DIAGNOSTICS AND THERAPEUTICS FOR EBV IN MS AND OTHER AUTOIMMUNE DISEASES

Abstract
Compositions and methods are provided for diagnosis and treatment of individuals having multiple sclerosis (MS) or MS spectrum disorders. It is shown herein that EBV-transformed B cells, and particularly plasmablasts, are present in human MS spinal fluid. These cells produce antibodies. e.g. IgG antibodies, that selectively bind to EBV EBNA-1 sequences, including without limitation residues 386-405, and cross-react with the myelin protein hepacam/glialcam, including without limitation residues 337-385.
Description
INTRODUCTION

In Multiple Sclerosis (MS), autoreactive B and T cells cause tissue-specific destruction of myelin in the central nervous system (CNS). The presence of oligoclonal bands (OCB) in cerebro-spinal fluid (CSF) and the efficacy of B cell depleting therapies emphasized the importance of B cells in MS pathology, which act by autoantibody secretion and T cell activation during antigen presentation. Anti-CD20 B cell depleting therapeutics have emerged as efficacious therapeutics available for both relapsing remitting and primary progressive MS. Nevertheless, many aspects of B cell immunology in MS are not well understood, including their phenotypic and functional characteristics in CNS, CSF, and blood, and the degree to which autoantibody production vs. B-cell dependent T cell activation contribute to pathogenicity. Both mechanisms are B cell receptor (BCR)-dependent. However, the identification of dominant B cell antigens has been notoriously difficult in MS.


Viral proteins have been suggested to contribute to and even initiate inflammation by eliciting molecular mimicry to myelin proteins. Epstein-Barr virus (EBV) in particular has been associated with MS, as 99.5% of MS patients (vs. 93.6%-94.4% of healthy individuals) have been infected with EBV-often years prior to disease onset. Infectious mononucleosis and MS share the same major risk allele (HLA-DRB1*15:01), and infectious mononucleosis as well as serum immunoglobulin reactivity against EBV nuclear antigen 1 (EBNA1) are independent and synergistic risk factors for MS. Immunodominant MS-associated epitopes of EBNA1 have been identified, and candidates for molecular mimicry have been proposed, including anoctamin-2, but research has not advanced beyond the descriptive identification of EBV/CNS cross-reactivities in CSF and sera of MS patients, and fallen short on in-depth characterization of pathogenic epitopes and assessment of their functional relevance in-vivo. Further, the role of EBV in promoting the activation of pathogenic B cells remains poorly understood.


SUMMARY

Compositions and methods are provided for diagnosis and treatment of individuals having multiple sclerosis (MS) or MS spectrum disorders. It is shown herein that EBV-transformed B cells, and particularly plasmablasts, are present in human MS spinal fluid. These cells produce antibodies, e.g. IgG antibodies, that selectively bind to EBV EBNA-1 sequences, including without limitation residues 386-405 of EBNA-1, and cross-react with the myelin protein hepacam/glialcam, including without limitation residues 337-385 of hepacam/glialcam. Phosphorylation of glialcam at one or both of residues S376 and S377 can enhance binding affinity. The cross-reaction with glialcam induces neuroinflammation and can exacerbate symptoms of multiple sclerosis. Elevated anti-GlialCAM serum reactivity is shown to be present in MS patients in comparison to healthy individuals.


In some embodiments, an individual is diagnosed for the presence of EBV-driven MS pathology, where the diagnosis may be combined with treatment according to the diagnosis. Without being limited by theory, it is believed that reactivation of EBV in B cells, including plasmablasts, drives pathogenic activity. Detection of markers associated with active EBV infection, e.g. in MS patients, is indicative of EBV-driven MS pathology. In some embodiments active EBV infection is detected in peripheral B cell populations. In some embodiments active EBV infection is detected in CSF B cell populations. Methods for detection of active EBV infection can include, without limitation, detection of EBV proteins on the surface of B cells, where such markers include, without limitation: BILF-1, LMP1 and LMP2. Methods for detection of active EBV infection can include determining the presence of transcripts associated with active infection. Latent infection is characterized by limited expression of viral proteins, apart from, for example EBNA1, LMP1 and LMP2. Active infection can result in expression of a broader range of viral proteins, including for example BILF-1, LMP1, LMP2, etc. Detection of such proteins or transcripts can be indicative of an EBV-driven MS pathology.


In other embodiments, an individual is diagnosed for the presence of EBV-driven MS pathology by detecting the presence of antibodies in one or both of serum and CSF with specificity for glialcam. In some embodiments, the specificity is for an epitope cross-reactive with EBNA-1. In some embodiments the antibodies detected are IgG antibodies. The determination is optionally combined with detection of active EBV infection. A variety of methods may be utilized for the detection of antibodies.


An individual diagnosed for EBV-driven MS pathology is optionally treated in accordance with the finding. Treatment to reduce the adverse symptoms can include, without limitation, targeting all B cells for depletion; targeting EBV-infected B cells for depletion; inhibiting EBV-transformed B cells; inhibiting the B cell activating functions of certain EBV-encoded proteins, including but not limited to LMP1 and LMP2; and tolerizing the individual for glialcam epitopes, e.g. cross-reactive glialcam epitopes.


Knowledge of cross-reactive autoantigens, e.g. glialcam, can be used to develop specific therapies and diagnostics for MS, in place of the non-specific immunomodulation that is conventionally used. The present invention provides an important candidate antigen for being involved in pathogenesis of MS; and provides a target for diagnosis and therapeutic intervention. Cross-reactive peptides also find use in tolerization strategies, e.g. to decrease pathogenic responses through altered peptide ligands (APLs), manipulation of dendritic cell responses, biasing T cell responses to non-pathogenic responses, and the like.


Depletion of pathogenic B cells may comprise, for example, targeting antibodies to markers present on actively infected B cells, e.g. target pathogenic EBV-infected B cells, e.g. by therapies directed to one or more of cell-surface EBV proteins: BILF-1, LMP1 and LMP2. Antibodies may be conjugated to a cytotoxic agent, e.g. tubulin polymerization inhibitors, e.g. maytansinoids (maytansine), dolastatins, auristatin drug analogs, cryptophycin; duocarmycin derivatives, e.g. CC-1065 analogs, duocarmycin; enediyne antibiotics, e.g. esperamicin, calicheamicin; pyrrolobenzodiazepine (PBD); and the like. In other embodiments, other targeted agents are utilized include anti-B cell antibodies, e.g. anti-CD20 antibodies, anti-CD38 antibodies e.g. rituximab; anti-CD19 antibodies; EBV-specific CAR T cells, and the like. In a favored embodiment, anti-EBV LMP1, LMP2 and BILF1 monoclonal antibodies, alone or in combination, are used to deplete EBV-infected pathogenic B cells.


Inhibition of B cells with active EBV infection may utilize, for example, inhibition of specific tyrosine kinase proteins. Such inhibitor include, without limitation, BTK inhibitors. BTK signaling influences antigen presentation on B cells and is essential to the production of antibodies, proinflammatory cytokines and chemokines, and cell adhesion molecules. Examples of useful inhibitors include ibrutinib, evobrutinib, PRN2246 (SAR442168), BIIB091, and other BTK inhibitors.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is best understood from the following detailed description when read in conjunction with the accompanying drawings. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee. It is emphasized that, according to common practice, the various features of the drawings are not to-scale. On the contrary, the dimensions of the various features are arbitrarily expanded or reduced for clarity. Included in the drawings are the following figures.



FIGS. 1A-K: Phenotype and repertoire differences of B cells in blood and CSF. (A-F): Flow cytometry data. (A) Number of plasmablasts as % of all B cells in blood and CSF. (B) VLA-4 expression and (C) HLA-DR expression in non-plasmablast (red) and plasmablast (blue) in blood vs. CSF. (D) Representative flow cytometry data (patient MS37) comparing HLA-DR expression on non-plasmablast (red) and plasmablast (blue) in blood (upper panel) and CSF (lower panel). (E,F) Immunoglobulin classes in (E) plasmablast and (F) non-plasmablast B cells in blood (red) vs. CSF (blue). (A-F) p values according to unpaired Student's t tests. (G-I) Single-cell BCR repertoire sequencing data, (G) clonality, percent of clonal sequences are shown in blood (red, larger numbers of sequences down-sampled to match CSF sequences) vs. CSF (blue), p values according to Mann-Whitney U test. (H) Overview of individual PB BCR repertoires, showing clonality, size of individual clonal expansions, and immunoglobulin classes in blood (upper panel) vs. CSF (lower panel), numbers indicate number of sequences, inner circle: colored wedges represent clonal expansions and grey area represents singleton antibody sequences, outer circle: immunoglobulin classes, red: IgG, blue: IgA, green: IgM, sequence locations in outer circle correspond to inner circle. (I) IGHV gene distribution in blood vs. CSF PB, p according to Student's T tests, Holm-Sidak adjusted p-values: *<0.05, **<0.01, ***<0.0001. (J,K) Mass spectrometry data of purified immunoglobulins from CSF samples in singleton BCR B cells (red) vs. clonally expanded B cells (blue), (J) percent of VDJ sequences that could be uniquely identified with mass spectrometry in the respective groups (PSM cutoff: 1), (K) percent of VDJ sequences that were highly abundant in CSF (≥10 PSM). (J,K) p values according to Mann-Whitney U test.



FIGS. 2A-L: CSF mAB reactivity to EBV proteins, EBNA1 epitope mapping, and structure of EBNA1-antibody complex. (A) Heatmap showing mAB reactivities (z-scores) to viral lysates and EBV proteins and (B) to EBNA1 peptides. Selected mABs are shown with highest reactivities to respective antigens. IE: immediate early, E: early, and L: late lytic stage. (C) Western blot of recombinant EBNA1 (full-length and truncated proteins), showing coomassie staining (top panel) and staining with MS39p2w174 (bottom panel). (D) MS39p2w174 tested on an ELISA-based alanine-scan of EBNA1 with 90 peptides (20mers, 13AA overlap). (E) EBNA1 AA386-405, logo representation showing the contribution of each residue to binding of MS39p2w174, as assessed by alanine-scan. (F-J) Crystal structure of MS39p2w174 in complex with EBNA1 AA386-405. (F) Cartoon and stick representation, showing EBNA1 AA393-401 in the binding groove. Additional peptide residues are truncated for better visualization. HC: red/brown colors, LC: blue/cyan, CDR loop colors correspond to annotations in G. (G) View of the binding groove from the top. Surface representation of the Fab with EBNA1 AA386-402 in stick representation. (H-J) Cartoon and stick representation outlining close interactions. Major H-bond forming residues are represented as sticks. H-bonds <3.1 Å are represented as black dashed lines. (I) Magnification of peptide in hydrophobic cage, (J) magnification of region around Arg396 to emphasize polar contacts of residues in the HC with Arg396 and Arg397. (K,L) (E) Bio-layer interferometry measurement of MS39p2w174 (blue) and germline (GL, red) affinity to EBNA1 full-length protein. (K) KD in nM, (L) association and dissociation curves. P according to unpaired Student's t test.



FIGS. 3A-P: Molecular Mimicry between EBNA1 and GlialCAM. (A) Heatmap showing top 16 results of Huprot array for MS39p2w174, compared to 3 control mABs, sorted from top to bottom by the ratio of MS39p2w174/average of controls (left column, min: 89, max: 911). Raw counts are shown in right four columns (min: 1, max: 36450). (B) ELISA measuring binding of MS39p2w174 and two control mABs to recombinant proteins EBNA1 AA328-641 as well as GlialCAM AA34-416 (full length) and A262-416 (intracellular domain, ICD). (C) Western blot GlialCAM full-length vs. ICD. Top panel: MS39p2w174, bottom panel: commercial anti-GlialCAM antibody (anti-extracellular domain). (D, E) Bio-layer interferometry measurement of MS39p2w174 affinity to GlialCAM ICD (AA262-416), (D) KD in nM, (E) association and dissociation curves, p according to unpaired Student's t test. (E) Logo plot, showing alignment of amino acid sequences of EBNA1 AA386-405 and GlialCAM AA370-389 with central epitope. (I) ELISA data showing binding of MS39p2w174 to EBNA1 AA386-405 and GlialCAM AA370-389 non-phosphorylated and phosphorylated at the indicated serine residues. (G,H) Prediction of disorder with PONDR for (G) EBNA1 and (H) GlialCAM. High scores indicate disorder, red bar: epitope region. (J,K) Bio-layer interferometry measurement of MS39p2w174 affinity to GlialCAM 20mer peptides. (J) KD in μM, (K) association and dissociation curves, pSer: phosphorylated Serine residues, p according to unpaired Student's t test. (L) Heatmap showing mAB reactivities (MFI) to GlialCAM proteins, peptides, and phosphorylated peptides as well as cross-reactivities to EBNA1 and other EBV proteins, ICD: intracellular domain, ECD: extracellular domain, pSer: phosphorylated serine residues. (M-O) ELISA data showing human plasma reactivities against (M) EBNA1 protein, (N) EBNA1 AA386-405, and (O) GlialCAM protein, p according to unpaired Student's t test. (P) Plasma reactivity to EBNA1 AA386-405, blocked with indicated proteins or peptides, p according to unpaired Student's t test.



FIGS. 4A-C: Relevance of EBNA1/GlialCAM cross-reactivity in a mouse model of MS. (A) Experimental autoimmune encephalomyelitis (EAE) scores of mice immunized with EBNA1 AA386-405 (red) and scrambled peptide control (blue), * p<0.05 (Mann-Whitney U test). (B) Mouse serum ELISA showing IgG reactivities against EBNA1 AA386-405 (top panel) and GlialCAM AA370-389 (bottom panel) in groups immunized with EBNA1 AA386-405 (red), scrambled peptide (blue), and PBS (black).



FIGS. 5A-F. Details of B cell phenotypes in blood and CSF. (A, B) Flow cytometry gating strategy for B cells, representative plots from (A) blood and (B) CSF (patient MS30). (C) B cell subsets as % of all B cells in blood (red) and CSF (blue). p according to unpaired Student's t test. (D) representative histogram showing integrin a4 expression in non-PB B cells (red) and PB (blue) in blood (top panel) and CSF (lower panel) (patient MS37). (E,F) HLA-DR expression on non-PB B cells (red) and PB (blue) in (E) blood and (F) CSF, in patients carrying HLA-DR15 vs. other HLA-genotypes (non-HLA-DR15), ns=non-significant, according to unpaired Student's t test.



FIGS. 6A-I. Extended BCR repertoire data. (A-F) Single-cell BCR repertoire sequencing data, (A) overview of individual BCR repertoires, comparison of CSF PB to non-PB B cells with respect to clonality, size of individual clonal expansions, and immunoglobulin classes in all CSF B cells (upper panel), CSF plasmablasts (middle panel), and CSF non-plasmablast B cells (lower panel), numbers indicate number of sequences, inner circle: colored wedges represent clonal expansions and grey area represents singleton antibody sequences, outer circle: immunoglobulin classes, red: IgG, blue: IgA, green: IgM, sequence locations in outer circle correspond to inner circle. <5 non-PB cells were sequenced from individual MS12 and only PB were sorted from MS39, therefore the respective samples were excluded from this figure. (B) IGHV and IGLV cumulated mutation count in PB in blood (red) vs. CSF (blue). (C) Mean HC CDR3 lengths (amino acid sequences) of PB in blood (red). vs. CSF (blue), (B,C) means±standard deviations across patients as well as means of individual patients are shown, p values according to unpaired Student's t test. (D-F) Immunoglobulin gene distributions in blood vs. CSF plasmablasts for (D) IGLV, (E) IGHJ, and (F) IGLJ, p according to Student's t tests, Holm-Sidak adjusted p-values: ***<0.0001. (G,H) Mass spectrometry data of purified immunoglobulins from CSF samples, comparing non-plasmablast B cells (red) with plasmablasts (blue), (G) percent of VDJ sequences that could be uniquely identified with mass spectrometry in the respective group (PSM cutoff: 1), (H) percent of VDJ sequences that were highly abundant in CSF (≥10 PSM). (G,H) p values according to Mann-Whitney U test. (I) Single-cell sequencing efficacy in non-plasmablast B cells (red) vs. PB (blue) in CSF. Fraction of sequences that passed filter thresholds are shown as percentages of the number of sorted cells in the respective group.



FIG. 7: Representative phylogenetic tree of patient MS37: CSF sequences (top half-circle) and blood sequences (bottom half-circle) are depicted. Each leaf represents the full-length HC and LC sequence of a B cell. Sequences are sorted from the interior to the exterior first by IGHV families, then by IGHV genes, and then concatenated HC/LC sequences are clustered. IGHV families, clonality, immunoglobulin class, plasmablast vs. non-plasmablast, mutation counts, and expressed sequences are indicated according to figure legend.



FIGS. 8A-B: CSF mAB reactivity to EBV peptides. (A) Heatmap showing mAB reactivities (z-scores) to EBV virus lysates and recombinant EBV proteins as well as other virus lysates. (B) Heatmap showing mAB reactivities (MFI) to GlialCAM proteins, peptides, and phosphorylated or citrullinated peptides. Results for all tested mABs and proteins/peptides are shown. IE: immediate early, E: early, and L: late lytic/activated stage, pSer: phosphorylated serine residue, Cit: citrulline residue, _B-_E: duplicate probes of same/similar lysates and proteins tested in different preparations or batches.



FIG. 9: CSF mAB reactivity to EBV peptides: Heatmap showing mAB reactivities (z-scores) to EBV peptides. Results for all tested mABs and peptides are shown. ICD: intracellular domain, ECD: extracellular domain, PM: peptide mix.



FIGS. 10A-G. mAB reactivity to EBV peptides and structural data for EBNA1 AA386-405/MS39p2w174 complex. (A) Heatmap showing mAB reactivities (z-scores) of selected mABs (as in FIG. 2A) against the selected reactive peptide antigens. ICD: intracellular domain, ECD: extracellular domain, PM: peptide mix. (B) ELISA-based alanine-scan on EBNA1 AA386-405, corresponding to FIG. 2E. Mean±standard deviation is shown from triplicate repeats of one representative out of 3 independent experiments. (C) 20× image of protein crystals in hanging drop. (D) Asymmetric unit containing two peptide-Fab complexes in a diagonal orientation, red/pink: HC, blue/cyan: LC, black/gray: peptide. (E) EBNA1 peptide and its 2mFo-DFc map (contoured at 10) are shown, depicted on HC (cyan) and LC (pink) in surface representation. (F,G) Amino acid sequences of variable regions of mAB MS39p2w174 (F) HC and (G) LC. Bold font: CDR, regular font: framework regions (FR), GL: germline with variable genes indicated, only germline residues that differ from MS39p2w174 sequence are shown, red: residues that closely interact with EBNA1 AA386-405, according to crystal structure, dots: gaps introduced during IMGT GapAlign for alignment and numbering purposes, numbers: residue numbers according to IMGT unique numbering.



FIGS. 11A-C. GlialCAM expression in human tissues: (A) Expression levels of GlialCAM in human organs (source: proteinatlas.org). (B) phosphorylation of single residues (source: phosphosite.org), (C) ELISA data: reactivities of MS39p2w174 to citrullinated versions of GlialCAM AA370-389.



FIGS. 12A-G. T cell activation and phenotype in response to immunization with EBNA1 AA389-405: (A) T cell proliferation and (B-G) ELISA measurement of indicated cytokines in response to indicated stimuli, in group immunized with scrambled peptide (blue) and EBNA1 AA386-405 (red), p according to unpaired Student's t test.



FIG. 13. MHC types of MS patients in which B cell repertoire sequencing was performed.



FIGS. 14-B. LMP-1. (A) Schematic depiction of LMP-1, showing 6 transmembrane domains and 3 extracellular domains. (B) Protein sequence, intracellular, transmembrane, and extracellular domains are annotated.



FIGS. 15A-B. LMP-2. (A) Schematic depiction of LMP-2, showing 12 transmembrane domains and 6 extracellular domains. (B) Protein sequence, intracellular, transmembrane, and extracellular domains are annotated.



FIG. 16A-B. BILF-1. (A) Schematic depiction of BILF-1, showing 7 transmembrane domains and 4 extracellular domains. (B) Protein sequence, intracellular, transmembrane, and extracellular domains are annotated.



FIG. 17. Overview of expression and function of LMP-1, LMP-2, and BILF-1. All three proteins are encoded by EBV genes and expressed as membrane proteins with accessible extracellular domains. LMP-1 and LMP-2 activate B cells by mimicking endogenous B cell activating signaling pathways. BILF-1 inhibits MHC class I expression and thereby inhibits anti-EBV T cell responses. Individual or combinations of monoclonal antibodies specific for LMP1; or LMP2; or BILF1; or LMP1+BILF1; or LMP2+BILF1; or LMP1+LMP2; or LMP1+LMP2+BILF1; can be used to deplete EBV-infected B cell to treat EBV infectious syndromes, EBV-mediated cancers, and/or EBV-driven autoimmune diseases.





DETAILED DESCRIPTION OF THE EMBODIMENTS

The instant disclosure provides methods for the stratification of MS-patients for EBV-driven pathology. It is shown that hepacam/glialcam is cross-reactive with EBNA-1 epitopes and can drive such pathology. Tolerizing vaccines and methods of using such vaccines are provided for treating individuals having multiple sclerosis, systemic lupus erythematosus, Sjogren's Sydrome, type I diabetes, rheumatoid arthritis and other autoimmune diseases associated with EBV-infection. Aspects of the methods include administering to the individual, in need thereof, agents to deplete or inhibit pathogenic B cells. Aspects also include administration of an effective amount of an hepacam/glialcam tolerizing vaccine to reduce one or more symptoms of MS. Compositions and kits for practicing the methods of the disclosure are also provided.


Before the present methods are described, it is to be understood that this invention is not limited to particular methods described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.


Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges, subject to any specifically excluded limit in the stated range. As used herein and in the appended claims, the singular forms “a”, “and”, and “the” include plural referents unless the context clearly dictates otherwise.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention, the preferred methods and materials are now described. All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited.


The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates, which may need to be independently confirmed.


General methods in molecular and cellular biochemistry can be found in such standard textbooks as Molecular Cloning: A Laboratory Manual, 3rd Ed. (Sambrook et al., Harbor Laboratory Press 2001); Short Protocols in Molecular Biology, 4th Ed. (Ausubel et al. eds., John Wiley & Sons 1999); Protein Methods (Bollag et al., John Wiley & Sons 1996); Nonviral Vectors for Gene Therapy (Wagner et al. eds., Academic Press 1999); Viral Vectors (Kaplift & Loewy eds., Academic Press 1995); Immunology Methods Manual (I. Lefkovits ed., Academic Press 1997); and Cell and Tissue Culture: Laboratory Procedures in Biotechnology (Doyle & Griffiths, John Wiley & Sons 1998). Reagents, cloning vectors, and kits for genetic manipulation referred to in this disclosure are available from commercial vendors such as BioRad, Stratagene, Invitrogen, Sigma-Aldrich, and ClonTech.


The present inventions have been described in terms of particular embodiments found or proposed by the present inventor to comprise preferred modes for the practice of the invention. It will be appreciated by those of skill in the art that, in light of the present disclosure, numerous modifications and changes can be made in the particular embodiments exemplified without departing from the intended scope of the invention. All such modifications are intended to be included within the scope of the appended claims.


Compositions and methods are provided that relate to the characterization, use, and manipulation of immunogenic peptides associated with autoimmune disease; and pathogenic B cells reactive with such immunogenic peptides.


The subject methods may be used for diagnostic, prophylactic or therapeutic purposes. As used herein, the term “treating” is used to refer to both prevention of relapses, and treatment of pre-existing conditions. For example, the prevention of autoimmune disease may be accomplished by administration of the agent prior to development of a relapse. “Treatment” as used herein covers any treatment of a disease in a mammal, particularly a human, and includes: (a) preventing the disease or symptom from occurring in a subject which may be predisposed to the disease or symptom but has not yet been diagnosed as having it; (b) inhibiting the disease symptom, i.e., arresting its development; or (c) reducing the symptoms of the disease, i.e., causing regression of the disease or symptom. The treatment of ongoing disease, where the treatment stabilizes or improves the clinical symptoms of the patient, is of particular interest.


“Inhibiting” the onset of a disorder shall mean either lessening the likelihood of the disorder's onset, or preventing the onset of the disorder entirely. Reducing the severity of a relapse shall mean that the clinical indicia associated with a relapse are less severe in the presence of the therapy than in an untreated disease. As used herein, onset may refer to a relapse in a patient that has ongoing relapsing remitting disease. The methods of the invention can be specifically applied to patients that have been diagnosed with autoimmune disease, including for example autoimmune disease. Treatment may be aimed at the treatment or reducing severity of relapses, which are an exacerbation of a pre-existing condition.


“Diagnosis” as used herein generally includes determination of a subject's susceptibility to a disease or disorder, determination as to whether a subject is presently affected by a disease or disorder, prognosis of a subject affected by a disease or disorder (e.g., identification of disease states, stages of disease, or responsiveness of disease to therapy), and use of therametrics (e.g., monitoring a subject's condition to provide information as to the effect or efficacy of therapy).


The term “biological sample” encompasses a variety of sample types obtained from an organism and can be used in a diagnostic or monitoring assay. The term encompasses blood, cerebral spinal fluid, and other liquid samples of biological origin, solid tissue samples, such as a biopsy specimen or tissue cultures or cells derived therefrom and the progeny thereof. The term encompasses samples that have been manipulated in any way after their procurement, such as by treatment with reagents, solubilization, or enrichment for certain components. The term encompasses a clinical sample, and also includes cells in cell culture, cell supernatants, cell lysates, serum, plasma, cerebrospinal fluid (CSF), biological fluids, and tissue samples.


The terms “individual,” “subject,” “host,” and “patient,” used interchangeably herein and refer to any mammalian subject for whom diagnosis, treatment, or therapy is desired, for example humans, non-human primate, mouse, rat, guinea pig, rabbit, etc. Mammals other than humans can be advantageously used as subjects that represent animal models of inflammation. A subject can be male or female.


The term “agent” as used herein includes any substance, molecule, element, compound, entity, or a combination thereof. It includes, but is not limited to, e.g., protein, oligopeptide, small organic molecule, polysaccharide, polynucleotide, and the like. It can be a natural product, a synthetic compound, or a chemical compound, or a combination of two or more substances. Unless otherwise specified, the terms “agent”, “substance”, and “compound” can be used interchangeably.


“Suitable conditions” shall have a meaning dependent on the context in which this term is used. That is, when used in connection with an antibody, the term shall mean conditions that permit an antibody to bind to its corresponding antigen. When used in connection with contacting an agent to a cell, this term shall mean conditions that permit an agent capable of doing so to enter a cell and perform its intended function. In one embodiment, the term “suitable conditions” as used herein means physiological conditions.


To “analyze” includes determining a set of values associated with a sample by measurement of a marker (such as, e.g., presence or absence of a marker or constituent expression levels) in the sample and comparing the measurement against measurement in a sample or set of samples from the same subject or other control subject(s). In particular the cell surface markers of the present teachings can be analyzed by any of various conventional methods known in the art. To “analyze” can include performing a statistical analysis to, e.g., determine whether a subject is a responder or a non-responder to a therapy (e.g., administration of a peptide or antibody treatment as described herein).


A “pharmaceutically acceptable excipient,” “pharmaceutically acceptable diluent,” “pharmaceutically acceptable carrier,” and “pharmaceutically acceptable adjuvant” means an excipient, diluent, carrier, and adjuvant that are useful in preparing a pharmaceutical composition that are generally safe, non-toxic and neither biologically nor otherwise undesirable, and include an excipient, diluent, carrier, and adjuvant that are acceptable for veterinary use as well as human pharmaceutical use. “A pharmaceutically acceptable excipient, diluent, carrier and adjuvant” as used in the specification and claims includes both one and more than one such excipient, diluent, carrier, and adjuvant.


As used herein, a “pharmaceutical composition” is meant to encompass a composition suitable for administration to a subject, such as a mammal, especially a human. In general a “pharmaceutical composition” is sterile, and preferably free of contaminants that are capable of eliciting an undesirable response within the subject (e.g., the compound(s) in the pharmaceutical composition is pharmaceutical grade). Pharmaceutical compositions can be designed for administration to subjects or patients in need thereof via a number of different routes of administration including oral, buccal, rectal, parenteral, intraperitoneal, intradermal, intratracheal, intramuscular, subcutaneous, and the like.


“Dosage unit” refers to physically discrete units suited as unitary dosages for the particular individual to be treated. Each unit can contain a predetermined quantity of active compound(s) calculated to produce the desired therapeutic effect(s) in association with the required pharmaceutical carrier. The specification for the dosage unit forms can be dictated by (a) the unique characteristics of the active compound(s) and the particular therapeutic effect(s) to be achieved, and (b) the limitations inherent in the art of compounding such active compound(s).


“Pharmaceutically acceptable excipient” means an excipient that is useful in preparing a pharmaceutical composition that is generally safe, non-toxic, and desirable, and includes excipients that are acceptable for veterinary use as well as for human pharmaceutical use. Such excipients can be solid, liquid, semisolid, or, in the case of an aerosol composition, gaseous.


“Pharmaceutically acceptable salts and esters” means salts and esters that are pharmaceutically acceptable and have the desired pharmacological properties. Such salts include salts that can be formed where acidic protons present in the compounds are capable of reacting with inorganic or organic bases. Suitable inorganic salts include those formed with the alkali metals, e.g. sodium and potassium, magnesium, calcium, and aluminum. Suitable organic salts include those formed with organic bases such as the amine bases, e.g., ethanolamine, diethanolamine, triethanolamine, tromethamine, N methylglucamine, and the like. Such salts also include acid addition salts formed with inorganic acids (e.g., hydrochloric and hydrobromic acids) and organic acids (e.g., acetic acid, citric acid, maleic acid, and the alkane- and arene-sulfonic acids such as methanesulfonic acid and benzenesulfonic acid). Pharmaceutically acceptable esters include esters formed from carboxy, sulfonyloxy, and phosphonoxy groups present in the compounds, e.g., C1-6 alkyl esters. When there are two acidic groups present, a pharmaceutically acceptable salt or ester can be a mono-acid-mono-salt or ester or a di-salt or ester; and similarly where there are more than two acidic groups present, some or all of such groups can be salified or esterified. Compounds named in this invention can be present in unsalified or unesterified form, or in salified and/or esterified form, and the naming of such compounds is intended to include both the original (unsalified and unesterified) compound and its pharmaceutically acceptable salts and esters. Also, certain compounds named in this invention may be present in more than one stereoisomeric form, and the naming of such compounds is intended to include all single stereoisomers and all mixtures (whether racemic or otherwise) of such stereoisomers.


The terms “pharmaceutically acceptable”, “physiologically tolerable” and grammatical variations thereof, as they refer to compositions, carriers, diluents and reagents, are used interchangeably and represent that the materials are capable of administration to or upon a human without the production of undesirable physiological effects to a degree that would prohibit administration of the composition.


A “therapeutically effective amount” means the amount that, when administered to a subject for treating a disease, is sufficient to effect treatment for that disease.


As used herein, the term “in combination” refers to the use of more than one prophylactic and/or therapeutic agents. The use of the term “in combination” does not restrict the order in which prophylactic and/or therapeutic agents are administered to a subject with a disorder. A first prophylactic or therapeutic agent can be administered prior to (e.g., 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks 6 weeks, 8 weeks, or 12 weeks before), concomitantly with, or subsequent to (e.g., 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks after) the administration of a second prophylactic or therapeutic agent to a subject with a disorder.


Immune tolerance, or immunological tolerance, or immunotolerance, is a state of unresponsiveness of the immune system to substances or tissue that have the capacity to elicit an immune response in a given organism. A tolerogenic regimen or formulation is a regimen or formulation that induces tolerance to an antigen of interest, e.g. tolerance to autoantigens such as myelin basic protein. A tolerogenic dose is the dose of an agent, e.g. peptide, altered peptide ligand, DNA vector, etc. that is sufficient to decrease undesirable immune responsiveness to a target antigen. A tolerogenic DNA construct is a DNA construct that encodes a tolerogenic peptide(s) that decreases undesirable immune responsiveness to a target antigen. A tolerogenic peptide is a peptide that acts to decrease undesirable immune responsiveness to a target antigen.


Tolerance can be induced through an immunization protocol developed to activate suppressive immune responses against an antigen. Tolerance is classified into central tolerance or peripheral tolerance depending on where the state is originally induced—in the thymus and bone marrow (central) or in other tissues and lymph nodes (peripheral).


Immune tolerance encompasses the range of physiological mechanisms by which the body reduces or eliminates an immune response to particular agents. It is used to describe the phenomenon underlying discrimination of self from non-self, suppressing allergic responses, allowing chronic infection instead of rejection and elimination, and preventing attack of fetuses by the maternal immune system.


Peripheral tolerance develops after T and B cells mature and enter the peripheral tissues and lymph nodes. It is established by a number of partly overlapping mechanisms that mostly involve control at the level of T cells, especially CD4+ helper T cells, which orchestrate immune responses Reactivity toward certain antigens may be reduced by induction of tolerance after repeated exposure, or exposure in a certain context. In these cases, there can be a differentiation of naïve CD4+ helper T cells into induced Treg cells (iTreg cells) in the peripheral tissue or nearby lymphoid tissue (lymph nodes, mucosal-associated lymphoid tissue, etc.).


EBV

The Epstein-Barr virus (EBV), formally called Human gammaherpesvirus 4, is one of the nine known human herpesvirus types in the herpes family, and is one of the most common viruses in humans. It is best known as the cause of infectious mononucleosis (“mono” or “glandular fever”).


Infection with EBV occurs by the oral transfer of saliva and genital secretions. Most people become infected with EBV and gain adaptive immunity. In the United States, about half of all five-year-old children and about 90% of adults have evidence of previous infection. Infants become susceptible to EBV as soon as maternal antibody protection disappears. Many children become infected with EBV, and these infections usually cause no symptoms or are indistinguishable from the other mild, brief illnesses of childhood. In the United States and other developed countries, many people are not infected with EBV in their childhood years. When infection with EBV occurs during adolescence, it causes infectious mononucleosis in approximately 35 to 50% of infected individuals.


EBV infects B cells of the immune system and epithelial cells. Once EBV's initial lytic infection is brought under control, EBV latency persists in the individual's B cells for the rest of their life. When EBV infects B cells in vitro, lymphoblastoid cell lines eventually emerge that are capable of indefinite growth. The growth transformation of these cell lines is the consequence of viral protein expression. EBNA-2, EBNA-3C, and LMP-1 are essential for transformation, whereas EBNA-LP and the EBERs are not. Following natural infection with EBV, the virus is thought to execute some or all of its repertoire of gene expression programs to establish a persistent infection. Given the initial absence of host immunity, the lytic cycle produces large numbers of virions to infect other (presumably) B-lymphocytes within the host.


The latent programs reprogram and subvert infected B-lymphocytes to proliferate and bring infected cells to the sites at which the virus presumably persists. Eventually, when host immunity develops, the virus persists by turning off most (or possibly all) of its genes, only occasionally reactivating to produce fresh virions. A balance is eventually struck between occasional viral reactivation and host immune surveillance removing cells that activate viral gene expression.


Disease Conditions

This invention relates to autoimmune diseases, cancers, and infectious conditions associated with EBV infection, and in which EBV drives pathogenic B cell responses.


Autoimmune Diseases

Autoimmune diseases associated with EBV infection include multiple sclerosis (MS), systemic lupus erythematosus (SLE), type I diabetes (T1D), Sjogren's Syndrome, rheumatoid arthritis (RA), dermatomyositis (DM), and other autoimmune diseases.


Multiple sclerosis (MS) is characterized by various symptoms and signs of CNS dysfunction, with remissions and recurring exacerbations. Classifications of interest for analysis by the methods of the invention include relapsing remitting MS (RRMS), primary progressive MS (PPMS) and secondary progressive MS (SPMS). The most common presenting symptoms are paresthesias in one or more extremities, in the trunk, or on one side of the face; weakness or clumsiness of a leg or hand; or visual disturbances, e.g. partial blindness and pain in one eye (retrobulbar optic neuritis), dimness of vision, or scotomas. Other common early symptoms are ocular palsy resulting in double vision (diplopia), transient weakness of one or more extremities, slight stiffness or unusual fatigability of a limb, minor gait disturbances, difficulty with bladder control, vertigo, and mild emotional disturbances; all indicate scattered CNS involvement and often occur months or years before the disease is recognized. Excess heat can accentuate symptoms and signs.


Systemic lupus erythematosus (SLE). Lupus, technically known as systemic lupus erythematosus (SLE), is an autoimmune disease in which the body's immune system mistakenly attacks healthy tissue in many parts of the body. Symptoms vary between people and may be mild to severe. Common symptoms include painful and swollen joints, fever, chest pain, hair loss, mouth ulcers, swollen lymph nodes, feeling tired, and a red rash which is most commonly on the face. Often there are periods of illness, called flares, and periods of remission during which there are few symptoms.


The cause of SLE is not clear. It is thought to involve genetics together with environmental factors. Among identical twins, if one is affected there is a 24% chance the other one will be as well. Female sex hormones, sunlight, smoking, vitamin D deficiency, and certain infections are also believed to increase the risk. The mechanism involves an immune response by autoantibodies against a person's own tissues. These are most commonly anti-nuclear antibodies and they result in inflammation. Diagnosis can be difficult and is based on a combination of symptoms and laboratory tests. There are a number of other kinds of lupus erythematosus including discoid lupus erythematosus, neonatal lupus, and subacute cutaneous lupus erythematosus.


