The present invention relates to process devices. More particularly, the present invention relates to process devices which coupled to process fluid through process piping.
Various types of process devices are used to measure process variables and couple to process fluid through process piping. For example, fluid flow meters are used in industrial process control environments to measure fluid flow and provide outputs related to flow indicators and process controllers. Inferential flow meters measure fluid flow in a pipe by measuring a pressure drop near a discontinuity within the pipe. The discontinuity (primary element) can be an orifice, a nozzle, a venturi, a pitot tube, a vortex shedding bar, a target or even a simple bend in the pipe. Flow around the discontinuity causes both a pressure drop and increased turbulence. The pressure drop is sensed by a pressure transmitter (secondary element) placed outside the pipe and connected by impulse lines or impulse passageways to the fluid in the pipe. These connections are also referred to as impulse piping. Reliability depends on maintaining a correct calibration. Impulse lines can become plugged over time, which also adversely affects calibration.
Disassembly and inspection of the impulse lines is one method used to identify and correct plugging of lines. Another known method for detecting plugging is to periodically add a “check pulse” to the measurement signal from a pressure transmitter. This check pulse causes a control system connected to the transmitter to disturb the flow. If the pressure transmitter fails to accurately sense the flow disturbance, an alarm signal is generated indicating line plugging. Another known method for detecting plugging is sensing of both static and differential pressures. If there is inadequate correlation between oscillations in the static and differential pressures, then an alarm signal is generated indicating line plugging. Still another known method for detecting line plugging is to sense static pressures and pass them through high pass and low pass filters. Noise signals obtained from the filters are compared to a threshold, and if variance in the noise is less than the threshold, an alarm signal can be triggered which indicates that the line is blocked.
These known methods rely on providing static pressure sensors, disassembly of the flow meter or use of an external control system for diagnostics. The methods increase complexity and reduce reliability. There is thus a need for improved diagnostic technology that can provide more predictive, less reactive maintenance to reduce cost or improve reliability.
An apparatus and method for diagnosing operation of impulse piping lines in an industrial process is provided. A vibration source transmits a vibration signal through the piping to a receiver configured to receive the vibration signal. Operation of the piping is diagnosed based upon the received vibration signal.
Transmitter 102 couples to the process fluid through a process connection 110. The process connection provides impulse piping 112 which extends between the process fluid and a sensor, for example a pressure sensor 114. The impulse piping 112 can be a direct fluid connection which carries process fluid and, in some embodiments, can include an isolation diaphragm if desired to isolate a fill fluid which couples to the sensor 114 from the process fluid.
During operation, it is possible for impulse piping 112 to become clogged. The clogging can be either partial or complete. As discussed in the Background section, various techniques have been used to diagnose and identify such plugging of impulse piping 112. Partial plugging can be particularly difficult to identify because the impulse piping is not completely blocked, and the sensor 114 continues to report data which may be inaccurate.
The present invention provides a technique for identifying clogging or plugging of process impulse piping 112. In the embodiment illustrated in
In accordance with one embodiment of the present invention, transmitter 100 includes diagnostic circuitry 140 having memory 141. Diagnostic circuitry 140 couples to a transducer 142. Transducer 142 is physically connected to process impulse piping 112, for example by coupling to process connection 110 or by other connections. The transducer 142 can be a single transducer or can be two separate transducers formed by signal source 144 and signal receiver 146. In some embodiments, transducer 146 is a single element which provides both a send and receive function. The sending and receiving can be continuously operative or can be multiplexed.
In accordance with one embodiment, signal source 144 is a vibration signal source which sends a vibration signal into impulse piping line 112. The spectral content of the vibrations can be selected as desired. For example, the spectral content can comprise substantially random noise at relatively constant amplitude having frequencies which are lower than a selected upper limit. For reflected signal based diagnostics, a higher frequency acoustic frequency range is advantageous. Higher frequencies are more directional, and will reflect back more readily from build up sites along a partially plugged line. Since plugging sites create a low pass filter, a low frequency signal may not reflect from a plugging site, but rather may be transmitted, depending on the low pass filter characteristics. Also, short burst acoustic signals are more easily generated using higher frequencies, which can allow determining the position of the interface which provides the reflection. This is especially important in wet and dry leg level height diagnostics. Frequencies up to 40 KHz are useful for this type of burst mode signal. The burst mode signal also allows listening to the process noise spectrum for abnormal noise patterns between bursts. It is important that the burst noise frequency, or frequencies, not be masked by the process noise. In an optimal embodiment, the exact frequency, or frequencies of the transmitted interrogation signal would be changed for maximum signal to noise ratio versus the measured background noise spectrum.
