vo et al. | Sep 2024 | A1 |
20240324953 | Telfort | Oct 2024 | A1 |
Number | Date | Country |
---|---|---|
WO 2007104098 | Sep 2007 | WO |
WO 2013109722 | Jul 2013 | WO |
WO 2019224822 | Nov 2019 | WO |
Entry |
---|
US 2022/0192529 A1, 06/2022, Al-Ali et al. (withdrawn) |
US 2024/0016391 A1, 01/2024, Lapotko et al. (withdrawn) |
Anderson et al., “Optically Guided Controlled Release from Liposomes with Tubable Plasmonic Nanobubbles,” Journal of Controlled Release, vol. 144, Issue 2, Jun. 1, 2010, in 22 pages. |
Brusnichkin et al., “Determination of Various Hemoglobin Species with Thermal-Lens Spectrometry,” Moscow University Chemistry Bulletin, vol. 64, Issue 1, Feb. 2009, pp. 45-54. |
Conjusteau et al., “Metallic Nanoparticles as Optoacoustic Contrast Agents for Medical Imaging,” SPIE Proceedings, vol. 6086, Photons Plus Ultrasound: Imaging and Sensing 2006: The Seventh Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, Mar. 6, 2006, in 9 pages. |
Danysh et al., “The MUCI Ectodomain: A Novel and Efficient Target for Gold Nanoparticle Clustering and Vapor Nanobubble Generation,” Theranostics, 2, No. 8, Ivyspring International Publisher, 2012, pp. 777-787. |
Lapotko et al., “Clusterization of Nanoparticles During their Interaction with Living Cells,” Nanomedicine, vol. 2, No. 2, Apr. 2007, pp. 241-253. |
Lapotko et al., “Elimination of Leukemic Cells from Human Transplants by Laser Nano-Thermolysis,” SPIE Proceedings, vol. 6086, Photons Plus Ultrasound: Imaging and Sensing 2006: The Seventh Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, Mar. 6, 2006, in 8 pages. |
Lapotko et al., “Lantcet: Novel Laser Nanotechnology for Graft Purging,” Biology of Blood and Marrow Transplantation, Feb. 2006, in 2 pages. |
Lapotko et al., “Laser Activated Nanothermolysis of Leukemia Cells Monitored by Photothermal Microscopy,” SPIE Proceedings, vol. 5697, Photons Plus Ultrasound: Imaging and Sensing 2006: The Seventh Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, May 5, 2005, pp. 82-89. |
Lapotko et al., “Laser Heating Diagnoses and Treats Cancerous Cells,” SPIE Newsroom, The International Society for Optical Engineering, 2006, in 3 pages. |
Lapotko et al., “Method of Laser Activated Nano-Thermolysis for Elimination of Tumor Cells,” Cancer Letters, vol. 239, Issue 1, Jul. 28, 2006, pp. 36-45. |
Lapotko, “Monitoring of Apoptosis in Intact Single Cells with Photothermal Microscope,” Journal of the International Society for Advancement of Cytometry, vol. 58A, Issue 2, Apr. 2004, pp. 111-119. |
Lapotko, “Optical Excitation and Detection of Vapor Bubbles Around Plasmonic Nanoparticles,” Optics Express, vol. 17, Issue 4, Feb. 16, 2009, pp. 2538-2556. |
Lapotko et al., “Photothermal and Photoacoustic Processes in Laser Activated Nano-Thermolysis of Cells,” SPIE Proceedings, vol. 6437, Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, Mar. 2007, in 13 pages. |
Lapotko et al., “Photothermal Detection of Laser-Induced Damage in Single Intact Cells,” Lasers in Surgery and Medicine, vol. 33, Issue 5, Dec. 2003, pp. 320-329. |
Lapotko et al., “Photothermal Image Cytometry of Human Neutrophils,” Journal of the International Society for Advancement of Cytometry, vol. 24, Issue 3, Jul. 1, 1996, pp. 198-203. |
Lapotko et al., “Photothermal Response of Live Cells Depends Upon Cell Metabolic State,” SPIE Proceedings, vol. 4618, Biomedical Optoacoustics III, Jun. 10, 2002, in 8 pages. |
Lapotko et al., “Photothermal Time-Resolved Imaging of Living Cells,” Lasers in Surgery and Medicine, vol. 31, Issue 1, Jul. 2002, pp. 53-63. |