Sjogren's Syndrome (SjS, SS). Sjögren's syndrome is a long-term autoimmune disease that affects the body's moisture-producing (lacrimal and salivary) glands, and often seriously affects other organs systems, such as the lungs, kidneys, and nervous system. Primary symptoms are dryness (dry mouth and dry eyes), pain and fatigue Other symptoms can include dry skin, vaginal dryness, a chronic cough, numbness in the arms and legs, feeling tired, muscle and joint pains, and thyroid problems. Those affected are also at an increased risk (5%) of lymphoma.


Type I diabetes (T1D). Type 1 diabetes, previously known as juvenile diabetes, is a form of diabetes in which very little or no insulin is produced by the islets of Langerhans in the pancreas. Insulin is a hormone required for the body to use blood sugar. Before treatment this results in high blood sugar levels in the body. The classic symptoms are frequent urination, increased thirst, increased hunger, and weight loss. Additional symptoms may include blurry vision, tiredness, and poor wound healing. Symptoms typically develop over a short period of time, often a matter of weeks.


The cause of type 1 diabetes is unknown, but it is believed to involve a combination of genetic and environmental factors. Risk factors include having a family member with the condition. The underlying mechanism involves an autoimmune destruction of the insulin producing beta cells in the pancreas. Diabetes is diagnosed by testing the level of sugar or glycated hemoglobin (HbA1C) in the blood. Type 1 diabetes can be distinguished from type 2 by testing for the presence of autoantibodies.


There is no known way to prevent type 1 diabetes. Treatment with insulin is required for survival. Insulin therapy is usually given by injection just under the skin but can also be delivered by an insulin pump. A diabetic diet and exercise are important parts of management. If left untreated, diabetes can cause many complications. Complications of relatively rapid onset include diabetic ketoacidosis and nonketotic hyperosmolar coma. Long-term complications include heart disease, stroke, kidney failure, foot ulcers and damage to the eyes. Furthermore, complications may arise from low blood sugar caused by excessive dosing of insulin.


Rheumatoid arthritis (RA). Rheumatoid arthritis is a long-term autoimmune disorder that primarily affects joints. It typically results in warm, swollen, and painful joints. Pain and stiffness often worsen following rest. Most commonly, the wrist and hands are involved, with the same joints typically involved on both sides of the body. The disease may also affect other parts of the body. This may result in a low red blood cell count, inflammation around the lungs, and inflammation around the heart. Fever and low energy may also be present. Often, symptoms come on gradually over weeks to months.


While the cause of rheumatoid arthritis is not clear, it is believed to involve a combination of genetic and environmental factors. The underlying mechanism involves the body's immune system attacking the joints. This results in inflammation and thickening of the joint capsule. It also affects the underlying bone and cartilage. The diagnosis is made mostly on the basis of a person's signs and symptoms. X-rays and laboratory testing may support a diagnosis or exclude other diseases with similar symptoms. Other diseases that may present similarly include systemic lupus erythematosus, psoriatic arthritis, and fibromyalgia among others.


The goals of treatment are to reduce pain, decrease inflammation, and improve a person's overall functioning. This may be helped by balancing rest and exercise, the use of splints and braces, or the use of assistive devices. Pain medications, steroids, and NSAIDs are frequently used to help with symptoms. Disease-modifying antirheumatic drugs (DMARDs), such as hydroxychloroquine and methotrexate, may be used to try to slow the progression of disease. Biological DMARDs may be used when disease does not respond to other treatments. However, they may have a greater rate of adverse effects. Surgery to repair, replace, or fuse joints may help in certain situations.


Dermatomyositis (DM). Dermatomyositis is a long-term inflammatory disorder which affects skin and the muscles. Its symptoms are generally a skin rash and worsening muscle weakness over time. These may occur suddenly or develop over months. Other symptoms may include weight loss, fever, lung inflammation, or light sensitivity. Complications may include calcium deposits in muscles or skin.


The cause is unknown. Theories include that it is an autoimmune disease or a result of a viral infection. It is a type of inflammatory myopathy. Diagnosis is typically based on some combination of symptoms, blood tests, electromyography, and muscle biopsies.


While no cure for the condition is known, treatments generally improve symptoms. Treatments may include medication, physical therapy, exercise, heat therapy, orthotics and assistive devices, and rest. Medications in the corticosteroids family are typically used with other agents such as methotrexate or azathioprine recommended if steroids are not working well. Intravenous immunoglobulin may also improve outcomes. Most people improve with treatment and in some the condition resolves completely.


At-Risk Individuals for Autoimmune Disease

In some embodiments the methods of the invention comprise treating, isolating cell populations from, or diagnosing individuals “at-risk” for development of, or in the “early-stages” of, an autoimmune disease. “At risk” for development of an autoimmune disease includes: (1) individuals whom are at increased risk for development of an autoimmune disease, and (2) individuals exhibiting a “pre-clinical” disease state, but do not meet the diagnostic criteria for the autoimmune disease (and thus are not formally considered to have the autoimmune disease).


Individuals “at increased risk” for development (also termed “at-risk” for development) of an autoimmune disease are individuals with a higher likelihood of developing an autoimmune disease or disease associated with inflammation compared to the general population. Such individuals can be identified based on their exhibiting or possessing one or more of the following: a family history of autoimmune disease; the presence of certain genetic variants (genes) or combinations of genetic variants which predispose the individual to such an autoimmune disease; the presence of physical findings, laboratory test results, imaging findings, marker test results (also termed “biomarker” test results) associated with development of the autoimmune disease, or marker test results associated with development of a metabolic disease; the presence of clinical signs related to the autoimmune disease; the presence of certain symptoms related to the autoimmune disease (although the individual is frequently asymptomatic); the presence of markers (also termed “biomarkers”) of inflammation; and other findings that indicate an individual has an increased likelihood over the course of their lifetime to develop an autoimmune disease or disease associated with inflammation. Most individuals at increased risk for development of an autoimmune disease or disease associated with inflammation are asymptomatic, and are not experiencing any symptoms related to the disease that they are at an increased risk for developing.


Included, without limitation, in the group of individuals at increased risk of developing an autoimmune disease, are individuals exhibiting “a pre-clinical disease state”. The pre-disease state may be diagnosed based on developing symptoms, physical findings, laboratory test results, imaging results, and other findings that result in the individual meeting the diagnostic criteria for the autoimmune disease, and thus being formally diagnosed. Individuals with “pre-clinical disease” exhibit findings that suggest that the individual is in the process of developing the autoimmune disease, but do not exhibit findings, including the symptoms, clinical findings, laboratory findings, and/or imaging findings, etc. that are necessary to meet the diagnostic criteria for a formal diagnosis of the autoimmune disease. In some embodiments, individuals exhibiting a pre-clinical disease state possess a genetic variant or a combination of genetic variants that place them at increased risk for development of disease as compared to individuals who do not possess that genetic variant or that combination of genetic variants. In some embodiments, these individuals have laboratory results, or physical findings, or symptoms, or imaging findings that place them at increased risk for development of an autoimmune disease. In some embodiments, individuals with preclinical disease states are asymptomatic. In some embodiments, individuals with pre-clinical disease states exhibit increased or decreased levels of the expression of certain genes, certain proteins, autoimmune markers, metabolic markers, and other markers.


In certain embodiments, this invention is directed to the treatment of individuals with established autoimmune disease or disease associated with inflammation. The autoimmune disease can be diagnosed based on an individual that exhibits symptoms, signs, clinical features, laboratory test results, imaging test results, biomarker results, and other findings that enable a physician to formally diagnose that individual with the autoimmune disease, which findings can include the detection of pathogenic B cells activated by a cross-reactive antigenic peptide as disclosed herein.


In some embodiments, established autoimmune disease is an autoimmune disease for which an individual has had a formal diagnosis of the disease made by a physician for longer than 6 months. In established autoimmune disease, the signs or symptoms of disease may be more severe as compared to, for example, the symptoms for an individual diagnosed with early-stage autoimmune disease. In established autoimmune disease, the disease process may cause tissue or organ damage. As described herein, in certain embodiments, determination of inflammation in an individual with established disease can comprise analyzing the individual for the presence of at least one marker indicative of the presence of inflammation.


An autoimmune disease is considered a disease which exhibits clinical manifestations (abnormal clinical markers) such as visible inflammation including pain, swelling, warmth, and redness, and with respect to the present invention, will involve as a causative agent antigen-specific pathologic CD4+ T cells. Autoimmune diseases include without limitation autoimmune diseases, and may further include diseases with a specific T cell mediated component.


EBV-Mediated Cancers

EBV is also associated with various non-malignant, premalignant, and malignant lymphoproliferative diseases such as Burkitt lymphoma, hemophagocytic lymphohistiocytosis, and Hodgkin's lymphoma; non-lymphoid malignancies such as gastric cancer and nasopharyngeal carcinoma; and conditions associated with human immunodeficiency virus such as hairy leukoplakia and central nervous system lymphomas. About 200,000 cancer cases per year are thought to be attributable to EBV.


EBV-Mediated Infections

Infectious diseases associated with EBV infection include infectious mononucleosis and chronic active EBV infection. Most people are infected by EBV as children, when the disease produces few or no symptoms. In young adults, the disease often results in fever, sore throat, enlarged lymph nodes in the neck, and tiredness. Most people recover in two to four weeks; however, feeling tired may last for months. The liver or spleen may also become swollen, and in less than one percent of cases splenic rupture may occur. Chronic active EBV infection is actually classified as lymphoproliferative disorder. It is a rare and often fatal complication of EBV infection that most often occurs in children or adolescents of Asian or South American lineage, although cases in Hispanics, Europeans and Africans have been reported. Symptoms are fever, hepatitis, splenomegaly, and pancytopenia.


Identification of a Cross-Reactive Antigenic Peptide

GlialCAM, also known in the art as hepaCAM is a glycoprotein containing an extracellular domain with 2 Ig-like loops, a transmembrane region and a cytoplasmic domain. GlialCAM is expressed at particularly high levels in the central nervous system (CNS). Functionally, glialCAM is involved in cell-extracellular matrix interactions and growth control of cancer cells, and is able to induce differentiation of glioblastoma cells. In cell signaling, GlialCAM directly interacts with F-actin and calveolin 1, and is capable of inducing senescence-like growth arrest via a p53/p21-dependent pathway. It acts as a chaperone for Aquaporin-4, which is the main autoantigen in the MS-related neuroinflammatory disorder neuromyelitis optica (NMO). GlialCAM can be proteolytically cleaved near the transmembrane region. The reference protein sequence may be found at Genbank, locus NP_689935. The mature protein is residues 34-416.











MKRERGALSR ASRALRLAPF VYLLLIQTDP LEGVNITSPV 







RLIHGTVGKS ALLSVQYSST SSDRPVVKWQ LKRDKPVTVV 







QSIGTEVIGT LRPDYRDRIR LFENGSLLLS DLQLADEGTY 







EVEISITDDT FTGEKTINLT VDVPISRPQV LVASTTVLEL 







SEAFTLNCSH ENGTKPSYTW LKDGKPLLND SRMLLSPDQK 







VLTITRVLME DDDLYSCMVE NPISQGRSLP VKITVYRRSS 







LYIILSTGGI FLLVTLVTVC ACWKPSKRKQ KKLEKQNSLE







YMDQNDDRLK PEADTLPRSG EQERKNPMAL YILKDKDSPE 







TEENPAPEPR SATEPGPPGY SVSPAVPGRS PGLPIRSARR 







YPRSPARSPA TGRTHSSPPR APSSPGRSRS ASRTLRTAGV 







HIIREQDEAG PVEISA






EBNA1 is a major transcription factor of the Epstein-Barr virus. It plays an essential role in replication and partitioning of viral genomic DNA during latent viral infection. The sequence of EBNA1 may be accessed at public databases, for example at UniParc P03211-1.











MSDEGPGTGP GNGLGEKGDT SGPEGSGGSG PQRRGGDNHG 







RGRGRGRGRG GGRPGAPGGS GSGPRHRDGV RRPQKRPSCI 







GCKGTHGGTG AGAGAGGAGA GGAGAGGGAG AGGGAGGAGG







AGGAGAGGGA GAGGGAGGAG GAGAGGGAGA GGGAGGAGAG 







GGAGGAGGAG AGGGAGAGGG AGGAGAGGGA GGAGGAGAGG 







GAGAGGAGGA GGAGAGGAGA GGGAGGAGGA GAGGAGAGGA







GAGGAGAGGA GGAGAGGAGG AGAGGAGGAG AGGGAGGAGA 







GGGAGGAGAG GAGGAGAGGA GGAGAGGAGG AGAGGGAGAG 







GAGAGGGGRG RGGSGGRGRG GSGGRGRGGS GGRRGRGRER







ARGGSRERAR GRGRGRGEKR PRSPSSQSSS SGSPPRRPPP








GRRPFFHPVG EADYFEYHQE GGPDGEPDVP PGAIEQGPAD 








DPGEGPSTGP RGQGDGGRRK KGGWFGKHRG QGGSNPKFEN







IAEGLRALLA RSHVERTTDE GTWVAGVFVY GGSKTSLYNL 







RRGTALAIPQ CRLTPLSRLP FGMAPGPGPQ PGPLRESIVC 







YFMVFLQTHI FAEVLKDAIK DLVMTKPAPT CNIRVTVCSF







DDGVDLPPWF PPMVEGAAAE GDDGDDGDEG GDGDEGEEGQ 







E






As shown in the Examples, the peptide antigen thus identified may be a native peptide of the individual, or may be cross-reactive EBNA-1 peptide that activates B cells. The peptide is useful as a screening tool, and also finds use as a therapeutic agent to activate tolerance.


Peptides, including the cross-reactive peptides disclosed herein, usually comprise at least about 8 amino acids, at least about 9 amino acids, at least about 10 amino acids, at least about 11 amino acids, at least about 12 amino acids, at least about 13 amino acids, at least about 15 amino acids, or more, and may be from about 8 amino acids in length to about 40 amino acids in length, from about 8 to about 30 amino acids in length, from about 8 to about 25, from about 8 to about 20 amino acids in length, from about 8 to about 18 amino acids in length. A peptide may, for example, comprise the provided amino acid sequence of glialcam, including the epitope cross-reactive with EBNA-1, and may further include fusion polypeptides as known in the art in addition to the provided sequences, where the fusion partner is other than a native protein sequence. Peptides useful in this invention also include derivatives, variants, and biologically active fragments of naturally occurring peptides, and the like. The peptide may, for example, comprise 1 amino acid substitution, 2 amino acid substitutions, 3 amino acid substitutions. The peptide sequence may be a designed sequenced derived from mutagenesis in the diverse peptide library.


Peptides can be modified, e.g., joined to a wide variety of other oligopeptides or proteins for a variety of purposes. For example, post-translationally modified, for example by prenylation, acetylation, amidation, carboxylation, glycosylation, pegylation, etc. Such modifications can also include modifications of glycosylation, e.g. those made by modifying the glycosylation patterns of a polypeptide during its synthesis and processing or in further processing steps; e.g. by exposing the polypeptide to enzymes which affect glycosylation, such as mammalian glycosylating or deglycosylating enzymes. In some embodiments, variants of the present invention include variants having phosphorylated amino acid residues, e.g. phosphotyrosine, phosphoserine, or phosphothreonine.


The ability of a peptide to modulate lymphocyte activity can be determined, for example, by the ability of the peptide to bind to pathogenic B cells or antibodies present in the peripheral blood, or CSF.


In some embodiments, a peptide is provided as a fusion protein, e.g., fused in frame with a second polypeptide. In some embodiments, the second polypeptide is capable of increasing the size of the fusion protein, e.g., so that the fusion protein will not be cleared from the circulation rapidly. In some other embodiments, the second polypeptide is part or whole of Fc region. In some other embodiments, the second polypeptide is any suitable polypeptide that is substantially similar to Fc, e.g., providing increased size and/or additional binding or interaction with Ig molecules. These fusion proteins can facilitate purification and show an increased half-life in vivo. Fusion proteins having disulfide-linked dimeric structures (due to the IgG) can also be more efficient in binding and neutralizing other molecules than the monomeric secreted protein or protein fragment alone.


In some other embodiments, peptide variants of the present invention include variants further modified to improve their resistance to proteolytic degradation or to optimize solubility properties or to render them more suitable as a therapeutic agent. For example, variants of the present invention further include analogs containing residues other than naturally occurring L-amino acids, e.g. D-amino acids or non-naturally occurring synthetic amino acids. D-amino acids may be substituted for some or all of the amino acid residues.


The polypeptides may be prepared by cell-free translation systems, or synthetic in vitro synthesis, using conventional methods as known in the art. Various commercial synthetic apparatuses are available, for example, automated synthesizers by Applied Biosystems, Inc., Foster City, Calif., Beckman, etc. By using synthesizers, naturally occurring amino acids may be substituted with unnatural amino acids. The particular sequence and the manner of preparation will be determined by convenience, economics, purity required, and the like.


The polypeptides may also be isolated and purified in accordance with conventional methods of recombinant synthesis. A lysate may be prepared of the expression host and the lysate purified using HPLC, exclusion chromatography, gel electrophoresis, affinity chromatography, or other purification technique. For the most part, the compositions which are used will comprise at least 20% by weight of the desired product, more usually at least about 75% by weight, preferably at least about 95% by weight, and for therapeutic purposes, usually at least about 99.5% by weight, in relation to contaminants related to the method of preparation of the product and its purification. Usually, the percentages will be based upon total protein.


Antibodies Specific for Cross-Reactive Peptides

Antibodies may be raised to the cross-reactive peptide(s), or may comprise a set of CDR sequences from the sequences provided in Table 3. As used in this invention, the term “epitope” means any antigenic determinant on an antigen to which the paratope of an antibody binds. Epitopic determinants usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and usually have specific three dimensional structural characteristics, as well as specific charge characteristics.


The term “antibody” is used in the broadest sense and specifically covers monoclonal antibodies (including full length monoclonal antibodies), polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies), and antibody fragments so long as they exhibit the desired biological activity. “Antibodies” (Abs) and “immunoglobulins” (lgs) are glycoproteins having the same structural characteristics. While antibodies exhibit binding specificity to a specific antigen, immunoglobulins include both antibodies and other antibody-like molecules which lack antigen specificity. Polypeptides of the latter kind are, for example, produced at low levels by the lymph system and at increased levels by myelomas.


As used herein, the term “antibody” refers to a polypeptide that includes canonical immunoglobulin sequence elements sufficient to confer specific binding to a particular target antigen. As is known in the art, intact antibodies as produced in nature are approximately 150 kD tetrameric agents comprised of two identical heavy chain polypeptides (about 50 kD each) and two identical light chain polypeptides (about 25 kD each) that associate with each other into what is commonly referred to as a “Y-shaped” structure. Each heavy chain is comprised of at least four domains (each about 110 amino acids long)—an amino-terminal variable (VH) domain (located at the tips of the Y structure), followed by three constant domains: CH1, CH2, and the carboxy-terminal CH3 (located at the base of the Y's stem). A short region, known as the “switch”, connects the heavy chain variable and constant regions. The “hinge” connects CH2 and CH3 domains to the rest of the antibody. Two disulfide bonds in this hinge region connect the two heavy chain polypeptides to one another in an intact antibody. Each light chain is comprised of two domains—an amino-terminal variable (VL) domain, followed by a carboxy-terminal constant (CL) domain, separated from one another by another “switch”. Intact antibody tetramers are comprised of two heavy chain-light chain dimers in which the heavy and light chains are linked to one another by a single disulfide bond; two other disulfide bonds connect the heavy chain hinge regions to one another, so that the dimers are connected to one another and the tetramer is formed. Naturally-produced antibodies are also glycosylated, typically on the CH2 domain. Each domain in a natural antibody has a structure characterized by an “immunoglobulin fold” formed from two beta sheets (e.g., 3-, 4-, or 5-stranded sheets) packed against each other in a compressed antiparallel beta barrel. Each variable domain contains three hypervariable loops known as “complement determining regions” (CDR1, CDR2, and CDR3) and four somewhat invariant “framework” regions (FR1, FR2, FR3, and FR4). When natural antibodies fold, the FR regions form the beta sheets that provide the structural framework for the domains, and the CDR loop regions from both the heavy and light chains are brought together in three-dimensional space so that they create a single hypervariable antigen binding site located at the tip of the Y structure.


The Fc region of naturally-occurring antibodies binds to elements of the complement system, and also to receptors on effector cells, including for example effector cells that mediate cytotoxicity, including specifically ADCP. As is known in the art, affinity and/or other binding attributes of Fc regions for Fc receptors can be modulated through glycosylation or other modification. In some embodiments, antibodies produced and/or utilized in accordance with the present invention include glycosylated Fc domains, including Fc domains with modified or engineered such glycosylation. For purposes of the present invention, in certain embodiments, any polypeptide or complex of polypeptides that includes sufficient immunoglobulin domain sequences as found in natural antibodies can be referred to and/or used as an “antibody”, whether such polypeptide is naturally produced (e.g., generated by an organism reacting to an antigen), or produced by recombinant engineering, chemical synthesis, or other artificial system or methodology. In some embodiments, an antibody is polyclonal; in some embodiments, an antibody is monoclonal.


In some embodiments, an antibody has constant region sequences that are characteristic of mouse, rabbit, primate, or human antibodies. In some embodiments, antibody sequence elements are humanized, primatized, chimeric, etc., as is known in the art.


Moreover, the term “antibody” as used herein, can refer in appropriate embodiments (unless otherwise stated or clear from context) to any of the art-known or developed constructs or formats for utilizing antibody structural and functional features in alternative presentation. For example, embodiments, an antibody utilized in accordance with the present invention is in a format selected from, but not limited to, intact IgG, IgE and IgM, bi- or multi-specific antibodies (e.g., Zybodies®, etc.), single chain Fvs, polypeptide-Fc fusions, Fabs, cameloid antibodies, masked antibodies (e.g., Probodies®), Small Modular ImmunoPharmaceuticals (“SMIPs™”), single chain or Tandem diabodies (TandAb®), VHHs, Anticalins®, Nanobodies®, minibodies, BiTE® s, ankyrin repeat proteins or DARPINs®, Avimers®, a DART, a TCR-like antibody, Adnectins®, Affilins®, Trans-bodies®, Affibodies®, a TrimerX®, MicroProteins, Fynomers®, Centyrins®, and a KALBITOR®. In some embodiments, an antibody may lack a covalent modification (e.g., attachment of a glycan) that it would have if produced naturally. In some embodiments, an antibody may contain a covalent modification (e.g., attachment of a glycan, a payload, e.g., a detectable moiety, a therapeutic moiety, a catalytic moiety, etc., or other pendant group [e.g., poly-ethylene glycol, etc.


Exemplary antibody agents include, but are not limited to, human antibodies, primatized antibodies, chimeric antibodies, bi-specific antibodies, humanized antibodies, conjugated antibodies (i.e., antibodies conjugated or fused to other proteins, radiolabels, cytotoxins), Small Modular ImmunoPharmaceuticals (“SMIPs™”), single chain antibodies, cameloid antibodies, and antibody fragments. As used herein, the term “antibody agent” also includes intact monoclonal antibodies, polyclonal antibodies, single domain antibodies (e.g., shark single domain antibodies (e.g., IgNAR or fragments thereof)), multispecific antibodies (e.g. bi-specific antibodies) formed from at least two intact antibodies, and antibody fragments so long as they exhibit the desired biological activity. In some embodiments, the term encompasses stapled peptides. In some embodiments, the term encompasses one or more antibody-like binding peptidomimetics. In some embodiments, the term encompasses one or more antibody-like binding scaffold proteins. In come embodiments, the term encompasses monobodies or adnectins.


In many embodiments, an antibody agent is or comprises a polypeptide whose amino acid sequence includes one or more structural elements recognized by those skilled in the art as a complementarity determining region (CDR); in some embodiments an antibody agent is or comprises a polypeptide whose amino acid sequence includes at least one CDR (e.g., at least one heavy chain CDR and/or at least one light chain CDR) that is substantially identical to one found in a reference antibody. In some embodiments an included CDR is substantially identical to a reference CDR in that it is either identical in sequence or contains between 1-5 amino acid substitutions as compared with the reference CDR. In some embodiments an included CDR is substantially identical to a reference CDR in that it shows at least 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity with the reference CDR. In some embodiments an included CDR is substantially identical to a reference CDR in that it shows at least 96%, 96%, 97%, 98%, 99%, or 100% sequence identity with the reference CDR. In some embodiments an included CDR is substantially identical to a reference CDR in that at least one amino acid within the included CDR is deleted, added, or substituted as compared with the reference CDR but the included CDR has an amino acid sequence that is otherwise identical with that of the reference CDR. In some embodiments an included CDR is substantially identical to a reference CDR in that 1-5 amino acids within the included CDR are deleted, added, or substituted as compared with the reference CDR but the included CDR has an amino acid sequence that is otherwise identical to the reference CDR. In some embodiments an included CDR is substantially identical to a reference CDR in that at least one amino acid within the included CDR is substituted as compared with the reference CDR but the included CDR has an amino acid sequence that is otherwise identical with that of the reference CDR. In some embodiments an included CDR is substantially identical to a reference CDR in that 1-5 amino acids within the included CDR are deleted, added, or substituted as compared with the reference CDR but the included CDR has an amino acid sequence that is otherwise identical to the reference CDR. In some embodiments, an antibody agent is or comprises a polypeptide whose amino acid sequence includes structural elements recognized by those skilled in the art as an immunoglobulin variable domain. In some embodiments, an antibody agent is a polypeptide protein having a binding domain which is homologous or largely homologous to an immunoglobulin-binding domain.


“Native antibodies and immunoglobulins” are usually heterotetrameric glycoproteins of about 150,000 daltons, composed of two identical light (L) chains and two identical heavy (H) chains. Each light chain is linked to a heavy chain by one covalent disulfide bond, while the number of disulfide linkages varies between the heavy chains of different immunoglobulin isotypes. Each heavy and light chain also has regularly spaced intrachain disulfide bridges. Each heavy chain has at one end a variable domain (VH) followed by a number of constant domains. Each light chain has a variable domain at one end (VL) and a constant domain at its other end; the constant domain of the light chain is aligned with the first constant domain of the heavy chain, and the light chain variable domain is aligned with the variable domain of the heavy chain. Particular amino acid residues are believed to form an interface between the light- and heavy-chain variable domains (Clothia et al., J. Mol. Biol. 186:651 (1985); Novotny and Haber, Proc. Natl. Acad. Sci. U.S.A. 82:4592 (1985)).


The term “variable” refers to the fact that certain portions of the variable domains differ extensively in sequence among antibodies and are used in the binding and specificity of each particular antibody for its particular antigen. However, the variability is not evenly distributed throughout the variable domains of antibodies. It is concentrated in three segments called complementarity-determining regions (CDRs) or hypervariable regions both in the light-chain and the heavy-chain variable domains. The more highly conserved portions of variable domains are called the framework (FR). The variable domains of native heavy and light chains each comprise four FR regions, largely adopting a b-sheet configuration, connected by three CDRs, which form loops connecting, and in some cases forming part of, the b-sheet structure. The CDRs in each chain are held together in close proximity by the FR regions and, with the CDRs from the other chain, contribute to the formation of the antigen-binding site of antibodies (see Kabat et al., Sequences of Proteins of Immunological Interest, Fifth Edition, National Institute of Health, Bethesda, Md. (1991)). The constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody-dependent cellular toxicity.


Papain digestion of antibodies produces two identical antigen-binding fragments, called “Fab” fragments, each with a single antigen-binding site, and a residual “Fc” fragment, whose name reflects its ability to crystallize readily. Pepsin treatment yields an F(ab′)2 fragment that has two antigen-combining sites and is still capable of cross-linking antigen.


“Fv” is the minimum antibody fragment which contains a complete antigen-recognition and -binding site. In a two-chain Fv species, this region consists of a dimer of one heavy- and one light-chain variable domain in tight, non-covalent association. In a single-chain Fv species (scFv), one heavy- and one light-chain variable domain can be covalently linked by a flexible peptide linker such that the light and heavy chains can associate in a “dimeric” structure analogous to that in a two-chain Fv species. It is in this configuration that the three CDRs of each variable domain interact to define an antigen-binding site on the surface of the VH-VL dimer. Collectively, the six CDRs confer antigen-binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site. For a review of scFv see Pluckthun, in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore eds., Springer-Verlag, New York, pp. 269-315 (1994).


The Fab fragment also contains the constant domain of the light chain and the first constant domain (CH1) of the heavy chain. Fab′ fragments differ from Fab fragments by the addition of a few residues at the carboxy terminus of the heavy chain CH1 domain including one or more cysteines from the antibody hinge region. Fab′-SH is the designation herein for Fab′ in which the cysteine residue(s) of the constant domains bear a free thiol group. F(ab′)2 antibody fragments originally were produced as pairs of Fab′ fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.


There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, and several of these can be further divided into subclasses (isotypes), e.g., IgG1, IgG2, IgG3, IgG4, IgA1, IgA2. The heavy-chain constant domains that correspond to the different classes of immunoglobulins are called a, d, e, g, and m, respectively. The subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known. Engineered variants of immunoglobulin subclasses, including those that increase or decrease immune effector functions, half-life, or serum-stability, are also encompassed by this terminology.


“Antibody fragment”, and all grammatical variants thereof, as used herein are defined as a portion of an intact antibody comprising the antigen binding site or variable region of the intact antibody, wherein the portion is free of the constant heavy chain domains (i.e. CH2, CH3, and CH4, depending on antibody isotype) of the Fc region of the intact antibody. Examples of antibody fragments include Fab, Fab′, Fab′-SH, F(ab′)2, and Fv fragments; diabodies; any antibody fragment that is a polypeptide having a primary structure consisting of one uninterrupted sequence of contiguous amino acid residues (referred to herein as a “single-chain antibody fragment” or “single chain polypeptide”), including without limitation (1) single-chain Fv (scFv) molecules (2) single chain polypeptides containing only one light chain variable domain, or a fragment thereof that contains the three CDRs of the light chain variable domain, without an associated heavy chain moiety and (3) single chain polypeptides containing only one heavy chain variable region, or a fragment thereof containing the three CDRs of the heavy chain variable region, without an associated light chain moiety; and multispecific or multivalent structures formed from antibody fragments. In an antibody fragment comprising one or more heavy chains, the heavy chain(s) can contain any constant domain sequence (e.g. CH1 in the IgG isotype) found in a non-Fc region of an intact antibody, and/or can contain any hinge region sequence found in an intact antibody, and/or can contain a leucine zipper sequence fused to or situated in the hinge region sequence or the constant domain sequence of the heavy chain(s).


The term “monoclonal antibody” (mAb) as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Each mAb is directed against a single determinant on the antigen. In addition to their specificity, the monoclonal antibodies are advantageous in that they can be synthesized by hybridoma culture, uncontaminated by other immunoglobulins. The modifier “monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present invention may be made in an immortalized B cell or hybridoma thereof, or may be made by recombinant DNA methods.


An “isolated” antibody is one which has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials which would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes. In some embodiments, the antibody will be purified (1) to greater than 75% by weight of antibody as determined by the Lowry method, and most preferably more than 80%, 90% or 99% by weight, or (2) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using Coomassie blue or, preferably, silver stain. Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step.


The terms “specific binding,” “specifically binds,” and the like, refer to non-covalent or covalent preferential binding to a molecule relative to other molecules or moieties in a solution or reaction mixture (e.g., an antibody specifically binds to a particular polypeptide or epitope relative to other available polypeptides). In some embodiments, the affinity of one molecule for another molecule to which it specifically binds is characterized by a Kd (dissociation constant) of 10-5 M or less (e.g., 10-6 M or less, 10-7 M or less, 10-8 M or less, 10-9 M or less, 10-10 M or less, 10-11 M or less, 10-12 M or less, 10-13 M or less, 10-14 M or less, 10-15 M or less, or 10-16 M or less). “Affinity” refers to the strength of binding, increased binding affinity being correlated with a lower Kd.


The term “specific binding member” as used herein refers to a member of a specific binding pair (i.e., two molecules, usually two different molecules, where one of the molecules, e.g., a first specific binding member, through non-covalent means specifically binds to the other molecule, e.g., a second specific binding member).


Therapy and Diagnosis

Depletion of pathogenic B cells may comprise, for example, targeting antibodies to markers present on actively infected B cells, e.g. target pathogenic EBV-infected B cells, e.g. by therapies directed to one or more of cell-surface EBV proteins: BILF-1, LMP1 and LMP2. Antibodies may be conjugated to a cytotoxic agent, e.g. tubulin polymerization inhibitors, e.g. maytansinoids (maytansine), dolastatins, auristatin drug analogs, cryptophycin; duocarmycin derivatives, e.g. CC-1065 analogs, duocarmycin; enediyne antibiotics, e.g. esperamicin, calicheamicin; pyrrolobenzodiazepine (PBD); and the like. Other targeted agents include anti-B cell antibodies, e.g. anti-CD20 antibodies, e.g. rituximab; anti-CD19 antibodies; anti-CD38 antibodies, e.g. daratumumab; EBV-specific CAR T cells, and the like.


Inhibition of B cells with active EBV infection may utilize, for example, inhibition of specific tyrosine kinase proteins. Such inhibitor include, without limitation, BTK inhibitors. BTK signaling influences antigen presentation on B cells and is essential to the production of antibodies, proinflammatory cytokines and chemokines, and cell adhesion molecules. Examples of useful inhibitors include ibrutinib, evobrutinib, PRN2246 (SAR442168), and BIIB091.


Inhibition of active EBV infection may utilize small molecules that directly interfere with activating signaling cascades initiated by EBV-encoded proteins, e.g. LMP-1 and LMP-2.


Therapeutic entities are often administered as pharmaceutical compositions comprising an active therapeutic agent and a other pharmaceutically acceptable excipient. The preferred form depends on the intended mode of administration and therapeutic application. The compositions can also include, depending on the formulation desired, pharmaceutically-acceptable, non-toxic carriers or diluents, which are defined as vehicles commonly used to formulate pharmaceutical compositions for animal or human administration. The diluent is selected so as not to affect the biological activity of the combination. Examples of such diluents are distilled water, physiological phosphate-buffered saline, Ringer's solutions, dextrose solution, and Hank's solution. In addition, the pharmaceutical composition or formulation may also include other carriers or nontoxic, nontherapeutic, nonimmunogenic stabilizers and the like.


In still some other embodiments, pharmaceutical compositions can also include large, slowly metabolized macromolecules such as proteins, polysaccharides such as chitosan, polylactic acids, polyglycolic acids and copolymers (such as latex functionalized Sepharose™, agarose, cellulose, and the like), polymeric amino acids, amino acid copolymers, and lipid aggregates (such as oil droplets or liposomes).


Also provided are combination therapy methods, where the combination may provide for additive or synergistic benefits. Combinations of a peptide or antibody may be obtained with a second agent selected from one or more of the general classes of drugs commonly used in the non-antigen specific treatment of autoimmune disease, which include corticosteroids and disease modifying drugs; or from an antigen-specific agent. Corticosteroids, e.g. prednisone, methylpredisone, prednisolone, solumedrol, etc. have both anti-inflammatory and immuno activity. They can be given systemically or can be injected locally. Corticosteroids are useful in early disease as temporary adjunctive therapy while waiting for disease modifying agents to exert their effects. Corticosteroids are also useful as chronic adjunctive therapy in patients with severe disease.


Certain compounds are known to activate EBV in B cells and therefore induce expression of BILF-1, and other lytic/activated proteins, as well as possibly LMP-1, LMP-2. These compounds include but are not restricted to decitabine, sodium butyrate, bortezomib, and compounds described by Tikhmyanova et al. (Bioorg Med Chem Lett., 2014 and 2019). These compounds could be used in conjunction with anti-EBV antibodies and other compounds to increase expression of EBV-encoded target molecules for depletion of EBV-infected B cells.


Disease modifying drugs are also useful in combined therapy. These agents include methotrexate, leflunomide, etanercept, infliximab, adalimumab, anakinra, rituximab, CTLA4-Ig (abatacept), antimalarials, gold salts, sulfasalazine, d-penicillamine, cyclosporin A, cyclophosphamide azathioprine; and the like. Treatments for MS may include interferon β, Copaxone, and anti-VLA4, which reduce relapse rate. MS is also treated with immunosuppressive agents including methylprednisolone, other steroids, methotrexate, cladribine and cyclophosphamide.


Combination therapies may be sequentially staged, provided in a co-administration formulation, or concomitant administration during the same time period. “Concomitant administration” of a known therapeutic drug with a pharmaceutical composition of the present invention means administration of the drug and peptide at such time that both the known drug and the composition of the present invention will have a therapeutic effect. Such concomitant administration may involve concurrent (i.e. at the same time), prior, or subsequent administration of the drug with respect to the administration of a compound of the invention. A person of ordinary skill in the art would have no difficulty determining the appropriate timing, sequence and dosages of administration for particular drugs and compositions of the present invention.


Drug, peptides, antibodies, etc. can serve as the active ingredient in pharmaceutical compositions formulated for the treatment of various disorders as described above. The active ingredient is present in a therapeutically effective amount, i.e., an amount sufficient when administered to treat a disease or medical condition mediated thereby, in particular by reducing the activity of inflammatory lymphocytes. The compositions can also include various other agents to enhance delivery and efficacy, e.g. to enhance delivery and stability of the active ingredients.