The diagnostics of the present invention does not rely on ambient noise and instead utilizes source 144 to generate vibration noise. Receiver 146 is configured to receive vibration noise from impulse line 112 and provide a signal to diagnostic circuitry 140. Because the noise source 144 provides random noise with either a constant profile, or a profile adjusted as desired, diagnostic circuitry 140 can discriminate variations in the received signal and identify whether the source of the variations is due to changes in the plugging of impulse line 112 or is due to changes in the vibration signal applied by source 144. The transducer 146 can be coupled to a process manifold as a separate component or can be contained within the body of transmitter 102. Any appropriate transmitter and receiver configuration can be used. One type of transducing element is a piezoelectric element which is preferably adapted for high temperature installations. However, any technology can be used including electromechanical, etc. In order to improve efficiency, the piezoelectric element can be efficiently coupled to a manifold in the desired direction of acoustic energy travel, and decoupled in other directions. This configuration increases the applied noise signal and sensitivity in a desired direction.
According to one embodiment,
Pursuant to one embodiment, transducers 142 couple to the side of process coupling 110 and connect to diagnostic circuitry 140 (shown in
As illustrated in
During operation, the diagnostic circuitry 140 shown in
A plugged or partially plugged line condition can be detected based upon the received vibration signal. For example, a signal comprising a wide spectrum burst, or a swept signal, of acoustic noise is applied to the impulse piping 112 through noise source 144. The noise burst can be directionally coupled into the process connection 110 such that it travels along the process fluid in the impulse piping line 112. If a complete or partial interface exists in the line 112 due to plugging, a partially filled wet or dry leg, or other condition, a portion of the acoustic energy is reflected back to the receiver 146 of transducer 142. The transducer converts this received acoustic energy into an electrical signal which is provided to diagnostic circuitry 140. On the other hand, if no fault condition due to an obstruction exists, the only reflected signal will be due to fittings, bends, and normal obstructions in the line 112. These reflections are due to fixed sources. Thus, the acoustical profile of the process impulse line 112 in a nominal condition can be stored in memory 141 of diagnostic circuitry 140. During operation, the actual reflected signal can be compared with the stored profile. Variations between the stored profile and the received reflected signal are used by diagnostic circuitry 140 to identify a failure or impending failure in process line 112. Because the applied acoustic signal is known, the present invention is less susceptible to variations in the ambient noise for identifying line plugging than prior art techniques.
In some embodiments, the present invention is used to detect fault conditions in wet or dry legs of a process coupling. Wet legs are typically used in level measurement applications which are based upon differential pressure in which the top connection to a tank or other container is connected to a low pressure input of a transmitter with an impulse line that is intentionally kept filled with process fluid. However, maintenance may be required and performance can be degraded when the wet leg is only partially filled with fluid. A worst case scenario is one in which the wet leg fill level varies with time. This can lead to inaccurate measurements. A dry leg installation is similar, except that the impulse line is intentionally kept free of process fluid, i.e., the line is dry. Any fluid build up in a dry leg causes an apparent drift in the transmitter measurement. By sensing fluid levels in the wet or dry impulse lines, the present invention can detect when the levels are inappropriate and responsively provide a diagnostic output.
When an impulse line becomes plugged, the obstruction tends to act as a low pass filter. Higher frequencies of the transmitter signal are attenuated and partially reflected back to the transducer 142. The diagnostic circuitry 140 can identify a change in the spectral content of the reflected signal which can be an indication of line plugging. At a predetermined level of attenuation, for example, an early warning alarm can be communicated to a remote location by input/output circuitry 122 over process control loop 106.
In addition to detecting the reflected signal from source 144, receiver 146 can also be used to detect ambient process noise. This can be used to diagnose process conditions such as a pump failure, cavitation, etc. This can be coupled with other diagnostic techniques and used to diagnose other conditions in the process.
The vibration based diagnostics of the present invention can also be used to identify loss of isolation fluid in the process transmitter 102. As discussed above, typically isolation diaphragms are used which isolate process fluid from the sensor 114. Isolation fluid couples an isolation diaphragm to the sensor 114 such that variations in process pressure passed through the isolation diaphragm and isolation fluid oil to the process sensor. However, if the isolation fluid leaks, errors arise in sensor measurements and the sensor will ultimately fail. The oil/isolator/sensor form a low pass filter for audio signals. As fill fluid oil is lost in the transmitter, the characteristic of this low pass filter changes. The corner (i.e., frequency at which the signal is reduced by—3 dB) frequency of the low pass filter moves lower as the isolation fill fluid is lost. The transducer 142 of the present invention can be used to identify variations in this low pass filter and diagnose fill fluid loss conditions. The diagnostic circuitry 140 compares the reflected signal with a known profile to determine fill fluid loss.
