Claims
- 1. A method for controlling a fuel flow quantity of an internal combustion engine having a control system for calculating a fuel flow quantity signal and an ignition timing signal to be supplied to the internal combustion engine in accordance with a revolution number and load of the internal combustion engine, comprising the steps of:
- superposing a search signal for fine adjusting a fuel flow quantity value on said fuel flow quantity signal;
- applying the fuel quantity signal superposed with said search signal to a fuel supply apparatus of said internal combustion engine;
- detecting a value of a parameter showing a revolution number or an operation state of said internal combustion engine in response to said superposed signal;
- detecting a correlation between said detected value and said search signal; and
- correcting said fuel flow quantity signal based on said detected correlation;
- wherein said search signal is a random signal of which auto correlation function is substantially an impulse shape, said step of detecting a correlation includes a step of calculating a mutual correlation function between said detected value and said search signal, and said step of correction is an addition of a corrected value to said fuel flow quantity signal based on said calculated mutual correlation function.
- 2. A method for controlling a fuel flow quantity of an internal combustion engine according to claim 1, wherein said search signal is a signal of which auto correlation function is substantially expressed by a delta function, said step of detecting a correlation includes a step of calculating a mutual correlation function between said detected value and said search signals and said step of correcting is an addition of a corrected value to said fuel flow quantity signal based on said calculated mutual correlation function.
- 3. A method for controlling a fuel flow quantity of an internal combustion engine according to claim 1, wherein said search signal is a signal of which auto correlation function is a pseudo random series, said step of detecting a correlation includes a step of calculating a mutual correlation function between said detected value and said search signal, and said step of correcting is an addition of a corrected value to said fuel flow quantity signal based on said calculated mutual correlation function.
- 4. A method for controlling a fuel flow quantity of an internal combustion engine according to claim 3, wherein said pseudo random series is an M series.
- 5. A method for controlling a fuel flow quantity of an internal combustion engine according to claim 4, wherein said search signal of the M series has two different values, and the minimum pulse width thereof is an integer times the combustion process period of said internal combustion engine.
- 6. A method for controlling a fuel flow quantity of an internal combustion engine according to any one of claims 1 and 2 to 5, wherein said step of correction further includes the steps of calculating an impulse response of said control system by using said mutual correlation function, calculating an indicial response by integrating said impulse response, and using a signal obtained from said indicial response as said corrected value.
- 7. A method for controlling a fuel flow quantity of an internal combustion engine according to claim 1, wherein said control system carries out an air-fuel ratio feedback control by using an oxygen density sensor for detecting a density of oxygen in an exhaust gas, and said step for detecting a parameter for showing an operation state is a detection of an output from said oxygen density sensor as said parameter.
- 8. A method for controlling a fuel flow quantity of an internal combustion engine according to claim 1, wherein said step of detecting a correlation includes a step of storing a correlation signal obtained by partially integrating said search signal, a step of reading said stored correlation signal in synchronism with said search signal and a step of multiplying said read correlation signal with said detected value and then time integrating said multiplied value, and said step of correcting is an addition of a corrected value based on the result of said time integration to said fuel flow quantity signal.
- 9. A method for controlling a fuel flow quantity of an internal combustion engine according to claim 8 wherein said step of time integrating includes the steps of time integrating said multiplied value with a cycle of said search signal and calculating an output torque gradient of the internal combustion engine for said search signal, and said step of correcting is a determination of said corrected value based on said output torque gradient.
- 10. A fuel flow quantity control apparatus for an internal combustion engine having a control system for calculating a fuel flow quantity signal and an ignition timing signal to be supplied to an internal combustion engine in accordance with a revolution number and load of the internal combustion engine, comprising:
- means for detecting a revolution number of an internal combustion engine;
- means for detecting a quantity of air taken in by said internal combustion engine;
- means for determining a fuel flow quantity of a fuel to be supplied to said internal combustion engine;
- means for supplying a fuel to said internal combustion engine based on said determined fuel flow quantity value;
- means for generating a search signal for fine adjusting a fuel flow quantity;
- means for generating a signal which is said search signal superposed on said fuel flow quantity value and then supplying said superposed signal to said fuel flow quantity value determination means;
- means for detecting a correlation between the revolution number of said internal combustion engine and said search signal in response to said superposed signal; and
- means for correcting said fuel flow quantity signal base on said detected correlation;
- wherein said means for generating a search signal generates a random signal of which auto correlation function is substantially an impulse shape, said means for detecting a correlation includes means for calculating a mutual correlation function between said revolution number and said search signal, and said means for correcting includes means for determining a corrected value to be added to said fuel flow quantity signal based on said calculated mutual correlation function.
- 11. A fuel flow quantity control apparatus for an internal combustion engine according to claim 10, wherein said search signal generation means generates a signal of which auto correlation function is substantially expressed by a delta function, said means for detecting a correlation includes means for calculating a mutual correlation function between said revolution number and said search signal, and said means for correcting includes means for determining a corrected value to be added to said fuel flow quantity signal based on said calculated mutual correlation function.
- 12. A fuel flow quantity control apparatus for an internal combustion engine according to claim 10, wherein said search signal generation means includes means for generating a signal of which auto correlation function is a pseudo random series, said means for detecting a correlation includes means for calculating a mutual correlation function between said revolution number and said search signal, and said means for determining a corrected value determines said corrected value based on said calculated mutual correlation function.
- 13. A fuel flow quantity control apparatus for an internal combustion engine according to claim 12, wherein said pseudo random series is an M series.
- 14. A fuel flow quantity control apparatus for an internal combustion engine according to claim 13, wherein said search signal of the M series has two different values, and the minimum pulse width thereof is an integer times the combustion process period of said internal combustion engine.
- 15. A fuel flow quantity control apparatus for an internal combustion engine according to any one of claims 11 to 14, wherein said means for correcting further includes means for calculating an impulse response of said control system and means for calculating an indicial response by integrating said impulse response, and a signal obtained from said indicial response is used as said corrected value.
- 16. A fuel flow quantity control apparatus for an internal combustion engine according to claim 10, wherein said means for detecting a correlation includes means for storing a correlation signal obtained by partially integrating said search signal, means for reading said stored correlation signal in synchronism with said search signal and means for multiplying said read correlation signal by said detected value and then time integrating said multiplied value, and said means for correcting includes means for determining a corrected value to be added to said fuel flow quantity signal based on the result of said time integration.
- 17. A fuel flow quantity control apparatus for an internal combustion engine according to claim 16, wherein said means for time integration time integrates said multiplied value with a cycle of said search signal, and said means for calculating an output torque gradient of an internal combustion engine for said search signal and said means for correcting determine said corrected value based on said output torque gradient.
Parent Case Info
This application is a division of application Ser. No. 573,789, filed Aug. 28, 1990, now U.S. Pat. No. 5,063,901.
US Referenced Citations (3)
Number |
Name |
Date |
Kind |
4489690 |
Burkel et al. |
Dec 1984 |
|
4718015 |
Grob et al. |
Jan 1988 |
|
5001645 |
Williams |
Mar 1991 |
|
Foreign Referenced Citations (1)
Number |
Date |
Country |
2062290 |
May 1981 |
GBX |
Divisions (1)
|
Number |
Date |
Country |
Parent |
573789 |
Aug 1990 |
|