1. Field of the Disclosure
The disclosure generally relates to a dialysis device adapted to be implanted at least partially into the body of a patient
2. Discussion of the Background Art
Worldwide, 1.5 million people suffer from kidney diseases and need a kidney replacement therapy. This number will increase at a yearly rate of 6%. Innovative technologies and the individualization of treatment methods can decisively improve the quality of life for patients suffering from kidney diseases. Particular attention is given to the adaptation of the treatment to the individual basic physiological conditions of the patients.
Presently, dialysis can only incompletely replace the function of kidneys. Various parties work on improving detoxification by dialysis. In the present state of the art, a detoxification by three dialysis sessions a week, taking 4-5 hours each, means a very high physical stress and a very high time expenditure to the patient. Owing to the short and intensive dialysis periods, the cell tissue of the patient is exposed to high stress (plasmolysis), which can have an additional adverse effect on the physical condition of the patient (multimorbidity). Toxic substances accumulate over decades of dialysis so that a plurality of medical problems can occur such as, for example, cardiac insufficiency, nervous disorders, bone pain.
The principle of dialysis can be implemented in two ways. The first method is based on the principle of the osmotic effect. In this case, an appropriate membrane is used that has a suitable pore size to remove waste products between a dialysate and the blood. However, in order to achieve an appropriate effect in a minimum of time, this method already frequently used requires very large surfaces. With conventional dialysis apparatuses, this problem is solved, for example, by the use of a plurality of membrane tubes with minute diameters. However, dialysis periods of several hours are still necessary in this case, and this several times a week. Another problem of prior art is the recurrently necessary puncturing of veins and arteries with needles in order to allow the connection of the apparatus.
The object to be achieved with the disclosure is to provide an artificial kidney that is simple, resource-saving and well tolerated by the patient. It is intended to provide a system that a patient can permanently carry on or in his body without being subjected to substantial restrictions of his mobility and the quality of life.
The disclosure relates to a portable device for dialysis which can be configured to be partially or completely implantable. In an embodiment of the disclosure, the device is formed by a blood chamber and a dialysis chamber which are connected through a suitable filter, and by a housing, an electro-hydraulic pump device, as well as a reservoir.
Using a suitable liquid and a hydraulic pump device, the blood chamber is compressed and blood plasma containing metabolic waste products is removed from the blood circulation. The dialysate is stored in an extracorporeal or even implantable reservoir and is diluted there so that is also possible to supply liquid to the body via the membrane and through the pumping process.
The disclosure relates to a portable apparatus for washing blood (dialysis) that may be configured to be partially or completely implantable (
The device is connected to a reservoir 4 that stores the dialysate. The device and the reservoir may be designed to be implantable. If both components are implantable, a percutaneous line or a conventional port 7 is provided for the purpose of refilling the reservoir. Owing to the use of a separate chamber for the dialysate, which is compressed by means of an electro-hydraulic drive and hydraulic fluid, an efficient mixing of the dialysate and thus an efficient dilution is obtained. Further, the use of electro-hydraulic drives ensures a controlled filling and emptying of the blood chamber, whereby an efficient purging is guaranteed. In the reservoir, the mixing causes a decrease in the concentration of metabolic waste products so that these substances will return into the circulation only to a very limited extent during a next pumping process. This is possible as long as the saturation does not exceed a threshold value. Otherwise, the liquid in the reservoir must either be cleaned or replaced using appropriate methods.
Using suitable membrane technology, this method can also be implemented with an alternative assembly. An exemplary embodiment is illustrated in
As an alternative, the membrane or the surface thereof may be designed with regard to its charge or surface structure such that waste substances are repelled and thus do not return into the blood vessel.
Number | Date | Country | Kind |
---|---|---|---|
10 2011 081 204 | Aug 2011 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/065886 | 8/14/2012 | WO | 00 | 8/7/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/024091 | 2/21/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
374854 | Stevens | Dec 1887 | A |
4524466 | Hall et al. | Jun 1985 | A |
5397354 | Wilk et al. | Mar 1995 | A |
8398536 | Vodermayer et al. | Mar 2013 | B2 |
20060030809 | Barzilay | Feb 2006 | A1 |
20090234266 | Solomon | Sep 2009 | A1 |
20110137107 | Vodermayer et al. | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
102006035798 | Feb 2008 | DE |
102008017448 | Oct 2009 | DE |
Entry |
---|
International Search Report dated Feb. 28, 2013 for PCT/EP2012/065886. |
Written Opinion Report dated Feb. 28, 2013 for PCT/EP2012/065886. |
Number | Date | Country | |
---|---|---|---|
20150112240 A1 | Apr 2015 | US |