Diagnostic circuitry 140 can also provide self diagnostics. For example, certain obstructions and configurations in the process impulse piping 112 provide a fixed or established time delay and amplitude of reflected pulses. Measuring the time delay and amplitudes over time, diagnostic circuitry 140 can identify a degradation or failure of the transducer 142.
The diagnostics of the present invention can be implemented using a single transducer or through multiple transducers. The diagnostic circuitry and transducer can be incorporated into transmitter electronics or can be part of a stand alone device. The transducer can couple to any type of process impulse piping including other manifold configurations. Various types of transmitters can include pressure, temperature, pH, flow, level, and other types. The diagnostic circuitry 140 can share components with other circuitry in the device, for example a microprocessor, memory, amplifier, analog to digital converter, digital to analog converter, etc. The diagnostic circuitry can be implemented in hardware, software, or their combination.
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. For example, the vibration signal can be of any appropriate frequency or spectral content. The signal can be applied continuously, in bursts or pulses, or in other wave forms such as a ramped signal, etc. The diagnostic circuitry can compare the received vibration signal to a reference and can identify trends or abrupt changes in the signal. Additionally, the diagnostic circuitry can monitor background noise, for example when the vibration source is off, and compare monitored ambient noise to a stored noise spectrum or signature. The comparison can provide an indication of an anomaly or pending failure of the process equipment. In some embodiments, the frequency or spectral content of the vibration signal is adjusted as desired. For example, the spectral content can be adjusted to achieve a desired signal to noise ratio. The diagnostic circuitry of the present invention can also be configured to diagnose variations, such as failure modes, in impulse piping of the type which forms a filled capillary leg of the level measurement device. In such a configuration, the transmitter provides a level measurement output. Example failures include loss of oil, a ruptured or missing process isolator, or a kinked or broken capillary leg tube.
Number | Name | Date | Kind |
---|---|---|---|
3096434 | King | Jul 1963 | A |
3404264 | Kugler | Oct 1968 | A |
3468164 | Sutherland | Sep 1969 | A |
3590370 | Fleischer | Jun 1971 | A |
3618592 | Stewart | Nov 1971 | A |
3688190 | Blum | Aug 1972 | A |
3691842 | Akeley | Sep 1972 | A |
3701280 | Stroman | Oct 1972 | A |
3849637 | Caruso et al. | Nov 1974 | A |
3855858 | Cushing | Dec 1974 | A |
3948098 | Richardson et al. | Apr 1976 | A |
3952759 | Ottenstein | Apr 1976 | A |
3964296 | Matzuk | Jun 1976 | A |
3973184 | Raber | Aug 1976 | A |
RE29383 | Gallatin et al. | Sep 1977 | E |
4058975 | Gilbert et al. | Nov 1977 | A |
4083031 | Pharo, Jr. | Apr 1978 | A |
4099413 | Ohte et al. | Jul 1978 | A |
4102199 | Talpouras | Jul 1978 | A |
4122719 | Carlson et al. | Oct 1978 | A |
4249164 | Tivy | Feb 1981 | A |
4250490 | Dahlke | Feb 1981 | A |
4255964 | Morison | Mar 1981 | A |