Thus, for example, the compositions can also include, depending on the formulation desired, pharmaceutically-acceptable, non-toxic carriers or diluents, which are defined as vehicles commonly used to formulate pharmaceutical compositions for animal or human administration. The diluent is selected so as not to affect the biological activity of the combination. Examples of such diluents are distilled water, buffered water, physiological saline, PBS, Ringer's solution, dextrose solution, and Hank's solution. In addition, the pharmaceutical composition or formulation can include other carriers, or non-toxic, nontherapeutic, nonimmunogenic stabilizers, excipients and the like. The compositions can also include additional substances to approximate physiological conditions, such as pH adjusting and buffering agents, toxicity adjusting agents, wetting agents and detergents. The composition can also include any of a variety of stabilizing agents, such as an antioxidant.


Complexes with various well-known compounds can be used to enhance the in vivo stability of a drug or polypeptide, or otherwise enhance its pharmacological properties (e.g., increase the half-life of the polypeptide, reduce its toxicity, enhance solubility or uptake). Examples of such modifications or complexing agents include sulfate, gluconate, citrate and phosphate. The polypeptides of a composition can also be complexed with molecules that enhance their in vivo attributes. Such molecules include, for example, carbohydrates, polyamines, amino acids, other peptides, ions (e.g., sodium, potassium, calcium, magnesium, manganese), and lipids.


Further guidance regarding formulations that are suitable for various types of administration can be found in Remington's Pharmaceutical Sciences, Mace Publishing Company, Philadelphia, Pa., 17th ed. (1985). For a brief review of methods for drug delivery, see, Langer, Science 249:1527-1533 (1990).


The pharmaceutical compositions can be administered for prophylactic and/or therapeutic treatments. Toxicity and therapeutic efficacy of the active ingredient can be determined according to standard pharmaceutical procedures in cell cultures and/or experimental animals, including, for example, determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Compounds that exhibit large therapeutic indices are preferred.


The data obtained from cell culture and/or animal studies can be used in formulating a range of dosages for humans. The dosage of the active ingredient typically lies within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage can vary within this range depending upon the dosage form employed and the route of administration utilized.


The pharmaceutical compositions described herein can be administered in a variety of different ways. Examples include administering a composition containing a pharmaceutically acceptable carrier via oral, intranasal, rectal, topical, intraperitoneal, intravenous, intramuscular, subcutaneous, subdermal, transdermal method.


Formulations suitable for parenteral administration, such as, for example, by intravenous, intramuscular, intradermal, intraperitoneal, and subcutaneous routes, include aqueous and non-aqueous, isotonic sterile injection solutions, which can contain antioxidants, buffers, bacteriostats, and solutes that render the formulation isotonic with the blood of the intended recipient, and aqueous and non-aqueous sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives.


The components used to formulate the pharmaceutical compositions are preferably of high purity and are substantially free of potentially harmful contaminants (e.g., at least National Food (NF) grade, generally at least analytical grade, and more typically at least pharmaceutical grade). Moreover, compositions intended for in vivo use are preferably sterile. To the extent that a given compound must be synthesized prior to use, the resulting product is preferably substantially free of any potentially toxic agents, such as any endotoxins, which may be present during the synthesis or purification process. Compositions for parental administration are also preferably sterile, substantially isotonic and made under GMP conditions.


The compositions may be administered in a single dose, or in multiple doses, usually multiple doses over a period of time, e.g. daily, every-other day, weekly, semi-weekly, monthly etc. for a period of time sufficient to reduce severity of the inflammatory disease, which may comprise 1, 2, 3, 4, 6, 10, or more doses.


Determining a therapeutically or prophylactically effective amount can be done based on animal data using routine computational methods. In one embodiment, the therapeutically or prophylactically effective amount contains between about 0.1 mg and about 1 g of protein. In another embodiment, the effective amount contains between about 1 mg and about 100 mg of protein. In a further embodiment, the effective amount contains between about 10 mg and about 50 mg of the protein. The effective dose will depend at least in part on the route of administration. The dose may be from about 0.1 μg/kg patient weight; about 1 μg/kg; about 100 μg/kg; to about 10 mg/kg.


In methods of use, an effective dose of an agent of the invention is administered alone, or combined with additional active agents for the treatment of a condition as listed above. The effective dose may be from about 1 ng/kg weight, 10 ng/kg weight, 100 ng/kg weight, 1 μg/kg weight, 10 μg/kg weight, 25 μg/kg weight, 50 μg/kg weight, 100 μg/kg weight, 250 μg/kg weight, 500 μg/kg weight, 750 μg/kg weight, 1 mg/kg weight, 5 mg/kg weight, 10 mg/kg weight, 25 mg/kg weight, 50 mg/kg weight, 75 mg/kg weight, 100 mg/kg weight, 250 mg/kg weight, 500 mg/kg weight, 750 mg/kg weight, and the like. The dosage may be administered multiple times as needed, e.g. every 4 hours, every 6 hours, every 8 hours, every 12 hours, every 18 hours, daily, every 2 days, every 3 days, weekly, and the like. The dosage may be administered orally.


The compositions can be administered in a single dose, or in multiple doses, usually multiple doses over a period of time, e.g. daily, every-other day, weekly, semi-weekly, monthly etc. for a period of time sufficient to reduce severity of the inflammatory disease, which can comprise 1, 2, 3, 4, 6, 10, or more doses.


Determining a therapeutically or prophylactically effective amount of an agent according to the present methods can be done based on animal data using routine computational methods. The effective dose will depend at least in part on the route of administration.


The cross-reactive peptides are also useful in methods of characterizing the immune profile of an individual, particularly for determining the presence of pathogenic B cells having specificity for these peptides in an individual suspected of having MS or related inflammatory conditions. The methods can comprise contacting a sample comprising B cells from the individual with an immunogenic, cross-reactive peptide, and determining the presence of a B cell or antibody response to the peptide. The sample may be any biological sample that comprises B cells or antibodies, including peripheral blood, lymph node samples, CSF, and the like. The response can be determined by direct binding assays, by determining the presence of B cells associated with specificity to these peptide antigens, by determining the presence of EBV activation markers on B cells, by frequency determination; and the like as known in the art.


Antigen-Specific Immunotherapy

Antigen-specific immunotherapy aims to take advantage of tolerization, immune deviation and the induction of Tregs in order to promote autoantigen-specific tolerance. Autoimmune diseases are potentially be treated by eliminating pathogenic cells that are specific for autoantigens or by blocking the immune response directed by autoantigen-specific cells. Another method to induce immunological changes is by manipulation of dendritic cells (DCs). DCs are essential to the induction phase of the immune response and are therefore critically important in determining whether a response toward an antigen will be inflammation or tolerance. DCs can influence if naïve cells will undergo deletion, anergy, or differentiation. DC responses to a specific antigen are influenced by the tissue environment and innate stimuli associated with that antigen. Therapies may target DCs to induce tolerance.


For example, the cross-reactive EBNA-1 epitope or glialcam epitope may be administered via a tolerogenic route, e.g. by oral or nasal administration of soluble or oligomerized peptides. Alternatively the cross-reactive peptide can be used as the basis for an altered peptide ligand (APLs). Altered peptide ligands are analogues derived from an antigenic peptide that comprise amino acid substitutions at contact residues, e.g. a substitution of 1, 2 3 amino acids. Altered peptide ligands can specifically antagonize and inhibit activation induced by the cognate antigenic peptide. APLs compete with the native peptide for binding but bind with lower affinity, and can thereby function as antagonists or partial agonists.


In some embodiments a peptide is formulated for immunization to generate an antigen-specific tolerance, e.g. by subcutaneous or oral administration of a cross-reactive peptide(s). In some embodiments a cross-reactive peptide is formulated for trans-dermal delivery. In some embodiments, a method of inducing immune tolerance comprises trans-dermal administration of cross-reactive peptide(s) this formulated. An effective dose may be a low dose, e.g. a dose of less than about 5 mg, less than about 2.5 mg, less than about 1 mg, less than about 500 μg, less than about 100 μg. In some embodiments a cross-reactive peptide is encapsulated into mannosylated liposomes to enhance enhanced the uptake of the peptides by dendritic cells.


As an alternative to peptide vaccination, DNA vaccines can be formulated in a tolerizing vector of genetically engineered DNA that encodes one or more of the cross-reactive peptides disclosed herein. A tolerizing vector can be formulated and administered by intramuscular injection, for example in a plasmid backbone modified in such a way that it could lead to favorable immunological changes in patients with MS, e.g. reduction in the number of immunostimulatory CpG motifs and increase in the number of immunoinhibitory GpG motifs). A lower dose may be preferred, e.g. a dose of less than 5 mg, e.g. a dose of less than about 5 mg, less than about 2.5 mg, less than about 1 mg, less than about 500 μg, less than about 100 μg.


DNA vectors, for example as described in U.S. Pat. No. 10,098,935 have been shown to provide for tolerization (i.e., induction of antigen-specific tolerance). Such a vector is referred to as a tolerizing vector. The vector can be administered, for example, by local injection, including intramuscular injection, where the vector encodes a cross-reactive adenovirus peptide or protein comprising the peptide, and further comprises a promoter sequence operably linked the nucleic acid sequence; and a DNA backbone, linked to the promoter sequence and the nucleic acid sequence, comprising 4 or fewer immunostimulatory CpG motifs. The cross-reactive peptide may be modified by 1, 2, 3, or more amino acid residues to be altered from the naturally occurring polypeptide.


The invention has been described in terms of particular embodiments found or proposed by the present inventor to comprise preferred modes for the practice of the invention. It will be appreciated by those of skill in the art that, in light of the present disclosure, numerous modifications and changes can be made in the particular embodiments exemplified without departing from the intended scope of the invention. Due to biological functional equivalency considerations, changes can be made in protein structure without affecting the biological action in kind or amount. All such modifications are intended to be included within the scope of the appended claims.


Kits

Also provided are kits for use in the subject methods. The subject kits include any combination of components and compositions for performing the subject methods. In some embodiments, a kit can include one or more of the following: a cross-reactive EBNA-1 or glialcam peptide for determining the presence of reactive cells or antibodies; a cross-reactive EBNA-1 or glialcam peptide for inducing tolerance; reagents for detecting EBV-driven pathogenic B cells, a vaccine delivery device, a suitable buffer and any combination thereof.


In addition to the above components, the subject kits may further include (in certain embodiments) instructions for practicing the subject methods. These instructions may be present in the subject kits in a variety of forms, one or more of which may be present in the kit. One form in which these instructions may be present is as printed information on a suitable medium or substrate, e.g., a piece or pieces of paper on which the information is printed, in the packaging of the kit, in a package insert, and the like. Yet another form of these instructions is a computer readable medium, e.g., diskette, compact disk (CD), flash drive, and the like, on which the information has been recorded. Yet another form of these instructions that may be present is a website address which may be used via the internet to access the information at a removed site.


EXAMPLES

The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the present invention, and are not intended to limit the scope of what the inventors regard as their invention nor are they intended to represent that the experiments below are all or the only experiments performed. Efforts have been made to ensure accuracy with respect to numbers used (e.g. amounts, temperature, etc.) but some experimental errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by weight, molecular weight is weight average molecular weight, temperature is in degrees Celsius, and pressure is at or near atmospheric. Standard abbreviations may be used, e.g., room temperature (RT); base pairs (bp); kilobases (kb); picoliters (pl); seconds (s or sec); minutes (m or min); hours (h or hr); days (d); weeks (wk or wks); nanoliters (nl); microliters (ul); milliliters (ml); liters (L); nanograms (ng); micrograms (ug); milligrams (mg); grams ((g), in the context of mass); kilograms (kg); equivalents of the force of gravity ((g), in the context of centrifugation); nanomolar (nM); micromolar (uM), millimolar (mM); molar (M); amino acids (aa); kilobases (kb); base pairs (bp); nucleotides (nt); intramuscular (i.m.); intraperitoneal (i.p.); subcutaneous (s.c.); and the like.


Example 1
The B Cell Repertoire in Multiple Sclerosis Reveals Molecular Mimicry Between EBNA1 and GlialCAM

Multiple sclerosis (MS) is a heterogenous autoimmune disease where autoreactive T and B lymphocytes attack the myelin sheaths of the central nervous system (CNS). Lymphocytes in the cerebro-spinal fluid (CSF) are directly involved in inflammation of the adjacent CNS and accessible to investigation. Intrathecal B cells secrete oligoclonal immunoglobulin, distinct from the immunoglobulin in the circulation, suggesting continual activation of specific plasmablasts by a private antigen. However, phenotype, function, and antigen-specificity of autoreactive B cells are not well understood. Molecular mimicry between viruses and CNS proteins has been proposed as a pathogenic factor for MS, but identification of cross-reactive antigens has been challenging. Here we describe phenotypic differences of B cell phenotypes in blood and CSF of MS patients, which implicate plasmablasts in MS pathogenesis. Sequencing of the paired-chain antibody repertoire of over 15,000 single-cell sorted plasmablasts in CSF and blood of 9 MS patients revealed ongoing intrathecal somatic hypermutation and antigen-specific clonal expansion of plasmablasts in the CSF. We tested over 140 potentially pathogenic antibodies derived from CSF plasmablasts against a spectrum of viruses implicated in MS pathogenesis. We identified a CSF-plasmablast derived antibody that binds the Epstein-Barr Virus (EBV) transcription factor EBNA1 and cross-reacts to the glial cellular adhesion molecule GlialCAM. Immunization of mice with the identified EBNA1 epitope aggravates the mouse model of MS. ˜ 15% of MS patients carry antibodies that cross-react to EBNA1 and GlialCAM. Together, our results suggest that EBNA1-reactive antibodies EBV can cross-react with the CNS-specific membrane protein GlialCAM and induce neuroinflammation, thereby exacerbating MS.


Here we show that a large fraction of B cells in the CSF are activated plasmablasts (PB) that are distinct from PB in blood with regard to activation and trafficking markers. To understand their antigen-specificity, we sequenced the single-cell paired-chain BCR repertoire of more than 1600 B cells from CSF and over 13,000 PB from blood of 9 MS patients and found substantially higher clonality and skewed IGHV gene usage in the CSF, indicative of ongoing intrathecal somatic hypermutation and antigen-specific proliferation. 148 BCR sequences representative of large clonal expansions were expressed as recombinant monoclonal antibodies (mABs) and tested for reactivity to viral proteins and peptide, with an emphasis on Epstein Barr Virus (EBV).


The CSF-derived mAB MS39p2w174 was discovered, which binds to EBNA1 within a region previously described to be associated with higher serum reactivity in MS patients (AA386-405). MS39p2w174 cross-reacts to the glial cell adhesion molecule GlialCAM, a type 1 membrane protein expressed on oligodendrocytes and astrocytes, in particular at the astrocytic perivascular endfeet that maintain blood brain barrier integrity. GlialCAM aids the correct expression of aquaporin-4, an important B cell antigen in neuromyelitis optica. In addition, it enables cell-cell contacts by homo-oligomerization and is indispensable for glial chloride and water homeostasis as a beta-subunit of the MLC1 and an auxiliary subunit of CLC2. We mapped the EBNA1 and GlialCAM epitopes in detail, including a 2.5 Å crystal structure of the mAB/EBNA1 peptide complex. We can show that the unmutated germline sequence of MS39p2w174 is already prone to bind EBNA1, while additional mutations increase affinity to GlialCAM. Interaction with GlialCAM is facilitated by a serine phosphorylation N-terminal of the central epitope. Similar antibodies against GlialCAM are generated in mice upon immunization with EBNA1 AA386-405, which aggravates the mouse model of MS, experimental autoimmune encephalomyelitis (EAE). Elevated anti-GlialCAM serum reactivity was observed in MS patients in comparison to healthy individuals.


IgG+ plasmablasts dominate the CSF B cell compartment in MS patients. CSF and blood samples were obtained from 9 MS patients during the initial onset of disease (clinically isolated syndrome, CIS, n=5) or an acute episode of relapsing-remitting MS (RRMS, n=4) (table 1) and B cells were sorted by flow cytometry. Approximately 30% of B cells in the CSF exhibit an activated plasmablast (PB) phenotype (CD19+CD20low CD27+CD38+(PB), median: 29.8%, SD: 20), while only a small fraction of ˜4% of B cells in the blood are PB (median: 4.1%, SD: 12.2; FIG. 1A). Conversely, naïve B cells are diminished in the CSF, while unswitched and switched memory as well as double negative B cell numbers are comparable in blood and CSF. Profound phenotypic differences between blood and CSF were detected in PB but not in non-PB B cells: (i) Blood PB express high levels of the trafficking receptor a4 integrin, whereas PB in the CSF abate α4 over time (FIG. 1B). (ii) PB in the CSF express higher levels of HLA-DR than their blood-derived counterparts (FIG. 1C,D), emphasizing their role in antigen presentation in the CSF and CNS. Similar differences were not seen in non-PB B cells. Of note, HLA-DR expression was independent of the HLA-DRB1*15:01 genotype (HLA-DR15) (table 1 and FIG. 1E,F). (iii) The predominant immunoglobulin (lg) class within the PB compartment in CSF is IgG, while both IgA and IgG are the main classes in blood-derived PB (FIG. 1E). In contrast, non-PB B cells express similar Ig-classes in CSF and blood (FIG. 1F). These differences suggest an elevated pathogenic role of PB in MS.


The CSF PB immune repertoire is highly clonal and skewed. To gain a comprehensive overview of the intrathecal antigen-specific B cell response in MS, we sorted single PB from blood and single B cells from CSF of MS patients by flow cytometry and sequenced full-length paired heavy-chain (HC) and light-chain (LC) VDJ regions using our in-house plate-based single-cell sequencing technology. 13,231 paired sequences from blood PB and 1,689 from CSF B cells passed filter thresholds. In comparison to the repertoire of blood PB, the repertoire of CSF PB is significantly more clonal and largely dominated by IgG (FIG. 1G, H), suggesting antigen-specific proliferation of a few clones. Not surprisingly, non-PB B cells in the CSF are less clonal and express IgA and IgM more frequently than PB. While mutation counts in IGHV and IGLV genes did not differ significantly between PB in blood and CSF, HC-CDR3 lengths are on average 0.94 amino acids longer in CSF PB, indicating ongoing intrathecal somatic hypermutation. The repertoire in the CSF is skewed towards more preferential usage of 5 IGHV chains: IGHV4-59, IGHV4-39, IGHV4-34, IGHV1-2, and IGHV3-7 (FIG. 1I), which for the most part is in line with previous reports, and indicates that a select group of MS-related antigens in the CSF drive PB survival and proliferation in the CSF, with a few distinct immunoglobulin germline genes being predestined to bind them.


Clonal PB are the main source of oligoclonal bands. We hypothesized that clonally expanded PB are the main source of intrathecal oligoclonal bands (OCB) in MS. We purified immunoglobulin from CSF samples and sequenced the variable region amino acid sequences by mass spectrometry. As expected, clonally sequences were readily identified, whereas only fourty percent of singleton sequences detected 39.6% (FIG. 1J). Highly abundant immunoglobulins, which were identified with ten or more peptide-spectral matches (PSM>10) likely correlate with oligoclonal bands. These sequences aligned almost exclusively to clonally expanded B cell sequences (FIG. 1K), suggesting that they are the source of the oligoclonal bands. This correlation holds true for PB, which are more clonal than non-PB B cells. Taken together, clonal PB are likely the main source of antibodies and OCB in the CSF.


CSF-derived monoclonal antibodies bind EBV antigens. A total of 148 sequences from the CSF repertoires were selected for recombinant expression, each one representative of a major clonal expansion. To test anti-viral reactivities of the selected mABs, they were probed on a planar protein microarray representing EBV lysates, 23 recombinant latent and lytic EBV proteins, 240 peptides spanning four prominent EBV proteins, as well as 7 lysates of other MS-associated viruses, including measles, rubella, and varicella-zoster virus (VZV)30 (FIG. 2A,B). One-third of the expressed mABs bound to EBV proteins and peptides and ˜20% to other viruses, in particular to VZV and CMV (FIG. 2A). Interestingly, half of the VZV-reactive antibodies cross-reacted to CMV and EBV, indicative of broader antigens common to herpes viruses.


Interestingly, we found mABs in 6 out of 9 patients that bound the transcription factor EBNA1 (FIG. 2A), and mABs binding to EBNA1 peptides in 8 out of 9 patients (FIG. 2B). Anti-EBNA1-reactivity has been implicated in MS pathogenesis and the region AA365-425 (“MS-associated epitope” in FIG. 2B) is known to elicit a stronger antibody response in MS patients than in healthy individuals. Protein and peptide arrays revealed that our mAB MS39p2w174 binds EBNA1 within this region (AA386-405, FIG. 2B). The interaction was verified by western blot analysis using full-length and truncated EBNA1 proteins (FIG. 2C) and ELISA-based peptide scans spanning full-length EBNA1 (20mer peptides, 13AA overlap, FIG. 2D). Alanine-scanning determined the proline-rich region AA394-399 to be the central epitope (FIG. 2E). Taken together, we identified multiple mABs directed against EBV and in particular MS39p2w174, which binds a well-described MS-associated epitope of EBNA1.


Crystal structure reveals key residues of mAB-EBNA1 interaction. While the presence of antibodies against the broader EBNA1 region AA365-425 is well established in MS patients, their relevance to MS pathology has remained elusive. Efforts to model its structure has done little to understand the epitopes functional properties. To understand its immunogenicity and impact on MS pathology in detail, we solved the crystal structure of MS39p2w174 in complex with EBNA1 AA386-405 at a resolution of 2.5 Å (FIG. 2F-J, PDB ID: 7K7R). It confirmed close interactions of the peptide residues P394-P398 with all complementary determining regions (CDRs) but the very short LCDR2. Residues Tyr31 and Tyr38 on LCDR1 together with Trp38 on HCDR1 and Pro108, Pro109, and Tyr114 on HCDR3 create a hydrophobic cage for the peptide's first two prolines Pro394 and Pro395 and the proximal side chain of Arg396 (FIG. 2H-J). The C-terminal end of the antibody binding groove is wider and Pro398 is carried by a large aromatic tryptophan residue (Trp114 in HCDR1) on the bottom of the groove (FIG. 2G,H,J). The central arginines Arg395 and Arg396 engage in close polar interactions (<3.1 Å) with residues on HCDR2, HCDR3, and HC framework region 2. Contrary to the results of our alanine scan (FIG. 2E), Pro399 does not appear to interact directly with antibody side chains, and we assume that alanine at position 399 disrupts the conformation of the three prolines Pro398-Pro400 causing steric hindrance within the binding pocket.


The encoding IGHV gene of MS39p2w174 is IGHV3-7, one of the IGHV chains over-represented in CSF (FIG. 1I). Interestingly, all but one of the residues that directly interact with EBNA1 are unmutated germline (GL) residues (IGHV3-7, IGHJ4, IGKV2-30, IGKJ1). We therefore hypothesized that the unmutated ancestor of MS39p2w174 might have an inert propensity to bind EBNA1 AA386-405. Indeed, we could show that GL binds to EBNA1 with only slightly lower affinity than MS39p2w174 (KD MS39p2w174: 1.99 nM, GL: 4.19 nM) (FIG. 2K,L).


Molecular mimicry between EBNA1 AA386-405 and GlialCAM. Studying a mAB as opposed to patient-derived sera and CSF samples allows for direct identification of molecular mimicry with human proteins. We probed mAB MS39p2w174 on a HuProt protein microarray, which represents >20,000 proteins spanning the entire human proteome. Glial cell adhesion molecule (GlialCAM) was identified as the top binding partner to MS39p2w174 (FIG. 3A). GlialCAM is a cell adhesion molecule that is almost exclusively expressed in the CNS (www.proteinatlas.org), mainly in astrocytes and oligodendrocytes. In multiple sclerosis, it has been found to be decreased in acute and chronic MS plaques, but elevated in chronic-active plaques. GlialCAM AA337-385 was identified as a binding partner for MS39p2w174 on a 49mer phage display representing the whole human proteome (356 out of 105 reads, only identified by MS39p2w174 in a set of 300 mABs). Binding of MS39p2w174 to the intracellular domain (ICD, AA262-416) of GlialCAM was confirmed on ELISA (FIG. 3B) and western blot (FIG. 3C). Affinity measurements with bio-layer interferometry revealed higher affinity of MS39p2w174 to GlialCAM (KD: 190 PM) vs. EBNA1 (KD: 1.99 nM). This is in contrast to the unmutated GL mAB, which binds GlialCAM with lower affinity (KD GlialCAM: 10.46 nM, KD EBNA1: 4.19 nM) (FIG. 2K,L and FIG. 3D,E). Evidently, while GL harbors a propensity to bind to EBNA1, somatic hypermutation during development of MS39p2w174 has increased its affinity to the CNS mimic GlialCAM by 2 orders of magnitude.


Phosphorylation at GlialCAM Ser376 enables binding of MS39p2w174. The EBNA1 epitope AA386-405 is located between the protein's long N-terminal Gly-Ala-rich low-complexity region (AA90-380) and its highly structured DNA-binding domain (AA: 461-607, PDB: 1B3T). On GlialCAM, the above-mentioned region AA337-385 is located at the C-terminal end of the ICD and contains a proline-rich region that closely resembles the central epitope of EBNA1 (FIG. 3F). MS39p2w174 detects both proteins on western blots under denaturing conditions (FIG. 2C, FIG. 3C), suggesting linear epitopes for both targets. This is in line with predictions that both epitopes are located in intrinsically disordered regions of the respective protein (FIG. 3G, H). However, while MS39p2w174 binds the EBNA1 peptide AA386-405 with high affinity (KD: 2.67 nM), its affinity to GlialCAM peptide AA370-389 is drastically lower (KD: 302 nM). As the intracellular domain of GlialCAM is heavily phosphorylated, and post-translational modifications often determine antibody-antigen interactions, we tested if phosphorylation at one of the 4 serine residues surrounding the central epitope region (residues Ser376, 377, 383, and 384) could increase binding affinity of MS39p2w174 to GlialCAM AA370-389. Indeed, phosphorylation at Ser376 facilitates MS39p2w174 interaction with the peptide (KD: 6.1 nM) and additional phosphorylation of Ser377 further enhances binding affinity (KD: 3.73 nM) (FIG. 3I-K). In contrast, citrullination of arginine residues Arg373, 380, and 387 did not alter peptide binding to MS39p2w174. The important residue Arg397 in EBNA1 AA386-405, which engages in 2 hydrogen-bonds with Glu64 at HCDR2 (FIG. 2 H,J) is replaced with alanine in GlialCAM AA370-389 (Ala381) (FIG. 3F), which explains the decreased binding affinity between MS39p2w174 and GlialCAM peptide. Phosphorylation at position 376 likely enables binding by adding new polar interactions to the proximal LC, possibly with Arg36, a positively charged residue that is mutated from asparagine in GL (FIG. 2H).


MS anti-GlialCAM IgG titers are elevated in MS patients. To test if the observed anti-GlialCAM reactivity of MS39p2w174 is part of a broader phenomenon, we tested our remaining 147 mABs for reactivity against GlialCAM protein and the broader region AA315-395. We found 10 additional mABs that bound the ICD and 7 that bound the extracellular domain (ECD) (FIG. 3L). Two mABs, MS9p14w183 and MS21p27w115 bound unphosphorylated EBNA1 AA370-389. Interestingly, both also cross-reacted with EBNA1 as well as with the two early lytic EBV proteins BHRF1 and BLLF3 (FIG. 3L). This shows that MS39p2w174 is not an isolated phenomenon. Albeit we did not identify another mAB in our collection with the exact same characteristics, antibodies against several GlialCAM epitopes were prevalent in the majority of patients.


We proceeded with testing for cross-reactive antibodies to EBNA1 AA386-405 and GlialCAM could be detected in plasma of MS patients. we tested immunoglobulin reactivities in plasma from a cohort of 36 MS patients and 20 healthy controls. >99.9% of MS patients have been infected with EBV. As expected, all MS patients show elevated titers against EBNA1 protein, whereas 3 of 20 healthy individuals showed no IgG titer indicating previous EBV infection. Specific reactivity against EBNA1 AA386-405 was observed in 8/36 of MS patients (22.2% vs. 0% in control group, threshold set at mean+4 SD of control group) (FIG. 41). 3 of the 6 samples highest reactive to EBNA1 AA386-405 show also the highest reactivity to GlialCAM ICD (FIG. 4J). 5 of 36 MS patients show high reactivity against GlialCAM ICD (13.9% vs. 0% in control group, threshold set at mean+4 SD of control group).


22 of the selected 148 mABs, isolated from 8 of 9 patients, showed reactivity to GlialCAM, either to the intracellular domain, or to the extracellular domain (FIG. 2J). No additional mAB was identified that bound to same phosphorylated epitope AA370-389, but two mABs bound the non-the same peptide in its non-phosphorylated form. Both mABs also showed cross-reactivity to the Gly-Ala-rich low-complexity region of EBNA1 (FIG. 2A,B,J, blue highlighted mABs).


Of note, a similar proline-rich region on myelin basic protein (MBP) has been described extensively, but we could not show any binding of MS39p2w174 to MBP protein, which does not exclude the possibility that other antibodies against EBNA1 AA386-405 might cross-react to the proline-rich region on MBP.


Immunization with EBNA1 AA386-405 generates anti-GlialCAM antibodies in mice and aggravates experimental autoimmune encephalomyelitis (EAE). To assess the effect of antibodies against EBNA1 AA386-405 in-vivo, we used the mouse model EAE. SJL mice were immunized with EBNA1 AA386-405 or scrambled control peptide (SPSRPGRSRSRGSPFPQPSP, not binding to MS39p2w174, see FIG. 2I). EAE was induced three weeks after the initial immunization with a second immunization of the same respective peptides mixed with PLP AA135-151. Mice in the EBNA1 group generated a robust antibody response to both EBNA1 AA386-405 (FIG. 4A) as well as GlialCAM protein and phospho-GlialCAM p7 (FIG. 4A-C). The EBNA1 group showed more severe symptoms of paresis, in particular during the initial peak of disease, and subsequent relapses occurred earlier and were more severe (FIG. 4D), which was most pronounced in the mice with the highest titers of anti-GlialCAM antibodies (FIG. 4F) EBNA1 promoted the infiltration of T cells and Mac3-positive myeloid cells into the CNS and enhanced demyelination (FIG. 4G,H). In addition to the B cell response, EBNA1 AA386-405 induced a strong antigen-specific T cell response, comparable to PLP AA135-151. The PLP AA135-151 specific T cell response was comparable in both groups. Fitting to the strong antibody response, EBNA1 AA386-405 specific T helper cells (Th) produced more Th1 cytokines (IFN-γ, TNF, IL-12,) and less IL-17. No robust Th cell response against GlialCAM AA369-388 pSer375 could be detected.


REFERENCES



  • 1. K. Hawker, P. O'Connor, M. S. Freedman, P. A. Calabresi, J. Antel, J. Simon, S. L. Hauser, E. Waubant, T. Vollmer, H. Panitch, J. Zhang, P. Chin, C. H. Smith, O. trial group, Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann. Neurol. 66, 460-471 (2009).

  • 2. L. Kappos, D. Li, P. A. Calabresi, P. O'Connor, A. Bar-Or, F. Barkhof, M. Yin, D. Leppert, R. Glanzman, J. Tinbergen, S. L. Hauser, Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet. 378, 1779-1787 (2011).

  • 3. X. Montalban, S. L. Hauser, L. Kappos, D. L. Arnold, A. Bar-Or, G. Comi, J. de Seze, G. Giovannoni, H.-P. Hartung, B. Hemmer, F. Lublin, K. W. Rammohan, K. Selmaj, A. Traboulsee, A. Sauter, D. Masterman, P. Fontoura, S. Belachew, H. Garren, N. Mairon, P. Chin, J. S. Wolinsky, O. C. Investigators, Ocrelizumab versus Placebo in Primary Progressive Multiple Sclerosis. N. Engl. J. Med. 376, 209-220 (2017).

  • 4. A. Negron, R. R. Robinson, O. Stuve, T. G. Forsthuber, The role of B cells in multiple sclerosis: Current and future therapies. Cell. Immunol. 339, 10-23 (2019).

  • 5. T. V. Lanz, A.-K. Probstel, I. Mildenberger, M. Platten, L. Schirmer, Single-Cell High-Throughput Technologies in Cerebrospinal Fluid Research and Diagnostics. Front. Immunol. 10, 1302 (2019).

  • 6. D. Schafflick, C. A. Xu, M. Hartlehnert, M. Cole, T. Lautwein, A. Schulte-Mecklenbeck, J. Wolbert, M. Heming, S. G. Meuth, T. Kuhlmann, C. C. Gross, H. Wiendl, N. Yosef, G. M. zu Horste, Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis. 192, 2551.

  • 7. A. Wang, O. Rojas, D. Lee, J. L. Gommerman, Regulation of neuroinflammation by B cells and plasma cells. Immunol. Rev., 1-16 (2020).

  • 8. R. Hohlfeld, K. Dornmair, E. Meinl, H. Wekerle, The search for the target antigens of multiple sclerosis, part 2: CD8+ T cells, B cells, and antibodies in the focus of reverse-translational research. Lancet Neurol. (2016), doi:10.1016/S1474-4422(15)00313-0.

  • 9. E. L. Thacker, F. Mirzaei, A. Ascherio, Infectious mononucleosis and risk for multiple sclerosis: A meta-analysis. Ann. Neurol. 59, 499-503 (2006).

  • 10. A. Ascherio, K. L. Munger, Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann. Neurol. 61, 288-299 (2007).

  • 11. S. Abrahamyan, B. Eberspächer, M.-M. Hoshi, L. Aly, F. Luessi, S. Groppa, L. Klotz, S. G. Meuth, C. Schroeder, T. Grüter, B. Tackenberg, F. Paul, F. Then-Bergh, T. Kümpfel, F. Weber, M. Stangel, A. Bayas, B. T. Wildemann, C. Heesen, U. Zettl, C. Warnke, G. Antony, N. Hessler, H. Wiendl, S. Bittner, B. Hemmer, R. Gold, A. Salmen, K. Ruprecht, J. Neurol. Neurosurg. Psychiatry, in press (available at http://jnnp.bmj.com/lookup/doi/10.1136/jnnp-2020-322941).

  • 12. A. K. Hedström, J. Huang, A. Michel, J. Butt, N. Brenner, J. Hillert, T. Waterboer, I. Kockum, T. Olsson, L. Alfredsson, High Levels of Epstein-Barr Virus Nuclear Antigen-1-Specific Antibodies and Infectious Mononucleosis Act Both Independently and Synergistically to Increase Multiple Sclerosis Risk. Front. Neurol. 10, 1368 (2019).

  • 13. K. Ruprecht, B. Wunderlich, R. Gieß, P. Meyer, M. Loebel, K. Lenz, J. Hofmann, B. Rosche, O. Wengert, F. Paul, U. Reimer, C. Scheibenbogen, Multiple sclerosis: The elevated antibody response to Epstein-Barr virus primarily targets, but is not confined to, the glycine-alanine repeat of Epstein-Barr nuclear antigen-1. J. Neuroimmunol. 272, 56-61 (2014).

  • 14. N. Jafari, G. P. van Nierop, G. M. G. M. Verjans, A. D. M. E. Osterhaus, J. M. Middeldorp, R. Q. Hintzen, No evidence for intrathecal IgG synthesis to Epstein Barr virus nuclear antigen-1 in multiple sclerosis. J. Clin. Virol. 49, 26-31 (2010).

  • 15. J. Salzer, M. Nyström, G. Hallmans, H. Stenlund, G. Wadell, P. Sundström, Epstein-Barr virus antibodies and vitamin D in prospective multiple sclerosis biobank samples. Mult. Scler. 19, 1587-1591 (2013).

  • 16. K. Tengvall, J. Huang, C. Hellström, P. Kammer, M. Biström, B. Ayoglu, I. Lima Bomfim, P. Stridh, J. Butt, N. Brenner, A. Michel, K. Lundberg, L. Padyukov, I. E. Lundberg, E. Svenungsson, I. Ernberg, S. Olafsson, A. T. Dilthey, J. Hillert, L. Alfredsson, P. Sundström, P. Nilsson, T. Waterboer, T. Olsson, I. Kockum, Molecular mimicry between Anoctamin 2 and Epstein-Barr virus nuclear antigen 1 associates with multiple sclerosis risk. Proc. Natl. Acad. Sci. U.S.A. 5, 201902623-201916960 (2019).

  • 17. Z. Wang, P. G. Kennedy, C. Dupree, M. Wang, C. Lee, T. Pointon, T. D. Langford, M. W. Graner, X. Yu, Antibodies from Multiple Sclerosis Brain Identified Epstein-Barr Virus Nuclear Antigen 1 & 2 Epitopes which Are Recognized by Oligoclonal Bands. J. Neuroimmune Pharmacol. (2020), doi:10.1007/s11481-020-09948-1.

  • 18. A. Gilbert, X. E. Vidal, R. Estevez, M. Cohen-Salmon, A.-C. Boulay, Postnatal development of the astrocyte perivascular MLC1/GlialCAM complex defines a temporal window for the gliovascular unit maturation. Brain Struct. Funct. 7, 12-41 (2019).

  • 19. L. Favre-Kontula, A. Rolland, L. Bernasconi, M. Karmirantzou, C. Power, B. Antonsson, U. Boschert, GlialCAM, an immunoglobulin-like cell adhesion molecule is expressed in glial cells of the central nervous system. Glia. 56, 633-645 (2008).