Lapotko et al., “Photothermolysis by Laser-Induced Microbubbles Generated Around Gold Nanorod Clusters Selectively Formed in Leukemia Cells,” SPIE Proceedings, vol. 6856, Photons Plus Ultrasound: Imaging and Sensing 2008: The Ninth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, Feb. 28, 2008, in 10 pages. |
Lapotko, “Plasmonic Nanobubbles as Tunable Cellular Probes for Cancer Theranostics,” Cancers, vol. 3, No. 1, 2011 pp. 802-840. |
Lapotko, “Plasmonic Nanoparticle-Generated Photothermal Bubbles and their Biomedical Applications,” Nanomedicine, vol. 4, No. 7, Oct. 2009, pp. 813-845. |
Lapotko, “Nanophotonics and Theranostics: Will Light do the Magic?” Theranostics 2013, vol. 3, Issue 3, pp. 138-140. |
Lapotko et al., “Nonstationary Heating and Phase Transitions in a Live Cell in Absorption of Laser Radiation,” Heat Transfer Research, vol. 38, Issue 8, Jan. 2007, pp. 695-708. |
Lapotko et al., “Selective Laser Nano-Thermolysis of Human Leukemia Cells with Microbubbles Generated Around Clusters of Gold Nanoparticles,” Lasers in Surgery and Medicine, vol. 38, Issue 6, Jul. 2006, pp. 631-642. |
Lapotko, “Therapy with Gold Nanoparticles and Lasers: What Really Kills the Cells?” Nanomedicine, vol. 4, No. 3, Apr. 2009, pp. 253-256. |
Lukianova-Hleb et al., “All-in-one Processing of Heterogeneous Human Cell Grafts for Gene and Cell Therapy,” Molecular Therapy—Methods & Clinical Development , vol. 3, Article 16012, 2016, in 8 pages. |
Lukianova-Hleb et al., “Cell-Specific Multifunctional Processing of Heterogeneous Cell Systems in a Single Laser Pulse Treatment,” ACS Nano, vol. 6, Issue 12, Dec. 21, 2012, pp. 10973-10981. |
Lukianova-Hleb et al., “Cell-Specific Transmembrane Injection of Molecular Cargo with Gold Nanoparticle-Generated Transient Plasmonic Nanobubbles,” Biomaterials, vol. 33, Issue 21, Jul. 2012, pp. 5441-5450. |
Lukianova-Hleb et al., “Hemozoin-Generated Vapor Nanobubbles for Transdermal Reagent and Needle-Free Detection of Malaria,” Proceedings of the National Academy of Sciences of the United States of America, vol. 111, No. 3, Jan. 21, 2014, pp. 900-905. |
Lukianova-Hleb et al., “Improved Cellular Specificity of Plasmonic Nanobubbles versus Nanoparticles in Heterogeneous Cell Systems,” PLoS One, vol. 7, Issue 4, Apr. 2012, in 10 pages. |
Lukianova-Hleb et al., “Intraoperative Diagnostics and Elimination of Residual Micro-Tumours with Plasmonic Nanobubbles,” Nature Nanotechnology, 2015, in 31 pages. |
Lukianova-Hleb et al., “Influence of Transient Environmental Photothermal Effects on Optical Scattering by Gold Nanoparticles,” Nano Letters, vol. 9, Issue 5, May 2009, pp. 2160-2166. |
Lukianova-Hleb et al., “Laser Pulse Duration is Critical for the Generation of Plasmonic Nanobubbles,” Langmuir, vol. 30, Issue 25, 2014, pp. 7425-7434. |
Lukianova-Hleb et al., “Malaria Theranostics Using Hemozoin-Generated Vapor Nanobubbles,” Theranostics, vol. 4, Issue 7, 2014, pp. 761-769. |
Lukianova-Hleb et al., “Multifunctional Cell Processing with Plasmonic Nanobubbles,” International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering, vol. 7, No. 11, 2013, pp. 677-681. |
Lukianova-Hleb et al., “Plasmonic Nanobubbles Enhance Efficacy and Selectivity of Chemotherapy Against Drug-Resistant Cancer Cells,” Advanced Materials, vol. 24, Issue 28, Jul. 24, 2012, pp. 3831-3837. |
Lukianova-Hleb et al., “Plasmonic Nanobubbles for Intracellular Targeting and Gene Therapy,” NTSI-Nanotech 2011, vol. 3, pp. 291-294. |
Lukianova-Hleb et al., “Plasmonic Nanobubbles as Transient Vapor Nanobubbles Generated Around Plasmonic Nanoparticles,” ACS Nano, vol. 4, Issue 4, Apr. 27, 2010, pp. 2109-2123. |