4279013 | Cameron et al. | Jul 1981 | A |
4337516 | Murphy et al. | Jun 1982 | A |
4355536 | McShane et al. | Oct 1982 | A |
4383443 | Langdon | May 1983 | A |
4393711 | Lapides | Jul 1983 | A |
4399824 | Davidson | Aug 1983 | A |
4417312 | Cronin et al. | Nov 1983 | A |
4423634 | Audenard et al. | Jan 1984 | A |
4448062 | Peterson et al. | May 1984 | A |
4459858 | Marsh | Jul 1984 | A |
4463612 | Thompson | Aug 1984 | A |
4517468 | Kemper et al. | May 1985 | A |
4528869 | Kubo et al. | Jul 1985 | A |
4530234 | Cullick et al. | Jul 1985 | A |
4536753 | Parker | Aug 1985 | A |
4540468 | Genco et al. | Sep 1985 | A |
4571689 | Hildebrand et al. | Feb 1986 | A |
4630265 | Sexton | Dec 1986 | A |
4635214 | Kasai et al. | Jan 1987 | A |
4641529 | Lorenzi et al. | Feb 1987 | A |
4642782 | Kemper et al. | Feb 1987 | A |
4644479 | Kemper et al. | Feb 1987 | A |
4649515 | Thompson et al. | Mar 1987 | A |
4668473 | Agarwal | May 1987 | A |
4686638 | Furuse | Aug 1987 | A |
4696191 | Claytor et al. | Sep 1987 | A |
4707796 | Calabro et al. | Nov 1987 | A |
4720806 | Schippers et al. | Jan 1988 | A |
4736367 | Wroblewski et al. | Apr 1988 | A |
4736763 | Britton et al. | Apr 1988 | A |
4758308 | Carr | Jul 1988 | A |
4777585 | Kokawa et al. | Oct 1988 | A |
4807151 | Citron | Feb 1989 | A |
4818994 | Orth et al. | Apr 1989 | A |
4831564 | Suga | May 1989 | A |
4833922 | Frick et al. | May 1989 | A |
4841286 | Kummer | Jun 1989 | A |
4853693 | Eaton-Williams | Aug 1989 | A |
4873655 | Kondraske | Oct 1989 | A |
4907167 | Skeirik | Mar 1990 | A |
4924418 | Backman et al. | May 1990 | A |
4926364 | Brotherton | May 1990 | A |
4934196 | Romano | Jun 1990 | A |
4939753 | Olson | Jul 1990 | A |
4964125 | Kim | Oct 1990 | A |
4988990 | Warrior | Jan 1991 | A |
4992965 | Holter et al. | Feb 1991 | A |
5005142 | Lipchak et al. | Apr 1991 | A |
5014543 | Franklin et al. | May 1991 | A |
5019760 | Chu et al. | May 1991 | A |
5025344 | Maly et al. | Jun 1991 | A |
5043862 | Takahashi et al. | Aug 1991 | A |
5047990 | Gafos et al. | Sep 1991 | A |
5053815 | Wendell | Oct 1991 | A |
5057774 | Verhelst et al. | Oct 1991 | A |
5067099 | McCown et al. | Nov 1991 | A |
5081598 | Bellows et al. | Jan 1992 | A |
5089979 | McEachern et al. | Feb 1992 | A |
5089984 | Struger et al. | Feb 1992 | A |
5094109 | Dean et al. | Mar 1992 | A |
5098197 | Shepard et al. | Mar 1992 | A |
5099436 | McCown et al. | Mar 1992 | A |
5103409 | Shimizu et al. | Apr 1992 | A |
5111531 | Grayson et al. | May 1992 | A |
5121467 | Skeirik | Jun 1992 | A |
5122794 | Warrior | Jun 1992 | A |
5122976 | Bellows et al. | Jun 1992 | A |
5130936 | Sheppard et al. | Jul 1992 | A |
5134574 | Beaverstock et al. | Jul 1992 | A |
5137370 | McCullock et al. | Aug 1992 | A |
5142612 | Skeirik | Aug 1992 | A |
5143452 | Maxedon et al. | Sep 1992 | A |
5148378 | Shibayama et al. | Sep 1992 | A |
5150289 | Badavas | Sep 1992 | A |
5167009 | Skeirik | Nov 1992 | A |
5175678 | Frerichs et al. | Dec 1992 | A |
5193143 | Kaemmerer et al. | Mar 1993 | A |
5197114 | Skeirik | Mar 1993 | A |
5197328 | Fitzgerald | Mar 1993 | A |
5212765 | Skeirik | May 1993 | A |
5214582 | Gray | May 1993 | A |
5216226 | Miyoshi | Jun 1993 | A |
5224203 | Skeirik | Jun 1993 | A |
5228780 | Shepard et al. | Jul 1993 | A |
5235527 | Ogawa et al. | Aug 1993 | A |