  • 20. T. López-Hernandez, M. C. Ridder, M. Montolio, X. Capdevila-Nortes, E. Polder, S. Sirisi, A. Duarri, U. Schulte, B. Fakler, V. Nunes, G. C. Scheper, A. Martínez, R. Estevez, M. S. van der Knaap, Mutant GlialCAM causes megalencephalic leukoencephalopathy with subcortical cysts, benign familial macrocephaly, and macrocephaly with retardation and autism. Am. J. Hum. Genet. 88, 422-432 (2011).

  • 21. M. Bugiani, M. Dubey, M. Breur, N. L. Postma, M. P. Dekker, T. Ter Braak, U. Boschert, T. E. M. Abbink, H. D. Mansvelder, R. Min, J. R. T. van Weering, M. S. van der Knaap, Megalencephalic leukoencephalopathy with cysts: the Glialcam-null mouse model. Ann. Clin. Transl. Neurol. 4, 450-465 (2017).

  • 22. T. López-Hernández, S. Sirisi, X. Capdevila-Nortes, M. Montolio, V. Fernández-Dueñas, G. C. Scheper, M. S. van der Knaap, P. Casquero, F. Ciruela, I. Ferrer, V. Nunes, R. Estevez, Molecular mechanisms of MLC1 and GLIALCAM mutations in megalencephalic leukoencephalopathy with subcortical cysts. Hum. Mol. Genet. 20, 3266-3277 (2011).

  • 23. E. Jeworutzki, T. López-Hernández, X. Capdevila-Nortes, S. Sirisi, L. Bengtsson, M. Montolio, G. Zifarelli, T. Arnedo, C. S. Müller, U. Schulte, V. Nunes, A. Martínez, T. J. Jentsch, X. Gasull, M. Pusch, R. Estevez, GlialCAM, a Protein Defective in a Leukodystrophy, Serves as a CIC-2 CI-Channel Auxiliary Subunit. Neuron. 73, 951-961 (2012).



Example 2
Detection of EBV-Infected B Cells to Identify Autoimmune Disease Patients Likely to Respond to EBV-Infected B Cell Depleting Therapeutics, and to Monitor Response to EBV-Infected B Cell Depleting Therapeutics

Patients with MS, T1D, SS, RA, DM or another EBV-associated autoimmune disease are tested for EBV-infected by cells in their blood, spinal fluid or other biological sample. EBV-infected B cells are detected by PCR to detect EBV genes, or by immunostaining to detect B cell expression of EBV proteins, or by flow cytometry to detect B cell expression of EBV proteins and/or genes. Autoimmune patients exhibiting EBV-infected B cell are then treated with EBV-infected B cell depleting therapeutics that include monoclonal antibodies targeting one or more of the following EBV protein expressed on the surface of EBV-infected B cells: LMP1; LMP2; BILF1; LMP1+BILF1; LMP2+BILF1; LMP1+LMP2; or LMP1+LMP2+BILF1. 1-4 months following EBV-infected B cell depleting monoclonal antibody treatment, patients exhibit improvement in their corresponding autoimmune disease activity scores for MS, T1D, SS, RA, DM or other autoimmune disease. Response to EBV-infected B cell depleting therapeutic monoclonal antibodies can be monitored by post-treatment PCR, immunostaining, and/or flow cytometry; and reduction of EBV-infected B cells is associated with clinical improvement. Autoimmune patients can be monitored with EBV-infected B cell detection by PCR, immunostaining and/or flow cytometry to determine when additional treatment courses with EBV-infected B cell depleting monoclonal antibody therapy is indicated for effective disease control.


Example 3

Depletion of EBV-Infected B cells to Treat EBV-Associated Autoimmune Disease


Patients with MS, T1D, SS, RA, DM or another EBV-associated autoimmune disease are treated with EBV-infected B cell depleting therapeutics that include monoclonal antibodies targeting one or more of the following EBV protein expressed on the surface of EBV-infected B cells: LMP1; LMP2; BILF1; LMP1+BILF1; LMP2+BILF1; LMP1+LMP2; or LMP1+LMP2+BILF1. 1-4 months following EBV-infected B cell depleting monoclonal antibody treatment, patients exhibit improvement in their corresponding autoimmune disease activity scores for MS, T1D, SS, RA, DM or other autoimmune disease.


The preceding merely illustrates the principles of the invention. It will be appreciated that those skilled in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody the principles of the invention and are included within its spirit and scope. Furthermore, all examples and conditional language recited herein are principally intended to aid the reader in understanding the principles of the invention and the concepts contributed by the inventors to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the invention as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents and equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure. The scope of the present invention, therefore, is not intended to be limited to the exemplary embodiments shown and described herein. Rather, the scope and spirit of the present invention is embodied by the appended claims.









TABLE 1







Detailed descriptions and sources of peptide antigens on EBV antigen arrays












Antigen

Antigen

Antigen



Name
AA Sequence
Name
AA Sequence
Name
AA Sequence





EBNA1_1
MSDEGPGTGPGNGLGEKGDT
EBNA1_81
YFMVFLQTHIFAEVLKDAIK
LMP2_4
GYDGGNNSQYPSASGSSGNT





EBNA1_2
TGPGNGLGEKGDTSGPEGSG
EBNA1_82
THIFAEVLKDAIKDLVMTKP
LMP2_5
SQYPSASGSSGNTPTPPNDE





EBNA1_3
GEKGDTSGPEGSGGSGPQRR
EBNA1_83
LKDAIKDLVMTKPAPTCNIR
LMP2_6
GSSGNTPTPPNDEERESNEE





EBNA1_4
GPEGSGGSGPQRRGGDNHGR
EBNA1_84
LVMTKPAPTCNIRVTVCSFD
LMP2_7
TPPNDEERESNEEPPPPYED





EBNA1_5
SGPQRRGGDNHGRGRGRGRG
EBNA1_85
PTCNIRVTVCSFDDGVDLPP
LMP2_8
RESNEEPPPPYEDPYWGNGD





EBNA1_6
GDNHGRGRGRGRGRGGGRPG
EBNA1_86
TVCSFDDGVDLPPWFPPMVE
LMP2_9
PPPYEDPYWGNGDRHSDYQP





EBNA1_7
RGRGRGRGGGRPGAPGGSGS
EBNA1_87
GVDLPPWFPPMVEGAAAEGD
LMP2_10
YWGNGDRHSDYQPLGTQDQS





EBNA1_8
GGGRPGAPGGSGSGPRHRDG
EBNA1_88
FPPMVEGAAAEGDDGDDGDE
LMP2_11
HSDYQPLGTQDQSLYLGLQH





EBNA1_9
PGGSGSGPRHRDGVRRPQKR
EBNA1_89
AAAEGDDGDDGDEGGDGDEG
LMP2_12
GTQDQSLYLGLQHDGNDGLP





EBNA1_10
PRHRDGVRRPQKRPSCIGCK
EBNA1_90
GDDGDEGGDGDEGEEGQE
LMP2_13
YLGLQHDGNDGLPPPPYSPR





EBNA1_11
RRPQKRPSCIGCKGTHGGTG
BILF1_1
LSTMAPGSTVGTLVANMTSV
LMP2_14
GNDGLPPPPYSPRDDSSQHI





EBNA1_12
SCIGCKGTHGGTGAGAGAGG
BILF1_4
ATEDACTKSYSAFLSGMTSL
LMP2_15
PPYSPRDDSSQHIYEEAGRG





EBNA1_13
THGGTGAGAGAGGAGAGGAG
BILF1_6
SGMTSLLLVLLILLTLAGIL
LMP2_16
DSSQHIYEEAGRGSMNPVCL





EBNA1_14
GAGAGGAGAGGAGAGGGAGA
BILF1_7
LVLLILLTLAGILFIIFVRK
LMP2_17
EEAGRGSMNPVCLPVIVAPY





EBNA1_15
GAGGAGAGGGAGAGGGAGGA
BILF1_8
TLAGILFIIFVRKLVHRMDV
LMP2_18
MNPVCLPVIVAPYLFWLAAI





EBNA1_16
GGGAGAGGGAGGAGGAGGAG
BILF1_9
IIFVRKLVHRMDVWLIALLI
LMP2_19
VIVAPYLFWLAAIAASCFTA





EBNA1_17
GGAGGAGGAGGAGAGGGAGA
BILF1_10
VHRMDVWLIALLIELLLWVL
LMP2_23
TGLALSLLLLAAVASSYAAA





EBNA1_18
GAGGAGAGGGAGAGGGAGGA
BILF1_12
LLLWVLGKMIQEFSSTGLCL
LMP2_24
LLLAAVASSYAAAQRKLLTP





EBNA1_19
GGGAGAGGGAGGAGGAGAGG
BILF1_13
KMIQEFSSTGLCLLTQNMMF
LMP2_25
SSYAAAQRKLLTPVTVLTAV





EBNA1_20
GGAGGAGGAGAGGGAGAGGG
BILF1_14
STGLCLLTQNMMFLGLMCSV
LMP2_26
RKLLTPVTVLTAVVTFFAIC





EBNA1_21
GAGAGGGAGAGGGAGGAGAG
BILF1_15
TQNMMFLGLMCSVWTHLGMA
LMP2_28
TFFAICLTWRIEDPPFNSLL





EBNA1_22
AGAGGGAGGAGAGGGAGGAG
BILF1_16
GLMCSVWTHLGMALEKTLAL
LMP2_29
TWRIEDPPFNSLLFALLAAA





EBNA1_23
GGAGAGGGAGGAGGAGAGGG
BILF1_17
THLGMALEKTLALFSRTPKR
LMP2_30
PFNSLLFALLAAAGGLQGIY





EBNA1_24
GAGGAGGAGAGGGAGAGGGA
BILF1_18
EKTLALFSRTPKRTSHRNVC
LMP2_33
LVMLVLLILAYRRRWRRLTV





EBNA1_25
AGAGGGAGAGGGAGGAGAGG
BILF1_19
SRTPKRTSHRNVCLYLMGVF
LMP2_34
ILAYRRRWRRLTVCGGIMFL





EBNA1_26
GAGGGAGGAGAGGGAGGAGG
BILF1_23
ILLITMGPDANLNRGPNMCR
LMP2_38
DAVLQLSPLLGAVTVVSMTL





EBNA1_27
GAGAGGGAGGAGGAGAGGGA
BILF1_24
PDANLNRGPNMCREGPTKGM
LMP2_39
PLLGAVTVVSMTLLLLAFVL





EBNA1_28
AGGAGGAGAGGGAGAGGAGG
BILF1_25
GPNMCREGPTKGMHTAVQGL
LMP2_40
VVSMTLLLLAFVLWLSSPGG





EBNA1_29
GAGGGAGAGGAGGAGGAGAG
BILF1_26
GPTKGMHTAVQGLKAGCYLL
LMP2_41
LLAFVLWLSSPGGLGTLGAA





EBNA1_30
AGGAGGAGGAGAGGAGAGGG
BILF1_30
TVIIIWKLLRTKFGRKPRLI
LMP2_42
LSSPGGLGTLGAALLTLAAA





EBNA1_31
GGAGAGGAGAGGGAGGAGGA
BILF1_31
LLRTKFGRKPRLICNVTFTG
LMP2_44
LTLAAALALLASLILGTLNL





EBNA1_32
AGAGGGAGGAGGAGAGGAGA
BILF1_32
RKPRLICNVTFTGLICAFSW
LMP2_46
LGTLNLTTMFLLMLLWTLVV





EBNA1_33
GGAGGAGAGGAGAGGAGAGG
BILF1_34
ICAFSWFMLSLPLLFLGEAG
LMP2_48
LWTLVVLLICSSCSSCPLSK





EBNA1_34
AGGAGAGGAGAGGAGAGGAG
BILF1_35
MLSLPLLFLGEAGSLGFDCT
LMP2_49
LICSSCSSCPLSKILLARLF





EBNA1_35
GAGAGGAGAGGAGGAGAGGA
BILF1_36
FLGEAGSLGFDCTESLVARY
LMP2_50
SCPLSKILLARLFLYALALL





EBNA1_36
GAGGAGGAGAGGAGGAGAGG
BILF1_37
LGFDCTESLVARYYPGPAAC
LMP2_51
LLARLFLYALALLLLASALI





EBNA1_37
AGAGGAGGAGAGGAGGAGAG
BILF1_41
YAWSFSHFMDSLKNQVTVTA
LMP2_53
LASALIAGGSILQTNFKSLS





EBNA1_38
GAGAGGAGGAGAGGGAGGAG
BILF1_42
FMDSLKNQVTVTARYFRRVP
LMP2_54
GGSILQTNFKSLSSTEFIPN





EBNA1_39
GGAGAGGGAGGAGAGGGAGG
BILF1_43
QVTVTARYFRRVPSQST
LMP2_55
NFKSLSSTEFIPNLFCMLLL





EBNA1_40
GAGGAGAGGGAGGAGAGGAG
LMP1_1
MEHDLERGPPGPRRPPRGPP
LMP2_58
VAGILFILAILTEWGSGNRT





EBNA1_41
GGGAGGAGAGGAGGAGAGGA
LMP1_2
GPPGPRRPPRGPPLSSSLGL
LMP2_59
LAILTEWGSGNRTYGPVFMC





EBNA1_42
GAGGAGGAGAGGAGGAGAGG
LMP1_6
LLFWLYIVMSDWTGGALLVL
LMP2_60
GSGNRTYGPVFMCLGGLLTM





EBNA1_43
AGAGGAGGAGAGGAGGAGAG
LMP1_7
VMSDWTGGALLVLYSFALML
LMP2_61
GPVFMCLGGLLTMVAGAVWL





EBNA1_44
GAGAGGAGGAGAGGGAGAGG
LMP1_11
IFRRDLLCPLGALCILLLMI
LMP2_62
GGLLTMVAGAVWLTVMSNTL





EBNA1_45
GGAGAGGGAGAGGAGAGGGG
LMP1_13
ILLLMITLLLIALWNLHGQA
LMP2_63
AGAVWLTVMSNTLLSAWILT





EBNA1_46
GAGAGGAGAGGGGRGRGGSG
LMP1_18
LGIWIYLLEMLWRIGATIWQ
LMP2_68
IRCCRYCCYYCLTLESEERP





EBNA1_47
GAGGGGRGRGGSGGRGRGGS
LMP1_19
LEMLWRLGATIWQLLAFFLA
LMP2_69
CYYCLTLESEERPPTPYRNTV





EBNA1_48
GRGGSGGRGRGGSGGRGRGG
LMP1_23
IIALYLQQNWWTLLVDLLWL
BZLF1_1
MMDPNSTSEDVKFTPDPYQV





EBNA1_49
RGRGGSGGRGRGGSGGRRGR
LMP1_25
VDLLWLLLFLAILIWMYYHG
BZLF1_2
SEDVKFTPDPYQVPFVQAFD





EBNA1_50
GRGRGGSGGRRGRGRERARG
LMP1_26
LFLAILIWMYYHGQRHSDEH
BZLF1_3
PDPYQVPFVQAFDQATRVYQ





EBNA1_51
GGRRGRGRERARGGSRERAR
LMP1_27
WMYYHGQRHSDEHHHDDSLP
BZLF1_4
FVQAFDQATRVYQDLGGPSQ





EBNA1_52
RERARGGSRERARGRGRGRG
LMP1_28
RHSDEHHHDDSLPHPQQATD
BZLF1_5
ATRVYQDLGGPSQAPLPCVL





EBNA1_53
SRERARGRGRGRGEKRPRSP
LMP1_29
HDDSLPHPQQATDDSGHESD
BZLF1_6
LGGPSQAPLPCVLWPVLPEP





EBNA1_54
RGRGRGEKRPRSPSSQSSSS
LMP1_30
PQQATDDSGHESDSNSNEGR
BZLF1_7
PLPCVLWPVLPEPLPQGQLT





EBNA1_55
KRPRSPSSQSSSSGSPPRRP
LMP1_31
SGHESDSNSNEGRHHLLVSG
BZLF1_8
PVLPEPLPQGQLTAYHVSTA





EBNA1_56
SQSSSSGSPPRRPPPGRRPF
LMP1_32
NSNEGRHHLLVSGAGDGPPL
BZLF1_9
PQGQLTAYHVSTAPTGSWFS





EBNA1_57
SPPRRPPPGRRPFFHPVGEA
LMP1_33
HLLVSGAGDGPPLCSQNLGA
BZLF1_10
YHVSTAPTGSWFSAPQPAPE





EBNA1_58
PGRRPFFHPVGEADYFEYHQ
LMP1_34
GDGPPLCSQNLGAPGGGPDN
BZLF1_11
TGSWFSAPQPAPENAYQAYA





EBNA1_59
HPVGEADYFEYHQEGGPDGE
LMP1_35
SQNLGAPGGGPDNGPQDPDN
BZLF1_12
PQPAPENAYQAYAAPQLFPV





EBNA1_60
YFEYHQEGGPDGEPDVPPGA
LMP1_36
GGGPDNGPQDPDNTDDNGPQ
BZLF1_13
AYQAYAAPQLFPVSDITQNQ





EBNA1_61
GGPDGEPDVPPGAIEQGPAD
LMP1_37
PQDPDNTDDNGPQDPDNTDD
BZLF1_14
PQLFPVSDITQNQQTNQAGG





EBNA1_62
DVPPGAIEQGPADDPGEGPS
LMP1_38
DDNGPQDPDNTDDNGPHDPL
BZLF1_15
DITQNQQTNQAGGEAPQPGD





EBNA1_63
EQGPADDPGEGPSTGPRGQG
LMP1_39
PDNTDDNGPHDPLPQDPDNT
BZLF1_16
TNQAGGEAPQPGDNSTVQTA





EBNA1_64
PGEGPSTGPRGQGDGGRRKK
LMP1_40
GPHDPLPQDPDNTDDNGPQD
BZLF1_17
APQPGDNSTVQTAAAVVFAC





EBNA1_65
GPRGQGDGGRRKKGGWFGKH
LMP1_42
DNGPQDPDNTDDNGPHDPLP
BZLF1_18
STVQTAAAVVFACPGANQGQ





EBNA1_66
GGRRKKGGWFGKHRGQGGSN
LMP1_43
DNTDDNGPHDPLPHSPSDSA
BZLF1_19
AVVFACPGANQGQQLADIGV





EBNA1_67
GWFGKHRGQGGSNPKFENIA
LMP1_44
PHDPLPHSPSDSAGNDGGPP
BZLF1_20
GANQGQQLADIGVPQPAPVA





EBNA1_68
GQGGSNPKFENIAEGLRALL
LMP1_45
SPSDSAGNDGGPPQLTEEVE
BZLF1_21
LADIGVPQPAPVAAPARRTR





EBNA1_69
KFENIAEGLRALLARSHVER
LMP1_46
NDGGPPQLTEEVENKGGDQG
BZLF1_22
QPAPVAAPARRTRKPQQPES





EBNA1_70
GLRALLARSHVERTTDEGTW
LMP1_47
LTEEVENKGGDQGPPLMTDG
BZLF1_23
PARRTRKPQQPESLEECDSE





EBNA1_71
RSHVERTTDEGTWVAGVFVY
LMP1_48
KGGDQGPPLMTDGGGGHSHD
BZLF1_24
PQQPESLEECDSELEIKRYK





EBNA1_72
TDEGTWVAGVFVYGGSKTSL
LMP1_49
PLMTDGGGGHSHDSGHGGGD
BZLF1_25
EECDSELEIKRYKNRVASRK





EBNA1_73
AGVFVYGGSKTSLYNLRRGT
LMP1_50
GGHSHDSGHGGGDPHLPTLL
BZLF1_26
EIKRYKNRVASRKCRAKFKQ





EBNA1_74
GSKTSLYNLRRGTALAIPQC
LMP1_51
GHGGGDPHLPTLLLGSSGSG
BZLF1_27
RVASRKCRAKFKQLLQHYRE





EBNA1_75
NLRRGTALAIPQCRLTPLSR
LMP1_52
HLPTLLLGSSGSGGDDDDPH
BZLF1_28
RAKFKQLLQHYREVAAAKSS





EBNA1_76
LAIPQCRLTPLSRLPFGMAP
LMP1_53
GSSGSGGDDDDPHGPVQLSY
BZLF1_29
LQHYREVAAAKSSENDRLRL





EBNA1_77
LTPLSRLPFGMAPGPGPQPG
LMP1_54
DDDDPHGPVQLSYYD
BZLF1_30
AAAKSSENDRLRLLLKQMCP





EBNA1_78
PFGMAPGPGPQPGPLRESIV
LMP2_1
MGSLEMVPMGAGPPSPGGDP
BZLF1_31
NDRLRLLLKQMCPSLDVDSI





EBNA1_79
PGPQPGPLRESIVCYFMVFL
LMP2_2
PMGAGPPSPGGDPDGYDGGN
BZLF1_32
LKQMCPSLDVDSIIPRTPDV





EBNA1_80
LRESIVCYFMVFLQTHIFAE
LMP2_3
SPGGDPDGYDGGNNSQYPSA
BZLF1_33
LDVDSIIPRTPDVLHEDLLNF
















TABLE 2







Detailed list of protein antigens on arrays










Antigen
Product Name
residues
source





BALF2 = EA-p138 = DBP,
EBV Early Antigen P138
mid to



Major DNA-binding protein

C-term


BALF5
Epstein-Barr Virus BALF5 Protein (Recombinant His + SUMO) (aa1-210)
AA1-210

E. Coli



BALF5
Recombinant Epstein-Barr Virus BALF5 Protein (1-210 aa), His-SUMO-tagged
AA1-210

E. Coli



BCRF1 = EBV-IL10
BCRF1 recombinant protein :: Viral interleukin-10 homolog (BCRF1)
AA24-170

E. Coli




Recombinant Protein


BCRF1 = EBV-IL10
Recombinant Viral EBV IL-10 Protein Summary
AA26-170

E. Coli



BDLF3
Recombinant Epstein-Barr Virus BDLF3 Protein (29-186 aa)
AA29-186

E. Coli



BFRF3 = SCP = p18
EBV Capsid Antigen P18
full-length

E. Coli



BHRF1 = EA-R
Viral BHRF1 protein
AA1-142

E. Coli



BHRF1 = EA-R
Recombinant Epstein-Barr virus Apoptosis regulator BHRF1(BHRF1), partial
AA1-142

E. Coli



BLLF1 = gp350 = gp220
Human BLLF1 protein
full-length

E. Coli



BLLF1 = gp350 = gp220
Epstein-Barr virus (Herpesvirus 4) EBV Glycoprotein gp350/EBV GP350
full-length
human



Protein (His Tag)

cells


BLLF1 = gp350 = gp220
Recombinant gp350/220 (RBD/(a.a.4-450)) (EBV)
AA4-450
Hek293


BLLF1 = gp350 = gp220
Recombinant gp350/220 (Ectodomain) (EBV)
AA4-863
Hek293


BLLF1 = gp350 = gp220
Recombinant Epstein-Barr virus (Herpesvirus 4) EBV Glycoprotein gp350/EBV
AA1-490
Hek293



GP350 Protein (His Tag)


BLLF3
Recombinant Epstein-Barr Virus BLLF3 Protein (1-278 aa), His-SUMO-tagged
AA1-278

E. Coli



BLRF2 = p23
EBV Capsid Antigen P23
full-length


BMRF1 = EA-D = EA-p54
EBV Early Antigen P54
full-length


BRLF1
Epstein-Barr Virus BRLF1 Protein (Recombinant 10His, N-terminus + Myc, C-terminus)
AA352-605

E. Coli



BRLF1
Recombinant Epstein-Barr Virus BRLF1 Protein (352-605 aa)
AA352-605

E. Coli



BXLF2 = gH
Recombinant gH(Ectodomain) (EBV) (Strain B95-8)
AA1-679
Hek293


BZLF1 = EB1 = ZEBRA
Recombinant Trans-activator protein BZLF1
full-length

E. Coli



BZLF1 = EB1 = ZEBRA
Epstein-Barr Virus BZLF1 Protein (Recombinant His + SUMO) (Full Length)
full-length

E. Coli



BZLF1 = EB1 = ZEBRA
Epstein-Barr Virus BZLF1 Protein (Recombinant His + SUMO) (Full Length)
full-length

E. Coli



CMV Density Gradient
Cytomegalovirus Density Gradient Purified

NHDF


Purified


CMV infected Cell Extracts
Cytomegalovirus infected Cell Extracts

NHDF


CMV infected Cell Extracts
Cytomegalovirus infected Cell Extracts

NHDF


CMV purified antigen
hCMV purified antigen

HFF


CMV Purified Glycoprotein
Cytomegalovirus Purified Glycoprotein

NHDF


EBNA1
EBV Nuclear Antigen EBNA1, P72
AA72




C-term


EBNA1
EBV Nuclear Antigen-1 (EBNA-1) Recombinant Protein
full-length
Sf-9


EBNA1
EBV EBNA1
AA408-641

E. Coli



EBNA1
EBV EBNA1, Recombinant
full-length

E. Coli



EBNA1
Recombinant EBV Nuclear Antigen protein
full-length

E. Coli



EBNA1 (mosaic)
Recombinant Nuclear antigen-1 (EBV)
AA1-90 +

E. Coli





AA408-490


EBNA2
Viral EBNA2 protein
208 N-term
Yeast


EBNA2
Recombinant Epstein-Barr virus Epstein-Barr nuclear antigen 2 (EBNA2), partial
AA247-454
yeast


EBNA3 = EBNA-3A = BRLF3
Recombinant Epstein-Barr virus Epstein-Barr nuclear antigen 3 (EBNA3), partial
AA138

E. Coli



EBNA-3C = EBNA6
EBNA, Native Protein
full length
native


EBV-EA
EBV EA, Native Protein
full-length
P3H3


EBV-EA
EA Protein
full-length

E. Coli



EBV-EA
EBV EA protein
AA306-390

E. Coli



EBV Lysate
Epstein-Barr Virus (EBV) Lysate

Marmoset





Leukocyte


EBV Density Gradient
Epstein-Barr Virus Density Gradient purified

P3HR1


purified


EBV Infected Cell Extract
Epstein-Barr Virus Infected Cell Extract

P3H3


EBV Negative Control
Epstein-Barr Virus Negative Control Extract

Human


Extract


B Cell


gH(DI-III)/gL/gp42
Recombinant gH(DI-III)/gL/gp42 (Ectodomain)(EBV) (Strain B95-8) Complex
AA1-344
Hek293


gH/gp42 complex
Recombinant gH/gp42 (Ectodomain)(EBV)(Strain B95-8) Complex
AA1-679
Hek293


HERV-W
Recombinant Human Syncytin-1 (ERVW-1), partial
AA21-443

E. Coli



HERV-W
ERVWE1 (Human) Recombinant Protein (Q01)
AA116-215
Wheat





Germ


HSV1 Infected Cell Extract
Herpes Simplex Virus Infected Cell Extract


HSV-1 (Macintyre) Density
HSV-1 (Macintyre) Density Gradient Purified

Vero


Gradient Purified


HSV2 Infected Cell Extract
Herpes Simplex Type 2 Infected Cell Extract

Vero


HSV-2 (G) Density Gradient
HSV-2 (G) Density Gradient Purified

Vero


Purified


LMP1
Recombinant Epstein-Barr virus Latent membrane protein 1(LMP1), partial
AA185-366
Yeast


LMP1
Recombinant Epstein-Barr Virus LMP1 Protein (185-386 aa)
AA185-386

E. Coli



LMP1
Recombinant Epstein-Barr virus Latent membrane protein 1(LMP1), partial
AA185-366
Yeast


LMP2
Epstein-Barr Latent membrane protein 2 Recombinant Protein Product
1-148
Yeast


LMP2
Recombinant Epstein-Barr Virus LMP2 Protein (1-147 aa)
AA1-147

E. Coli



Measles Premium Antigen
Measles Premium Antigen


NHDF Uninfected Cell Extract
NHDF Uninfected Cell Extract


NHDF uninfected cell extract
NHDF uninfected cell extract

NHDF


Rubella Premium Antigen
Rubella Premium Antigen


Rubella Virus Lysate
Rubella Virus Lysate

Vero


VCA, gp125
Epstein-Barr Virus VCA Protein
full-length
human


VCA, gp125
EBV VCA, Native Protein
full-length
P3H3 cells


Vero Uninfected Cell Extract
Vero Uninfected Cell Extract

Vero


VZV Glycoprotein
VZV Purified Glycoproteins


VZV Lysate
Varicella Zoster Virus (VZV) Lysate

Strain:





Ellen CV-1


VZV Lysate
Varicella Zoster (VZV) Lysate

Strain:





275 CV-1


VZV Infected Cell Extract
VZV Infected Cell Extract


VZV Infected Cell Extract
VZV Infected Cell Extract

NHDF























TABLE 3










LC

#


barcode_id
HC CDR1
HC CDR2
HC CDR3
LC CDR1
CDR2
LC CDR3
clones






















MS12_p111w108
GGSISSGGYY
IYYSGST
CTGHTSSFDYYYGMDVW
QSVSSSY
GAS
CQQYGSSPLFTF
1





MS12_p111w13
GFTFSSYA
ISGSGVST
CAKWLYYGSGSYYFYYYGMDV
SSDVGGYNY
EVS
CSSYAGSNNLVF
1





W









MS12_p111w14
GFTFSSFG
ISYDGSNK
CAKPGYSGYDFGLGYW
TANIGDNY
DSN
CVTWDSSLSAGVF
2





MS12_p111w145
GGTFSSYT
IIPIFGTA
CAPSPAVVAGAMDNDPW
QSISNW
KAS
CQQYDSPPLTF
3





MS12_p111w15
GGSLSGYY
ISHSGKT
CARVDYDFWSGFYDSW
SLRSYD
GKN
CASRDISGDHWVF
1





MS12_p111w153
GYTFTDYY
ISPNNGET
CARELWSGSPDYYFDSW
SSDIGGYKY
EVT
CTSYAGSNNAVVF
2





MS12_p111w168
GDSVSSNSAA
TYYRSKWY
CARERYRNSDVW
QSVSSN
GAS
CQQYNNWPALTF
1




N










MS12_p111w26
GYTFGSYD
MNPNSGNT
CARGRLDRNWFDPW
SSDVGSYNL
EVS
CCSYATSSSVVF
1





MS12_p111w35
GYTFTSYA
INTNTGNP
CARVMGATKWNDAFDIW
SSDIGGYK*
EVT
CSSYAGSNNAVVF
1





MS12_p111w69
GYTFTDYY
INPNSGET
CARELWSGYTDYYFDSW
SSDIGGYKY
EVT
CSSYPGSNNTVLF
2





MS12_p115w113
GFTFSSSA
ITGSGDST
CANSDWGAYDSW
QSVSSSD
GAS
CQQYGSSTWTF
1





MS12_p115w17
GGSLSGYY
ISHRGKT
CARVNNDFWSGFYDSW
SLRSYD
GKN
CASRDISGDHWVF
1





MS12_p115w176
GFTFSTYE
ISSSSSTI
CGRGGYSFDYW
QGIRND
AAS
CLQHNTYPRTF
1





MS12_p115w3
GGSLSTYY
ISHRGKT
CARVDNDFWSGFYDSW
SLRSYD
GKN
CASRDISGDHWVF
1





MS12_p115w48
GGSLSGYY
ISHSGKT
CARVDYDFWSGFCDSW
SLRSYD
GKN
CASRDISGDHWVF
1





MS12_p115w7
GYSISRAYY
IYHDGSP
CARRACSSISCYVDYW
SLRNYY
DKN
CHSRDSSGNHVVF
1





MS12_p115w8
GFTFSSYG
IWYDGSNK
CVRDLRQRLVDDDFDMW
QSLVYSDGNTY
KVS
CMQGTQPWTF
1





MS20_p126w106
GFTLRHHD
YATAADT
CVTAGVNSNYYGMDVW
QSVSNNF
DAS
CQQHSRSPRGYTF
4





MS20_p126w111
GGSVTSVGHY
FYYSGNT
CARIIPLNYLGGPFDSW
QDIRNY
EAS
CQQFDNLPITF
1





MS20_p126w122
GFPFSNYW
IKEDGSQK
CARVSTSKWGHFAYW
QNINTF
AAS
CQQTFTTPMSSF
1





MS20_p126w127
GGSISSGGYY
IDYSGSN
CARGPSRGWSGRSGNNWFDPW
HDITKY
DAS
CQQYDSLPVTF
1





MS20_p126w15
GGSISSSSYY
IYYSGNT
CARRAQYSGSSPYWYFDFW
QSVSSSY
GAS
CQQYGSSPQYTF
1





MS20_p126w158
GFTFSAYA
ISDDGSSK
CAKDYYDSGGFYIFDSW
RSLLHKNQYHF
LAF
CMQTLQTPGTF
1





MS20_p126w162
GGSISSSSYY
VYFSGRT
CARDHGDYTLHSFYYGMDVW
QSLLHSNGYNY
LGS
CMQALQSPPTF
1





MS20_p126w164
GFTFTNYW
INLDGSEK
CARNRAAAGDYW
QDISNY
DAS
CQQYDNVILTF
3





MS20_p126w174
GDSITSYY
IFYSGST
CARGTVSGYDLKVSFDYW
QSVLYSSNNKNF
WAS
CHQYHSTPLTF
2





MS20_p126w18
GFVFPNYW
IKKDGSEK
CARDVGYCSDPSCYADWFDPW
QSVSRF
GAS
CQQYGTSPRTF
1





MS20_p126w180
GGSISSDY
IYYSGIT
CARARQPQHLDYW
QDISNY
AAS
CQQYDNVPFTF
3





MS20_p126w94
GGSISGYY
IFASGNT
CVRDGGDTVTRAYDFW
QSISNY
AAS
CQQSYTTPRTF
1





MS20_p128w126
GFSLRTSGMC
IDWDEEK
CARENSAYDWGRGRVFDYW
QSIDNW
KAS
CQQYNSYSRTF
1





MS20_p128w13
GFPFSNYW
IKEDGSQK
CARVSSSKWGHFAYW
QNINTF
AAS
CQQTFTTPMSSF
1





MS20_p128w169
GFSLTTNGMC
INWDDEK
CARIRGPYDAFDIW
QTIYTW
KAS
CQQYNIYTWTF
1





MS20_p128w177
GGSFSGYY
INHSGST
CARHLKDPSIAVLIENTFDIW
QSLLHSNGYNY
LGS
CMQILQTPRTF
1





MS20_p128w2
GGSVTSVGHY
FYYSGNT
CATIIPLNYLGGPFDSW
QDIRNY
EAS
CQQFDNLPITF
1





MS20_p128w8
GGSMVSGGYF
IDSSGST
CARRYYNFWSGYTRNWFDPW
HDISNY
DAS
CQHYENLPPSCAF
1





MS20_p129w111
GFSLNTRSVG
IYWEDDK
CAHRRDTIIRGVADAFNFW
QSIDRY
KSS
CLEYNTYSPWAF
1





MS20_p129w135
GFTVSSNY
IYSGGST
CARDSLAAAGFTTYYFDYW
QSVSSY
DAS
CQQRSNWPPYTF
1





MS20_p129w159
GGSISSYY
IYYSGST
CARSSYYYYGMDVW
TGAVTSGYY
STS
CLLYYGGALVF
1





MS20_p129w25
GFTFSSYW
INNDGSFT
CVRDFVPNSNWLDPW
SSDVGSYNY
DVS
CSSYTTSSTWVF
1





MS21_p26w101
GGSVNNGGYY
IYFTGNT
CARGFIGYDTDGRDVAANLDS
SSDVGAYKF
DVS
CSSYSTTGLSVF
3





W









MS21_p26w104
GFSLSNSRMG
IFSNGEK
CARVQYNSGSYFRDYYDFW
QSISDY
AAS
CQHSYNFPPTF
19





MS21_p26w106
GFSFSSYG
ISPSGDTT
CAKDQWELVVFDYW
QSIDTW
KAS
CQRYDSYPWTF
29





MS21_p26w107
DGSFSGYY
ITHSGAT
CAVCVTAVHDAFDLW
QSVLYRSNNKNF
WAS
CQQYYGTPYTF
1





MS21_p26w108
GYTFSDFH
VNPYSGDR
CARDFRAGNIKGEFDPW
GSNIGSNS
SNN
CATWDDSQGGFVF
17





MS21_p26w111
GGSVNSGGYY
IYYSGST
CARAERTHYYESGEFRAWTTF
QGISSW
AAS
CQQANSFPYTF
1





DYW









MS21_p26w114
GGSISSSTYY
IYYSGST
CARTGYYDFWSGSRPFYCYMD
QSVSTW
KAS
CQQYDSYPWTF
1





VW









MS21_p26w115
GDSISSGDYY
IYYSGET
CARGPDFWNGDHDGYW
QSLVHSDGNTY
KIS
CMQATQFPYTF
4





MS21_p26w118
RFSLTTTGVG
IYWNDDK
CAHLSLVLRFLEYLPLPYYDM
QSLVHSDGNTY
KIS
CMQATQFPLTF
1





DVW









MS21_p26w119
GESFSGYY
INHGGST
CARGGYSVGWYYFHYW
QSVSSN
GAS
CQQYNNWPTF
1





MS21_p26w126
GGSFSGYF
MDHGGIT
CARSSYSSGWYGDFDYW
QDISTH
AAS
CQQSYGTPYTF
4





MS21_p26w127
GYTFTTYG
ISADTGKT
CARSVLSAKDTGGLYYDYYYY
NSNIGKNF
DDD
CGTWDSRLSAPWVF
12





YMDVW









MS21_p26w13
GVTFRNHG
ISYDGRRK
CAGGEEKSYSHGTFDPDPPVH
SSNIGSNY
KTY
CATWDDRLRAWIF
2





W









MS21_p26w136
GFTFQNYG
IIWSGGRT
CARAKTPGDFFYYYMDVW
QGTSTY
GAS
CQQYYSSPFTF
1





MS21_p26w144
GFNFGTYV
ITGSGSNT
CAKGFEGLVLAGDYYMDVW
QSVSVY
DAS
CQQRSSWPPITF
2





MS21_p26w146
GFSFRAYA
ISYDGSNE
CATRFYFDFDYW
KLDDKY
QDD
CQAWDSSIVVF
4





MS21_p26w162
GFKFDNYG
LDWNGGSV
CGKDIGLRWGGIDSW
SSNVGGNT
RDD
CLTWDDSLNGWLF
7





MS21_p26w167
GFTFSTYT
ISSSSDYI
CARGPTWIPTTDSYYMDVW
ENISRY
AAS
CQQSYSTPLTF
1





MS21_p26w168
GDSISSGDYH
ISYSGSA
CARDAGRFRRLRGFPPQDYW
EGIGNS
AAS
CQKYNSVPFTF
3





MS21_p26w169
GGSFSVYY
INHSGFT
CAIYSSSSLASYMDVW
SGSIASNY
EDN
CQSYDSSSHVVF
7





MS21_p26w17
GGSISSGDYY
IYTSGST
CARALSGSYYVGWFDPW
QDIRKY
DAS
CQQYDNLPLTF
1





MS21_p26w171
GFTFSRYG
ISHDGRDK
CAKIDLATTIGGAPMDVW
NIGSKS
YDS
CQVWDSSGDHSYLVF
17





MS21_p26w176
GFTFSSFA
ISGSGRGT
CVRYGAITRLSYLDFW
QSVLYSSNNKNY
WAS
CQQYYTTPPTF
1





MS21_p26w180
GYTFSDYY
INPYRGGT
CARDYCSSGSCYLGWLDRW
QLGHKY
QDT
CQAWDSSTGVF
2





MS21_p27w115
GGSFSGYL
IHHSGGA
CARLPTVLRGVPGGGRSSIDV
SLRTYY
GKN
CNSRDSRGNNVIF
6





W









MS21_p26w21
GFTFSNYA
ISGSGGTT
CAKWLMGAERSLTGHW
QSISSW
KAS
CQQYDSYPHTF
1





MS21_p26w22
TFSSYG
ISHDGSEK
CAKGLVYFGWGSPQYYYYMEV
QDINNY
AAS
CQQYKTYPLTF
3





W









MS21_p26w26
GYSFADYG
ISAYSGNT
CARDWGDYYGSRSSHDYW
QSISTW
KAS
CQQYNSYSLPWTF
1





MS21_p26w36
AFIFSSYP
ISHDGRKE
CVREGLNYADVW
QSISSD
GAS
CQQYNDWPPITF
3





MS21_p26w43
GFIFSTHP
ISYDGNNK
CAREAIYYYDSSGYHTATDAF
QSIRSY
AAS
CQQSYTTPYTF
2





DMW









MS21_p26w51
GFTFSN*A
ISGSGGTT
CAKWLMGAERSLTGHW
SSNIGANY
SNN
CATWDDSLSGWVF
1





MS21_p26w57
GGSISSGGYY
IYYSGST
CARLRRWLQPYSFDIW
SNDVGGYDY
DVS
CCSYADSYTLVF
1





MS21_p26w58
GYTFTNYA
INTDNGNT
CARVGRTLGYCSGGSCETGYE
QSISSY
AAS
CQQSHSIPYTF
5





HYYFMDVW









MS21_p26w6
GGSIGSSNW
IYHSGST
CARAFVMVTHYYMDVW
SSNIEDNT
SND
CAAWDDTLSRYVF
2





MS21_p26w62
GYTFSDYF
INPRTGGT
CARDRPAAGTNYYFYIDVW
QSLDSNGYNY
LGS
CMQSLRTPLVF
2





MS21_p26w7
GFTFSSYG
ISGGSTYI
CARDRVGAAAPFDYW
QTISTS
AAY
CEQTYNMPRTF
1





MS21_p26w8
GFAFSSYW
IKEDGSEK
CAKCSARTCYPWEECYHYYYY
QSVSSSY
GAF
CQQYVTSVSTF
1





LDVW









MS21_p26w82
GFIFSDYN
VSSAGNYI
CARFSPTRLLDYW
DSNIGVNY
RNN
CAAWDDSLSGFVIF
3





MS21_p26w92
GGSINSGGHY
MYNSGNI
CARENDFWSGDYTGGFDLW
QTIRSNF
DTS
CQQYGSSPKTF
1





MS21_p26w93
GGAFRNCG
IIPLFGMI
CAGGSSAHNSGYIYGDIGAFD
SSDVRAYDY
DVS
CCSYAGSYTLIF
2





IW









MS21_p26w94
GFTFVDYA
IGSKVYGG
CTRRYSGSYSRW
QGISNY
AAS
CQQYNSYPITF
1




TT










MS21_p27w108
GGSISTYY
IYYSGST
CARPRRPDLWSGYYDAFDIW
QSISTW
KAS
CQQYDNYWTF
2





MS21_p27w109
GFIFSSYH
ISHDGRNE
CAREGVAYMDVW
QSVSSD
GAS
CQQYNNWPPLTF
4





MS21_p27w112
GFSLTTSGVG
IFWDDDK
CVHEQGGWFGQSRTSRYYYYM
QDISSF
AAT
CQQSYDTPRTF
1





DVW









MS21_p27w114
SLTLSIDD
SPSASTT
PAIFRVLEYLGGRILDF
QSVSSSY
GAF
CHQYVTSVYTF
1





MS21_p27w118
GYTFTGYF
INPRNGAT
CARDRPSAGTNYYFYIDVW
QNLHINGYNY
LGS
CMQALRTPLTF
10





MS21_p27w119
GGSISDYY
IYYTGST
CARGLGIVGTTTKLEFW
QSLLHNNGYKY
LGS
CMQGLQTPWTF
1





MS21_p27w122
GGSITSGNW
MYHSGST
CARDVHTIGSGNSRGYMDVW
QSVLYSSNNKNY
WAS
CQQYYSIPWTF
1





MS21_p27w126
GLTVSTNY
LYSGGKT
CATEAYDTSGGREVW
GSNIGSNY
WNN
CAAWDDSLSGRVF
1





MS21_p27w129
GGSFSGYY
IHHSGRT
CARAPRARTESIAARMGDAFD
GSDVGSYNY
DVS
CSSYTSSTTDYVF
1





IW









MS21_p27w13
GGSINSGGYS
IYQSGNT
CARAPSSSSWGYFDLW
QSIGSS
YAS
CQQSRSLITF
1





MS21_p27w130
GFAFSSFA
MSGTGGSR
CARDDGQWSTTWYHW
HSISDY
AAS
CQQSDSTPWTF
1





MS21_p27w14
GFSFTTYW
INDDGSYT
CVRESLGSGNRYFELW
QSFNNW
KAS
CQEYNSWTF
1





MS21_p27w143
GGSISSSGYS
IYDSGST
CAKDNWDYYDSSGYYGAFDIW
QGISSY
AAS
CQQLNSYPHPF
1





MS21_p27w146
GDSINGAGYY
ISSSGSS
CAKTYSRSWAYFDSW
QSVRAN
GAS
CQQYNHWPFFTF
3





MS21_p27w15
GDSISGGGYS
IYNSGST
CARGGITVFGVIVPCLDPW
QSVSGS
DAS
CQHHNNWPPTFTF
2





MS21_p27w158
RFNFNNYA
INYSDDST
CAKPTYEPSGYYGFDIW
QSISRY
GTS
CQQTYTAPLTTF
1





MS21_p27w163
GASITSGNW
MYHSGST
CARDVHTIGSGNSRGYMDVW
SSNIGNNY
DNN
CGTWDSSLSGGVF
1





MS21_p27w167
NYW
ISSDGNRI
CARTEERRLGEYVYYYYYYMD
GSDVGSYNY
DVS
CSSYTSSTTDYVF
1





VW









MS21_p27w169
GGSISSADYY
MYYSGST
CARVWSKGYYSGYFDPW
QDIRNY
DAS
CQQYGNLPLTF
2





MS21_p27w171
TGSVSSGGHY
VYYRGSP
CARGLYYYARGKGEIWHFDLW
QSVLTRSNNKNY
WAS
CQQYYSTPITF
20





MS21_p27w172
GGTFKKSA
IISTFGAA
CARDMSEQLIPDHYYFYYMDV
QNLRSN
GAS
CQQYNTWPRTF
2





W









MS21_p27w174
GFTINNYW
INSDGSTT
CVRDLYGDHPWYMDVW
QSLLYVNGYNY
LGS
CMQALQTPYTF
4





MS21_p27w176
GYRFTNYW
TYPGNSDT
CAKFLKSEVLNARDYFDDW
QGIRSY
SAC
GQRTYNAPPSF
1





MS21_p27w178
GFTFSDYW
IKEDGSEK
CARGQVWLPYW
QSLLHSNGNNY
MGS
CMQALQTPHTF
4





MS21_p27w18
GDSISSGDYY
IYYSGET
CARGPDFWNGDHDGNW
QSLVHSDGNTY
KIS
CMQATQFPYTF
3





MS21_p27w2
GGSIGSGGYY
IYYSGST
CARCPRGGSNFIATGLWFDTW
QSVLTRSNNKNY
WAS
CQQSYTPLFTF
1





MS21_p27w21
NNY
IYADGST
CAREWKGDFSGYYSFYYYYYM
NFVITS
RDS
CQVWDSTTDHRVF
4





DVW









MS21_p27w22
GGSIGSGGYY
IYYSGST
CARCPRGGSNFIATGLWFDTW
QSVSSN
GAS
CHQYNNWLSLTF
1





MS21_p27w25
GYSHTFYW
IYLDDSHT
CARAPGSLSYFDNSGHHRADS
QSVLYNSNNKNY
WAS
CQQSYTPLFTF
3





FDIW









MS21_p27w3
GYKFTDYH
INPYSGDR
CARDDGTLTFFDNW
SSNIGTNP
TNN
CAAWDDSLSVYVF
1





MS21_p27w35
RYPLTELS
FDPEDGDT
CVASHLLAVGHLLPDYW
QTISKW
KAS
CQQYNTYPYSF
4





MS21_p27w39
GDSINLYNYY
IFYSGT
CARHRGTAGYYYYSMDVW
QSLLHSNGHHY
LGS
CMQALQTITF
1





MS21_p27w51
GFSFSSFA
ISPAGGST
CAKDLGGWELPLGNGFDVW
QGVTRW
AAS
CQQANSLPYTF
2





MS21_p27w57
GFTFSSFA
ISYHGRNK
CAKGRGGDGTSVFYFDYW
QDITNY
DVS
CQHYANLPLTF
1





MS21_p27w58
GGSVSSSIYY
VYHSGST
CARLTGEYDFWSGSEYYFDRW
QNILYGSNNKNH
WAS
CQQYYSGPPTF
1





MS21_p27w69
GFIFDDYA
INWNSRTP
CVKDIGVGVGAMGVAFEHW
QSVSTY
DAS
CQQRINWPPYTF
1





MS21_p27w8
GGSISSSSSY
IYYSGSA
CARDEGFGSGHFYTW
RILLHSDGHNY
LGS
CMQALETPLTF
1





MS21_p27w92
GLSLSDYT
ISYDGREK
CATDRKGLFPNYYYSHHLDVW
EGISNW
DAS
CQQTHSFPTF
1





MS21_p28w101
GFTFSSFA
ISYHGRNN
CAKGRGGDGTSVFYFDSW
QGISNL
DVS
CQHYANLPLTF
5





MS21_p28w112
GDSIRDHY
IYYSGST
CAAYSYANWLDPW
QSVSSY
DAS
CLQRRNWPLTF
1





MS21_p28w115
GFSVSSSY
IYSGGSI
CARGLGNDHDISGHWGWFDSW
QRISTW
DAS
CQQSNSFPLTF
1





MS21_p28w118
GYTFTGHH
INPHSGDT
CARDVGGSDFLSGFDYW
RSNIGSNS
RNN
CATWDDGRSAFVF
1





MS21_p28w129
GFKFDDYG
LDWNGGSV
CGKDIGLRWGGIESW
SSNVGGNT
RDD
CLTWDDSLNGWLF
2





MS21_p28w133
DYNFADYY
IDPSDSYT
CARRWAVKNRGLMGYYYSYYM
TSNVGSHP
TND
CSTWDDSLNGPVF
1





DVW









MS21_p28w135
GFTFISSA
ISGSGGGK
CAKTREFSSGWPGASFDYW
QSVSSSY
GAS
CQQYGSSPLFTF
2





MS21_p28w145
GGSINSSSDY
IYSSGTT
CAKANPDVTYSFGYMDSW
QSVTSN
GAS
CQQYNNWPPWTF
1





MS21_p28w153
GFTFDDYA
ISWDGGTI
CAKVKTPRPNFYNYFLPETEF
QGISKW
AAS
CQQANRFPLTF
1





YFDHW









MS21_p28w158
EFTFDDYS
ISWNSATS
CAKGSGRNWNYGAFEYW
NIGRQS
YDS
CQVWDSSSDHAVF
3





MS21_p28w178
GFTFSRYP
ISYDGVIK
CARDWGIAAAGPYYYMDVW
QSVSTY
DAS
CQQRDTWPPVF
2





MS21_p28w183
GFTFDDYA
ISWDGGTI
CAKVKTPRPNYYNYFLPETEF
QGISKW
AAS
CQQANRFPLTF
2





YFDHW









MS21_p28w2
GGSINNYNDY
IEYRGST
CARHVPTLTDGWYLFRSGFDH
QTVLYSSNNKNY
WAS
CQQYYSTPLTF
4





W









MS21_p28w22
GFPFSDYG
IWFDGTKE
CARGRYVLPDAFDIW
ISNIGSNS
GNY
CSAWDDSLSAVLF
3





MS21_p28w25
GDSISSGGYY
IYYTGRT
CARAPRGFLEEKYFDSW
QSVLYSSNDKNY
WAS
CQQYFTSPTF
1





MS21_p28w26
AGSTSNNNW
IYHSGIT
CARAWFGEFRGAFDIW
QSVSSNY
GAS
CQQYGDLFRTF
1





MS21_p28w39
GDSISTTRYY
IYFTGSA
CARHPLPVYYFDSW
QSISTW
KAS
CQQYIRSSWTF
1





MS21_p28w43
GFTFSSYA
IWYDGSYK
CAKGVSSGGNTHFDSW
QSISSSY
SAS
CQQYGSSPFTF
1





MS21_p28w6
GFSFNAYW
IKQDGSEK
CARDIETSALYKDVLTGFRYF
QSISSW
KSS
CQQYNSYSRTF
2





YFYYMDVW









MS21_p28w69
GFTFSTYV
ITGSGSNT
CAKGFEGLLLAGDYYMDVW
QSVSSY
DAS
CQQRSNWPPITF
1





MS21_p28w7
DDSISSGGYY
IYYTGRT
CARAPRGFLEEKYFDSW
QSVLYSSNDKNY
WAS
CQQYFTSPTF
2





MS21_p28w81
TFTSCG
ISTYTGDT
CARDQRHCSSSWCPFDHW
QSVSSSY
GAS
CQQYGSSKLTF
1





MS21_p29w10
GFVFSTCG
ISIDASKT
CARDCHVIDYDFWDASFDSW
SSNIGINT
DKS
CAAWDDSLNGWVF
1





MS21_p29w109
GFMFATYG
IWYDGSNK
CATSIPSTGITGALDLW
QSIRSNY
DIS
CQHYGRSPPITF
7





MS21_p29w13
GFTFSSYW
IKQDGNEK
CARAVFLEWLLSSYFDYW
QGISNY
ASS
CQNYNSAPLTF
1





MS21_p29w130
GGSFSGYY
IHHSGRT
CARAPRARTESIAARMGDAFD
QSVSSN
GAS
CQQYHNWPLTF
1





IW









MS21_p29w158
GFSLTNHRMG
IFSNDEK
CVRMYSKGGYPMDYW
QSMSTY
EAS
CQQSYSFPYTF
1





MS21_p29w159
GGSISSGDFY
IYYGGTT
CARDQEAAGGTAGNYFDPW
QTIDNF
GAS
CQQSFSSPWTF
1





MS21_p29w169
TFSTFA
IRQDGTKT
CARELPYYDSSGHWSERGGFD
TNDFGDYNY
GVT
CSSYMTGSSYVF
2





LW









MS21_p29w17
GYTFTGYY
IKPNSGGA
CARGDTYTPSSRYYYYYMDVW
SGSIASNY
EDN
CQSYDSSSHVVF
1





MS21_p29w183
GYTFTGYY
IKPNSGGA
CARGDTYTPSSRYYYYYMDVW
ALPKQY
KDS
CQSADSSGAGVF
1





MS21_p29w21
GLTVSGQY
IYTVGQT
CAGPSDRYRYYLDVW
QGITKY
AAS
CQKYDSAPLTF
1





MS21_p29w26
GGSISSSNW
IYHSGST
CARGRGLRLEDLASFDSW
QSISSY
DAS
CQQNYRVPYTF
2





MS21_p29w35
GFTFSTHW
IKQDGSEQ
CARAPYDFWGAYLGSYNYYMD
QSVLYSSNNKNY
WAS
CQQFYSTPYTF
1





VW









MS21_p29w36
GGSFSDHG
IVPIFATP
CATRVRVIGRLDASDVW
QSISTW
KAF
CQQYNSYSSTF
2





MS21_p29w5
GFTFSDHY
IRKKVHSY
CTRTLSYEPPDHW
QGISNY
AAS
CQQYKTYPLTF
1




ST










MS21_p29w55
GFKFDNYG
LDWNGGGV
CGKDIGLRWGGIDSW
SSNVGGNT
RDD
CLTWDDSLNGWLF
1





MS21_p29w59
GFGLSDYT
ISYDGREK
CATDRKGLFPNYYYSHHLDVW
EGISNW
DAS
CQQTHSFPTF
4





MS21_p29w81
GFTFSSYW
IKQDGSEK
CARAVTIFGGVSPPDYW
QGISNY
AAS
CQKYNSAPWTF
1





MS21_p29w83
GDSINSGGYY
IYHTGRT
CARGHYYDSTGYYLPPYYFDY
QSVSSN
DTS
CQQRSNWLTF
2





W









MS21_p29w89
GFAFNNYA
ITASAGGT
CAKHQYDLWSAYDYW
QSVSGSS
DAS
CQQYGSSPWTF
3





MS21_p29w92
GDSISSGGYS
VYRSGST
CARGLIAARRLDWFDPW
QGISNY
DAS
CQQYHDLPITF
1





MS21_p30w107
GYTFNSYN
MNPNSGNT
CARMDVRLASVLSGW
KLGDNY
QDF
CQAWDSSTAVF
1





MS21_p30w109
GGSISSSSYY
IYYSGST
CAREDSSSWYPVFYYYYYMDV
SSNIGSNY
RNN
CAAWDDSLSGPVF
1





W









MS21_p30w114
GFNFNTHA
INSNGGAT
CVKSPQSGWYYFDSW
QGIGNL
GAS
CQNYRSGAFTF
1





MS21_p30w13
SVLP
ISLDK
CARPYWRHDRVLRHHLIF*LD
QTVSSNF
DSS
CQQYGSSPITF
1





RPL









MS21_p30w143
GASISNGGYY
IYYSGIT
CAILSLEEGYCSSISCSSDYW
QDISNS
DTS
CQQYDNLPRYTF
2





MS21_p30w158
GDSISSGEYY
IYYSGET
CARGPDFWSGDHDGYW
QSLLHSDGNTY
KIS
CMQATQFPYTF
1





MS21_p30w17
FTFSSYW
IKQDGSEG
CARDDSREERKFDFWRGYRDY
QSISRW
KAS
CQQYHTYSRTF
1





YYYYMDVW









MS21_p30w171
GYTFISYG
ISSRTGKT
CFRHFYDDRNNLGSLDHW
ALPKKF
EDD
CFSTEDTGTDDVTWVF
1





MS21_p30w175
GFTFSGYV
ISYDGSNK
CAKTLTRGRRFADGFDIW
SSNVVSNS
SDN
CAVWDGSLSGVLF
1





MS21_p30w18
GGSVSSGGHY
IYITGVT
CARGEMGGSPPENW
QSVSSSF
GAS
CHQYDTSPWTF
5





MS21_p30w22
GYRFTNYW
TYPGNSDT
CAKFLKSEVLNARDYFDDW
SGSVSTSYH
NTN
CVLYMGSGISIF
2





MS21_p30w26
GASVSSGGYY
IYNSGTT
CARDSGWLPLGELSFSRYFDY
QNINNY
AAS
CQQSHSTPWTF
1





W









MS21_p30w3
SYW
IDPSDSYT
CARLQRRRFGSSSWWAGSDYY
SGHSTYA
VNSDGSH
CQTWGTGILVF
1





YYIDVW









MS21_p30w30
GFSFSSYG
ISPSGDTT
CAKDQWELVVFDYW
QSISNW
QAS
CQRYDSYPWTF
1





MS21_p30w36
GFTFNDYA
IIPVLNRS
CARAVSGTYYYYYMDIW
QSISTY
AAT
CQQSYSNPQTF
1





MS21_p30w48
GFTFSSYN
INGSGGTT
CARENYYYYYMDVW
QGINNR
DVS
CLQHKDISGFTF
1





MS21_p30w57
GFSFNIYA
ISGSGSKA
CAKVLGYCRGDSCYLAMNLEE
QSVSTY
DAS
CQQSYRIPLTF
2





IAFDIW









MS21_p30w62
GFIFSNSW
IKQDGSEK
CARAYSSSGTGFDYW
QSISSW
KAS
CQQYNSYPVTF
1





MS21_p30w82
GGSISSYH
IHMSGRT
CARESPEGQSLYYHPYYMDLW
NSNIGRNS
RDN
CGTWDDSLDGWVF
1





MS21_p31w100
GVSIGTGTYS
IFYSESA
CARMDESAPGGLQNWFDPW
QSVLYSSNNKNY
RAS
CQQYYTTPLTF
1





MS21_p31w109
GYTFTDYY
INPNNGGT
CAREGYCSAGSCTDVNWFDPW
SSDIGGYNY
DVN
CSSYARDKWVF
1





MS21_p31w111
GYTFTGYF
INPRNGAT
CARDRPSAGTNSYFYIDVW
QNLHINGYNY
LGS
CMQALRTPLTF
2





MS21_p31w126
GFTFSRFA
ISSDGGST
CVTPRSVVTGSPIDYW
ALPKKY
EDS
CYSTDSSDNFVF
1





MS21_p31w129
GGSISSRDYY
IYHSGST
CARVTSNGVNWFDPW
QSISTY
AAS
CQQSYSIWTF
1





MS21_p31w136
GFTFSNYG
MSYDGTKQ
CAKAGRAPPGTSTRDQKNIYY
SSNIGNNL
RND
CATWDDSLSAWVF
1





HYMDVW









MS21_p31w143
GHPLTDYY
INPNNGGT
CAREGYCSAGSCTDVNWFDPW
SSDVGGYNY
DVS
CCSYAGSYVVF
1





MS21_p31w144
DDSISRGSFY
ISYSGST
CARGDRFNWNLSYYFNYW
QDISNY
DAS
CQQYDNLPLTF
1





MS21_p31w171
GFSFRSYA
ISGSGGTS
CAKGSPHEGLLSVGELLYDFD
SSNIGDNF
DNS
CGTWDSSLSEWVF
1




Y
W









MS21_p31w172
GFTFSSHW
INGDGSST
CARDRKLELLSYYMDVW
QTVSKS
DAS
CQQRSKWPPTF
1





MS21_p31w175
GFTFSTYA
ISGSAGST
CAKDSGHIYYYFYYMDVW
SSNIGAGSD
VNS
CQSYDTSLSGFYVF
1





MS21_p31w2
GGSIRPYY
ISYNGNT
CARRSLEGFCTNGVCSEDYCL
QYVSIN
GAS
CQQYNRSPQTF
1





DVW









MS21_p31w22
GFTFSSYG
ISYDGSNK
CAKERLRFLEWYPGRHAFDIW
QSISSY
AAS
CQQSYSTPITF
1





MS21_p31w25
GYIFTGYH
INPKNGGT
CARDPGFSEFLSMADHW
QGIDNY
AAS
CQQLNSYPPLTF
1





MS21_p31w39
GFTFDDYG
ISWNSGIM
CAKDGGIRFLEWSTSRPFHYM
SSNIGAGYD
GNN
CQSSDSSLSVVL
1





DVW









MS21_p31w44
GFTFSDFP
LSHDGTSP
CARASLTTMHYHYYLDVW
QSIGTY
ASS
CQQSFNSLWTF
1





MS21_p31w46
GGSISSSNYY
ISYSGST
CARQISILDGSETSYVHPYYY
TSNIGSNP
NNN
CAAWDDRLTGSWVF
1





YYMDVW









MS21_p31w58
GYTFSNFG
VNPYTGNT
CAREKVALAASTTVPDAFHIW
QSISHW
KAS
CQQYHIFSPTF
1





MS21_p31w59
GFTVSNNA
FTDTGGST
CAKTRVDYDILTGYYRYFDHW
QSISRW
KAS
CQQYKSYSYSF
1





MS21_p31w62
GFTFTTYP
ISYDGNEQ
CARVLSSAWPLSSPDYW
QSVSTY
DAS
CQQRSSWPPALSF
1





MS21_p32w10
GGSISSGNYY
IYDTGST
CARAGGVNWFDPW
QSIINY
TAS
CQQSYGSPWTF
1





MS21_p32w101
GFFFKNYW
IKLDGSEK
CAREVGVTGTTPLDYW
NIGSKS
YNN
CQVWDDVSGRVF
2





MS21_p32w107
GGSITSGDYY
TFDSQRT
CARGPGGDFDYW
SGINVDTYR
YKSDSDN
CMIWHGSAWVF
1





MS21_p32w158
GDSVSSGSYY
VSYSGST
CARLRDYYDSRNYYYPKTAFD
QGIRNY
GAS
CQQSYSTPRTF
2





YW









MS21_p32w159
GVSLRKSRMG
IFSNGKK
CARVQYNSRSYFRDYYDFW
QSISDY
AAS
CQHSYNFPPTF
1





MS21_p32w162
GDSVTSTDYY
IYYSGSP
CARGFNYDDYQSKW
QSINNW
KAS
CQQYNTYSRTF
1





MS21_p32w177
GFSFSTYS
IGKNGNYI
CVRCHGVMATICYFDRW
QSISSW
KAS
CQQYTGTSRTF
1





MS21_p32w18
GGSFSGYL
IHHSGGA
CARLITILRGVPGGGRSSIDV
SLRSYY
GKS
CNSRDSRGNSVIF
1





W









MS21_p32w2
GFTFNRYA
LSGRTGST
CARERDSSSSFDYW
QDISNF
DAS
CHQYENLPYTF
1





MS21_p32w20
GFSLSTSGMC
IDWDDDK
CARIAPGTNCYTDYFDYW
QSISSYY
GTS
CQQYGSSRTF
1





MS21_p32w26
GGSFSGYY
INHSGST
CARGSYSWYYYW
QSVSSY
DAS
CQQRSNWPTF
1





MS21_p32w37
GGSINTGDYY
TFYSGST
CARVGARVVLTTTRGGFDIW
SIDIVSHNY
EVT
CSSYGGGNNLEVF
1





MS21_p32w39
GDSINGAGYY
ISSSGSS
CAKTYSRSWAYFDSW
QSVRAN
GAS
CQQRSNWLTF
1





MS21_p32w43
GFIFSDYT
ISYDGREK
CATDRKGLFPNYYYSHHLDVW
EGISNW
DAS
CQQTHSFPTF
1





MS21_p32w5
GFTVLSSY
LYSGGST
CARDLGSGFDPFKYW
QSFSTW
KAS
CQQYNSYPYTF
1





MS21_p32w55
GDSVSSNSAS
TYYRSKWYN
CAREERGVTIFGVIITRLYYM
ALPKQY
KDT
CQSADSSGTYVF
1





DVW









MS21_p32w93
GGSISSNNYF
VFYNGGA
CARHIRFADTSSWNYFDYC
QGISSY
AAS
CQQLNSYVFTF
1





MS21_p33w107
GFSLSNSRMG
IFSNGEK
CARVQYNSGSYFRDYYDFW
QSISDY
AAS
CQHSHNFPPTF
1





MS21_p33w111
GFSFRGYV
ISYDGSNK
CARAKNRWELLRW
QSVSSN
GAS
CQQYDNWPPITF
1





MS21_p33w112
SFSSFA
ISFDGSSK
CAKDRFLWGGNDITSWPIDYW
QDISNY
DAS
CQQYDYLPLTF
1





MS21_p33w133
GGSVNSRTYY
MFYTGSP
CARYAPYDHAWETYEAFDIW
QSLLQSNGYNY
LGF
CMQALQTPYTF
1





MS21_p33w135
GDSISSNHYY
VFYSGST
CVREVGARNWYFSPRKIDPW
QDISDY
DAS
CQQYDNFPPTF
1





MS21_p33w14
GFSLDNPRMG
LFSNDEK
CARFNGLDTPIIGYWYFDLW
QDIDTW
AAS
CLQAVSFPYTF
1





MS21_p33w146
GGSISNFY
VFDSGNS
CARVSWRPRKFPGIAVAGFDY
QSLLESNGYNY
LGS
CMQTLQIPWTF
1





W









MS21_p33w159
NYG
ISPYNDDT
CARAHRNFYYESRGSAYYFYY
KLGDKY
QDN
CQAWDSSTGVVF
1





MDVW









MS21_p33w162
GLSLSTGGMC
IDWDDDK
CARGTLAYCGGDCYSLRPWYF
QTITTY
AAS
CQQSFSTLYTF
1





DLW









MS21_p33w175
GFTFSRYG
ISHDGRDK
CAKIDLATTIGGAPMDVW
NIGSKS
YDN
CQVWDSSGDHSYLVF
1





MS21_p33w183
GGSVSSSIYY
VYHSGST
CARLTGEYDFWSGSEYYFDRW
QNILYGSNNKNY
WAS
CQQYYSGPPTF
1





MS21_p33w20
GGPISSSNW
IYHSGST
CARGRGLRLEDLASFDSW
NIGSKN
RDT
CQVWDSSTVIF
1





MS21_p33w37
GGSISSSTYY
GYYSGSN
CARHPYDGSGFYVDQW
SSNIGSNF
RND
CAAWDDSLNVVVF
1





MS21_p33w69
GYRFTSHW
IYPADSDV
CARLPGWGGWSPRADFW
QGIGNY
GAS
CQQLNTYTLTF
1





MS21_p33w93
GFTFSSFA
ISYHGRNT
CAKGRGGDGTSVFYFDYW
QGIGNL
DVS
CQHYANLPLTF
1





MS28_p10w109
GDSMSGYH
IYYSGGT
CARLRRGYSRPKYYYYGMDVW
QSLLHSFGDNY
LGS
CMQALQTPPYTF
14





MS28_p10w111
GFSLSTPEMR
IDWDDDT
CARMVRGVAARPRTYYFDYW
NIGSKS
DDS
CQVWDISSDPLGIF
13





MS28_p10w135
