In general, the present disclosure relates to medical fluid delivery systems that employ a pumping cassette. In particular, the present disclosure provides systems, methods and apparatuses for cassette-based dialysis medical fluid therapies, including but not limited to those using peristaltic pumps and diaphragm pumps.
Due to various causes, a person's renal system can fail. Renal failure produces several physiological derangements. The balance of water, minerals and the excretion of daily metabolic load is no longer possible and toxic end products of nitrogen metabolism (urea, creatinine, uric acid, and others) can accumulate in blood and tissue.
Kidney failure and reduced kidney function have been treated with dialysis. Dialysis removes waste, toxins and excess water from the body that would otherwise have been removed by normal functioning kidneys. Dialysis treatment for replacement of kidney functions is critical to many people because the treatment is life saving.
Hemodialysis and peritoneal dialysis are two types of dialysis therapies used commonly to treat loss of kidney function. Hemodialysis treatment utilizes the patient's blood to remove waste, toxins and excess water from the patient. The patient is connected to a hemodialysis machine and the patient's blood is pumped through the machine. Catheters are inserted into the patient's veins and arteries so that blood can flow to and from the hemodialysis machine. The blood passes through a dialyzer of the machine, which removes waste, toxins and excess water from the blood. The cleaned blood is returned to the patient. A large amount of dialysate, for example about 120 liters, is consumed to dialyze the blood during a single hemodialysis therapy. Hemodialysis treatment lasts several hours and is generally performed in a treatment center about three or four times per week.
Peritoneal dialysis uses a dialysis solution, or “dialysate,” which is infused into a patient's peritoneal cavity via a catheter. The dialysate contacts the peritoneal membrane of the peritoneal cavity. Waste, toxins and excess water pass from the patient's bloodstream, through the peritoneal membrane and into the dialysate due to diffusion and osmosis, i.e., an osmotic gradient occurs across the membrane. The spent dialysate is drained from the patient, removing waste, toxins and excess water from the patient. This cycle is repeated.
There are various types of peritoneal dialysis therapies, including continuous ambulatory peritoneal dialysis (“CAPD”), automated peritoneal dialysis (“APD”), tidal flow APD and continuous flow peritoneal dialysis (“CFPD”). CAPD is a manual dialysis treatment. The patient manually connects an implanted catheter to a drain, allowing spent dialysate fluid to drain from the peritoneal cavity. The patient then connects the catheter to a bag of fresh dialysate, infusing fresh dialysate through the catheter and into the patient. The patient disconnects the catheter from the fresh dialysate bag and allows the dialysate to dwell within the peritoneal cavity, wherein the transfer of waste, toxins and excess water takes place. After a dwell period, the patient repeats the manual dialysis procedure, for example, four times per day, each treatment lasting about an hour. Manual peritoneal dialysis requires a significant amount of time and effort from the patient, leaving ample room for improvement.
Automated peritoneal dialysis (“APD”) is similar to CAPD in that the dialysis treatment includes drain, fill, and dwell cycles. APD machines, however, perform the cycles automatically, typically while the patient sleeps. APD machines free patients from having to manually perform the treatment cycles and from having to transport supplies during the day. APD machines connect fluidly to an implanted catheter, to a source or bag of fresh dialysate and to a fluid drain. APD machines pump fresh dialysate from a dialysate source, through the catheter, into the patient's peritoneal cavity, and allow the dialysate to dwell within the cavity, and allow the transfer of waste, toxins and excess water to take place. The source can be multiple sterile dialysate solution bags.
APD machines pump spent dialysate from the peritoneal cavity, though the catheter, to the drain. As with the manual process, several drain, fill and dwell cycles occur during APD. A “last fill” occurs at the end of CAPD and APD, which remains in the peritoneal cavity of the patient until the next treatment.
Both CAPD and APD are batch type systems that send spent dialysis fluid to a drain. Tidal flow systems are modified batch systems. With tidal flow, instead of removing all of the fluid from the patient over a longer period of time, a portion of the fluid is removed and replaced after smaller increments of time.
Continuous flow, or CFPD, systems clean or regenerate spent dialysate instead of discarding it. The systems pump fluid into and out of the patient, through a loop. Dialysate flows into the peritoneal cavity through one catheter lumen and out another catheter lumen. The fluid exiting the patient passes through a reconstitution device that removes waste from the dialysate, e.g., via a urea removal column that employs urease to enzymatically convert urea into ammonia. The ammonia is then removed from the dialysate by adsorption prior to reintroduction of the dialysate into the peritoneal cavity. Additional sensors are employed to monitor the removal of ammonia. CFPD systems are typically more complicated than batch systems.