5265031 | Malczewski | Nov 1993 | A |
5265222 | Nishiya et al. | Nov 1993 | A |
5269311 | Kirchner et al. | Dec 1993 | A |
5274572 | O'Neill et al. | Dec 1993 | A |
5282131 | Rudd et al. | Jan 1994 | A |
5282261 | Skeirik | Jan 1994 | A |
5293585 | Morita | Mar 1994 | A |
5303181 | Stockton | Apr 1994 | A |
5305230 | Matsumoto et al. | Apr 1994 | A |
5311421 | Nomura et al. | May 1994 | A |
5317520 | Castle | May 1994 | A |
5327357 | Feinstein et al. | Jul 1994 | A |
5333240 | Matsumoto et al. | Jul 1994 | A |
5340271 | Freeman et al. | Aug 1994 | A |
5347843 | Orr et al. | Sep 1994 | A |
5349541 | Alexandro, Jr. et al. | Sep 1994 | A |
5357449 | Oh | Oct 1994 | A |
5361628 | Marko et al. | Nov 1994 | A |
5365423 | Chand | Nov 1994 | A |
5365787 | Hernandez et al. | Nov 1994 | A |
5367612 | Bozich et al. | Nov 1994 | A |
5369674 | Yokose et al. | Nov 1994 | A |
5384699 | Levy et al. | Jan 1995 | A |
5386373 | Keeler et al. | Jan 1995 | A |
5388465 | Okaniwa et al. | Feb 1995 | A |
5392293 | Hsue | Feb 1995 | A |
5394341 | Kepner | Feb 1995 | A |
5394543 | Hill et al. | Feb 1995 | A |
5404064 | Mermelstein et al. | Apr 1995 | A |
5408406 | Mathur et al. | Apr 1995 | A |
5408586 | Skeirik | Apr 1995 | A |
5410495 | Ramamurthi | Apr 1995 | A |
5414645 | Hirano | May 1995 | A |
5419197 | Ogi et al. | May 1995 | A |
5430642 | Nakajima et al. | Jul 1995 | A |
5434774 | Seberger | Jul 1995 | A |
5436705 | Raj | Jul 1995 | A |
5440478 | Fisher et al. | Aug 1995 | A |
5442639 | Crowder et al. | Aug 1995 | A |
5467355 | Umeda et al. | Nov 1995 | A |
5469070 | Koluvek | Nov 1995 | A |
5469156 | Kogura | Nov 1995 | A |
5469735 | Watanabe | Nov 1995 | A |
5469749 | Shimada et al. | Nov 1995 | A |
5481199 | Anderson et al. | Jan 1996 | A |
5481200 | Voegele et al. | Jan 1996 | A |
5483387 | Bauhahn et al. | Jan 1996 | A |
5485753 | Burns et al. | Jan 1996 | A |
5486996 | Samad et al. | Jan 1996 | A |
5488697 | Kaemmerer et al. | Jan 1996 | A |
5489831 | Harris | Feb 1996 | A |
5495769 | Broden et al. | Mar 1996 | A |
5497661 | Stripf et al. | Mar 1996 | A |
5510779 | Maltby et al. | Apr 1996 | A |
5511004 | Dubost et al. | Apr 1996 | A |
5521840 | Bednar | May 1996 | A |
5526293 | Mozumder et al. | Jun 1996 | A |
5539638 | Keeler et al. | Jul 1996 | A |
5548528 | Keeler et al. | Aug 1996 | A |
5555190 | Derby et al. | Sep 1996 | A |
5560246 | Bottinger et al. | Oct 1996 | A |
5561599 | Lu | Oct 1996 | A |
5570034 | Needham et al. | Oct 1996 | A |
5570300 | Henry et al. | Oct 1996 | A |
5572420 | Lu | Nov 1996 | A |
5573032 | Lenz et al. | Nov 1996 | A |
5578763 | Spencer et al. | Nov 1996 | A |
5591922 | Segeral et al. | Jan 1997 | A |
5598521 | Kilgore et al. | Jan 1997 | A |
5600148 | Cole et al. | Feb 1997 | A |
5608650 | McClendon et al. | Mar 1997 | A |
5623605 | Keshav et al. | Apr 1997 | A |
5629870 | Farag et al. | May 1997 | A |
5633809 | Wissenbach et al. | May 1997 | A |
5637802 | Frick et al. | Jun 1997 | A |
5640491 | Bhat et al. | Jun 1997 | A |
5644240 | Brugger | Jul 1997 | A |
5650943 | Powell et al. | Jul 1997 | A |
5654869 | Ohi et al. | Aug 1997 | A |
5661668 | Yemini et al. | Aug 1997 | A |
5665899 | Willcox | Sep 1997 | A |
5668322 | Broden | Sep 1997 | A |
5669713 | Schwartz et al. | Sep 1997 | A |
5671335 | Davis et al. | Sep 1997 | A |