GGSFTDYT
IRHGGST
CARRASFRTGFYENYSFYYYL
ETIDNY
AAS
CQQSYSLPYTF
3





DVW









MS28_p10w136
GYSITGSYY
VYHSGST
CARDLFQGYFGATYQEIDYW
TSNIETNY
RDN
CAAWDDSLSGRVF
14





MS28_p10w164
GFSLSNARLG
IFSDDEE
CARTVVRLPDYW
QSILYSSNNKNF
WAS
CHQYYSSPQSF
1





MS28_p10w17
GDSVSSTDHS
VNYNGFT
CARGTSGEQFGDYW
EDVITE
GAS
CLQDINNPWTF
2





MS28_p10w2
GYTFTSYH
INPSGGST
CARDPLFWSDDYSLGYYYYMD
SSNIGNNY
DNN
CGTWDSSLSDVVF
1





VW









MS28_p10w44
GGSIDISGYY
VHHSGSA
CARAHRRTAQIFDSW
ISNIGAGYD
GDN
CQSYDTSLSGPDVVF
7





MS28_p10w69
GYIFGTYW
IYPGDSET
CARTDCSRTSCSSLDPW
QSISNW
KAS
CQQYNSFPLTF
2





MS28_p1w10
GYTFTSYH
INPSGGST
CARDPLFWSDDYSLGYYYYMD
SSNIGNNY
DNN
CGTWDSSLSDVIF
1





VW









MS28_p1w14
GGSVSAYY
ITHSGSP
CARVLINYYYMDVW
QSVSSSY
GVS
CQQYGSSPMYTF
5





MS28_p1w17
GSSISNYY
ISDSGTT
CARDRGGISSTWYRNYYYYGL
QSIGNW
QAS
CQQYNNYSPLTF
1





DVW









MS28_p1w20
GDSITTYY
TYNSGST
CARDKEHTYGRTFDYW
NSDVGAYNY
DVN
CCSYAGGDVVF
1





MS28_p1w35
GGTFSSYA
IIPIFGTA
CARGTIFGVVIRGSGWFDPW
QSLLHGFGANY
LGS
CMQALQTPPYTF
1





MS28_p1w43
GDSVNSRRYY
VYSSGST
CARDVGVKGHDFWSGQDHWFF
QSINSW
KAS
CQQYDSYPWTF
1





DLW









MS28_p1w55
GFTFISVW
TNTDGSIT
CVRDREALDWFDFW
PASLSSSP
null
CAAWDDSLNGYVF
1





MS28_p1w57
GGTFSRYT
IIPIFGTA
CGRVSSDRESQRFGGLFDYW
QSVSSTY
GAS
CQQYGSSSYTF
1





MS28_p1w8
RFTFSNYA
ISYDESNE
CARSKGTSSGYDFIFDIW
QTILYSSNNKNY
WAS
CQQYYSTPLTF
2





MS28_p1w92
GGSVSAYS
ITHSGSP
CARVLINYYYMDVW
QSVSSSY
GVS
CQQYGSSPMYTF
1





MS28_p5w109
GGSFTDYT
IRHGGST
CARRASFRTGFYENYSFYYYL
ETIDNY
AAS
CQQSYSLPHTF
1





DVW









MS28_p5w114
GYSFTSYW
IDPSDSYT
CARLGVATILDPWALWGHWYF
QTISTY
AAS
WQQSYITPRTF
1





DLW









MS28_p5w129
GFSFDDYT
ITWDGGIT
CTKGGPSTVMFASWHSDLW
YFGTKS
DDS
CQVWDSSSDHVVF
1





MS28_p5w13
GFTFTTYW
IKQDGSEK
CARTWIQLWPFDYW
QSVLYSSNNKNY
WAS
CQQYYSTPFTF
1





MS28_p5w163
GFIFSSSV
IRGNGDYT
CAKSLPTSRYYFDYW
TSDVGGYDY
DIS
CSSYSGSSTDVVF
1





MS28_p5w171
GFTFSSYA
ISGSGYST
CAKSYSTVVTPNDYW
SSDVGNYNL
EVN
CCSFTSSATWVF
1





MS28_p5w178
GCDVSAYG
ISPGDSTT
CAKIRQEIISPGLPQPPGLRA
QSVLYSSNNKNY
WAS
CQQHYGNPRTF
1





FDVW









MS28_p5w193
GDSMSGYH
IYYSGGT
CARLRRGYSRTKYYYYGMDVW
QSLLHSFGDNY
LGS
CMQALQTPPYTF
1





MS28_p5w51
GFSLSTPELR
IDWDDDT
CARMVRGVAARPRTYYFDYW
QGISSY
AAS
CQQYYSYPRTF
1





MS30_p104w10
GFSLRSSGVG
IYWDDDR
CARTWLWKDYFDYW
QSISRY
GAN
CQQCRDSVLTF
2





MS30_p104w112
GYNFAEFW
IYPGDSET
CARRGGWGRGSYYFDYW
QSVSSNY
GAS
CQQYGSSFTF
5





MS30_p104w114
GGSISSSGYS
IHYTGNT
CARGDGWMQLADW
TSNIGDNF
DSN
CGAWDGSLSAGVF
20





MS30_p104w145
SGSA
IRSKANSY
CTRHVEMATIYSGNDYW
QSLVYSDGNTY
KVS
CMQGTHWPFTF
1




AT










MS30_p104w163
GYTFNNSA
ISVANGNT
CARGQDSDYPYTVFYSNDPEF
ILANKY
KDS
CYSGAGNTRMF
3





W









MS30_p104w176
GYTFSTYG
ISGYNGRR
CARAGETDYEFWSGYRYGFDV
SSDVGGHDF
EVT
CSSYAGSNTVVF
1





W









MS30_p104w20
GFSLRSSGVG
IYWDDDR
CARTWVWKDYFDYW
QSISRY
GAN
CQQCRDSVLTF
1





MS30_p104w21
GFTFSSYW
INHDGSST
CVRDRGYDSSGLWNKMFDYW
SSDIGAGYD
SNT
CQSQDSTLSDVGVVF
1





MS30_p104w30
GFTFNTYA
VSFDGTKK
CARDRRSFGGADVLPRDAFDV
RSVFYSSNNKNY
WAS
CQQYYTTYSF
4





W









MS30_p104w35
GHTFTNHA
INAGKGNR
CARDTGGWKERDSFDIW
ERINTNT
GAS
CQQYGSSFIF
1





MS30_p61w115
GFPFSNFA
IRGSGSNT
CAKTNFGDYYHYGMDVW
QGISNY
AAS
CQQFYSYPLFTF
1





MS30_p61w118
GYNFAKYW
IFPDDSDT
CARRPSPSYHYVSGGYSGDVF
HSISSY
DAS
CQHRSNWPPMWTF
7





DIW









MS30_p61w122
GFTFRIFA
VSGSGDDT
CAKDQWLGRFDLW
SSDVGGYNY
DVT
CCSYGDTYARNVF
4





MS30_p61w129
GFSLTSSGVG
IYWDDDR
CARTWLWKDYFDYW
QSISRY
GAN
CQQCRDSVLTF
2





MS30_p61w135
GFKCRDYG
ISYEGRTE
CARDVLGILTGQFDPW
QSVVHSDGNTY
KVS
CTQATQFPFTF
1





MS30_p61w145
GASVSSNTVG
TYYRSKWH
CARTQWVGSSLLFDYW
QSISNW
KAS
CQQYDSPPLTF
1




N










MS30_p61w167
GYTFTSFD
MNPNSGNI
CARVRGGRYFDYW
QSLLHSHGYNY
LGS
CMQALQTPWTF
1





MS30_p61w174
GFTFSRYW
IDQDGSEK
CARTGYSSNSLDYW
SSNIGYNS
DNN
CGTWDSSLSVGVF
1





MS30_p61w175
GDSISSGGYY
IYSSGGT
CARGSSSAYLRHGRLGPMDVW
SGSVSTTHY
NTD
CVLYMGSGILVF
1





MS30_p61w176
GGSVSSSSHY
MYYKGTT
CARLRIASLPGVAYYGMDVW
SSNIGAAYP
ANN
CQSFDSSLSAEVF
1





MS30_p61w178
GFSLSSPTMG
SYSNDEK
CARTEASYGWGSFDSW
RNDVCGYNY
EVS
CGSYADFKNVVF
1





MS30_p61w180
GFIFSSYA
ISYDGSSK
CASVWELLSVTGTPDYW
SSDVGGYNY
YVT
FSSYTTSSTLVF
1





MS30_p61w20
GGSFNGYS
INHSGDT
CATSMTSFYGFDVW
QSILSSSYNKNY
WAS
CQQYYSNPLTF
1





MS30_p61w25
NYG
ISGYNGRR
CARVGETDYEFWSGYRYGFDV
SSDVGGHDF
EVT
CSSYAGSNTVVF
3





W









MS30_p61w48
GGSFSGYY
IDHSGTS
CAKQGGNSLIQGGYYFDSW
QSISSW
DAS
CQQYNNYPWTF
1





MS30_p61w89
DVSVSSGAYY
VDYRGST
CARYDPPYSFDDW
QGISSY
AAS
CQQLNSYPYTF
1





MS30_p67w109
GGSFSGYY
INHSGNT
CATTDDFWSGYFEGLHW
QSLLHSNGYTY
LGS
CMQALQTPLTF
1





MS30_p67w115
RFSLSTTGVN
IYWDGDK
CAHSGGYGSGLTW
SSDVGGYDY
DVN
CSSYTSNSTYVF
1





MS30_p67w123
GGSISSDDYY
IYYSGST
CARSRNHHSYDGINDYYYYGM
ESVSTSY
DAS
CQQRSSWPPPF
1





DVW









MS30_p67w127
GDSVRNNNLY
VYGTGNT
CVGAPAKPNVDWLSPFDYW
HSLGSV
LAS
CQQHNSWPLTF
1





MS30_p67w129
GFAFGSYS
ISSHGTDE
CARDSVPYVGVVTRGVYFDIW
QSVATY
DAS
CQQRSSWPPPF
3





MS30_p67w130
GFTFSSYG
IWFDGSNK
CARIRDIGGIDYW
GGSLASNY
ENT
CQSYDTGNPWVF
1





MS30_p67w143
SFSTYG
ISYDGGKT
CARDSVPYVGIVTRGIYLDSW
QSVSTY
DAS
CQQRSNWPPPF
1





MS30_p67w145
GFSLSTTGVN
IYWDGDK
CAHSGGYGSGLTW
QRISRY
AAS
CQQSYGHPPTF
4





MS30_p67w163
GITFNPYA
ISASGGST
CVRGRLGYCSGASCEKNWFDP
SNNVGSYA
RDS
CSTWDYSLSALSS
1





W









MS30_p67w167
GYTFTTYY
INPSGGRT
CARGRTAFYMDVW
QSVATY
DAS
CQQRSSWPPPF
1





MS30_p67w169
GFTFSTYA
IVGSANT
CAKGWATFRVDITNDAFDVW
QSLLHSDGRTY
AVS
CMHTIQLPYTF
1





MS30_p67w20
GITVRSYA
ISASGGST
CVRRRLGYCSGASCEKNWFDP
SGSVSTSYY
STN
CVLYMGSGISVF
1





W









MS30_p67w39
GYTFTDYL
IHPENGNT
CARALSPSGSGWNLAHW
LGISNY
AAS
CQKYNSFPLTF
1





MS30_p67w48
GCTFRSSA
ISYDGSTQ
CARASSTGGDHIAAVRLGDYW
QSVSSN
GAS
CQQYNDWPRTF
1





MS30_p67w51
GFTFSSYG
ISFDGSNK
CAKDHLPHYYISSGYFDHW
QDIRGW
AAS
CQQGNSFPRTF
4





MS30_p67w8
GFTFSNYW
IKVDGSEE
CARVRGWYDYFDCW
QSLLHSNGHHY
LAS
CMQALQTRTF
1





MS30_p67w89
GITFNTYA
ISASGGST
CVRGRLGYCSGASCEKNWFDP
SGSVSTSYY
STN
CVLYMGSGISVF
1





W









MS30_p67w92
GYRFTNYD
MSPDSGNT
CARGGDWFDLW
RSDVGGYNY
EVT
CSSYAGTNIHVLF
1





MS30_p67w93
GFTFSNYA
IVGSANT
CAKGWATFRVDITNDAFDVW
QSISNY
AAS
CQQSYITPVTF
2





MS30_p70w115
GGSISSDY
IYNSGTT
CARGGPHYGDYGALWDYW
QSIKSY
AAS
CQQSYNTPWTF
1





MS30_p70w127
GGTFSDYG
IIPMFHTL
CARAPLRSRSNWELLLKRVDF
QSISSNF
DAS
CQHYGSSPPFTF
2





LYLDVW









MS30_p70w130
GGSFSGDY
INRSGST
CARGLAAMAPYGLDVW
QVINSY
AAS
CQQLNSYPFTF
1





MS30_p70w136
GYSFTGYY
INPNSGGT
CARDLAPAAISGYYHYGMDVW
SSDVGGYNY
YVT
CSSYTTSSTLVF
2





MS30_p70w171
GVSISSNKY
IYHSGSL
CASYCTGLSCYIDSW
ALPKQY
KDS
CQSADSSGSYVVF
1





MS30_p70w175
GDSISSGGYY
IYSSGST
CARGSSSAYLRHGRLGPMDVW
QSVLNRSNNKNY
WAS
CQQYYSPPLTF
2





MS30_p70w177
GFTFRSYA
VSDDGSII
CARATTRNGSSFPHFDYW
QSIKSY
AAS
CQQSYNTPWTF
1





MS30_p70w21
GVSISSNKY
IYHSGSL
CASYCTGLSCYIDSW
QDISHY
AAS
CQQYHTYPLTF
1





MS30_p70w48
GGSISSGAYY
IYYTGST
CARAPISARYFDLW
QSISSW
DAS
CQQFYSYPLFTF
1





MS30_p70w69
GFTVSSNY
IYSGGST
CARARDYYHSSGYDYW
SFNIGNNY
DNN
CGTWDSSLSAWVF
1





MS30_p70w81
GFTLRRYG
ISHDGTTT
CAKDLYGYDSSGVYISIDLW
SSDVGGFNY
DVG
CSSYTTSSAVLF
1





MS30_p73w10
GFTFSSHD
ISGSGGTI
CAKRRVGTYPAHDYW
QSVTSHY
GAS
CQQCGSSFCTF
1





MS30_p73w108
GLIVSNNY
ISAGGDT
CARGWFQLPRDWFDPW
QSVSNY
DAS
CQQRSNWPLTF
2





MS30_p73w111
VESFSDYY
INGRGDS
CARGLNWNFFSWYFDLW
QSISSF
SAS
CQQSYITPVTF
2





MS30_p73w126
GYNFAKYW
IFPDDSDT
CARRPSPSYHYGSGGYSGDVF
HSISSY
DAS
CQHRSNWPPMWTF
5





DIW









MS30_p73w136
GYIFTNYW
IDPSDSYA
CARRGQGVLSSSDIW
QGTRNY
GVF
CQQYNIHPWTF
2





MS30_p73w15
GGTFNSFS
IVPMIDKT
CARLTVVVTAMSHYYINGMDV
QSISSSF
ATS
CQQYFGLPPITF
2





W









MS30_p73w158
GGSISSDDYY
IYYSGST
CARSRNHHSYDGINDYYYYGM
ESVSTSY
GAS
CQQYGRSPITF
3





DVW









MS30_p73w174
GFTFSGSW
IKPDGSAR
CARGYLW
QSISSW
DAS
CQQYNYYF
2





MS30_p73w22
GDSISSAGYY
ISYGGSA
CARDNDYGDLLDYW
QSISRY
TAS
CQQSYSSPRSF
1





MS30_p73w30
YTFSSYG
ISGYNGRR
CARAGETDYEFWSGYRYGFDV
SSDVGGHDF
EVT
CSSYAGSNTVVF
1





W









MS30_p73w51
GYIFTNYW
IDPSDSYA
CARRGQDLLSSSDIW
QGTRNY
GVF
CQQYNIHPWTF
2





MS30_p73w57
GGSISSSNW
IYDSGST
CARLYGLGSSDDLW
ALPKQY
KDS
CQSADSSGTYWVF
1





MS30_p73w62
GGALSTYA
IIPILVTP
CARGSTDTNTGFFDYW
QSVHSNY
DAS
CQQYGDSISF
1





MS30_p73w82
GYTFSSYG
ISGYNDRR
CARAGETDYEFWSGYRYGFDV
SSDVGGHDF
EVT
CSSYAGSNTVVF
1





W









MS30_p75w111
GVSITSANW
IYRSGST
CVRDLHTIFESEDQW
QSVFYSPNNQNY
WAS
CQQYYTTPLTF
1





MS30_p75w113
GFTFSSYA
IDGSGGST
CAKRYGDGAFDIW
QSISSW
DAS
CQQYNSYPITF
1





MS30_p75w158
GFTFSNAW
IKSKSAGG
CTTDQGIADRPSIGYW
QSVSSN
GAS
CQQYNNWPLTF
1




TT










MS30_p75w163

ISASGGST
CVRGRLGYCSGASCEKNWFDP
SGSVSTSYY
STN
CVLYMGSGISVF
1





W









MS30_p75w171
FSLSDFGEG
IYWDDDK
CAHRMRSGIRFFDYW
QGISYY
DAS
CQQRSEWPPLTF
1





MS30_p75w183
YNFTTYW
VDPSDSYT
CARRRLSGYSLDAFSLW
QKVGSN
DAV
CQQYSGWPPEGTF
1





MS30_p75w25
VLTFPTFG
VSVSGDST
CAKRYYYESSGYYYEPGDAFD
QSVSSN
GAS
CQQYNNWPRTF
1





IW









MS30_p75w35
GGSFSGYY
INHSGST
CARGRGLLEWLFHYYFDYW
QSISYY
AAP
CQQSYNTPRTF
1





MS30_p75w59
GFTFSSHT
ITSSGAYK
CARDALTTIFGVTANTYAMDV
NSNVAGIY
RTN
CAAWDDNLSGQVF
2





W









MS30_p75w89
GFSLNNARMG
IFSKDEK
CAREMSATGGYWFFDIW
QSISTY
AAS
CQQCYSSPRSF
1





MS30_p80w107
GGSVTSGGYF
IYDSGST
CARAGFKGEYPEFIQLW
SSNVGSHT
NNN
CGAWDDSLNGPVF
1





MS30_p80w174
GFTFSSYW
INSDGSST
CARVLPSGSLAADYW
SSDVGSYNF
EVS
CCSYVGSSLYVF
1





MS30_p80w18
NGSIISTVYH
IYFTGNS
CARQAQETSGWTRDWYFDLW
ALPKKY
EDS
CYSTDSSSNQRVF
1





MS30_p80w180
GFALSSSA
IVVGSSNT
CAAEEYQRAHAGYW
QSLVHSDGNTY
RIS
CMQATQLRTF
1





MS30_p80w2
GVSVNSADSN
IHYSGNV
CARGRGEYEGFDVW
QSVLYSPNNRNH
WAS
CQQYYSSPFTF
1





MS30_p80w20
GYTLTELS
FDPKDRET
CAAEYLAPRTGTFDYW
QAISRA
DAS
CQHFDSYAQTF
1





MS30_p80w48
YGSIRSHSYF
IYVTETT
CARHRGNGPAGITTGMDVW
RSNIGTNT
SDD
CAAWDDNLNGLWAF
1





MS30_p80w62
GYTFTSYG
ISAYNGNT
CARDSAFSSGSLFNGVFDIW
QSVSSSY
GTS
CQQYGSSPWTF
1





MS30_p87w100
GYSFTTYA
INTGSANT
CAREKATRRGNYVYYYGMDVW
QDISNY
DAA
CQQYDTLPYSF
1





MS30_p87w113
GFTFSSYA
ISFDGSNK
CARGEVVVTAALFEHW
RSNIGRTY
SNN
CAAWEDTLSAHVVL
1





MS30_p87w118
GYNFAKYW
LFPDDSDT
CARRPSPSYHYVSGGYSGDVF
HSISSY
DAS
CQHRSNWPPMWTF
1





*YL









MS30_p87w130
GFSLNNARVG
IFSNDVK
CARMHEYCSTTTCYTDFYYGM
QSLVHSDGNTY
MVS
CMQGTHWPVTF
1





DVW









MS30_p87w153
GFTFGTYT
ISYDGSNT
CARDSVPYVGVVTRGVYIDYW
QSVDSY
DAS
CQQRSNWPPPF
1





MS30_p87w158
GFSFNSYG
ISKDGGTK
CAKDYDFWGGPGETTDPW
SSDVGGYNY
EVS
CSSYAGSNNLVF
1





MS30_p87w174
GGSFTGYY
INHSP
CARGPPTYYHDNSGYYFFDYW
SSAIGDYNY
DVS
CSSYSSSSTLVFVF
1





MS30_p87w24
HTCA
VSFDGTKK
CARDRRSFRGADVLPRDAFDV
RSVFYSSNNKNY
WAS
CQQYYTTYSF
1





W









MS30_p87w25
LASFSDYY
INGRGDS
CARGRNLNFFSWYFDLW
QSISSF
SAS
CQQSYITPVTF
1





MS30_p87w3
GGTFSSYG
IIPMFGTT
CARARGYSWDDAFDIW
QSVSSSH
GAF
CQQYGSSVTF
1





MS30_p87w55
TFSNYW
INRDGDKK
CAVDQALRGMPSIEGWFDPW
QSLVHSDGNTY
MVS
CMQGTHWPVTF
1





MS30_p87w6
GGSVTSHF
VNYGGRA
CARGSGQYCTNGVCYPEVFDF
QRVTNTY
GAS
CQQYGSSPPISF
1





W









MS30_p87w8
SNSAS
TYYRSTWS
CAKVVKDDHGWYANPFDIW
QSISSN
AAS
CQHSFTLPYTF
1




T










MS30_p87w89
GFTFGDYA
LRSKAYGG
CTRQRLAAVGYFDNW
NIGSKS
YDN
CQVWDSSSDHLWY
1




TT










MS30_p92w100
GGSINTNSYY
IDYSGST
CAGHTPLYYFDASTYQEDYW
SSNIGSNT
SCN
CAACDDSLSGPFGC
1





MS30_p92w108
GFTFLPFS
INRDGTEE
CARAPIYFYDTPGPFDYW
QSVLHRSNHNNY
WAS
CQQYYSALITF
1





MS30_p92w129
GGSIISNYYY
IYFSGST
CARQAYCSSTACYKFDFW
QSLLHSNGYNY
LGS
CMQSLQTPVTF
1





MS30_p92w146
GGSFSRYY
INESGST
CANSGRITVTSVNW
QSISYY
AAS
CQQSYNTPRTF
1





MS30_p92w15
GYTLRSYG
ISAYTGKT
CARGYGDRPWFDTW
QNVLYSSNNKNY
WAS
CQQYYTAPPHTF
1





MS30_p92w162
GYSFTSYW
IDPSDSYT
CARKGGDTTGLLDHW
QSVRTN
GAA
CQQYNKWSTF
1





MS30_p92w35
GGSFSWYY
INESGST
CANSGRITVTSVNW
QSISYY
AAS
CQQSYNTPRTF
1





MS30_p92w47
GFTFSKNG
ISGSGGST
CAKDRGRDYYDFWSGTYYFDY
RSNIGSND
DTN
CGAWDSSLNAGYVF
1





W









MS30_p92w57
GGSLSESLYS
IFHSGAL
CAKYDFIDRYNPLGWFDPW
QSLSGNH
RAS
CQQYDFPPLTF
1





MS30_p92w89
GYSISSNNW
IHHSGST
CARGDTYYASGAFDYW
QSLLHSNGYNY
LGS
CMQALQSYTF
1





MS30_p94w100
GVSITTNSSY
IEYSGST
CAGHTPLYYFDASTYQEDYW
QDISNY
AAS
CQHLDSYPITF
1





MS30_p94w101
GFTFRTYA
ISFDGSNK
CARGEVVVTAALFEHW
RSNIGRTY
SNN
CAAWEDTLSAHVVL
1





MS30_p94w14
GFTFGSYS
ISSHGTDE
CARDSVPYVGVVTRGVYFDIW
QSVATY
DAS
CQQRSSWPPPF
2





MS30_p94w153
GYTFTSYG
ISAYNGNT
CARCLMHYYDSSGYYYHDAFD
QSMGSY
GAS
CQQSYSIPRTF
1





IW









MS30_p94w162
NYTFTCQG
VIGYNGKT
CARVAAVAGIDFW
QRVRTN
GAA
CQQYNKWSTF
1





MS30_p94w163
GYSFSDFG
ISAHNGYT
CARVVRGSGSFFYYYYGMDVW
QSISSNF
GAS
CQQYGTSPWGF
1





MS30_p94w164
GGSVSSDNYY
IYYSGNS
CARDRYDSRGFYGVDSW
KLGDKY
QDY
CQAWDSSTKVF
1





MS30_p94w167
GYSFATHW
IHPGDSET
CARRLSTPYYYNFVMDVW
SSHVGTYNL
EGS
CCSYARSRSDVVF
1





MS30_p94w180
GGSISRDNYY
IYYSGST
CARESDPYGSGSFTW
QSISRW
DAS
CQQYNSYSRTF
1





MS30_p94w21
GFTLSDHF
TRNKANRY
CARGGKGGAFDIW
QSISKY
AAS
CQQSYSTQWTF
1




TT










MS30_p94w5
GFPFSAFY
ISGRNIYT
CVRESLQGPAFEFDYW
QAINNN
AAS
CQQYKSSPPTF
1





MS30_p94w51
GYTFTSYG
ISAYNGNT
CARTPMVRGVVFDYW
QSISSW
DAS
CQQYNSYSTF
1





MS30_p94w7
GYTFSSYG
ISGYNGRR
CARAGETDYEFWSGYRYGFDV
SSDVGGHDF
EVT
CSSYAGSNTVVF
1





W









MS30_p94w93
GYSFTSYW
IYPGDSDT
CARPGGGYGYWYFDLW
SSDVGGYNY
DVS
CSSYTSSSTYVF
1





MS30_p99w101
GGTFSNYA
IIPLFGTA
CARGFQKRYSSSWYYVWFDPW
SLRSSY
GKN
CNSRDSSGNHLGELF
1





MS30_p99w123
GFTFRNFA
IRGSGSNT
CAKTNFGDYYHYGMDVW
QGISNY
AAS
CQQFYSYPLFTF
1





MS30_p99w13
GYSLRTHW
IYPGDSHT
CASGDYYDSSGYPEYW
SGDVGGSNY
DVT
CSSYTSSSTYVF
1





MS30_p99w143
GGTFSDYG
IIPMFHTS
CARAPLRSRSNWELLLKRVDF
QTISNNF
DAS
CQHYGSSPPFTF
1





LYLDLW









MS30_p99w145
GFTFSMFG
MSYDEIKE
CAKGWPGDSGADAFDVW
QSISNY
AAS
CQQSFSTPLTF
1





MS30_p99w162
NYTFTGYG
VIAYNGKT
CARVAAVAGIDFW
QDIINN
AAS
CLHNHNYPRTF
1





MS30_p99w167
GYSFSTYW
VYPGDSDT
CARHTGRNDYW
NRDVGGYNY
GVN
CGSFTSSGTLYVF
1





MS30_p99w171
GFTFSGSA
IRSKSNSY
CCGQNYDNYYYAMDVW
QGISRH
AAS
CQQLISYPPITF
1




TT










MS30_p99w21
VFTFSSYW
INHDGSST
CVRDRGYDSSGLWNKMFDYW
SSNIGSNY
SNN
CAAWDDSLSGWVF
1





MS30_p99w22
GFTFRSYW
MNQDGSEK
CARDKAYGDSHEYW
QSISRY
AAS
CQQSSTTPWTF
1





MS30_p99w44
GGSISSRNFF
VYYTGSA
CARHPYCTNGVCYPSRLYW
QSISSSY
AAS
CQQYGSSPPFTF
1





MS30_p99w48
GGSFSDSY
ISDSGSI
CARARTRQVVIPGSSSGFHPP
QSLMQTNEYKY
LGS
CMQTLQTPRTF
1





PYSFYYFGMDVW









MS30_p99w57
GFTFSNNV
ITSNGGST
CVRFCSGDSCYPRW
SSDVGAYNY
DVN
CCSFAGSYTWVF
1





MS30_p99w6
TFSSYE
ITTSGSTA
CARWKDAVMGTQSNWFDPW
QSVRSY
DAS
CQHRISWPLTF
1





MS30_p99w93
GGSFSGYY
INHSGST
CARGWVRIVGATHFDYW
SSDVGGYNY
DVS
CSSYTSSSTLVF
1





MS30_p99w97
GFPFSTYS
INNSSSYI
CAKERGDIVVEQVANGISISI
PSNIGDNF
SNN
CAAWDDSLNGPVF
1





TVWTS









MS31_p20w10
GGSISSFY
IYYSGSA
CARGAEGAFDIW
GSNIGAGFD
GNS
CQSYDSSLSAYVIF
19





MS31_p20w104
GFTFSRFS
ITSNGDSI
CARDLPDYIWGTYRPIHFDYW
QSLVHSDGNTY
KVS
CLQATHFPHLTF
4





MS31_p20w107
GFTFNSYE
IDTSGDSI
CARHGIHMLRGWFDLW
QSISSS
GAS
CQQYYDWPPLTF
1





MS31_p20w109
GYTFTDYY
INPNSGDT
CARAKSAPGHPFYYYYAMDVW
SSDVGDYNY
DFR
CCSYAGTFVVF
18





MS31_p20w112
AYKLTL*G
LYRGDYDA
YSTRRYWDLP*GLSP
QAISKY
DAS
CQHYDILPFF
1





MS31_p20w119
GYTFTDYF
INPNSGDT
CARAKSAPGHPFYYYYAMDVW
SSDVGDYNY
DFR
CCSYAGTFVVF
2





MS31_p20w136
GYTFTDYY
INPNSGDT
CARAKSAPGHPFYNYYAMDVW
SSDVGDYNY
DFR
CCSYAGTFVVF
4





MS31_p20w14
GFTFSTYA
ISYDGGNK
CAKDPYSNYGSIDYW
SADIGSHY
KNN
CAAWDDSVTSPNYVF
4





MS31_p20w158
GFTFSSYG
VSGSGDSA
CAKDRGYHYGGCDYW
TSDVGGYKY
DVT
CSAYTVSGVVF
1





MS31_p20w163
SNSAA
TYYRSKWY
CARVGYSYGLGGDAFDIW
QSISFY
AAS
CQQSYSTPVAF
1




N










MS31_p20w176
GGSFSGYY
INHSGST
CARNDFWSGYYPRGWFDPW
HSVTSNY
GAS
CQQYGNSPITF
1





MS31_p20w193
STRSRRCF
SWVFLVAL
CARGMHTAIITWDAFDFW
RLGDKF
QDN
CQAWDSRIGVF
1





MS31_p20w22
GFTFSTYG
ISGSGDSA
CAKDRGYHYGGCDYW
SSDVGGYKY
DVT
CSAYTVSGVVF
1





MS31_p20w3
GGPISRGGYY
IFYTGTT
CARVHGGDWGVYWYFDLW
SSDIGGYNY
DVS
CSSFTSGSTLGVF
2





MS31_p20w47
GYTFTHYG
ISGYNGDT
CAREMGDHWAGTHGLDVW
QSLNNY
ATS
CQQTLTAPRTF
4





MS31_p20w5
D
MNPNSGNT
CARGVKSSSWYVSGGKYGIHG
SSNIGSNT
SNN
CAAWDDGLNGLPF
1





MDVW









MS31_p20w57
GYTFTGYY
INPNSGDT
CASAGGSSGWPQHYFDYW
QSVSSSY
GAS
CQQYGSSPFTF
1





MS31_p20w59
GHTFTDYY
VNPNSGDT
CARAKSAPGHPFYYYYAMDVW
SSDVGDYNY
DFR
CCSYAGTFVVF
1





MS31_p20w6
AFSFSSYG
ISYDGSNK
CVKDRIVRITTGYYNYGMDVW
QSLLHSNGYTY
WGS
CMQALETPPTF
4





MS31_p20w62
GFTFSSYS
ISSSSSYI
CAVGEYYYDSSGYYECYFDYW
ALPKQY
KDS
CQSADSSGTYPRWVF
1





MS31_p20w69
GFTFSSYG
VSGSGDSA
CAKDRGYHYGGCDYW
SSDVGRYNF
EVT
CSSYAGSNTFNYVF
1





MS31_p25w112
GHTFTDYY
VNPNSGDT
CARAKSAPGHPFYYYYAMDVW
QSLLHSNGYTY
LVS
CMQALQTPPFTF
1





MS31_p25w143
GFTFSSFW
MNSEGSSI
CARGTYVSAASMDVW
STDIGEYTF
DVN
CNSYTSRRTVIF
1





MS31_p25w146
GGSISGYS
IYYSGAT
CARDRAGYDFDFDSW
ESVSRK
DAS
CQQYSNWPPLTF
1





MS31_p25w159
GYTFTDYY
INPNSGDT
CARAKSAPGHPFYYYYAMDVW
SSDVGDYNY
DFR
CQSYDSSLSAYVIF
1





MS31_p25w167
GSPFTGYY
INPNSGDT
CAILERLL**ESLLLLPTL
QSLLSSSNNKNY
WAS
CEQYYSSPLTF
1





MS31_p25w174
SGSVRSSHYY
IYYSGNT
CATGTYSTDAFEIW
GLPKQY
KT
CQAIDSRDNWVF
1





MS31_p25w177
GFILSTYA
FSATSGDS
CARDVAARWSGGFKRKPQYYY
SSDVGRYNF
EVT
CSSYAGSNTFNYVF
1





AMDVW









MS31_p25w180
GFIFSSYG
IGYDGSNK
CVRDRMGTNSGSYFFGYW
KLGDKY
QDT
CQAWDSSTGGVF
1





MS31_p25w183
GYTFTDYY
INPNSGDT
CARAKSAPGHPFYYYYAMDVW
SSDVGDYNY
DFR
CYSYAGTFVVF
1





MS31_p25w24
GFTFTDYA
ISSSGNYI
CVRGVGPTPRFDFW
ERINNY
RAS
CQQYDSFSITF
1





MS31_p25w5
GITFSRDG
IWFDGSTK
CARDIFQMSKTVTPNYYGMDV
SSNIGNNF
DNN
CGTWDSSLSAGVF
1





W









MS31_p25w59
GFMFSSYG
ILFDGSNQ
CAKGKSGSFIYGMDVW
SSNIGSNY
RNN
CAAWDDSLSGWVF
2





MS31_p25w69
GYTFTDYY
INPNSGDT
CARAKSAPGHPFYYYYAMDVW
SSDVGDNNY
DFR
CYSYAGTFVVF
1





MS31_p25w7
GGSTSSFY
IYYSGSA
CARGAEGAFDIW
GSNIGAGFD
GNS
CQSYDSSLSAYVIF
2





MS31_p25w81
GYTFTDNY
INPNSGGT
CARDAPIRDSNGYSTDYW
SSDVGDYNY
DFR
CSSYAGSNTFNYVF
1





MS31_p25w93
GYTFTGYY
INPNSGAT
CARGISAWHTAAFDVW
QSINSRY
AAS
CQQYGSSYTF
1





MS31_p25w97
GYTFTGFY
VNPNSGGT
CARDAPIRDSNGYSTDYW
KLGDKY
QDG
CQAWDSSTDVVF
1





MS31_p30w10
YG
ISTYNGNT
CAREGRIGHYNDRRRGVYHSY
QSVYTNY
EVS
CQQYGDSPPWTF
1





YGMDVW









MS31_p30w109
GGSTSSFY
IYYSGSA
CARGAEGAFDIW
GSNIGAGFD
GNN
CQSYDSSLSTYVIF
1





MS31_p30w115
GFMFSDYP
ISRSGGSA
CAKVHDGGNHVPFDYW
QSIGSS
YAS
CHQSSSLPWTF
2





MS31_p30w129
GGSISSFY
IYYSGIA
CARGAEGAFDIW
GSNIGAGFD
GNS
CQSYDSRLSAYVIF
1





MS31_p30w13
GYTFTDYY
INPNSGDT
CARAKSAPGHPFYYYYAMDVW
SSDVGDYNY
DFR
CCSYVGTFVVF
1





MS31_p30w130
GYTFTDYY
INPNSGDT
CARAKSAPGHPFYYYYTMDVW
SSDVGDYNY
DFR
CCSYAGTFVVF
1





MS31_p30w133
GYTFTGYY
INPNSGGT
CARAVGVTSYGMDVW
QSISSY
AAS
CQQSYSTPWTF
1





MS31_p30w143
GYTFTGYY
INPNSGDT
CAILERLL**ESLLLLPTL
QDISSY
DAS
CQQYDNLPITF
1





MS31_p30w145
TFSRFS
ITSNGDSI
CARDLPDYIWGTYRPIHFDYW
QSLVHSDGNTY
KVS
CLQATHFPHLTF
1





MS31_p30w159
GYTFTDFY
INPNSGDT
CARAKSAPGHPFYYYYAMDVW
SSDVDDYNY
DFR
CCSYAGTFVVF
1





MS31_p30w168
GFPFSNYA
ISGSGDST
CAVSFYDFWSGTDYW
QSVSSY
GAS
CQQRSNWPRTF
1





MS31_p30w18
VCSISSFY
IYYSGIA
CARGAEGAFDIW
GSNIGAGFD
GNS
CCSYAGTFVVF
1





MS31_p30w26
GGSISSFY
IYYSGSA
CARGAEGAFDIW
GSNIGAGFD
GNS
CCSYVGTFVVF
1





MS31_p30w37
GYTFTDYY
VNPNSGDT
CARAKSAPGHPFYYYYAMDVW
SSDVGDYNY
DFR
CCSYAGTFVVF
2





MS31_p30w46
GFTFSNYA
ISGSGDST
CAVSFYDFWSGTDYW
QSVSSY
GAS
CQQRSNWPRTF
1





MS31_p30w62
GDSISNYH
FYDTGST
CARERPGRADVAYEIW
GSNIGAGFD
GNS
CCSYVGTFVVF
1





MS31_p30w7
GYTFTDYY
INPNSGDT
CARAKSAPGHPFYFYYAMDVW
SSDVGDYNY
DFR
CCSYAGTFVVF
1





MS31_p30w94
GLTFYSFA
ISGSGGAT
CAQTLEAAFLHSFYRGYFDNW
QSVASNY
GAS
CQQYGSTPLTF
1





MS31_p35w10
GFTFSSYA
ISASGSST
CAKDEDSSVVTRPEIDYW
TGAVTSGHY
HTS
CLLSYSGARPVF
1





MS31_p35w101
GCLCTLHF
INPNSGDT
CARAKSAPGHPFYYYYAMDVW
SSDVGDYNY
DFR
CQSYDSSLSAYVIF
1





MS31_p35w108
GDSISRTTYY
IYYASST
CARVKYYQDSSGYSNWFDPW
QCINTF
AAS
CQQSYSTPLYTF
1





MS31_p35w115
GFTFSSYP
IGYDGRIT
CARDPLPGYGDYLDHW
QNILHSSNNKNY
WAS
CQQYYSTPLTF
1





MS31_p35w145
GFTFSNYA
IRDDGGST
CAKHWGASYYGSKNTYYYYGL
QSVLYSSNNKNY
WAS
CHQYYDTLQTF
1





DVW









MS31_p35w15
GFPFSAYS
ISSSSSYI
CARDYDYVWGSYPTTEYYFDY
SLRSYY
GKN
CNSRDSSGNHWVF
1





W









MS31_p35w158
GYTFAAYH
INPSGDTT
CASSTQIKDTGYSTGWYGYW
QSIGSS
YAS
CHQSSTFGGSWTF
1





MS31_p35w159
GSSITNGDSY
VYYSGST
CARRAVNRGHERPYDAFDIW
SSDVGSHDL
ALT
CCSYVGRDTLDWGF
1





MS31_p35w167
GYTFTGYY
INPNNGGT
CARAGGRDGYKVYFFDYW
QSISSY
AAS
CQQSYSSPWTI
1





MS31_p35w177
GYTFTDYY
INPNSGHT
CARAKSAPGHPFYYYYAMDVW
SSDVGDYNY
DFR
CCSYAGTFVVF
1





MS31_p35w22
GYTFTGYY
INPNSGGT
CARGYDVFDYW
SGSIASNY
EDN
CQSYDSSNHVVF
1





MS31_p35w3
GFTFSSYG
ISYDGSNK
CAKDKAAVVAGYGMDVW
SGSIASNY
EDN
CQSYDTSNPYWVF
1





MS31_p35w30
GFTFSTYG
ITGSGDSA
