A portion of this patent document contains material subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyrights whatsoever. The following notice applies to this document: Copyright© 2006 Engineered Products Company, Inc.
Various embodiments of the present invention concern devices for monitoring fluid-filter performance, particularly gauges that provide a dial to visually indicate restricted fluid flow through such filters. Some embodiments of the invention may also be used in other applications.
Many modern systems include air or liquid filters to ensure proper or reliable performance. For example, automobiles include air and fuel filters to remove dirt and other particulates from the air and fuel that are mixed and then ignited within their internal combustion engines. As a consequence of their proper operation, these filters collect particulates over time and increasingly restrict the flow of air or fuel into engines. Eventually, the filters become more restrictive than desirable to promote fuel efficiency or other performance criteria and require replacement.
To facilitate timely filter replacement, automobiles and other systems sometimes include filter-monitoring devices, which monitor pressure or vacuum levels that result from fluid flow through associated filters. These devices are calibrated to detect when particular pressure or vacuum conditions occur and to respond to such occurrences in particular ways. For example, some devices, referred to herein as dial-type flow restriction gauges (or indicators) provide a dial that rotates relative to a fixed scale in response to differential pressure, thereby providing a visible measurement of flow restriction through a filter.
The present inventors have recognized that commercially available dial-type flow-restriction gauges are not only more costly to make than desirable, but also prone to reliability and performance issues. For example, one known gauge provides a dial within a two-piece housing having a clear plastic upper portion and an opaque plastic lower portion. The clear plastic portion provides a view of the internal dial relative to a restriction scale printed on the exterior of the clear plastic. However, suitable clear plastic is not only more expensive (two-to-three times more), but more vulnerable to degrading reactions with fuel, oil, and other chemicals common to automobile engine environments than the opaque portion. This known indicator also uses a relatively expensive spiral spring to bias rotation of the dial and a separate O-ring to seal the housing.
Accordingly, the present inventors have recognized a need to improve conventional dial-type flow-restriction gauges.
To address this and/or other needs, the present inventors devised, among other things, various embodiments of dial-type flow-restriction gauge, related components, subassemblies, methods, and systems. One exemplary flow-restriction gauge includes a two-piece housing, a flexible diaphragm, a dial indicator, and a restriction scale. The flexible diaphragm, which resides within the two-piece housing, flexes in response to differential pressures on its opposing sides. The flexing rotates the dial indicator, which is positioned on the exterior surface of the housing, relative to the flow-restriction scale on the exterior surface. Position of the dial indicator visually correlates to a corresponding flow restriction in an associated filter. Notably, placement of the dial indicator (or pointer) on the exterior surface eliminates the need to form a clear housing, and thus not only reduces the manufacturing cost of the gauge, but also improves its tolerance of engine fuel, oils, and other environmental fluids.
This description, which incorporates the above-identified figures and appended claims, describes one or more specific inventive embodiments. These embodiments, offered not to limit but only to exemplify and teach one or more inventions, are shown and described in sufficient detail to enable those skilled in the art to implement or practice the invention(s). The description may use terms, such as upper or lower in reference to specific features of various as embodiments; however, unless included in the claims, such terms are merely to aid correlating the drawings with the written description. Moreover, where appropriate to avoid obscuring the invention(s), the description may omit certain information known to those of skill in the art.
Engine 110 includes an air inlet 111 and a fuel inlet 112 for respectively channeling air and fuel into engine 110 for combustion according to known principles. In the exemplary embodiment, engine 110 takes the form of an internal combustion engine; however, in some embodiments, engine 110 takes other forms.
Air filter 120 provides a filtered air flow 121 through air inlet 111 to engine 110. In the exemplary embodiment, air filter 120 takes any convenient or desirable form.
Fuel filter 130, which is in fluid communication with fuel inlet 112, provides a filtered air flow 131 through inlet 112 to engine 110. In the exemplary embodiment, fuel filter 130 takes any convenient or desirable form.
Flow restriction gauge 140, which is sized to measure flow-restriction based on a difference between vacuum pressure created by air flow 121 and atmospheric pressure, includes an exterior dial 141 for indicating a flow-restriction level. Similarly, gauge 150 is sized to measure flow-restriction based on a difference between vacuum pressure created by fuel flow 131 and atmospheric pressure, and includes external dial 151 and scale label 152.
Reset marking 143 indicates that gauge 140 can be manually reset by rotating dial 141 counterclockwise from the Service level back to the New level. And, label key 144 facilitates manual or automated alignment and attachment of an adhesive scale label, such as label 152 in
Label 152, which takes a generally circular shape, includes color scale region 152A and label mount key 152B. In the exemplary embodiment, color scale 152A includes a green sector which corresponds to flow-restriction levels that are less than a maximum allowable flow restriction and a red sector which corresponds to flow-restriction levels greater than the maximum allowable flow restriction. Some embodiments may include an intermediate yellow sector; moreover, some embodiments also include glow-in-the-dark graphics based on phosphorescence or chemicaluminescense materials, such as zinc sulfide or strontium aluminate without a radioactive element, such as radium.
Housing assembly 210, which includes an upper cap portion 212 and a lower housing or inlet portion 214. In the exemplary embodiment, all components of the housing assembly are molded from an opaque material, such as nylon.