5672247 | Pangalos et al. | Sep 1997 | A |
5675504 | Serodes et al. | Oct 1997 | A |
5675724 | Beal et al. | Oct 1997 | A |
5680109 | Lowe et al. | Oct 1997 | A |
5682317 | Keeler et al. | Oct 1997 | A |
5700090 | Eryurek | Dec 1997 | A |
5703575 | Kirpatrick | Dec 1997 | A |
5704011 | Hansen et al. | Dec 1997 | A |
5705754 | Keita et al. | Jan 1998 | A |
5705978 | Frick et al. | Jan 1998 | A |
5708211 | Jepson et al. | Jan 1998 | A |
5708585 | Kushion | Jan 1998 | A |
5710370 | Shanahan et al. | Jan 1998 | A |
5710708 | Wiegland | Jan 1998 | A |
5713668 | Lunghofer et al. | Feb 1998 | A |
5719378 | Jackson, Jr. et al. | Feb 1998 | A |
5736649 | Kawasaki et al. | Apr 1998 | A |
5741074 | Wang et al. | Apr 1998 | A |
5742845 | Wagner | Apr 1998 | A |
5746511 | Eryurek et al. | May 1998 | A |
5747701 | Marsh et al. | May 1998 | A |
5752008 | Bowling | May 1998 | A |
5756898 | Diatschenko et al. | May 1998 | A |
5764539 | Rani | Jun 1998 | A |
5764891 | Warrior | Jun 1998 | A |
5781024 | Blomberg et al. | Jul 1998 | A |
5781878 | Mizoguchi et al. | Jul 1998 | A |
5790413 | Bartusiak et al. | Aug 1998 | A |
5801689 | Huntsman | Sep 1998 | A |
5805442 | Crater et al. | Sep 1998 | A |
5817950 | Wiklund et al. | Oct 1998 | A |
5825664 | Warrior et al. | Oct 1998 | A |
5828567 | Eryurek et al. | Oct 1998 | A |
5829876 | Schwartz et al. | Nov 1998 | A |
5848383 | Yuuns | Dec 1998 | A |
5854993 | Crichnik | Dec 1998 | A |
5859964 | Wang et al. | Jan 1999 | A |
5869772 | Storer | Feb 1999 | A |
5874676 | Maki, Jr. | Feb 1999 | A |
5876122 | Eryurek | Mar 1999 | A |
5880376 | Sai et al. | Mar 1999 | A |
5887978 | Lunghofer et al. | Mar 1999 | A |
5908990 | Cummings | Jun 1999 | A |
5920016 | Broden | Jul 1999 | A |
5923557 | Eidson | Jul 1999 | A |
5924086 | Mathur et al. | Jul 1999 | A |
5926778 | Pöppel | Jul 1999 | A |
5934371 | Bussear et al. | Aug 1999 | A |
5936514 | Anderson et al. | Aug 1999 | A |
5940290 | Dixon | Aug 1999 | A |
5956663 | Eryurek et al. | Sep 1999 | A |
5970430 | Burns et al. | Oct 1999 | A |
6002952 | Diab et al. | Dec 1999 | A |
6014612 | Larson et al. | Jan 2000 | A |
6014902 | Lewis et al. | Jan 2000 | A |
6016523 | Zimmerman et al. | Jan 2000 | A |
6016706 | Yamamoto et al. | Jan 2000 | A |
6017143 | Eryurek et al. | Jan 2000 | A |
6023399 | Kogure | Feb 2000 | A |
6026352 | Burns et al. | Feb 2000 | A |
6038579 | Sekine | Mar 2000 | A |
6045260 | Schwartz et al. | Apr 2000 | A |
6046642 | Brayton et al. | Apr 2000 | A |
6047220 | Eryurek et al. | Apr 2000 | A |
6047222 | Burns et al. | Apr 2000 | A |
6052655 | Kobayashi et al. | Apr 2000 | A |
6059254 | Sundet et al. | May 2000 | A |
6061603 | Papadopoulos et al. | May 2000 | A |
6072150 | Sheffer | Jun 2000 | A |
6094600 | Sharpe, Jr. et al. | Jul 2000 | A |
6112131 | Ghorashi et al. | Aug 2000 | A |
6119047 | Eryurek et al. | Sep 2000 | A |
6119529 | Di Marco et al. | Sep 2000 | A |
6139180 | Usher et al. | Oct 2000 | A |
6151560 | Jones | Nov 2000 | A |
6179964 | Begemann et al. | Jan 2001 | B1 |
6182501 | Furuse et al. | Feb 2001 | B1 |
6192281 | Brown et al. | Feb 2001 | B1 |
6195591 | Nixon et al. | Feb 2001 | B1 |
6199018 | Quist et al. | Mar 2001 | B1 |
6209048 | Wolff | Mar 2001 | B1 |
6236948 | Eck et al. | May 2001 | B1 |
6237424 | Salmasi et al. | May 2001 | B1 |