Hemodialysis, APD (including tidal flow) and CFPD systems can employ a pumping cassette. The pumping cassette typically includes a flexible membrane that is moved mechanically to push and pull dialysis fluid out of and into, respectively, the cassette. Certain known systems include flexible sheeting on one side of the cassette, while others include sheeting on both sides of the cassette. Positive and/or negative pressure can be used to operate the pumping cassettes.
One problem with dialysis systems is to be able to accurately measure dialysate flowrate. Accurate flowrate measurement can be difficult in systems intending to use a sealed disposable cassette. As discussed above, detecting air or gas in dialysis systems is important. It is also useful to be able to detect fibrin in PD systems. In both cases, it would be useful to be able to detect for example the size and/or shape of the gas bubbles or fibrin particles for quantification.
Yet a further concern for dialysis systems is fluid or dialysate temperature heating. The dialysate needs to be heated to roughly body temperature or 37° C. before being delivered to the patient. For dialysate heating, it is desirable to have an apparatus that can be incorporated into, at least partially, and/or operate with a disposable dialysis cassette.
The present disclosure addresses the above-described needs and concerns.
A first aspect of the present disclosure includes an improved system for medical fluid flowrate detection. The system may be implemented in a disposable cassette or with tubing operating with a disposable cassette, for example. A portion of a cassette pathway or the tube is flattened, e.g., into a section having a known, rectangular cross-sectional area. The rectangular shape can have a high aspect ratio, that is, is relatively thin in one dimension and wide in the other dimension. The wide side creates an optically transparent viewing window. A camera and light source are placed relative to the viewing window, such that the camera is able to image gas bubbles and/or fibrin particles flowing within the liquid, e.g., dialysate stream, and through the optically transparent viewing chamber. The camera sends signals to a controller, e.g., processor and memory device, which determines the velocity of the bubbles or particles, and derives the velocity of the fluid from the bubble/particle velocities. Knowing the velocity of the dialysate and the cross-sectional area of the viewing portion, the system can then determine the flowrate of the dialysate. The system software is also configured to determine the shape and/or size of the object, which enables the system to determine whether the object is a gas bubble or fibrin particle for example.
The system can be configured with one or multiple light sources. Multiple light sources can be sequenced to improve feature illumination. The light source(s) can backlight the viewing portion, light the viewing surface from the front (same side as camera) or back, from one or more of the top or bottom of the viewing portion, or any combination thereof. Optics, e.g., lenses or mirrors, may be provided to focus or direct light from the source to a desired destination.
A second aspect of the present disclosure includes an improved cassette-based fluid or dialysate heater. The heater in one embodiment heats the fluid inductively, such that wires or electrical leads do not have to extend to the heating element and the element can contact the dialysate directly. The resulting heater efficiently enables its package to be small and suitable for cassette mounting. In one embodiment, a single housing is provided with a multi-pass element. In another embodiment, multiple housings are provided or a U-shaped housing with multiple legs is provided, each having at least one heater element.
A first embodiment of the present disclosure includes an improved system for medical fluid flowrate, particle and/or gas bubble detection. The system may be implemented in a medical fluid machine having: (i) an enclosure; (ii) a disposable unit accepted by the enclosure, the disposable unit including or communicating with a pathway through which a medical fluid can flow, wherein the pathway includes a viewing portion; (iii) a light source configured and arranged to emit light into the viewing portion of the tube; (iv) a camera focused on the viewing portion of the tube; (v) a processor or software configured to determine the presence, shape, and speed of particles entrained in the medical fluid based on at least two images of the particle in the viewing area taken by the camera; and (vi) alternatively or additionally, processor software configured to detect gas bubbles in the medical fluid, estimate the volume of same and accumulate total estimated volume of gas passing the detector (viewed portion of fluid pathway).
A second embodiment of the present disclosure includes an improved medication fluid machine having a pump that pumps medical fluid and a heater that heats the medical fluid, the heater including an electrically insulative housing, at least one flat sheet of electrically conductive material suitable for contacting the medical fluid, the sheet disposed within the insulative housing, the sheet defining a flow path for the medical fluid in which the medical fluid changes direction at least one time, a primary coil of a transformer located outside the insulative housing, the primary coil configured to induce a current into the at least one conductive sheet, creating heat that may be transferred to the medical fluid.