Lukianova-Hleb et al., “Plasmonic Nanobubble-Enhanced Endosomal Escape Processes for Selective and Guided Intracellular Delivery of Chemotherapy to Drug-Resistant Cancer Cells,” Biomaterials, vol. 33, Issue 6, Feb. 2012, pp. 1821-1826. |
Lukianova-Hleb et al., “Plasmonic Nanobubbles Rapidly Detect and Destroy Drug-Resistant Tumors,” Theranostics, vol. 2, No. 10, 2012, pp. 976-787. |
Lukianova-Hleb et al., “Plasmonic Nanobubbles as Tunable Theranostic Agents,” NSTI-Nanotech 2011, vol. 3, pp. 367-370. |
Lukianova-Hleb et al., “Plasmonic Nanobubbles: Tunable and Transient Probes for Cancer Diagnosis, Therapy and Theranostics,” NSTI-Nanotech 2010, vol. 3, 2010 in 5 pages. |
Lukianova-Hleb et al., “Rainbow Plasmonic Nanobubbles: Synergistic Activation of Gold Nanoparticle Clusters,” Journal of Nanomedicine & Nanotechnology, vol. 2, Issue 104, Jan. 1, 2011, in 21 pages. |
Lukianova-Hleb et al., “Safety and Efficacy of Quadrapeutics Versus Chemoradiation in Head and Neck Carcinoma Xenograft Model,” American Journal of Cancer Research, vol. 5, Issue 12, 2015, pp. 3534-3547. |
Lukianova-Hleb et al., “Selective Gene Transfection of Individual Cells In Vitro with Plasmonic Nanobubbles,” Journal of Controlled Release, vol. 152, Issue 2, Jun. 10, 2011, pp. 286-293. |
Lukianova-Hleb et al., “Selective and Self-Guided Micro-Ablation of Tissue with Plasmonic Nanobubbles,” Journal of Surgical Research, vol. 166, Issue 1, Mar. 2011, pp. e3-e13. |
Lukianova-Hleb et al., “Short Laser Pulse-Induced Irreversible Photothermal Effects in Red Blood Cells,” Lasers in Surgery and Medicine, vol. 43, Issue 3, Mar. 2011, pp. 249-260. |
Lukianova-Hleb et al., “Transdermal Diagnosis of Malaria Using Vapor Nanobubbles,” Emerging Infectious Diseases, vol. 21, No. 7, Jul. 2015, pp. 1122-1127. |
Lukianova-Hleb et al., “Transient Enhancement and Spectral Narrowing of the Photothermal Effect of Plasmonic Nanoparticles Under Pulsed Excitation,” Advanced Materials, Voume 25, Issue 5, Feb. 6, 2013, pp. 772-776. |
Lukianova-Hleb et al., “Transient Photothermal Spectra of Plasmonic Nanobubbles,” Langmuir, vol. 28, Issue 10, Feb. 2012, pp. 4858-4866. |
Lukianova-Hleb et al., “Tunable Plasmonic Nanobubbles for Cell Theranostics,” Nanotechnology, vol. 21, No. 8, Feb. 26, 2010, in 19 pages. |
Lukianova-Hleb et al., “Tunable Plasmonic Nanoprobes for Theranostics of Prostate Cancer,” Theranostics, vol. 1, 2011, pp. 3-17. |
Potkin et al., “The Influence of Heterocyclic Compound-Pamam Dendrimer Complexes on Evoked Electrical Responses in Slices of Hypoxic Brain Tissue,” Cellular & Molecular Biology Letters, vol. 19, 2014, pp. 243-248. |
Vasiliev et al., “Bubble Generation in Micro-Volumes of ‘nonofluids’,” International Journal of Heat and Mass Transfer, vol. 52, Issues 5-6, Feb. 2009, pp. 1534-1539. |
Lukianova-Hleb et al., “Experimental Techniques for Imaging and Measuring Transient Vapor Nanobubbles,” Applied Physics Letters, vol. 101, Dec. 2012, pp. 264102-1-264102-5. |
Lukianova-Hleb et al., “Plasmonic Nanobubbles for Cell Theranostic,” Proceedings of SPIE, 2012, vol. 8234, pp. 82341F-1-82341F-10. |
Lukianova-Hleb et al., “Generation and Detection of Plasmonic Nanobubbles in Zebrafish,” Nanotechnology, vol. 21, No. 22, Jun. 4, 2010, in 22 pages. |
Choi et al., A High Throughput Microelectroporation Device to Introduce a Chimeric Antigen Receptor to Redirect the Specificity of Human T Cells, Biomed Microdevice, 2010, 12, pp. 855-863. |
Number | Date | Country | |
---|---|---|---|
62294831 | Feb 2016 | US | |
62294833 | Feb 2016 | US | |
62294824 | Feb 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15430321 | Feb 2017 | US |
Child | 16598482 | US |