6263487 | Stripf et al. | Jul 2001 | B1 |
6272438 | Cunningham et al. | Aug 2001 | B1 |
6289735 | Dister et al. | Sep 2001 | B1 |
6298377 | Hartikainen et al. | Oct 2001 | B1 |
6307483 | Westfield et al. | Oct 2001 | B1 |
6311136 | Henry et al. | Oct 2001 | B1 |
6317701 | Pyostsia et al. | Nov 2001 | B1 |
6327914 | Dutton | Dec 2001 | B1 |
6347252 | Behr et al. | Feb 2002 | B1 |
6356191 | Kirkpatrick et al. | Mar 2002 | B1 |
6360277 | Ruckley et al. | Mar 2002 | B1 |
6367328 | Gorman et al. | Apr 2002 | B1 |
6370448 | Eryurek et al. | Apr 2002 | B1 |
6377859 | Brown et al. | Apr 2002 | B1 |
6378364 | Pelletier et al. | Apr 2002 | B1 |
6396426 | Balard et al. | May 2002 | B1 |
6397114 | Eryurek et al. | May 2002 | B1 |
6405099 | Nagai et al. | Jun 2002 | B1 |
6425038 | Sprecher | Jul 2002 | B1 |
6434504 | Eryurek et al. | Aug 2002 | B1 |
6449574 | Eryurek et al. | Sep 2002 | B1 |
6473656 | Langels et al. | Oct 2002 | B1 |
6473710 | Eryurek | Oct 2002 | B1 |
6480793 | Martin | Nov 2002 | B1 |
6492921 | Kunitani et al. | Dec 2002 | B1 |
6493689 | Kotoulas et al. | Dec 2002 | B2 |
6497222 | Bolz et al. | Dec 2002 | B2 |
6505517 | Eryurek et al. | Jan 2003 | B1 |
6519546 | Eryurek et al. | Feb 2003 | B1 |
6532392 | Eryurek et al. | Mar 2003 | B1 |
6539267 | Eryurek et al. | Mar 2003 | B1 |
6546814 | Choe et al. | Apr 2003 | B1 |
6556145 | Kirkpatrick et al. | Apr 2003 | B1 |
6561038 | Gravel et al. | May 2003 | B2 |
6567006 | Lander et al. | May 2003 | B1 |
6584847 | Hirose | Jul 2003 | B1 |
6594603 | Eryurek et al. | Jul 2003 | B1 |
6597997 | Tingley | Jul 2003 | B2 |
6601005 | Eryurek et al. | Jul 2003 | B1 |
6611775 | Coursolle et al. | Aug 2003 | B1 |
6615149 | Wehrs | Sep 2003 | B1 |
6654697 | Eryurek et al. | Nov 2003 | B1 |
6701274 | Eryurek et al. | Mar 2004 | B1 |
6727812 | Sauler et al. | Apr 2004 | B2 |
6751560 | Tingley et al. | Jun 2004 | B1 |
6758168 | Koskinen et al. | Jul 2004 | B2 |
6813588 | Daugert et al. | Nov 2004 | B1 |
7010459 | Eryurek et al. | Mar 2006 | B2 |
7036381 | Broden et al. | May 2006 | B2 |
7040179 | Drahm et al. | May 2006 | B2 |
7089086 | Schoonover | Aug 2006 | B2 |
7137307 | Huybrechts et al. | Nov 2006 | B2 |
7254518 | Eryurek et al. | Aug 2007 | B2 |
7258021 | Broden | Aug 2007 | B2 |
7258024 | Dimarco et al. | Aug 2007 | B2 |
7290450 | Brown et al. | Nov 2007 | B2 |
7321846 | Huisenga et al. | Jan 2008 | B1 |
20020013629 | Nixon et al. | Jan 2002 | A1 |
20020032544 | Reid et al. | Mar 2002 | A1 |
20020077711 | Nixon | Jun 2002 | A1 |
20020078752 | Braunling et al. | Jun 2002 | A1 |
20020108436 | Albuaijan | Aug 2002 | A1 |
20020121910 | Rome et al. | Sep 2002 | A1 |
20020145515 | Snowbarger et al. | Oct 2002 | A1 |
20020145568 | Winter | Oct 2002 | A1 |
20020148644 | Schultz et al. | Oct 2002 | A1 |
20020194547 | Christensen et al. | Dec 2002 | A1 |
20030033040 | Billings | Feb 2003 | A1 |
20030045962 | Eryurek et al. | Mar 2003 | A1 |
20040025593 | Hashimoto et al. | Feb 2004 | A1 |
20040078167 | Tan et al. | Apr 2004 | A1 |
20040093174 | Lander | May 2004 | A1 |
20040128034 | Lenker et al. | Jul 2004 | A1 |
20040249583 | Eryurek et al. | Dec 2004 | A1 |
20050072239 | Longsdorf et al. | Apr 2005 | A1 |
20060075009 | Lenz et al. | Apr 2006 | A1 |
20060206288 | Brahmajosyula et al. | Sep 2006 | A1 |
20060277000 | Wehrs | Dec 2006 | A1 |