In one implementation, the housing includes at least one of: (i) at least one of an inlet and an outlet for the medical fluid, (ii) is at least substantially rectangular and is sized to hold just enough of the at least one conductive metal sheet so that the medical fluid can flow readily throughout the housing at a flowrate of at least about 150 ml/min, and so that the medical fluid initially at a temperature of less than 10° C. can be heated to a desired temperature of at least 35° C., and (iii) is U-shaped, wherein sides of the U-shaped housing include at least one of: (a) one of the sheets of electrically conductive material and (b) a flow path for the medical fluid in which the medical fluid changes direction at least one time.
In one implementation, the at least one flat sheet includes at least one characteristic selected from the group consisting of: (i) being a plurality of sheets disposed at least substantially parallel to one another; (ii) forming a serpentine flow path; (iii) being made of stainless steel; (iv) having at least one flow restricting baffle; (v) having a notch allowing flow of the fluid to change direction; and (vi) having a protective plastic film.
In one implementation, the machine includes a processor configured to control an amount of power delivered to the primary coil so that the at least one conductive sheet is heated to a temperature suitable to heat the medical fluid to a desired temperature.
In one implementation, the processor is configured to control the power based on at least one of: (i) the desired temperature; (ii) a flowrate of the medical fluid; (iii) an initial temperature of the medical fluid; and (iv) a signal from a medical fluid temperature sensor.
In one implementation, the heater is configured to heat medical fluid initially at a temperature of less than 10° C. to a desired temperature of at least 35° C., wherein a flowrate of the medical fluid is at least 150 ml/min.
In one implementation, the machine is a dialysis machine, and wherein the medical fluid is dialysate.
In one implementation, the machine includes an enclosure carrying the pump: (i) the heater also carried by the enclosure; or (ii) the heater located remotely from the enclosure.
In one implementation, the machine is operable with a disposable cassette, the cassette having a portion operable with the pump: (i) the housing of the heater integrated with the cassette; or (ii) the housing of the heater located remotely from and in fluid communication with the cassette.
In one implementation, the heater includes a primary coil of a transformer located outside the insulative housing, the primary coil configured to induce a current into the at least one conductive sheet, creating heat that may be transferred to the medical fluid.
It is therefore an advantage of the present disclosure to provide an improved apparatus and method for detecting medical fluid flowrate.
Another advantage of the present disclosure is to provide an improved medical fluid heater.
Additional features and advantages of the present disclosure are described in, and will be apparent from, the following Detailed Description of the Disclosure and the figures.
The present disclosure relates to medical fluid delivery systems that employ a pump, such as a peristaltic pump. In particular, the present disclosure provides systems, methods and apparatuses for cassette-based dialysis therapies including but not limited to hemodialysis, hemofiltration, hemodiafiltration, any type of continuous renal replacement therapy (“CRRT”), congestive heart failure treatment, CAPD, APD (including tidal modalities) and CFPD. The cassette is disposable and typically discarded after a single use or therapy, reducing risks associated with contamination.
Referring now to
As seen in
Referring now to
Referring now to
The disposable set includes a tubing organizer 358, which can be placed on the table or night stand to further assist the loading of cassette 50 and heater bag 356. Organizer 358 holds supply lines 28, 54 and 20 next to one another. Those lines in an embodiment are tacked or otherwise held together, so that the patient knows that those lines are intended to be connected to supply bags 22, 16 and 14, respectively. Drain line 32 in an embodiment has a larger diameter hose than do supply lines 28, 54 and 20. This also helps the patient to keep the different lines straight in memory. Thus it should be appreciated that in configuration 350, cassette 50 and the lines connected to organizer 358 are loaded through the front of the unit 60, which places the tubes in an advantageous viewing area in front of the patient.
The identification of supply lines 28, 54 and 20, drain line 32 and patient line 12 is further aided via identifying markings. For example, clamps 360 (
As seen in
Referring now to
As seen in
As discussed above, it is desirable for the peritoneal dialysis systems described herein to be able to measure dialysate flowrate accurately and to detect and quantify gas bubbles and solid particles flowing through a conduit, which can for example be coupled to a disposal dialysis cassette, such as cassette 50 (e.g.,
System 450 of
In the illustrated embodiment, tube or conduit 452 includes ends 454a and 454b, which are at least substantially circular in cross-section. Ends 454a and 454b extend to transitional sections 456a and 456b, respectively. Transitional sections transition from the generally circular cross-section of ends 454a and 454b to the at least substantially rectangular cross-section of a viewing portion 458 of tube 452. The cross-sectional area of viewing portion 458 is known. In an alternative embodiment (not illustrated) viewing portion 458 is provided as a rectangular and optically transparent, e.g., rigid pathway of a disposable cassette, such as cassette 50.