CAKDRGYHYGGCDYW
SSDVGVYNF
DVT
CSAYTVSGVVF
1





MS31_p35w5
GFIFNNYA
IWHDGFNK
CARDIVHYSMIDYYNYMDVW
QSVRSRY
GAS
CQQYVSSPPRITF
1





MS31_p35w62
GGSISSFY
IYYSGSA
CARGAEGAFDIW
GSNIGAGFD
ANS
CQSYDSSLSAYVIF
1





MS31_p35w81
GYTFTDYY
INPNSGDT
CARAKSAPGHPFYYYYAMDVW
SSDVDDYNY
DFR
CCSYAGTFVVF
1





MS31_p35w89
GYTFTDYY
INPNSGDT
CARAKSAPGHPFYYYYAMDVW
SRDVGDYNY
DFR
CQSYDSSLSAYVIF
1





MS37_p13w10
GGAISSSSFY
LYYSERT
CARDGSTDYGPDWFDPW
QSVRSN
GAS
CQQYTNWLVTF
18





MS37_p13w104
GFSFDDYA
IGWHSGTI
CAKSNAAGPYSGSGYAFYFDS
SDIDVSAYN
YDSDSNK
CMIWPSHEGVF
5





W









MS37_p13w109
GFPFSNYA
ISRIGDNT
CVSVASTIFGVVFPSIFESW
NIGSKS
DDS
CQVWDTSSEHYVF
10





MS37_p13w119
GGPMTRHY
IYTRGTT
CARDAYSSSFWFFDLW
QNIDIY
AAS
CQQSFSTPWTF
11





MS37_p13w130
GFTFSSYA
ISNSGGST
CAKASGDFVLGYFQHW
QSVLYSSNNKNY
WAS
CQQYYSTPLTF
1





MS37_p13w169
GGPMTRHY
FYTRVTT
CARDAYSSSFWFFDLW
QNIDIY
AAS
CQQSFSTPWTF
2





MS37_p13w183
GFPFTNYA
ISRIGDNT
CVSVSSTIFGVVFPSIFESW
NIGSKS
DDS
CQVWDTSSEHYVF
26





MS37_p13w2
GFTFNNYA
IRGSGSNT
CAKVTFGDYFQYGLDVW
QAISSY
VAS
CQQFYSFPVTF
5





MS37_p13w57
GFTFDNYA
VDGSGAST
CAKVGLDIRVVRGELLTWAFE
QTIDSRY
AAS
CQQYGSTTFTF
7





YW









MS37_p13w62
GFPFSNYA
ISRIGDNT
CVSVSSTIFGVVFPSIFESW
NIGSKS
DDS
CQVWDTSSEHYVF
3





MS37_p13w8
GFTFSNYA
ISGSGDTT
CVKGLNYVWGSYRGEYYSYGM
QSLLTSNGNNY
LGS
CMHALQTPGF
5





DVW









MS37_p13w94
GFPFTNYA
ISRIGDNI
CVSVSSTIFGVVFPSIFESW
NIGSKS
DDS
CQVWDTSSEHYVF
6





MS37_p14w10
GFPFTNSA
ISRFGDNT
CVSVSSTIFGVVFPSIFESW
NIGSKS
DDS
CQVWDTSSEHYVF
3





MS37_p14w106
GYSFTSYG
ISAYNGNT
CARGTKYAWNVPPEDDYW
QGIRND
AAS
CLQHNTYPPFF
3





MS37_p14w108
GGSFSGYY
INDSGGP
CARLIYGDFYYGMDVW
QGISSY
AAS
CQQFNSYPWTF
8





MS37_p14w111
GFSLGSSGVG
IYWNDVK
CAHERPYCTSMSCSDYYGMDV
SSNIGAGSD
GDN
CQSSDSSLSGSKVF
2





W









MS37_p14w126
GFTFDNYA
VDGSGVST
CAKVGLDIRVVRGELLTWAFE
QTIDSRY
AAS
CQQYGSTSFTF
5





YW









MS37_p14w146
GFSLGSSGVG
IYWNDVK
CAHERPYCTRMSCSDYYGMDV
SSNIGAGSD
GDN
CQSSDSSLSGSKVF
7





W









MS37_p14w158
GFSLGSSGVG
IYWNDVK
CAHERPYCTRMTCSDYYGMDV
SSNIGAGSD
GDN
CQSSDSSLSGSKVF
2





W









MS37_p14w162
YNFRTYW
MYPGDSDT
CARQADAYSWDNRALYDVW
QSVSSN
GAS
CQQYNNWPLLTF
7





MS37_p14w17
GFPFTDYA
ISRIGDNT
CVSVSTTIFGVVFPSIFESW
NIGSKS
DDS
CQVWDTSSEHFVF
11





MS37_p14w172
GFSLGSSGVG
IYWNDVK
CAHERPYCTRMTCSDYYGMDV
QSVGSD
DIS
CQQYNNWPPWTF
1





W









MS37_p14w175
GGSFSGYY
INDSGST
CARGGSGGSGIYYNGPLWRYY
QSISRW
KAS
CQQYSSYPRTF
1





YGMDVW









MS37_p14w18
GFPFTNYA
ISRIGDNT
CVSVSSTIFGVVFPSIFESW
NIGSKS
DDT
CQVWDTSSDHYVF
3





MS37_p14w183
GESFRGYY
IDHSGST
CARWDGGYRHGSDTYVYYGLD
QSVGSD
DIS
CQQYNNWPPWTF
1





VW









MS37_p14w3
GFPFTNYA
ISRIGDNT
CVSVSSAIFGVVFPSIFESW
NIGSKG
DDS
CQVWDTSSEHYVF
1





MS37_p14w36
GCTFGNYA
ISGSGETT
CVKGLNYVWGSYRGEYYSYGM
QSLLTSNGNNY
LGS
CMHALQTPGF
1





HVW









MS37_p14w46
DGSFNTNY
VNHSGST
CASRDYYDYTWPVDFW
QSVGSD
DIS
CQQYNNWPPWTF
1





MS37_p14w55
DGSFNTNY
VNHSGST
CASRDYYDYTWPVDFW
QPITTN
ATS
CQQSHSALMYSF
1





MS37_p14w6
GFPLGRSGVG
IYWNDVK
CAHERPYCTSMSCSDYYGMDV
QGISSY
AAS
CQQFNSYPWTF
1





W









MS37_p14w62
GYSFTAYW
IDPSDSFT
CATSITPSYYDTVWGTFVPTS
QSVSSN
GAS
CQQYNNWPSPWTF
5





MDVW









MS37_p14w8
GEPLTGDY
IDHYGRT
CARGRGDYRTRGVTSYFDRW
QDIEKY
DAS
CQQYEDVPITF
18





MS37_p14w94
TFSTYS
ISTTGSTI
CARDPGESSSWYEGVWYFDLW
QGISSNF
DAS
CQQYVTSPTF
1





MS37_p15w104
GFPFTNYA
ISRIGDNA
CVSVSTTIFGVVFPSIFESW
NIGSKS
DDS
CQVWDTSSEHYVF
1





MS37_p15w108
GFSLGSSGVG
IYWNDVK
CAHERAYCTRMSCSDYYGMDV
SSNIGASSD
GDN
CQSSDSSLSGSKVF
1





W









MS37_p15w118
GFPFTNYA
ISPIGDNT
CVSVSSTIFGVVFPSIFESW
NIGSKS
DDS
CQVWDTSSEHYVF
8





MS37_p15w119
GESFRGYY
IDHSGST
CARWDGGYRHGSDTYFYYGLD
QSVGSD
HIS
CQQYNNWPPWTF
1





VW









MS37_p15w126
GFTFSNYA
ISGSGETT
CVKGLNYVWGSYRGEYYSYGM
QSLLTSNGNNY
LGS
CMHALQTPGF
5





HVW









MS37_p15w178
GFTFSSYA
ISGSGGST
CAKGDGYYCSGGSCYSFPDFD
QGIRND
AAS
CLQHNSYPPYTF
1





YW









MS37_p15w20
GFPFTNYA
ISRFGDNT
CVSVSSTIFGVVFPSIFESW
NIGSKS
DDS
CQVWDTSSEHYVF
2





MS37_p15w30
GGSITSHY
VHYSGST
CGGDSSGWHYFDSW
QSVSRN
GAS
CQQYDNWPLAF
4





MS37_p15w47
GFPFTNYA
ISRIGDNT
CVSVSTTIFGVVFPSIFESW
NIGSKS
DDS
CQVWDTSSEHYVF
3





MS37_p15w94
GFTFDIYW
INQDGSQK
CAKDSGLYDYAPTMGFDSW
SSDIGAYNY
DVT
CSSYTITSTRVF
2





MS37_p16w10
GFPFTNYA
ISRIGDNT
CVSVSSTIFGVVFPSIFESW
NIGSKS
DDS
CQVWDTSSEHFVF
1





MS37_p16w114
GFSLGSSGVG
IYWNDFK
CAHERPFCTRMSCSDYYGMDV
SSNIGAGSD
GDN
CQSSDSSLSGSKVF
2





W









MS37_p16w119
GFTFDNYA
VDGSGAST
CAKVGLDIRVVRGELLTWAFE
QTIDSRY
AAS
CQQYGSTSFTF
8





YW









MS37_p16w130
YG
ISAYNGNT
CARSQPDVLTGYYLNYWYFDL
QSISNY
DAS
CQQRSNWPLTF
1





W









MS37_p16w153
TFTVSDFY
IYTGGNT
CARVNNYYFVFDIW
QSVDSRY
GTF
CQQYSYSHTF
1





MS37_p16w159
GYTFTGFY
INPNSGGT
CARGYPGFDYW
NIGSKS
DDS
CQVWDSSSDHPVL
2





MS37_p16w163
VFSLGSSGVG
IYWNDFK
CAHERPFCTRMSCSDYYGMDV
NIGSKS
DDS
CQVWDTSSEHYVF
1





W









MS37_p16w164
GGSISNYY
VYFSGTT
CARMGPEPEYSDSSGTWDYFD
QSISNF
TAS
CQQYSNWPYTF
1





LW









MS37_p16w167
GYTFTSYG
ISAYNANT
CARGLALDTAMSGVDYW
QSLVYSDGNTY
KVS
CMQGTHWRF
2





MS37_p16w176
GFPFTNYA
ISRIGDNT
CVSVSTTILGVVFPSIFESW
NIGSKS
DDS
CQVWDTSSEHFVF
2





MS37_p16w183
GFTFSIYG
ISYDGANI
CAKGRSVMTTEVPDSW
QGISGW
AAS
CQQYSTYPLTF
3





MS37_p16w47
GFPFTNYA
ISRIGDNT
CVSVSTTIFGVVFPSIFESW
NIGSKN
DDS
CQVWDTSSEHYVF
1





MS37_p16w51
GGPISTSSYY
IYSSGTT
CARPLGTLTHLEDTSSHWFDP
QSISNY
DAS
CQQRSNWPLTF
1





W









MS37_p17w101
GDSVSSNSVA
TYYRSKWY
CARGPIDAFDIW
SSNIGSTF
RNN
CAAWDDSLSGWVF
1




N










MS37_p17w114
GFPFSNYA
ISLIGDKT
CVSVSSTIFGVVFPSIFESW
NIGSKS
DDS
CQVWDTSSEHYVF
3





MS37_p17w130
AFPLGRRGVG
IYWNDVK
CAHERPYCTRMSCSDYYGMDV
STNIGAGYD
DNK
CQSYDRSLNGWVL
1





W









MS37_p17w25
GYTFTTFG
ITVYNGNT
CARAWHPDSWFDPW
SSNIGAGYD
GNT
CQSFDSSVSDSAVF
2





MS37_p17w6
GFPFSNYA
ISLIGDNT
CVSVSSTIFGVVFPSIFESW
NIGSKS
DDS
CQVWDTSSEHYVF
6





MS37_p17w82
GGAISSSSFY
LYYSERT
CARDAYSSSFWFFDLW
QSVRSN
GAS
CQQYTNWLVTF
1





MS37_p17w97
GYTFTGHY
INPNSGDT
CARPDDGNSVFDYW
SGHSRYT
LYSDGSH
CQTWGTGTQGWVF
2





MS37_p18w101
GASFSGYY
INHREKT
CARALYDDDIWSGPFYYYGMD
QSISDW
KAS
CQQYNNYPYTF
2





VW









MS37_p18w106
GYTFNSYG
ISAYNGNT
CARGSGYSAVAEFDPW
QGIRND
TAS
CLQHNSYPPTF
1





MS37_p18w111
GDSVSSNSAA
TYYRSKWYN
CASGPTDAFDIW
SSNIGSNY
RNN
CAAWDDSLSGWVF
2





MS37_p18w119
GESFRGYY
IDHSGST
CARWDGGYRHGSDTYFYYGLD
QSVGSD
DIS
CQQYNNWPPWTF
4





VW









MS37_p18w169
GYSFTGYY
INPHTGGK
CARGARNYGPGYNWFDPW
QSISSW
QAS
CQQYNSDSVRF
4





MS37_p18w183
GFSLRTSGAG
IYWNDDK
CAHSPRRYDFRSGYYSLPDVW
SGHNSYA
LNSDGSH
CQTWGTGGGVF
1





MS37_p18w20
GFSLGSSGVG
IYWNDVK
CAHERPYCTRMSCSDYYGMDV
SSNIGSNY
RNN
CAAWDDSLSGWVF
1





W









MS37_p18w26
GGSFSGYY
INHNENT
CARDFHRPEHHCSIGSCYGFD
QSISTY
AAS
CQHSYNAPYTF
2





VW









MS37_p18w35
GFSLTDPTMG
IFSSGEK
CARIRPDQWLVTTSRPSYYFD
ALPKKY
EDN
CYSTDSSGNHGVF
1





FW









MS37_p18w44
GFPFTDYA
ISRIGDNT
CVSVSTTIFGVVFPSIFESW
NIGSKS
DDT
CQVWDTSSEHFVF
1





MS37_p18w59
GYSFTSYG
ISGDNGNT
CARGTKYGWNVPPEDDYW
QGIRND
AAS
CLQHNTYPPFF
1





MS37_p18w62
GYTFTAYY
INPYSGGT
CAAGPAPASSTWPSNWFDPW
QSVNNY
DAS
CQQRSNWPPFTWTF
2





MS37_p18w8
GGPFSGYY
INQSGST
CASSYIFIGPPARAMGDPQWR
QSVGSNF
GAS
CQQCGTSPWTF
1





HRRGRFDFW









MS37_p19w112
GIIFTNYW
INIDGSDT
CVRVYYDFWSAPRGMDVW
QSLLHRNGYNY
LSS
CMQALQTPPTF
1





MS37_p19w119
GGSFSGYY
ISHSGNT
CARGTLTAEYYFDYW
QRVSDY
DTS
CQQRSGWPTF
9





MS37_p19w143
GYSFTSYD
MNPNSGNT
CARGGGYSGYGGDYFDYW
NIGSKN
RDT
CQVWDSSTGVF
1





MS37_p19w15
GLPFTNYA
ISRIGDNT
CVSVSSTIFGVVFPSIFESW
NIGSKS
DDS
CQVWDTSSEHYVF
2





MS37_p19w35
GFSLGSSGVG
IYWNDVK
CAHERPYCTRMSCSDYYGMDV
SSNIGAGSD
GDN
CQSSDSSLSDSKVF
1





W









MS37_p19w37
GGTFSRYG
IIPTVGNT
CARDPIRPSSDDFWSGREDRY
SPNIGNNY
RNN
CAAWDDSLSAWVF
1





YYFYYGMDVW









MS37_p20w130
GFTFSSHW
INTDGSRT
CARDAKEARVFDFW
QTISVY
TAS
CQQTYSTPWTF
1





MS37_p20w145
GGSFSGYY
INDSGGP
CARLIHGDLYYGMDVW
QGISSY
AAS
CQQFNSYPWTF
1





MS37_p20w159
GYTFTAYY
INPYSGGT
CAAGPAPASSTWPSNWFDPW
QRVSDY
DTS
CQQRSGWPTF
1





MS37_p20w69
GFNFKTHA
ISGSGSRT
CARRRYDILTGYLHFYAMDVW
QSISNW
KAS
CQQYNSYWTF
1





MS37_p20w81
GYSFSNYW
IYPGDSDT
CARHRDYYYYGMDVW
SGSIASNY
EDN
CQSYDSSTLTVF
1





MS37_p21w13
GFSLSNAAMG
IFSNDGK
CARRMAAPGQGRVYFDYW
SSNIGNNY
DNN
CGTWDSSLSAWVF
1





MS37_p21w130
GYTFTGHY
INPNSGGT
CARPDDGNSVFDYW
SGHSRYT
LYSDGSH
CQTWGTGIQGWVF
1





MS37_p21w136
GFTFSSYA
ITGSGDST
CAKDRRFDYYDSSGYYYHDYW
QSISTY
AAS
CQQSYSTPRLTF
1





MS37_p21w14
GFSFNNHG
ISSDGNDK
CATPATPRPLVYTSGWYYLDY
SSDVGGYNY
GVN
CSSYAGSNSLVF
1





W









MS37_p21w2
GFPFTDYA
ISRIGDNT
CVSVSTSIFGVVFPSIFESW
NIGSKS
DDS
CQVWDSSSEHFVF
1





MS37_p21w26
GFSLRNAAMG
IFSNDGK
CARRMAAPGQGRVYFDYW
NIGSKS
DDS
CQVWDTGSEHYVF
1





MS37_p21w47
GFRFSNFG
IAYDGTNR
CAKSSRWYDSYYYGMDVW
TSDVGTYNR
EVS
CSSYTRSSTLVF
2





MS37_p21w6
GYTFTGFY
INPNSGGT
CARTYDFWSGYFTPPGYW
SSNIGSNY
RNN
CAAWDDSLSGPVF
1





MS37_p21w82
GFSFSSYA
VSFDGSSQ
CAKRGPQSGSYFEYW
SSDVGNYDF
EVT
CCSYAGPPTLYVF
1





MS37_p21w92
GFAFTNYA
ISRVGDNT
CVSVSSTIFGVVFPSIFESW
NIGSKS
DDS
CQVWDTGSEHYVF
3





MS37_p21w97
GFTFSDYF
ISGTNGYT
CVCQRFSTYYFDSW
SSNIGANYD
GNS
CQSYDSSLSIYVF
1





MS37_p22w100
GFTFSSYA
ISGSGGST
CAKDSYCSSTTCYMDYW
QSVSSY
DAS
CQHRSNWPPWTF
1





MS37_p22w106
GFSLSDPTMG
IFSNDEK
CARSGFCSSTSCLNLDFW
QDIGVW
EAS
CQQYNTYPWTF
1





MS37_p22w112
GGSFRGYY
INNWGNT
CVRGGYWQFDFW
TGAVTSGYY
TTN
CLLYHGDAQLWVF
2





MS37_p22w153
GDSVSSNSAA
TYYRSKWY
CARGATRAYYFDYW
QTISSW
KAS
CQQYNSYSVTF
1




N










MS37_p22w158
GFSLSDPTMG
IFSNDEK
CARSGFCSSTSCLNLDFW
SLRTYY
GKN
CNSRDSSANHVVF
1





MS37_p22w172
GFSLGSSGVG
IYWNDVK
CAHERPYCTRMRCSDYYGMDV
SSNIGAGSD
GDN
CQSSDSSLSGSKVF
1





W









MS37_p22w2
GFPFTNYA
ISRIGDNT
CVSVSSTIFGVVFPSIFESW
NIGSKS
DDS
CQVWDTGSEHYVF
2





MS37_p22w44
GYSFTGYY
INPHTGGK
CARGARNYGPGYNWFDPW
QSLVYSDGNTY
KVS
CMQGTHWRF
1





MS37_p22w81
GFSLNDPTVG
IFSNDEK
CARSGFCFSTHCLNLDFW
QNIGVW
EAS
CHQYNTYPWTF
1





MS37_p23w10
GYTFTGYY
INLNSGGT
CARLGLRGGFYPYYFDYW
SGSVSTSYY
NTN
CVLYMSSGFWVF
1





MS37_p23w126
GFTFSSYG
ISYDGSNK
CAKDLGAVAGGGVYFYYGMDV
SSDVGSYNL
EGS
CCSYAGSSWVF
1





W









MS37_p23w143
GFPFTNYA
ISRFGDNT
CVSVSSTIFGVVFPSIFESW
NIGSKS
DDS
CQVWDTSSEHFVF
1





MS37_p23w145
GFTFSTYS
ISPSGTNI
CARSGPFPGRVVRWGYFDYW
QSVSGH
DAS
CQQRSDWPPTF
2





MS37_p23w158
GYSFTSFW
IYPGDSDT
CARLETVTTNFDFW
SSDVGSYNL
EGS
CCSYAGSSWVF
1





MS37_p23w163
GGPMTRHY
IYTRGTT
CARDAYSSSFWFFDLW
QSVRSN
GAS
CQQYNNWPSPWTF
1





MS37_p23w167
GYTFTGHY
INPNSGDT
CARPDDGNSVFDSW
SGHSRYT
LYSDGSH
CQTWGTGTQGWVF
1





MS37_p23w168
GLTFSKAW
IKSKSDGG
CTTGGQLRRPYW
KLGDKY
QDT
CQAWDVNTEVF
1




TT










MS37_p23w17
GFPFSDYA
ISRIGDNT
CVSVSTTIFGVIFPSIFESW
NIGSKS
DDS
CQVWDTSSEHYVF
3





MS37_p23w171
GYSFTSFW
IYPGDSDT
CARLETVTTNFDFW
SGSIASNY
EDN
CQSYDSSNLLF
1





MS37_p23w175
GYTFTNYF
VNPRRGTA
CAKGGTYHDYWSGYSDAFDMW
TGTVTIGHY
DAN
CLLSYSGADWVF
1





MS37_p23w176
GFPFTDYA
ISRIGDNT
CVSVSTTIFGVVFPSIFESW
NIGSKS
DDS
CQVWDTGSEHYVF
1





MS37_p23w21
GYTFTSYG
ISAYNGNT
CARGIRGWNDGTDYW
QGIRND
AAS
CLQHNSYPPTF
1





MS37_p23w24
GGSFSGYY
INHSGST
CARANRRYSYGYNYHYYGMDV
ALPKKY
EDS
CYSTDSSGNPRGF
1





W









MS37_p23w3
GLTVSSTH
IHSDGGT
CVNFGAITSRPW
TGAVTTGHY
DTT
CSLYYSGGVCVF
1





MS37_p23w30
GGSFSGYY
INQSGRT
CVHTERNSYDSSGYRGRFDFW
QSVSSSY
GTS
CQQYGTSPWTF
2





MS37_p23w58
GGSISDSSYY
IYYSGST
CARMSIDENFDYW
ALPKQY
KDS
CQSVDNSGIYVF
1





MS37_p23w82
GGSFSGYY
INHNENT
CARDFHRPDHHCSIGSCYGFD
QSISTY
AAS
CQHSYIAPYTF
1





VW









MS37_p23w83
DFSLGSSGVG
IYWNDVK
CAHERPYCTRMSCSDYYGMDV
SSNIGAGSD
GDN
CQSSDSSLSGSKVF
2





W









MS37_p23w92
GFPFDTYS
ISSSSRYI
CAKDWGPDLWFGDGSRQFYGM
QSISNNY
GAS
CQQYGSSPRTF
1





DAW









MS37_p24w10
GFAFRDYG
LHAYTDTI
CARDKIGSFCIDHW
DSDVAAYNH
GVT
CTSFTTFTTWVF
1





MS37_p24w108
GFTFSKYA
ISGSGDTT
CVKGLNYVWGIYRGEYYSYGM
QSLLTSNGNNY
LGS
CMHALQTPGF
1





DVW









MS37_p24w127
GFSLGSSGVG
IYWNDVK
CAHERSYCTRMSCSDYYGMDV
SSNIGAGSD
GDN
CQSSDSSLSGSKVF
1





W









MS37_p24w130
GESFRGYS
IDHSGST
CARWDGGYRHGSDTYVYYGLD
QSVGSD
DIS
CQQYNNWPPWTF
1





VW









MS37_p24w145
GGSISSYY
ISYSGST
CARQKSYYDRGGYWLEGDRSL
QIVSFSF
GAS
CQQYGRSPSTF
2





AFEYW









MS37_p24w169
GFPFSNYA
ISLIGDKT
CVSVSSTIFGVVFPSIFESW
NIGSKS
DDS
GQVWDTSSEHYVF
1





MS37_p24w17
GYTFTSYG
ISAYNGNT
CASQQSYNWNDVALDCW
QGIRND
AAS
CLQHNSYPPTF
2





MS37_p24w178
GFPFTNYA
ISRFGDNT
CVSVSSTIFGVVFPSIFESW
KIGSKS
DDS
CQVWDSSSEHYVF
2





MS37_p24w18
GGSFSGYY
INHSGST
CARANRRYSYGYNYHYYGMDV
ALPKKS
EGS
CYSTDSSGNPCGF
1





W









MS37_p24w180
GYTFTDCY
INPNSGGT
CVREGLDYSGSFQFDFW
QSVNNY
DAS
CHQRSGWLTF
1





MS37_p24w20
GFPFTNSA
ISRFGDNT
CVSVSSTIFGVVFPSIFESW
NIVSKS
DDS
CQVWDTSSEHFVF
1





MS37_p24w26
EYTFIDYY
INPKSGDT
CARDSRYCVGGTCKYLKRW
QSVDYNY
GVS
CQQYFGSSLTF
1





MS37_p24w39
TGSITTDS
ISGSGRT
CARDRHDWYFDLW
RSDIGGYNS
DVS
CVSYSSGPSPWVF
1





MS37_p24w48
GDSISSFH
APNNGDT
CVVYYYGRGGQGFW
QNINTW
MAS
CQQFRTFIWTF
1





MS37_p24w6
GYTFTSYG
ISAYNGNT
CASQQSYNWNDVALDCW
QAISSY
VAS
CQQFYSFPVTF
1





MS37_p24w81
GYTFTAYY
INPNSGDT
CARDSYYDYVWGSYRLLYGMD
QSLVYSDGSTY
KVS
CMQGTHWPPLF
1





VW









MS37_p25w10
GFPFTDYA
ISRIGDNT
CVSVSTTIFGVVFPSIFESW
NIGSKS
DDT
CQVWDTSSEHYVF
1





MS37_p25w100
GYTFSSYG
ISAYSGNT
CARGSGYSAVAEFDPW
QGIRND
TAS
CLQHNSYPPTF
1





MS37_p25w114
GFPFTDYA
ISRIGDNT
CVSVSTTIFGVVFPSIFESW
NIGSKS
DDS
CQVWDTSSEHYVF
1





MS37_p25w129
GFSVSTNY
IYSGGTT
CAKDLAHSDFWSGYLDTW
QSLGKY
DAS
CQQRSNWPLYSF
1





MS37_p25w14
GFTFSNYG
ISYDGSNK
CAKLWGGYGDYIGRGEGFDFW
QSISSW
KAS
CQQYDSYLLTF
2





MS37_p25w167
GFSLGSSGVG
IYWNDFK
CAHERPFCTRMRCSDYYGMDV
SSNIGAGSD
GDN
CQSSDSSLSGSKVF
1





W









MS37_p25w177
GFTFSSYS
ISSSSSTI
CARAHTHCTNGVCSDAFDIW
QGIRND
AAS
CLQDYSYPLTF
1





MS37_p25w35
GYTFTSYG
ISAYNGNT
CARGSGYSAVAEFDPW
QGIRND
TAS
CLQHNSYPPTF
1





MS37_p25w48
GFPFSNYA
ISLIGDNT
CVSVSSTIFGVVFPSIFESW
NIGSKS
DDS
CQVWDSSSDHPVVF
1





MS37_p25w57
GFPFSDYA
ISRIGDNT
CVSVSTTIFGVIFPSIFESW
NIGSKS
DDS
CQVWDSSSDHPVVF
1





MS37_p25w59
GFSFSSHG
ISSSSSTI
CARRLWITFGGVIANDYW
QSVGSN
GAS
CQQYNNWPPITF
1





MS37_p25w8
GVSITRSTDY
TYHIGST
CARHLSSGWLKLGFDYW
QGIRTW
AAS
CQQTNSFPITF
1





MS37_p25w81
GFPFSNYA
ISRFGDNT
CVSVASTIFGVVFPSIFESW
NIGSKS
DDS
CQVWDSSSDHPVVF
1





MS37_p25w83
GFTVSSNY
IYSGGST
CAREKAVAGKGGYYYYGMDVW
QRVSSSY
GAS
CQQYGGSPWTF
1





MS37_p25w89
GGSFSGYY
INDSGGP
CARLIYGDLYYGMDVW
QGISSY
SAS
CQQFNSYPWTF
1





MS39_p24w100
GGSINSYF
IYYSGST
CAASPPRGDIVIVPVAAFDFW
QSVSSD
GAS
CQQYNNWPRTF
1





MS39_p24w106
GDSIASSSW
IYHSGHT
CARVKEDIVVGPAGKDYYYYM
QDINNY
DAS
CQQYDDLPLFTF
1





DVW









MS39_p24w107
GGSISASSYY
IYYDGST
CARPTPGLYDSWTGFPNGDTC
QSVSNSY
GAS
CQQYGSSPLTF
1





CYMDVW









MS39_p24w108
GGSISNYY
IRYSGST
CARTSEYDFWSGYYGFGPW
QSLLHSNGYNY
MGS
CMQAVQTPLTF
4





MS39_p24w109
GFTFTDYW
VKEDGSEQ
CARRRQISSSIYFDYW
QGIRND
AIS
CLQDYAYPYTF
16





MS39_p24w111
GITFTNAW
IMSENDGG
CTTQKTPYSNPVYFDYW
QGIANF
AAS
CQQANSFPPRAAYTF
4




AI










MS39_p24w112
GFSLSTSGMR
IDWNDDK
CARSGFCSGGSCYANWFDSW
QFVSSNY
DTS
CQQYATSPLTF
1





MS39_p24w114
AFTFSNYW
IREDGSER
CARVVGLDYGDYGDRRLGEYY
QSIDTW
KAS
CQQYNSYLLTF
3





FDYW









MS39_p24w115
GSTFRNSW
IKEDGNEK
CARDGTMTIFGVVYLGWFDTW
QNILYNSNNKNY
WAS
CQQYYKTPRTF
1





MS39_p24w122
GFTFSNYA
ISGTGGST
CAKDATDFRSGPRPGFYYYYM
QEISNY
DAS
CQKYNSALRTF
4





DVW









MS39_p24w130
GGSISRSNYF
IYYSGGT
CARHFDGGYYYMDFW
QDISSY
AAS
CQHYHGYPITF
1





MS39_p24w136
GGSISSNNYY
VFYSGST
CARAQEWLELDGFDMW
QGIRND
GAS
CLQHNSYPYTF
19





MS39_p24w143
GGSISSYY
INYSGNT
CARVTSGYSTMWKWGMGEPAT
QSVSSY
DAS
CQHRSNWPLALTF
1





YYYYMDVW









MS39_p24w144
GGSISASNYY
IFYSGST
AFVRYSRGHYPPHYYFMDVW
QSINNW
EAS
CQQYSSYFFTF
2





MS39_p24w145
GGSISSSSQY
IYESGST
CARLKGNRGYYYMDVW
KIGSKN
RDT
CQVWDSSTEEVF
1





MS39_p24w146
GFTFSHYW
IKQDGSET
CAHRIAGAYY
ESLLHDNGFNY
LGS
CMQALLTYTF
5





MS39_p24w163
GDSISTYY
ISYSGST
CAREGYSHGYSYYYYYMDVW
QSISNY
AAS
CQQSYNIPRTF
1





MS39_p2w174
GFTFSNYW
INQDGSEK
CTRDPPYFDNW
QSLVYSDGRTY
KIS
CMQGSHWPVTF
2





MS39_p24w168
GDSISSKNW
IYHSGSV
CARREVGYRLLYGDW
QSVISSY
GTS
CQQYGNSPYTF
2





MS39_p24w169
GFSFSTYW
IKGDGSEA
CARHPGSGYYYGWNFDLW
QSVLFNSNNKHY
WAS
CQQYQSIPLTF
6





MS39_p24w17
GDSIASSSW
IYHSGHT
CARVKEDIVVGPAGKDYYYYM
QSITTY
AAS
CQQRNTF
6





DVW









MS39_p24w172
GDSVSSSNW
IYHSGST
CARGGGYYDSSILIDYW
QGISSF
GAS
CQQLYSYPRTF
1





MS39_p24w174
GFTFSNHW
IKRDGSEK
CVRVSLHWARLDYW
QDINNY
DAS
CQQYDDLPLFTF
7





MS39_p24w177
GDSVSGGNYY
VYYTGST
CARESYISLDSW
SSNITNNY
KNN
CATWDDSLS
1





MS39_p24w178
GESFSDYY
VNRIGNT
CARGRKIVVTVDHWERPNGFD
RSVSSTY
GAS
CQQYGRSPFTF
1





IW









MS39_p24w180
GGSISSSSYY
IYYSGST
CARQYLGSSSSGDYW
QSVSSY
DAS
CQQRSNWPPSTTF
1





MS39_p24w187
GGSISGSSYY
IYYLGST
CARHEVADMVIVAAALDVW
QSISSW
KAS
CQQYNSYGLTF
1





MS39_p24w2
GFTLSSYE
IDSSSDTM
CARDPYLELQWRAFDIW
QGIGDW
AAS
CQQGHTFPPLTF
5





MS39_p24w24
GFSLNTAGMC
VDWDGDT
CVRTTVPAAIEGAVRFYYYYL
QDIANY
DGS
CQQYDNVPLTF
1





DVW









MS39_p24w25
DGSISSSSYF
ISYSGST
CARQHHGDHYYYYMDVW
QSVSSN
GAS
CQQYNNWLYTF
1





MS39_p24w26
GFIFSNYA
ISVGGTST
CARANKYVGSWYFFDYW
ESVGTN
DAS
CQQYDSWPPWAF
1





MS39_p24w30
GGSVRSGDYY
VYYSGNT
CARDRIAVTATPGLLDYW
QSISSW
KAS
CQQYNSYPWTF
1





MS39_p24w44
LNTDGMR
IDWDDDK
CARNNYYDNSGYSYWYFDLW
QSINNY
ATF
CQQSYTNPFTF
1





MS39_p24w48
GGSISSNSYF
MYYSGST
CARHKEVAIATDYYYYMDVW
QSIGTY
AAS
CQQSYSTLSTF
1





MS39_p24w5
GYTFTFYY
INPSDGST
CARDSGITFGGLPLNYFDHW
QSISSTN
SIS
CQQYGNSLRTF
4





MS39_p24w6
GFSLSTSGVS
IYWDDDK
CAHTNSPINGYYFFDYW
QSVSSN
GAS
CQQYDNWPLYTF
1





MS39_p24w69
GGSIGSYY
IYHVGST
CARGPPLTTPTSWSFFFDIW
QIISSW
KAS
CQHYNSYPWTF
1





MS39_p24w8
GGSISNYY
IYYTGTT
CAREGSGGYYNWFDPW
QSVLYSSNNMNY
WAS
CQQYYSAPYTF
4





MS39_p24w81
GGSFSGYY
INHSGST
CARPGNYLRRWNSGTYYHFDF
QSVLYSSDNKNY
WAS
CQQYYTTPTF
1





W









MS39_p24w82
SGSFSDHT
IDYSGST
CARGSRIGGVLAWGPTYNYCY
QSVGSN
DAS
CQQRTNWPPRTLTF
1





MDVW









MS39_p2w100
GFSFSSYW
IKQDGSEK
CARYYTRTIYDHDAFDIW
QGISSY
AAS
CQQLNSYPLTF
1





MS39_p2w101
GDSISSSNW
IYHSGST
CARSPYDILTGYTDPSDIW
QFVSRY
DAS
CHQRSNWPPLTF
1





MS39_p2w109
GGSFSGYY
INPDGST
CAREPGHYYMDVW
QSVLYSSNNKNY
WAS
CQQYYSTPRTF
1





MS39_p2w114
GGSISSNNYY
VFYSGST
CARAQEWLELDGFDMW
KIGSKN
RDT
CQVWDSSTEEVF
1





MS39_p2w119
GFSLNTERMR
IDWDNHK
CARMGLGWDYFDSW
QSVSNN
GAS
CQQYNDWPRYTF
3





MS39_p2w122
GDSISSSNYY
IHYSGST
CARRGGYYFIDYW
QSFSSY
AAS
CQQSYSTLWTF
1





MS39_p2w127
GASISGSNW
IYHSEIT
CARDQVRGDFWSGSGDAFDVW
QSVLYSSNNKNY
WAS
CQQYHGSPRTF
1





MS39_p2w130
GVSISSSNW
MFLSGST
CARRTMFNYYFDYW
QSVSSY
DAS
CQQRHNWVTF
2





MS39_p2w144
GGSVNSINW
IYYSGST
CARDPGGHDYVWGSYYDW
QSLLYSDGYNH
LGS
CMQTLQTPRTF
1





MS39_p2w153
GDSISRSNW
IHHSGRT
CARDAGYCRGGSCYDYW
QSVSSN
DAS
CQQYDNWPPLTF
1





MS39_p2w159
GGSISSYY
IYHSGST
CAREHRDYYDSSGYYDRW
QSISSW
KAS
CQQYNSYSGTF
1





MS39_p2w162
GYTFISYY
INSSGGST
CARGGPTYYYGSGSQLYW
NIGSKS
DNS
CQVWDTIIDPYVVF
1





MS39_p2w169
GFTFSSYA
LSGSGGST
CAKAMRWELRSSDYW
SSDVGGYNY
EVS
CSSYTSSSTLGVF
1





MS39_p2w171
GGSISTYY
ISYNGNT
CARDVFTGWNHHVGLYNWFDP
QSVSSY
DAF
CQQRSNWPPTF
1





W









MS39_p2w176
GYKFTSYG
ISVYNGNT
CARDWYYDSRRDAFDIW
QGLVFSDGNTY
KVS
CMQGTHWPWTF
1





MS39_p2w177
EGTFNNYA
IIPIFDTT
CAGGLVTVSGVVIHAGRDWFD
QDISSS
AAS
CQQYYTYPPTF
1





PW









MS39_p2w178
GGSISSSSQY
VYETGST
CARLRGNRGYYYMDVW
KIGSKN
RDS
CHVWDSSTEEVF
1





MS39_p2w180
GFTFSSNW
INQDGSEK
CARPGYCIGGNCYGRVRLYFQ
QDISNY
GST
CQQYDNLPITF
1





SW









MS39_p2w184
GGSINSNNW
IYHDGTA
CARGDNSDRFQISYYFDYW
QSVLYSSNNQNY
WAS
CQQYYSIPNTF
1





MS39_p2w185
GFTFGQYA
ISSSDDNR
CAKDWGLFRGGDGYSYYFDYW
NIGSRS
DDT
CQLWDTFSDHFVF
1





MS39_p2w26
GFTFSSYA
ISYDGSNK
CARVHDHGDYGWFDPW
QSVSIY
DAS
CQQRRNWPPITF
1





MS39_p2w36
GFAFSTSW
IDQAGTVV
CARNRGYQQFDYW
SGDIGRYNY
DVT
CNSFGGLF
1





MS39_p2w47
GYNFNDYY
INPDGGGT
CARDEAGRTMSVPFFDYW
QNILYNSNNKNY
WAS
CQQYYTYPYTF
1





MS39_p2w48
GFSLSTSGLR
IDWDDDK
CARDYYFDSSGYRFDYW
QDISNY
DAS
CQQFDHLYTF
1





MS39_p2w62
GGSIVSYY
IYYSGST
CARGGGGFHDPSPNYSPDYW
QGIRND
AAS
CLQYNSYPPTF
3





MS39_p2w69
GFTLTNYA
ISGPTGST
CAKGRDPVENVVIFPFDCW
QDINMW
KAS
CQQYYSLHSF
1





MS39_p2w7
GYTFISYG
ISAYNGYT
CARDGLTYCGGECFFAYW
QSVSSSY
GAS
CQQYVSSPLTF
1





MS39_p2w89
GDTFSNYA
IIPIYDTV
CARDGWRYDGRGHYELNYYYM
QTVSSN
GAS
CQQYKNWPPTF
1





NVW









MS39_p3w100
GFSFSNYV
LSAGGGAT
CVKNQGIYGSGSYPADTFHIW
QNIFHSSNNKIY
WAS
CQQYFSTPFTF
1





MS39_p3w101
GGSISSSSYY
VYYIGNS
CARGGYYYYYMDVW
QSVNSDY
GAS
CQQYFSSPHTF
3





MS39_p3w118
GFSFSTPGMA
INWDDDE
CAHRGFYQPQYFDTSAYYYW
SSNIARHY
NNN