In particular, upper cap portion 212, which in the exemplary embodiment has a generally right cylindrical cup- or pan-like structure, includes a top portion 212A, a sidewall 212B, annular locking ledge 212C, spacer studs 212D, dial opening 212E, and cam pocket wall 212F.
Top portion 212A, which includes scale markings or labels as shown in
Cam pocket wall 212E also extends downwardly from the underside of top portion 212A, defining peripheral shape and depth of a cam pocket (or recess) 213, shown best in
Lower housing portion 214, which in the exemplary embodiment is integrally molded from a durable nylon, includes a lower inlet portion 214A and an upper annular flange portion 214B.
Lower inlet portion 214A includes exterior engagement features 214C, such as threads, ribs, or flanges, to facilitate fluid-tight coupling to an air or fuel inlet, such as inlet 111 or 112 in
Upper annular flange portion 214B extends outward circumferentially from an upper portion of inlet portion 214A defining a shallow bowl region 214F. An annular ledge 214G is spaced radially inward from an outer rim portion 214H of flange portion 214B, thereby defining an annular seat 2141. The outer rim portion engages in a snap fit with annular locking ledge 212C of the upper cap portion of the housing assembly.
In addition to housing assembly 210, gauge 200 includes calibration spring 220, diaphragm 230, and dial assembly 240.
Calibration spring 220 has a lower portion 221 and an upper portion 222. Lower portion 221 rests on annular interior shelf 214D and the upper portion 222 extend upward into shallow bowl region 214F of flange portion 214B to contact diaphragm 230.
Diaphragm 230, also shown in the top perspective view of
Annular bead 232D is sandwiched between lower inlet portion 214 of the housing assembly, specifically annular seat 2141, and a lower rim 241A of circular plate 241 of dial assembly 240. In this arrangement, the diaphragm defines and provides a generally fluid tight seal between a lower chamber 233 that is in fluid communication with inlet 111 or 112 (in
In addition to circular plate 241, dial assembly 240 further includes a cam portion 242, a helical spring 244, and a dial 246.
Circular plate 241, which is shown in perspective in
Cam portion 242, which is shown most completely in the perspective view of
Notch 242C engages with axial projection 232 when dial 246 is turned to a reset position. As diaphragm 230 flexes downward against the calibration spring in response to a vacuum created by a fluid flow exiting a filter, axial projection 232C moves downward in unison. Over time the filter restriction increases the vacuum sufficiently to draw the diaphragm and the projection down past the edge of notch 242C, allowing the cam to rotate under the force of spring 244 (best depicted in
In furtherance of the art, the present inventors have presented, among other things, an exemplary flow-restriction gauge. The exemplary gauge has eight total parts, nine if the optional adhesive scale label is included. The exemplary gauge promises not only to be easily manufactured and assembled with considerable savings over conventional dial-type flow-restriction gauges, but also to provide reliable and consistent operation over a wide temperature range.
The present application claims the benefit under 35 U.S.C. 119(e) of U.S. Provisional Patent Application 60/814,233 which was filed on Jun. 16, 2006 and which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3011470 | Stoermer | Dec 1961 | A |
3027865 | Kautz et al. | Apr 1962 | A |
3066527 | Stein | Dec 1962 | A |
3119367 | Barnes, Jr. et al. | Jan 1964 | A |
3312187 | McKinlay | Apr 1967 | A |
3381651 | McKinlay | May 1968 | A |
3388682 | Whiting | Jun 1968 | A |
3487929 | Sample et al. | Jan 1970 | A |
3639998 | Mason | Feb 1972 | A |
3686835 | Strange et al. | Aug 1972 | A |
3690318 | Gorsuch | Sep 1972 | A |
3916817 | Kemp | Nov 1975 | A |
4033733 | Nelson | Jul 1977 | A |
4162660 | Albertson et al. | Jul 1979 | A |
4369728 | Nelson | Jan 1983 | A |
4445456 | Nelson | May 1984 | A |
4620500 | Condon | Nov 1986 | A |
4688511 | Gerlach et al. | Aug 1987 | A |
4726823 | Brice | Feb 1988 | A |
5325707 | Slater | Jul 1994 | A |
5616157 | Mead et al. | Apr 1997 | A |
5753821 | Chou | May 1998 | A |
5845597 | Karpal | Dec 1998 | A |
5850183 | Berry, III | Dec 1998 | A |
6161417 | Nepsund | Dec 2000 | A |
6327902 | Berry, III et al. | Dec 2001 | B1 |
6604486 | Krisko et al. | Aug 2003 | B1 |
7137303 | Janik et al. | Nov 2006 | B2 |
20060163127 | Berry et al. | Jul 2006 | A1 |
Number | Date | Country |
---|---|---|
2616315 | Oct 1977 | DE |
3428307 | Feb 1986 | DE |
10315052 | Dec 2003 | DE |
0229893 | Jul 1987 | EP |
2259637 | Aug 1975 | FR |
0929085 | Jun 1963 | GB |
WO-2006079067 | Jul 2006 | WO |
WO-2006081564 | Aug 2006 | WO |
WO-2007149445 | Dec 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20080072687 A1 | Mar 2008 | US |
Number | Date | Country | |
---|---|---|---|
60814233 | Jun 2006 | US |