The shape of the viewing portion 458 of tube or pathway 452 is chosen to ensure that any particles traveling in the dialysate or fluid can be imaged clearly by camera 464. Viewing portion 458 can be formed integrally with conduit 452, spliced into conduit 452 or connected to the end of the conduit. The illustrated rectangular viewing window is intended to have an aspect ratio approximately equal to that of the camera detector. A cross-sectional shape having a high aspect ratio, such as the illustrated rectangular shape is desirable. The high aspect ratio shape enables a camera 464 to look through a relatively thin section of dialysate flow. This thinned section of flow reduces the number of particles that can be hidden from view because they reside behind particles nearer to camera 464.
Optics or lenses 460a and 460b are placed on either side of viewing portion 458 in system 450 of
Light source 462 illuminates the gas bubbles or particles within the fluid or dialysate, so that the bubbles or particles can be viewed by camera 464. Lens 460b is configured to focus the viewing area 458 onto the image detector of the camera 464. An aperture (not shown) between the focusing lens 460b and the camera may be included to increase the depth-of-field view of the camera so that the entire volume of fluid inside the viewing portion 458 is in focus. Alternatively, the diameter of lens 460b may be chosen so as to provide the appropriate aperture effect to obtain the required depth of field.
Referring now to
The primary difference between system 470 and system 450 is that light source 462 is placed on the same side of conduit 452 as is camera 464. This configuration illuminates the particles or gas bubbles from the front relative to camera 464 as opposed to the back-lighting of system 450. With either system 450 or 470 it is desirable however that the side that camera 464 views is optically transparent, smooth, and/or mirror-like. As seen in
In an alternative embodiment, multiple light sources 462 are placed in the front of viewing portion 458 relative to camera 464, so that the light can be directed to the surface of viewing portion 458 via multiple angles, and/or sequenced as described above. Although not illustrated, it is possible to light viewing portion 458 from its top and/or bottom surface as desired. Further, any combination of back lighting, front lighting and/or top and bottom lighting may be provided as needed to optimize performance and cost. One advantage of system 470 for example is that the hardware apparatuses 462 and 464 can be located on a single side of the dialysis machine, for example unit 60 (e.g.,
Referring additionally to
All associated electronics including camera 464 are provided on a single printed circuit board in one embodiment. Memory 476 stores code or software, which as described below recognizes the particles or bubbles, determines the velocity of same, determines the velocity of the liquid from the velocity of the particles, and determines the volumetric flowrate using the velocity of the liquid in combination with the known cross-sectional area of view portion 458.
The limited exposure time of camera 464 makes a high intensity light source desirable. Accordingly, in an embodiment, light source 462 is a high intensity light emitting diode (“LED”). Processor 472 can be configured such that light source 462 is energized only when camera 464 is activated. Intermittent light source activation enables light source 462 to withstand a higher peak current and corresponding higher brightness than if light source 462 is powered continuously. LED's are inherently highly reliable if properly applied, and a backup may not be needed. Systems 450 and 470 may or may not need a white LED (if a monochrome camera sensor is used). High intensity LED's or infrared (“IR”) LEDs are likely sufficient for the intensity of light needed.
Systems 450 and 470 can also provide multiple light sources (and possibly multiple lenses 460a) to illuminate viewing portion 458 from multiple angles. Here, each light source can be activated sequentially in time with sequential frames of camera 464 and/or simultaneously for each camera frame.
In a further alternative embodiment, a small transducer (not illustrated) is provided, which induces ultrasonic or other frequencies into the fluid flow. The frequencies can be modulated and multiple different frequencies can be induced into the flow. A vibration causing device, such as a piezoelectric or pressure wave causing transducer causes vibrations to be made to tube or conduit 452 directly or to the fluid within conduit 452 to help prevent bubbles or particles from sticking to the inner wall of conduit 452 and/or to each other. The transducer optimally induces the vibrations directly to viewing portion 458. The transducer and the other apparatuses of systems 450 and 470, such as light source 462, lenses 460a and 460b, camera 464, processor 472 and memory 476 are each provided in one embodiment in the peritoneal dialysis instrument or actuator unit.