CAVWDDSLSGWVF
1





MS39_p3w119
GFSLTTPGLT
IFGDGET
CAHSHAIGDNYLSYFDFW
QSVLYDPNKKNY
WAS
CQQYYSGPITF
1





MS39_p3w126
GFTFSNYA
ISGGDHST
CAKGFGDYRYYYYMDVW
ESLVHSDGNTY
KIS
CMQAKQFPLTF
1





MS39_p3w127
GD
ISPFGTS
CAARPPFLGYRDSTICHVGSA
QSLLHFNGYSY
LGS
CMQVLQTPRTF
1





P









MS39_p3w144
GFTFTSYW
IKEDGNEK
CARDLTVFGVLDYYYMDVW
QSLLHSNAYNY
LTS
CMQALQTPHTF
2





MS39_p3w145
GFSLNTSGVG
IYWNDDE
CAHNGGYDFRSGYYWAHWFDP
QSLSSRY
GAS
CQQYDSSFTF
1





W









MS39_p3w163
HGSISTYH
IYYIGST
CARGPPTGEWSYYFDNW
QDVSSW
KAS
CQHYNSYPWTF
1





MS39_p3w17
GFTFSSYW
IKQDGSEK
CARDRWSGSFGGAPLDSW
QDVTNY
EAS
CQQYDILPPTF
1





MS39_p3w175
GDAVSSGSYY
VYHTGST
CARGVGLAGAGTSFDYW
QSVLYSSNNINY
WAS
CQQYYTTPATF
1





MS39_p3w184
GGSISSTNYY
VYHSGST
CARRDDFWSGYYDYW
RTINTY
AAS
CHQTYSPPQTF
1





MS39_p3w25
GGSVSSGTYW
IYYSGST
CARLGVGELSLLGFGAFDIW
QSVNSN
GAS
CQQYNTWPLAF
1





MS39_p3w3
GFTFSRYW
IKEDGSEK
CAREANFWSGYFDYW
QSIDTY
AAS
CQQSYSAPWTF
1





MS39_p3w30
GGSFTGYY
IHHRGRT
CARAEDSEIFGVVANTWFDPW
QSVINS
RAS
CQQYNNWPTF
1





MS39_p3w48
GDSISSSTYY
IFYTGNT
CASRRITIFGVGELIDWVDPW
SSNIARNY
NNN
CAVWDDSLSGWVF
1





MS39_p3w5
GFTFNDYW
IKQDGSEK
CARRRESGSSIYFDYW
RDIRND
AAS
CLQDYSYPYTF
1





MS39_p3w51
GDSVSSGTYW
IYYSGST
CARLGVGELSLLGFGTFDIW
QSVSSN
GAS
CQQYNTWPLAF
1





MS39_p3w8
GGSISSSSYY
IYNSGNT
CTRPPWAFWSEYYQMGDYYYM
QSITSN
GAS
CQQYNNWPFTF
1





DVW









MS39_p3w94
GASISSTDW
VSRSGTS
CAREPYDSWLGYIDVW
QSVLYSPNSKNY
WAS
CQQYFSSPYTF
1





MS39_p3w97
GFTFNTYE
ITSSGSTI
CARAAYLHFWSDYPRGWFDPW
QSLLHSNGKTY
EVS
CMQSTQLLGTF
1





MS9_p11w10
GFSLSNARMA
IFSNDEK
CARIRVGYNYGPDAFDIW
RGISSY
ATS
CQQLKSYPLTF
1





MS9_p11w100
GFTVRNSY
IYNNGNT
CARVEYGNSSGAFDIW
QSVNNN
DAF
CQQYNYWPIFTF
2





MS9_p11w109
GFSLSNTKMG
SFSNDEK
CARKSIAVAGRPFDYW
QSISSY
AAS
CQQSYSTPPWTF
1





MS9_p11w112
GFSLSNPRMG
IFSNDEK
CARIRVGYNYSPDAFDIW
RGISNY
AAY
CQQLNSYPLTF
1





MS9_p11w113
GGSISSSFYY
IYYSGST
CAREEAAASWLEYW
QSVTSN
GAS
CQQYNNWPPLVTF
1





MS9_p11w115
GFSFSNYW
IKEDGSQK
CARVQRAAIGYFQYW
QSISTF
AAS
CQQSYSTPSFTF
1





MS9_p11w118
GFSLSTGGVG
IYWSDDQ
CARDGTRLRFLEWSLGPTFDI
QSISRW
KAS
CQQYNSYSSTF
2





W









MS9_p11w13
GGSISSYDW
ISHSVST
CARYITMVRGVFIQGRGWFDS
QSIGTY
VAS
CQQNYIIRTF
2





W









MS9_p11w130
GGYITAYY
VHYTGST
CARDRYCSDNSCPQGRYHFYY
QSISSY
AAS
CQQAYSNSRTF
1





MDVW









MS9_p11w133
GFTVSTNY
LYTTGQT
CARVEYGRSSGAFDYW
QSVNSN
DTS
CQQYNYWPKFTF
1





MS9_p11w14
GFSLSTSGVG
IYWNDDK
CTHRRRYFDYW
QSVSSY
DAS
CQQRSNWPWTF
1





MS9_p11w143
GFTFSNYW
IKQDGGEK
CAKTHSMGGIQWRAQGFDYW
QDISNY
DAS
CQQYDNLPVTF
2





MS9_p11w144
GFTFSMYW
IKQDGSEK
CDRPSRPLLPRSAFDIW
QSVSSNY
GAS
CQQYSSSPPPLTF
1





MS9_p11w145
GGSISRDY
IYYIGST
CARQPFGGSGWFGWFDTW
QSIDNW
TAS
CQHYNSYPYIF
1





MS9_p11w159
NYW
INEDGSEE
CARHRRDFVVVTAGSDLSYNQ
QSINSDY
GAS
CQVYGTSPTFTF
1





YYYMDVW









MS9_p11w163
GGSISGYY
IYYSGST
CARSSHDFGDYEAEYFQHW
QSLSSF
GAS
CQQTYSIPWTF
1





MS9_p11w169
GDSISGYF
IYYSGIT
CARHVNMAVAGGNWFDPW
HSISSY
GAS
CQQTYSSPPTF
1





MS9_p11w175
GGSINTGHYY
IYNSGST
CARAHWRWFAAGPMDVW
QDVNSY
DAS
CQQYDTLPLTF
12





MS9_p11w176
GFSLSTSGVG
IYWNDDK
CAHSPPPNDFWSGYYLGGGGD
QSVSSD
GAS
CQQYDHWPTTF
1





WYFDLW









MS9_p11w20
RFMFSSYW
IKQDGSEK
CARDRAGFWSAYFDYW
QSISSN
GAF
CQEYNNWPPWTF
4





MS9_p11w21
GGSIRRSSYY
IYFSGST
CARDLRGYNYGLDSW
QSLEHNDGNTY
KVS
CMQGTQWPLYTF
1





MS9_p11w3
GGSISKSTYY
IYYSGNT
CARDSRAILNSGGLDSW
QSVNSN
GAS
CQHYNDWPLRDTF
2





MS9_p11w35
GASI
IYYSGAT
CAKGGNYYDTGSFLWGIRPL
QSISTS
AAS
CQQSYITPRTF
1





MS9_p11w37
GFTFSNYG
IWFDESNK
CAREGGYCNHGNCYGMAWFDS
SSDVGSYNL
EVN
CCSYTGRSSWVF
2





W









MS9_p11w47
GGSISSSSFF
INYSGTT
CARHWRYSISGSGNWFGPW
SSDVGGYPY
DVT
CCSYAGSSTFVF
1





MS9_p11w5
GFSLSTSGMC
IDWDDDK
CARISKMVYYGSESYYFDYW
QSITNY
GAS
CQQSYSIPWTF
1





MS9_p11w51
GFTFRSYA
ISGGGGSI
CARYPSGWRLNDAFDIW
QSLVHSDGNTY
KVS
CMQGTHWPPVYTF
1





MS9_p11w55
GFSLSNPRMG
IFSNDEK
CARTEVGYGVVIVKPFDIW
QSVSSSY
GAS
CHQYGSSPLTF
2





MS9_p11w69
GFSLSNARMG
IFSNDEK
CARTIDTSYYDFWSGSTTGWY
QSVLYSSNKQNY
WAS
CQQYFNSPVTF
1





FDLW









MS9_p11w7
GFSLSSSGLC
IDWNDDK
CARILVRGGFDYW
QGIGSW
AAS
CQQANSFPPWTF
1





MS9_p11w8
GGSISGYY
IDDSTYT
CGRHQYSWFDLW
QSIDRW
MAS
CQQYDTYPWTF
1





MS9_p11w81
GVSISSGRYY
IYYDGST
CARDGRGNSGYDWGYYFDYW
ETISNY
DVS
CQQSYGIPRTF
1





MS9_p12w106
GFSFTTSGVG
IYWNDEN
CAHAQRRGRNNWYGSSFDMW
QDISDF
GAS
CQQYDHFLTF
1





MS9_p12w108
GFSLSNARMG
IFSNDEK
CARIITPSFYDFWNGYLYYFD
QSFSNN
GVS
CQQYSNWPPTF
1





YW









MS9_p12w111
GGSVSNYY
IYTSGNT
CARRGSYTLWSGYPVFDSW
QSLLYSNGYNY
LGS
CMQAVQSPPTF
1





MS9_p12w112
GYSFTDYW
IYPGDSET
CARGQLERRHGLYYDILTGSR
KLGDKY
QDT
CQAWDSSTVVF
1





SLRPKHQNWIDPW









MS9_p12w113
GGSISSSGHY
IYYSGST
CAKPAMGSIRGWFDPW
QSVYSN
GAS
CQQYNNWPGTF
1





MS9_p12w114
GFSFRSYV
ISYDGRNK
CASAQWGCSSTSCYTLDSW
ILRSYY
GKN
CNSRDSNDNHLTVF
1





MS9_p12w115
GGSIGSSSDY
ISYGGVT
CASHLPYVYFYYYYMDVW
QSVSSY
DSS
CQQRLNWLTF
1





MS9_p12w122
GFSLSTSGMC
IDWDDDK
CARMVRAGYSYYMDVW
QSISSC
AAS
CQQANSFPQTF
1





MS9_p12w127
GGFISSSSSY
IYYSGTT
CASAPYYDFWSGYYGDGFDIW
QSLVHSDGKTY
KVS
CMQGTHWPLTF
1





MS9_p12w13
GFTFNSYA
ISGSGGDT
CAKLRGYTWNADLDYW
QGIRND
AAS
CLQHNSYPPTF
1





MS9_p12w130
GFSLSNARMG
IFSNDEK
CARTIDTSYYDFWSGSTTGWY
QSVLYSSNNKNY
WAS
CQQYFNSPVTF
1





FDLW









MS9_p12w133
GFSLSISGVG
IYWNDDK
CAHRPYNFWSAYYFDYW
QSLLHSDGYTY
EVS
CMQDAQDPPFTF
1





MS9_p12w135
GFTFNSYA
ISGSGGDT
CAKLRGYTWNADLDYW
SSNIGITT
SNN
CAAWDDRLNGPVF
1





MS9_p12w14
GGSITRYY
FYYSGNT
CARHLGVMYAFHIW
QDIGNY
DAS
CQQYDNFPPTF
2





MS9_p12w145
GGSISDTTYY
VISSGHT
CARAPYYNFWSGYWFDYW
QGITNW
GAS
CQQANSFLGTF
1





MS9_p14w183
GGSISSSDYY
VYYSANT
CGRVRGTVYGVLIKGRPYYYM
QTISKW
RAS
CQHYDNYWWTF
3





DVW









MS9_p12w153
GGSISSSSYY
IYYSGST
CARGDIDTGVDSW
QSLVYSDGNTY
KVS
CMQGTHWPPTF
1





MS9_p12w167
GGSITTNHYY
ISYSGST
CARETSVMEGFYYYYNMDVW
QSIGRKY
GAS
CQHYGSSPRYTF
1





MS9_p12w171
GFSLSNARMA
IVSNDEK
CARLLIGYQFLPYYFDNW
QGISNY
GAS
CQKYNNALLTF
1





MS9_p12w175
GFTFSNYW
IKQDGSEK
CARDVRWEGLPDIVVVPAATH
QSVLYSSNNKNY
WAS
CQQYYSTPRTF
1





EFHMDVW









MS9_p12w177
GGSISSSTYY
ICCGGST
CARAFTGHPDYDFWRWFDPW
QSVLYSSNNKNY
WAS
CQQYYSNPITF
2





MS9_p12w18
RGSISSSTDY
MFHSGAT
CARGRRGDFWTTSFREGSTRL
QGISNW
EAF
CQQANSFPLTF
1





EYFDYW









MS9_p12w180
FTFSSYW
INQDGSEK
CARDATSNYVHYYYYMDIW
QSVLYSSDNKNY
WAS
CQQYYSNPRTF
1





MS9_p12w183
GGSINSYY
IYNSGST
CARDVEILVNPGHWFDPW
QSISSY
AAS
CQQSYSSLPFTF
1





MS9_p12w20
GFSLSNTRMG
IFSTDEK
CARISNYDFWSGSYDAFDIW
HGIRND
AAS
CLQHNSYPPTF
1





MS9_p12w22
GFSLTTGGVG
TYWNDDE
CAHSGERCTGGRCYYFNDAFD
QSLLSRSNNKYF
WAS
CQQYYSTVTF
1





IW









MS9_p12w30
GGSINSGDHY
IYFSGTT
CARDMSGYYVDSW
QSILYRSNNKNY
WAS
CHQYYSVPRTF
3





MS9_p12w35
GGSISSGGYS
IYLSGRT
CARGLCSGTYCPYFDYW
QDINKY
DAS
CQHFHSLPYTF
1





MS9_p12w37
GGSISSSPYY
IYYSGST
CARPNDILTGFYAFDLW
QSISSN
GAS
CQRYNNWPPYTF
3





MS9_p12w44
GFTFSSYR
ISSSSSYI
CAREMTLSEMWRRSPQYYYYM
QSIGTH
AAS
CQQSYSFPHTF
7





DVW









MS9_p12w46

IKQDGSEK
CARDVRWEGLPDIVVVPAATR
QSVLYSSNNKNY
WAS
CQQYYTPPRTF
1





DYYMDVW









MS9_p12w48
GGSFSGSY
INHSGST
CARQNMPSRSLDSW
QSVLYSSNNENY
WAS
CQQYYTTPPTF
6





MS9_p12w5
GFTFSDHW
INQDGGEE
CARLVWRVSDYW
QSLVHSDGDTS
GVS
CMQTIHWPWTF
1





MS9_p12w51
GYTFTSYA
ISGSGDNT
CANGALRFLEWLYFDYW
QSVSSN
GAS
CQQYNNWPPWTF
1





MS9_p12w59
GFMFSNYC
IKHDGSEK
CARDLRPISFLGVDPNYYYLH
QSVRGSY
GAS
CQQYDSSPQTF
1





MDVW









MS9_p12w62
RYTFTKYF
INPYNDNT
CVRDPLGIDLRNITIFFVLL*
QSISSW
KAS
CQQYNSYLTF
1





LL









MS9_p12w92
GFSLSTSGMC
IDWDDHK
CARVRLSSSGWYVGFADYW
QSFSSY
DAS
CQQRSNWPLTF
1





MS9_p13w10
GFTFSSYA
ISDSGVNT
CAKDGTPGHFWSGYLDYW
QSISSW
KAS
CQQYNTYSRTF
2





MS9_p13w101
GDSMTGSLYY
IYYSGST
CARAVTRWGFGDRNTWFDPW
QSVSRN
GAF
CQQYNDWPGTF
1





MS9_p13w111
GFSFSSFW
INQDGSEK
CARGGEGGIWSGYNLFDYW
QGISDY
AAS
CLQHNTYPGTF
1





MS9_p13w112
GGSISNVY
IYNSAST
CAREATGESMLDYW
QYFSTS

CQQYYDYPLTF
2





MS9_p13w113
GFSFTSSW
IDPSDSST
CARLAIYCDGGGCYSTNYNWF
SSNIGSNT
RNS
CASWDDSVNGPSF
1





GPW









MS9_p13w114
GFTFSSYW
IKLDGSEK
CASLSYDFWSGYSPPFDYW
QSVSSRY
GAS
CLQYDPSPPWTF
2





MS9_p13w115
GFTFSSYQ
ISSSGTTT
CARTEVSGFGVETFDPW
QSISSY
ATT
CQQSFSTLKTF
1





MS9_p13w118
GDSISGYF
IYYSGIT
CARHVNMAVAGGNWFDPW
HSISSY
AAS
CQQTYSSPPTF
1





MS9_p13w119
GFTFGDYG
IGSSAYDG
CSRGDYDFWSGYRNLFDYW
SSDVGNYDS
TVN
CWSYTSSATCAIR
1




TT










MS9_p13w127
GFSLSTSGVG
IYWDDDK
CAHSSPAAMGGGMDVW
KLGDKY
QDS
CQAWDSSTAWVF
1





MS9_p13w143
GGSIGSFY
IYYSGSS
CARGTGWNSGCYWGDCFSPPF
QSVSSSY
DAS
CQQYGNSPPVTF
1





FDIW









MS9_p13w15
GGSINTGHYY
IYNSWST
CARAHWRWFAAGPMDVW
QSLEHNDGNTY
KVS
CMQGTQWPLYTF
1





MS9_p13w158
GGSISSYY
IYYSGST
CARGPYCSGTNCLGFDYW
QSLLHSDGKTY
EVS
CMQGKHLITF
1





MS9_p13w167
GGSIRGSSYY
IYFSGST
CARDLRGYSYGLDHW
QSLEHSDGNTY
KVS
CMQGTHWPLYTF
2





MS9_p13w168
GGALGSGNYY
ISYSGST
CARDDIVVVPAAISPTYNWFD
QGIRSW
AAS
CQQAHSFPRTF
1





PW









MS9_p13w171
GGSISSGSYY
IYFLGST
CASLTFDYSSPYYFDYW
QVISTW
AAS
CQQANSFSALTF
1





MS9_p13w178
GGSISNFY
IYNSATT
CAREATGESMLDYW
QYFSTS

CQQYYDYPLTF
1





MS9_p13w18
GFSLTTRGVG
IYWNDDR
CAHTSNHNRRGYYNGAFDYW
QDISNY
DAS
CQQSDHFLSF
1





MS9_p13w2
GFTFSSYA
ISGKGDRT
CARDRPDKYRAWGYQYFYGLD
QSVSSN
GAS
CQQYSNWPPGTF
1





VW









MS9_p13w26
GFMFSNYW
IKHDGSEK
CARDLRPISFLGVVPNYYYLH
QSVSGSY
GAS
CQQYESSPQTF
1





MDVW









MS9_p13w3
GGSISSHY
FYSSGNT
CARHLGVMYAFNIW
QDIGNY
DAS
CQQYDNYPPTF
1





MS9_p13w39
GVSISSNSYY
IYYSGST
CAIQKTVTVPFDYW
QDISKY
AAS
CQQYDIVPGAF
1





MS9_p13w44
GFTFSNYW
IKQDGSEN
CARDSSSWYYYYYYMDVW
QSVLYSSNNKNY
WAS
CQQYYTTPRTF
1





MS9_p13w5
GASISTSSFY
IHSSGSS
CARALDFDMWTPDYLHRSFDY
QSLRSSY
DAS
CQQYASSPLAF
1





W









MS9_p13w51
GFSLSTSGMC
IDWDDDK
CARIQEGAATVVGAFDIW
QDITNY
DAF
CQQYDNLPYTF
1





MS9_p13w55
GFSFYTRGVG
IYWDGDE
CARRYSAYDSRGHYHYYALDV
QSLLHSDGNTY
EVY
CLQSKQLLTF
1





W









MS9_p13w58
RRSISSYDW
ISHSVST
CARYITMVRGVFIQGRGWFDS
QSIGTY
VAS
CQQNYIIRTF
1





W









MS9_p13w7
GFSLSISGVG
IYWNDDK
CAHRPYNFWSAYYFDYW
QDISNY
AAS
CQQYNSYPPTF
2





MS9_p13w8
GFTFSSFW
IKQDGSEK
CARDSTLLWFGELEDYFDYW
EIISSY
AAS
CQQSYSTPRTF
1





MS9_p13w89
GFTFTNYD
TGTAGDA
CTRHLQ*GFLWSEDGHSATVV
QSINSDY
GAS
CQVYGTSPTFTF
1





TTTTTLWTS









MS9_p14w107
GGSISSGAFY
IYYSGTT
CAREGYYSSGSYYNVDAFDIW
QSIRTY
ASS
CQQSYNTPRTRTF
1





MS9_p14w111
GGSISSYF
IYYSGST
CARHEHCGSPNCYEVGLFDPW
QSIRSY
AAS
CQQSFSTPYTF
1





MS9_p14w115
GFMFSSYW

CARDLRPISFPGVVPKLLLPP
QSVSGSY
GAS
CQQYDSSPQTF
1





HGRL









MS9_p14w119
GDSIRSSGSY
IFYSGNT
CARVVSDGDFWSGYWAYW
QIIGSW
RAS
CQQYNSFPYTF
1





MS9_p14w122
EFTVSSNY
IYTGGQT
CARVEYGRSSGAFDVW
QSVNNN
DAS
CQQYNYWPKFTF
1





MS9_p14w126
GDSISSGDYY
MYYTGSA
CARGADYYGSGGLHW
QSIGGY
AAS
CQQSYSTPYTF
1





MS9_p14w129
GGSINNFY
ISYSGST
CARRAGEYLRLWTRTPQNYYY
EDIRNH
AAS
CLQDYNYPLTF
1





YYMDVW









MS9_p14w130
GFTFSTYT
ISSSSDYI
CATLGGGYVRNLYDYW
QSVNSY
DAS
CQQRSNWPLTF
1





MS9_p14w133
GFSLSTSGMC
IDWDDDK
CARMVREGYSYYMDVW
QSISSW
AAS
CQQANSFPQTF
1





MS9_p14w135
GDSVSSSSYY
LYYTGST
CARGHVVGWLRPFDSW
QGVSSN
GAS
CQHYNNWPPITF
2





MS9_p14w146
GFTFSDFW
IKQDGSEK
CARDVRWEGLPNIVVLPVPKQ
QSVLYSSNNKNY
WAS
CQQYYSTPRTF
1





DFYMDVW









MS9_p14w153
GVSISTYY
IYYSGST
CASSPQVWLPFDYW
QSVSSN
GAS
CQQYNTWIPYTF
1





MS9_p14w158
GGSISSSSYY
LYYSGHT
CARDLSGGDAFDIW
QSISSN
GAS
CQQYNKWPRMYTF
2





MS9_p14w172
GGSFSGYN
INHSGST
CAKGVVVLPPASNWFDPW
QSISSN
GAS
CQQYNNWPPERTF
1





MS9_p14w22
GLTVSDNY
IYTDGST
CARDFYPFWYFDLW
QSLLHSNGYTH
LAS
CMQALQNMYTF
2





MS9_p14w30
GGSISNFY
IYNSATT
CAREATGESMLDYW
QYFTTS

CQQYYDYPLTF
1





MS9_p14w39
GYSFTSYL
ISGYNGNT
CARGGSGWYLTSDYW
TGPVTSASS
RTD
CLLDFDGTRVF
1





MS9_p14w44
GGSINSSSYY
IYYSGST
CATSLRPLVRGLFSPRYNWFD
QSVLYSSNNKNY
WAS
CQQYYSSPQTF
1





PW









MS9_p14w47
GLTFSTAA
VGPSGTST
CAKEGDFWSGYYSGYFDLW
QSISSQ
DAS
CQQRFNWPLFTF
1





MS9_p14w6
GGSISSYY
IYYSGVT
CARHIRGGFHMDVW
QSLLHSNGYNY
LGS
CMQALQTPLTF
1





MS9_p14w8
GFSVSNARMG
IFSNDEK
CARVEDFGVIIPGFFDYW
QSISTW
KVS
CQQYHSFSWTF
1





MS9_p14w92
GFSLSNARMG
IFSNDEK
CARVEDFGVIIPGFFDYW
QSISTW
KAS
CQQYHSFSWTF
1





MS9_p14w94
GFSLSDPRMG
IFSKDEK
CARIRVGYNYSPDAFDLW
HDVRND
AAS
CLQHNSYPLTF
1





MS9_p14w97
GGSISSYY
IYYSGNT
CARHPFDFWSGDYTEKGYNWF
QDISNY
DAS
CQQYDNLPITF
2





DPW









MS9_p15w10
GGSMNSGRYS
IYQSGTI
CARGFGGNGDSSLSRRRNYGM
QGISNY
AAS
CQQLSSYPWTF
1





DVW









MS9_p15w100
GFSLSNVRMG
ILSNDEK
CARTTTVFGVEPW
QGIRND
AAS
CLQDYNYPWTF
1





MS9_p15w104
GGSISSSSYY
IYYSGST
CARDGIYNWNDAPHVPVMFDS
QSVSSY
DAS
CQQRSNWPPGTF
1





W









MS9_p15w113
GASIRRSNYY
VYSSGST
CARDLRGYNYGLDNW
QSLVYSDGNTF
F
CMQASHCV
1





MS9_p15w114
GFNLSNNY
IYSDGST
CARELVVLVGATRANDALHFW
QSVLFSPKNKNY
WAS
CQQYYSPRRTF
1





MS9_p15w126
GGSISSSDYY
IYFIGIT
CARVGGSSCGYNWNDCGWVDP
QSVSST
GAS
CQQYKNWPYTF
1





W









MS9_p15w127
GFSLYTRGVG
IYWDGDK
CARRYSAYDSRGQYHYYAMDV
WSNITNIN
RNN
CVTGDDNLNSQVF
1





W









MS9_p15w129
GGSFNTASHY
IYRGST
CARGLPNYDLLTGSSPYNWFD
QSVSSSY
GAS
CQQYGSSPPGITF
1





PW









MS9_p15w13
GFTFSSAW
IKTNTDGG
CTTDFSYTSGWNYW
QSLVYSDGDTY
KVS
CMQGTHWPRYTF
1




TT










MS9_p15w130
GFSLSTSGLC
IDGDNDK
CARMGVNRGFLGWGGPSRHPY
SSDVGGYNY
EVS
CSSYAGSNFVVF
1





YYYGLDVW









MS9_p15w135
GGSISGTNYY
IYYSGQT
CARVAGDIVGVSDATVWFAPW
QSIARN
AAS
CQQGYNTPPTF
1





MS9_p15w136
GFTFSSYA
TINNGATT
CAKGIPWEDIVDAFDIW
QGIRND
SAS
CLQHNRYPPIF
1





MS9_p15w143
GFTFSSYW
IKEDGSEK
CARGAFFGLGYNWFDPW
QGIGNY
AAS
CQQLTSYPWTF
1





MS9_p15w145
GFTFSNYG
ISYDGSNK
CAKDRYYYESSGYYLFDYW
SGSIASNY
EDK
CQSYDNSNKIF
1





MS9_p15w164
GFTFDGYA
ITWNSAII
CARAHSYAAWEW
KLGDKY
QDN
CQAWDTSAAWGVF
1





MS9_p15w169
GFTFSNYW
IKEDGSEK
CVREVIIGYQWFDPW
QSVRFN
GAS
CQHYNNWPTF
1





MS9_p15w18
NYW
IKEDGTEK
CTRPTAVHQLLYRRLPNWFDS
QSVSSY
AAS
CQQSYSTPLYTF
1





W









MS9_p15w2
GGSIISTNSY
IYHSGTT
CARALPTIGYCTGGNCYARWW
QSINSN
GAS
CQQYNNWTPHF
1





FDPW









MS9_p15w20
GGSISSSNYY
IYYSGST
CARDGAPLRFLEWLQLHWFDP
QDISNY
AAS
CQKYNSAPLTF
1





W









MS9_p15w22

IRSNAYGA
GVRGSALTT
QSISSW
KAS
CQQYNSYSEYTF
1




TR










MS9_p15w25
GGSISSSNYY
IYYSGST
CVRPTIRVGWFDPW
QGISNS
AAS
CQQYYSIVPDTF
1





MS9_p15w3
GFTFSSYW
IKSDGSET
CARARIVSLPAAIRWGSDTYY
QTISSF
AAS
CQQSYSNTWTF
1





YYYMDVW









MS9_p15w43
GFTFTRYW
IKQDGSEK
CATDLWAGSSSIGDYW
QSVYGNY
GAS
CQQYGSSPWTF
2





MS9_p15w48
GGSINTYY
IYYTGST
CARDHRCSSTSCQRDYYYYYM
QSITRF
AAS
CQQSYSTPWTF
1





DVW









MS9_p15w55
AGAITNNNYY
IYYSGTT
CARTSGGYLADFDSW
SSDVGSYEN
NVN
CCSCASRATNVY
1





MS9_p15w59
GFTFINYA
ISGSGGST
CAKAEIYDFWNAYDAFDMW
QSLVHIDGNTY
KVS
CMQGTHWPPTF
1





MS9_p15w6
GDSISSTNW
IFRSGST
CARRLWGGSAFDIW
QSLSSY
DGT
CQQRTNWPPLTF
1





MS9_p15w7
GDSISNYY
MYYIRNT
CARDRGGFPKGGGGTLSWGRP
QRIGSSY
GAS
CQQYGNSLWTF
1





SYYSYGMDVW









MS9_p15w83
GFSLSTGGVG
IYWNDDE
CARDGTRLRFLEWSLGPTLDI
ESIGRW
RAS
CQQYNTYSSTF
1





W









MS9_p16w10
GGSITTYY
FYYSGST
CARHLGVMYAFHIW
QDIGNY
DAS
CQQYDNFPPTF
1





MS9_p16w104
GDTFNNFA
IIPVFGTI
CVSGRDFDSTYYYGLDVW
SSNIGAGYD
GNS
CQSYDSSLSGVLF
1





MS9_p16w106
GFSLSTSGMC
IDWDDHK
CARVRLSSSGWYVGFADYW
QSVSSY
DAS
CQQRSNWPLTF
1





MS9_p16w109
GGSIISINYY
IYYSGTT
CARATPQFQQLWQRYEGWDNW
QTINNY
DVS
CQQRGTWPPYTF
1





FDPW









MS9_p16w112
GFSLSTTGMC
IDWDDAK
CARIRGSSCLLTGAFGIW
QSVSSNY
GAS
CQQFGGSPG
1





MS9_p16w115
GGSISSSSYY
IYYGGTT
CARDISSTYNWLDPW
QDISSW
AAS
CQQANSFPRTF
1





MS9_p16w127
GGSISSHY
FYSSGNT
CARHLGVMYAFNIW
QDIGNY
DAS
CQQYDKYPPTF
1





MS9_p16w133
GGSISSYY
IYTSGTT
CARDHGFWSGYYFDYW
QSVLYSSNNKNY
WAS
CQQYYSSPLTF
1





MS9_p16w15
GYAL

CARVRISLFRGAKW*GLSTAT
QSVLYSSNSKNY
WAS
CQQYYTTPPTF
1





VWTS









MS9_p16w159
GLTVSRNY
IDSAGST
CARGMTVPGTGYYYYYYMDVW
QSLLHKNGYNY
LGS
CMQGLQKFTF
1





MS9_p16w162
GFSVTTTY
INRLGST
CARDQTNTWPGDAFDVW
QGITNS
AAS
CQQYYLLPRTF
1





MS9_p16w168
GGSISTSSYY
IYYTGST
CARDLTTGTENGFDIW
ESVSSY
DAF
CQQRISWPRTF
1





MS9_p16w172
GFTFSSYG
ISYDGSNK
CAKDRQNYGDYGTSPDYW
QDISNY
DAS
CQQYDNLPLTF
1





MS9_p16w18
GYSFTSYW
IDPAGSDT
CARHGRYYDSGTYTYW
TGAVTSGHY
DTS
CLLSYSGARPVF
1





MS9_p16w2
GASISSYH
IYSNGNT
CATEARCPGDCYAGSFDYW
QSVGSN
GAS
CQQYNNWPQTF
1





MS9_p16w24
EFSLSTSGVG
IYWNDDE
CARTTERCTGGRCYNFNDVFD
QSLLYRSNNKNY
WAS
CQQYYTTVTF
1





IW









MS9_p16w25
GYSFTGYW
IDPSDSYT
CATRWRGNLRSGDYYYMDVW
SSNIGSNT
VNN
CAAWDDSLNGVVF
1





MS9_p16w47
GGSISSYS
IYHSGST
CARQSSMYAGGPEWFDPW
QSVSSF
DAS
CQQRSSWLITF
1





MS9_p16w48
GFSLSNPRMA
IFSNDEK
CARIRVGYNYSPDAFDFW
RGISNY
AAY
CQQLNSYPLTF
1





MS9_p16w59
GDSVSSNRAA
TYYNSKWYS
CARGSGYWDFDYW
SSDVGGYNY
DVT
CCSYAGGYTFGVF
1





MS9_p16w6
STAA
VGPSGTST
CAKEGDFWSGYYSGYFDLW
QSISSQ
DAS
CQQRFNWPLFTF
1





MS9_p16w8
GFTFSSYW
INQDGIEK
CARDGAPRWDYYFYMDVW
QSVTSNF
GAS
CHQYGSTPRTF
1





MS9_p16w83
GGSISSTFYY
IYYSGNT
CGRDPWATYSDYVTGWFDPW
QSVSSNY
GAS
CQQYGSSPRTF
1





MS9_p16w93

IWYDGGNK
CASQALGERSVVRGVIGRLVM
QSVSSN
GAS
CQQYSNWPPRITF
1





DVW









MS9_p16w94
GGSISSSSYY
IHYSGST
CVRPYCSRTSCYGGHAFDIW
QDISNY
DAS
CQQCDNLPHTF
1








Claims
  • 1. A method for determining the presence of EBV-driven pathogenic B cells in an individual, the method comprising: detecting in a biological sample EBV-infected B cells, and if EBV-infected B cells are detected treating said patient with an EBV-infected B cell depleting or inhibiting therapeutic.
  • 2. The method of claim 1, wherein the individual suffers from an autoimmune disease, optionally multiple sclerosis, or a multiple sclerosis spectrum disorder; systemic lupus erythematosus; type I diabetes; rheumatoid arthritis; Sjogren's syndrome; or dermatomyositis.
  • 3-4. (canceled)
  • 5. The method of claim 1, wherein glialcam epitope is cross-reactive with an EBNA-1 epitope present in the EBV infected B cells.
  • 6. The method of claim 5, wherein the epitope comprises one or both of EBNA-1 residues 386-405, and hepacam/glialcam residues 337-385.
  • 7. The method of claim 1, wherein EBV-driven pathogenic B cells are detected by determining the presence of markers associated with active EBV infection in the B cells, wherein the markers are protein markers or mRNA markers.
  • 8-9. (canceled)
  • 10. The method of claim 7, wherein the markers comprise one or more of BILF-1, LMP1 and LMP2.
  • 11. The method of claim 7, wherein detection of the markers associated with active EBV infection is used to monitor treatment response and guide additional treatment.
  • 12. (canceled)
  • 13. The method of claim 1, wherein the treatment comprises depletion of pathogenic B cells.
  • 14. The method of claim 13, wherein the treatment comprises use of monoclonal antibodies targeting EBV LMP1, LMP2, BILF1 or a combination of these EBV proteins.
  • 15. The method of claim 13, wherein the individual is treated with a depletion agent targeted to markers present on B cells actively infected with EBV.
  • 16. The method of claim 15, wherein the targeted markers comprise EBV proteins: BILF-1, LMP1 and/or LMP2.
  • 17. The method of claim 15, wherein the depletion agent is an antibody.
  • 18. The method of claim 17, wherein the antibody is complexed with a cytotoxic agent.
  • 19. The method of claim 13, wherein the treatment comprises inhibition of pathogenic B cells.
  • 20. The method of claim 19, wherein the B cells are treated with a BTK inhibitor.
  • 21. The method of claim 13, wherein the treatment comprises administration of an agent to tolerize immune cells to a cross-reactive EBNA-1/glialcam epitope.
  • 22. The method of claim 21, wherein the agent is an altered peptide ligand.
  • 23. The method of claim 21, wherein the agent is a DNA construct encoding the cross-reactive epitope.
  • 24. The method of claim 22, wherein administration is oral, nasal, intradermal, transdermal or intramuscular.
  • 25. An antibody specific for a glialcam epitope cross-reactive with an EBNA-1 epitope comprising a set of CDR sequences from the sequences provided in Table 3.
CROSS REFERENCE TO RELATED APPLICATION

The present application claims the benefit of and priority to U.S. Provisional Patent Application No. 63/131,581, filed Dec. 29, 2020, the entire disclosure of which is hereby.

STATEMENT OF GOVERNMENT SUPPORT

This invention was made with Government support under contract NIH:AR063676 awarded by the National Institution of Health. The Government has certain rights in the invention.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2021/065064 12/23/2021 WO
Provisional Applications (1)
Number Date Country
63131581 Dec 2020 US