Number | Date | Country |
---|---|---|
999950 | Nov 1976 | CA |
32 13 866 | Oct 1983 | DE |
35 40 204 | Sep 1986 | DE |
40 08 560 | Sep 1990 | DE |
43 43 747 | Jun 1994 | DE |
44 33 593 | Jun 1995 | DE |
195 02 499 | Aug 1996 | DE |
296 00 609 | Mar 1997 | DE |
197 04 694 | Aug 1997 | DE |
19930660 | Jul 1999 | DE |
199 05 071 | Aug 2000 | DE |
19905071 | Aug 2000 | DE |
299 17 651 | Dec 2000 | DE |
19947129 | Apr 2001 | DE |
100 36 971 | Feb 2002 | DE |
10223725 | Apr 2003 | DE |
0 122 622 | Oct 1984 | EP |
0 413 814 | Feb 1991 | EP |
0 487 419 | May 1992 | EP |
0 512 794 | Nov 1992 | EP |
0 594 227 | Apr 1994 | EP |
0 624 847 | Nov 1994 | EP |
0 644 470 | Mar 1995 | EP |
0 697 586 | Feb 1996 | EP |
0 749 057 | Dec 1996 | EP |
0 825 506 | Jul 1997 | EP |
0 827 096 | Sep 1997 | EP |
0 838 768 | Sep 1997 | EP |
0 807 804 | Nov 1997 | EP |
1 058 093 | May 1999 | EP |
0 335 957 | Nov 1999 | EP |
1 022 626 | Jul 2000 | EP |
2 302 514 | Sep 1976 | FR |
2 334 827 | Jul 1977 | FR |
928704 | Jun 1963 | GB |
1 534 280 | Nov 1978 | GB |
1 534 288 | Nov 1978 | GB |
2 310 346 | Aug 1997 | GB |
2 317 969 | Apr 1998 | GB |
2 342 453 | Apr 2000 | GB |
2 347 232 | Aug 2000 | GB |
56031573 | Mar 1981 | JP |
57196619 | Feb 1982 | JP |
58-129316 | Aug 1983 | JP |
59-116811 | Jul 1984 | JP |
59-163520 | Sep 1984 | JP |
59176643 | Oct 1984 | JP |
59-211196 | Nov 1984 | JP |
59-211896 | Nov 1984 | JP |
60-000507 | Jan 1985 | JP |
60-76619 | May 1985 | JP |
60-131495 | Jul 1985 | JP |
60-174915 | Sep 1985 | JP |
62-30915 | Feb 1987 | JP |
62-080535 | Apr 1987 | JP |
62-50901 | Sep 1987 | JP |
63-169532 | Jul 1988 | JP |
64-01914 | Jan 1989 | JP |
64-72699 | Mar 1989 | JP |
11-87430 | Jul 1989 | JP |
2-05105 | Jan 1990 | JP |
3-229124 | Oct 1991 | JP |
4-70906 | Mar 1992 | JP |
5-122768 | May 1993 | JP |
6-95882 | Apr 1994 | JP |
06242192 | Sep 1994 | JP |
06-248224 | Oct 1994 | JP |
7-063586 | Mar 1995 | JP |
07234988 | Sep 1995 | JP |
07294356 | Nov 1995 | JP |
8-054923 | Feb 1996 | JP |
8-102241 | Apr 1996 | JP |
08-114638 | May 1996 | JP |
8-136386 | May 1996 | JP |
HEI81996-136386 | May 1996 | JP |
8-166309 | Jun 1996 | JP |
HEI81996-166309 | Jun 1996 | JP |
8-247076 | Sep 1996 | JP |
8-313466 | Nov 1996 | JP |
2712625 | Oct 1997 | JP |
2712701 | Oct 1997 | JP |
2753592 | Mar 1998 | JP |
07225530 | May 1998 | JP |
10-232170 | Sep 1998 | JP |
11-083575 | Mar 1999 | JP |
3129121 | Nov 2000 | JP |
3139597 | Dec 2000 | JP |
3147275 | Dec 2000 | JP |
2001-1903706 | Jul 2000 | RU |
2190267 | Sep 2002 | RU |
WO 9425933 | Nov 1994 | WO |
WO 9523361 | Aug 1995 | WO |
WO 9611389 | Apr 1996 | WO |
WO 9612993 | May 1996 | WO |
WO 9639617 | Dec 1996 | WO |
WO 9721157 | Jun 1997 | WO |
WO 9725603 | Jul 1997 | WO |
WO 9806024 | Feb 1998 | WO |
WO 9813677 | Apr 1998 | WO |
WO 9814855 | Apr 1998 | WO |
WO 9820469 | May 1998 | WO |
WO 9839718 | Sep 1998 | WO |
WO 9919782 | Apr 1999 | WO |
WO 0041050 | Jul 2000 | WO |
WO 0055700 | Sep 2000 | WO |
WO 0070531 | Nov 2000 | WO |
WO 0101213 | Jan 2001 | WO |
WO 0119440 | Mar 2001 | WO |
WO 0159346 | Aug 2001 | WO |
WO 0177766 | Oct 2001 | WO |
WO 0190704 | Nov 2001 | WO |
WO 0227418 | Apr 2002 | WO |
WO 03048713 | Jun 2003 | WO |
WO 03081002 | Oct 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20050132808 A1 | Jun 2005 | US |