Referring additionally to
With individual frame recognition, hardware-based frame-grabber 468/474 stores image frames sent via camera 464 into RAM buffer 476 in rapid succession, as seen in connection with block 582. DSP 472 and RAM 476 process each frame using edge-based shape detection at the pixel level, as seen in connection with block 584. From the edge features, DSP 472 and RAM 476 develop object contours, as seen in connection with block 586, with which a pattern recognition algorithm stored on RAM 476 performs shape classification, e.g., into either a circular or non-circular classification, as seen in connection with block 588. Each object is then tagged with a unique identification that includes the object's classification (e.g., gas bubble or fibrin) and size, as seen in connection with block 590. Thus, individual frame recognition can be used for example to detect gas in the system.
In the multiple frame analysis, systems 450 and 470 perform frame-to-frame comparison to correlate features and refine object shape and size as seen in connection with block 600. For object detection, frame-to-frame comparison brings a three dimensional aspect to object detection. For example, non-symmetrical fibrin particles will change shape as they rotate within a dialysate stream. Spherical gas particles do not change shape significantly as they rotate within the dialysate stream. Using multiple frames, systems 450 and 470 can look for shape changes to confirm a classification made from an earlier frame. Further, systems 450, 470 can include additional particle type identifying features, such as the ability to look for highlights on an illuminated object. For example, systems 450, 470 can look for reflections on a spherical gas bubble that may not appear on other types of particles, such as fibrin.
The integration of multiple images allows systems 450 and 470 to distinguish overlapping objects assuming that they do not overlap the entire time they are in the field of view. This helps in determining how many, e.g., gas particles there are, know the volumes of gas, and calculate a total amount of gas, as seen in connection with block 602. To this end, system 450, 470 classifies all objects found to be circular or spherical as possible gas bubbles. From the visible diameter, the volume of each bubble is calculated. The volumes of all gas bubble objects are accumulated to provide a measure of the total gas volume passing through the chamber. It should be appreciated that in many applications, a small amount of gas, e.g., one-hundred milliliters, over a period of time or for a particular volume of fluid is allowable. An air alarm condition in one embodiment is therefore based on a set amount of accumulated air.
In determining total gas volume in this manner, it should be appreciated that systems 450 and 470 are dependent on particle density. That is, as the density of objects in the fluid increases, the likelihood that certain objects will be misidentified or not seen due to overlap increases.
As seen in connection with block 604, systems 450 and 470 provide methods and apparatuses that measure the quantity, size, shape and velocity of particles or gas bubbles flowing within a fluid, such as dialysate. Determining the velocity of particles moving with the fluid allows the velocity of the fluid itself to be determined, that is, the two are assumed to be equal. Knowing the cross-sectional area of viewing portion 458 in combination with the fluid velocity enables systems 450 and 470 to calculate the volumetric flowrate of the dialysate. If only flowrate is needed, feature tracking is performed and high particle count is not an issue.
Knowing the flowrate over time yields total volume of fluid delivered. System 450, 470 can further increase total volume accuracy by subtracting a total gas volume from a total calculated volume to obtain a total liquid volume.
If possible, system 450, 470 tracks all visible objects as they move across the field of view. The systems analyze the contribution to fluid flow of each pixel-mapped location of the viewing chamber 458. This information is known to the software, so that a “contribution factor” is given to each object's velocity based upon its two dimensional position for calculating the overall fluid flow.
Systems 450 and 470 output information to the CPU 478 of dialysis machine 60 (e.g.,
Conversely, if systems 450 and 470 see only fibrin or other body particles, the systems are programmed to assume that non-uniform, non-spherical particles are not gas bubbles in a non-alarm condition. Here, systems 450 and 470 can be used to perform flowrate calculations and send flowrate information to CPU 478, which uses this information for display to the patient and/or for pump speed feedback.
Systems 450 and 470 can be applied to fluids other than dialysate, in which the proportion of particles or bubbles is not too great, e.g., for partical/bubble differentiation and quantification. In fact, optical systems 450 and 470 may be utilized with dry particle “fluids”, e.g., dry sand, assuming the mechanical vibration discussed above is sufficient to keep the sand moving in a fluid-like manner, and that the particle sizes are not too small to be distinguished. It is also contemplated to use systems 450 and 470 with gas fluid streams, such as compressible gases. Here too, the systems rely upon the assumption that the particles or other discernable matter carried by the compressible gas stream travel at least substantially at the same rate as the gas.
As mentioned, at least the conduit portion 452 of systems 450 and 470 is adapted readily to be provided in a sealed, low cost disposable cassette, such as cassette 50. Alternatively, conduit portion 452 of systems 450 and 470 is a permanent or semi-permanent component of systems 450 and 470.
Referring now to
Heater 480 in the illustrated embodiment is a relatively small, multi-pass, disposable, inductive heater configured to heat dialysate, for example, from about 5° C. to about 37° C. (body temperature) at a dialysate flowrate of about 200 ml/min. Heater 480 includes a housing 482, such as a plastic or otherwise electrically insulative housing. Suitable materials for housing 482 include plastics approved for carrying injectable fluids. Housing 482 has a top wall 484, sidewalls 486 and 488, a bottom wall 490 and front and back walls (not seen). In the illustrated embodiment, heater 480 defines or includes a fluid inlet 492 and a fluid outlet 494. Metal or conductive plates or baffles 496a to 496d are located within the housing. The plates 496 (referring collectively to plates 496a to 496d) define a tortuous path for the dialysate to flow from the inlet 492 to the outlet 494. The illustrated embodiment shows four plates, but more or less plates may be used as desired. Plates 496 can have flow restricting baffles.
In one implementation the plates are heated to 47° C. to achieve the above-described desired fluid heating. Changing the number of plates 496 or total surface area of same would raise or lower the necessary plate temperature. The illustrated housing 482 is generally rectangular but could have a different shape. The aspect ratio or length l versus depth d of plates 496 can be varied as needed. As mentioned above, housing 482 may be incorporated into a disposable cassette (e.g., cassette 50) or operate upstream or downstream from the cassette. Plates 496 can be made from any of a variety of medically suitable metals, e.g., stainless steel, as desired to enhance the inductive heating of the plates. Plates 496 are covered with a protective plastic film in one embodiment allowing for better conducting metals to be used to form plates 496.
Plates 496 form a secondary coil of a transformer shown in more detail below in connection with electrical system 540 of
One set of suitable dimensions for induction inline heater 480 is as follows. The dimensions are provided for illustration purposes only and are not intended to limit the scope of the disclosure in any way. The dimensions do demonstrate however that the inductive heater can be relatively small and is well-suited for incorporation into a disposable cassette. Again, the dimensions are sized in one embodiment to provide a heater 480 with the capacity to bring dialysate stored at about 5° C. to a therapy temperature of about 37° C., assuming a flowrite of about 200 ml/min. along a fluid pathway 498. To accomplish this requirement for the below-described dimensions, it is estimated that the temperature of plates 496a to 496d will need to be heated to about 47° C.
In the illustrated example, the length l and depth d of top 484 and bottom 490 of heater 480 is about 3.08 inches (7.82 cm) by 0.630 inches (1.60 cm), respectively. The height h of sidewalls 486 and 488 (and the front and back walls, not illustrated) is about 0.440 inch (1.12 cm). The thickness, t1, of top wall 484, sidewalls 486 and 488 and bottom wall 490 is about 0.065 inch (1.15 cm). The thickness of the non-illustrated front and back walls in an embodiment is the same as thickness t1.
The thickness t2 of heating plates 496a to 496d in one embodiment is about 0.04 inch (1.02 mm). Plates 496 as mentioned above are made in one embodiment of stainless steel, such as stainless steel 304 or 316. Plates 496 can be made of other suitable, non-corrosive, medically compatible, inductively heatable material, such as stainless steel 304, 316 or 430. The plates used for the above-described dimensions l, h and d for housing 482 are about 2.85 inches (7.24 cm) long by 0.500 inches (1.27 cm) deep in one embodiment. Plates 496a to 496d can be spaced apart from each other and from top wall 454 and bottom wall 490 a gap distance g of about 0.03 inches (0.762 mm). The spaces s left between the ends of plates 496a to 496d and the inner surfaces of sidewalls 486 and 488 is 0.100 inch (2.54 mm) in one embodiment. While gaps g, thicknesses t1 and t2, and spaces s are each described as being the same or constant, it is contemplated to vary one or more of those dimensions as needed. It is also expressly contemplated to provide a filter and/or a trap to remove any particles from the dialysate before the dialysate enters heater 480 to preserve the free flow of fluid through relatively narrow pathway 498.
The dimensions of inlet 492 and outlet 494 can be for example 0.250 inch (6.35 mm) inner diameter and 0.275 inches (6.99 mm) long, with a wall thickness of 0.065 inch (1.65 mm). Inlet 492 and outlet 494 can have flanged or integral ferrel-type apparatus to connect seelingly to heater lines 68 for example or with internal tubes disposed within disposable cassette 50. Inlet 492 and outlet 494 are formed alternatively integrally with one or more passages of cassette 50.
In the illustrated embodiment, inlet 492 is located elevationally above outlet 494. This is advantageous in one respect because air or gas coming out of solution while being heated along pathway 498 tends to rise toward the top of heater 480 along gaps g, leaving at least substantially pure heated fluid or dialysate flow from the bottom of heater 480 through outlet 494. In an alternative embodiment, heater 480 is rotated ninety degrees from the orientation shown in
Inline heater 480 eliminates the need for warmer bags 350 and 400 described above. In any of the orientations discussed above, inline heater 480 can include a separate air separation chamber or other air/gas purge apparatus, for example, as part of cassette 50 (e.g.,
Referring now to
As mentioned above, heater 480 can be modified to have more or fewer plates 496 which are heated to lower or higher temperatures, respectively. Plates 496 can be varied to have different aspect ratios (length l to depth d ratio). Plates 496 may be smooth or textured. Heater 480 can also be configured such that plates 496 contact the fluid or dialysate directly or are alternatively provided with a film, such as a plastic film. Further alternatively, secondary coil plates 496 may be incorporated into unit 60 of system 10 (e.g.,
Referring now to
Induction coil block 502 in one embodiment is provided as part of the hardware unit 60 of system 10 (e.g.,
As discussed above with heater 480, the inline nature of heaters 480 and 500 eliminates the need for a batch warmer bag. The relatively rigid inductive heating systems 480 and 500 can be less “floppy” than batch heating systems and thereby easier to load. System 500 is constructed so that fluid heating channel 504 is readily aligned and made operable with induction coil block 502.
One set of suitable dimensions for heater 500 is set forth below. The dimensions serve as an illustrative example and in no way are meant to limit the scope of the disclosure. Block 502 includes an e.g., plastic housing 508, which in an embodiment is shaped as a flat plate having overall dimensions l×h×d of about 2 inches×2 inches×0.125 inch thick (5.08 cm×5.08 cm×3.18 mm) or 1 inch×4 inches ×0.125 inch thick (2.54 cm×10.2 cm×3.18 mm). Housing 508 holds coil 532. Coil 532 can be any suitable metal because it does not contact the dialysate directly, such as, steel or stainless steel. Coil 532 in one preferred embodiment is Litz Wire. Coil 532 in one embodiment is a three inch diameter pancake type coil.
Fluid heating channel 504 includes a pair of sub-channels 510, which form the sides of the U-shaped channel 504. Each sub-channel 510 of U-shaped channel 504 in one embodiment has overall dimensions l×h×d of about 2.5 inches×2.5 inches×0.25 inch thick (6.35 cm×6.35 cm×6.35 mm) or about 1.5 inches×4.5 inches×0.25 inch thick (3.81 cm×11.4 cm×6.35 mm). The sub-channels 510 define a gap G between the sub-channels. In one implementation, the clearance or little gap g between each of the outer surfaces of induction coil block 502 and the opposing inner surfaces of sub-channels 510 of fluid heating channel 504 is just enough to allow induction coil block 502 to fit within gap G.
Referring now to
Plate 516 is sized to fit within the walls of covers 512 and 514. Plate 516 defines a notch 522 that allows fluid or dialysate to flow from second plenum 520 to first plenum 518, respectively, as indicated by the arrows shown in
Heating plate 516 can be any suitable medically compatible and inductively heatable material such as stainless steel. As illustrated, plate 516 can have perforations, ribs, baffles or other flow obstructions 528, which: (i) increase surface area contact with the dialysate; (ii) increase contact time; (iii) turbulate the fluid flow; and (iv) increase the efficiency of heater 500. First and second cover portions 512 and 514 can additionally or alternatively have internal ribs or baffling, such as ribs 530, which direct and/or turbulate the flow of dialysate through plenums 518 and 520, respectively.
Referring now to
Summarizing the disclosure of the referenced application briefly, the heater in that application is cylindrically shaped with inner and outer tubes cooperating with a cylindrical element to form the dialysate flow path. Cold fluid is pumped into the induction heater along the inside of the outer tube and the outside of the heater element, around the bottom of the element, then along the inside of the element and outside of the inner tube before finally exiting the heater from the top.
For the cylindrical inductive heater, initial calculations have been made, which indicate that a surface area of less than ten square inches is required to heat the fluid from 5° C. to 37° C. degrees at a dialysate flowrate of approximately 150 ml/min. Using both sides of the element, ten square inches equates to a heater element sized for example at approximately one inch (2.54 cm) in diameter by about 1.5 inches (3.81 cm) long. This results advantageously in a small fluid heater.
As seen in
Referring now to
The zero-crossing switching electronics operate an insulated gate bipolar transistor (“IGBT”) type switching device 546. The IGBT device 546 in one embodiment is an IGBT 60 amp, 1 kV device, which has zero voltage across the associated transistor and zero current through the transistor. IGBT switching device 546 in turn controls a quasi-resonant LC circuit 548, which energizes the primary coil 532 of unit 502. A quasi-resonant LC circuit 548 is used in one embodiment. Coil 532 of unit 502 in can range from about 80 to about 170 uH in inductance. Coil 532 can be energized to ten amperes (wire capability) and have a pancake coil diameter of about three inches (7.6 cm). Circuit 548 can have a resonant frequency of about 30 KH to 50 KH. The power requirement from source 542 is for example from about 300 W to about 600 W. A bridge rectifier 550 is connected between power source 542 and quasi-resonant LC circuit 548.
It should be understood that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the present disclosure and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1656518 | Hammers | Jan 1928 | A |
1981632 | Northrop | Nov 1934 | A |
2494716 | McMahon et al. | Jan 1950 | A |
2550584 | Mittelmann | Apr 1951 | A |
2705223 | Renfrew et al. | Mar 1955 | A |
2971876 | Phair | Feb 1961 | A |
3046378 | Holz | Jul 1962 | A |
3255923 | Soto | Jun 1966 | A |
3315681 | Poppendiek | Apr 1967 | A |
3375300 | Ropp | Mar 1968 | A |
3388230 | Cunningham et al. | Jun 1968 | A |
3428828 | Korzekwa et al. | Feb 1969 | A |
3485245 | Lahr et al. | Dec 1969 | A |
3494897 | Reding et al. | Feb 1970 | A |
3507708 | Vingnaud | Apr 1970 | A |
3514359 | Frese | May 1970 | A |
3518393 | Besseling et al. | Jun 1970 | A |
3561493 | Maillard | Feb 1971 | A |
3641302 | Sargeant | Feb 1972 | A |
3645992 | Elston | Feb 1972 | A |
3772136 | Workman | Nov 1973 | A |
3777117 | Othmer | Dec 1973 | A |
3809241 | Alvine | May 1974 | A |
3812315 | Martin | May 1974 | A |
3814799 | Wygasch | Jun 1974 | A |
3816033 | Fried et al. | Jun 1974 | A |
3816687 | Heitner | Jun 1974 | A |
3858581 | Kamen | Jan 1975 | A |
3912843 | Brazier | Oct 1975 | A |
3936625 | Burnett | Feb 1976 | A |
3937758 | Castagna | Feb 1976 | A |
3995084 | Berger et al. | Nov 1976 | A |
4032740 | Mittelmann | Jun 1977 | A |
4041103 | Davison et al. | Aug 1977 | A |
4058647 | Inoue et al. | Nov 1977 | A |
4071040 | Moriarty | Jan 1978 | A |
4087587 | Shida et al. | May 1978 | A |
4087588 | Shida et al. | May 1978 | A |
4089176 | Ashe | May 1978 | A |
4095012 | Schirmer | Jun 1978 | A |
4110303 | Gergen et al. | Aug 1978 | A |
4122947 | Falla | Oct 1978 | A |
4137915 | Kamen | Feb 1979 | A |
4140118 | Jassawalla | Feb 1979 | A |
4142524 | Jassawalla et al. | Mar 1979 | A |
4147827 | Breidt Jr. et al. | Apr 1979 | A |
4180460 | Calari | Dec 1979 | A |
4181245 | Garrett et al. | Jan 1980 | A |
4187057 | Xanthopoulos | Feb 1980 | A |
4191646 | Larsson et al. | Mar 1980 | A |
4194536 | Stine et al. | Mar 1980 | A |
4211519 | Hogan | Jul 1980 | A |
4233367 | Ticknor et al. | Nov 1980 | A |
4233494 | Pawlik et al. | Nov 1980 | A |
4236880 | Archibald | Dec 1980 | A |
4243619 | Fraser et al. | Jan 1981 | A |
4265601 | Mandroian | May 1981 | A |
4276175 | Bower | Jun 1981 | A |
4286597 | Gajewski | Sep 1981 | A |
4293762 | Ogawa | Oct 1981 | A |
4298714 | Levin et al. | Nov 1981 | A |
4303376 | Siekmann | Dec 1981 | A |
4322465 | Webster | Mar 1982 | A |
4322480 | Tuller et al. | Mar 1982 | A |
D264134 | Xanthopoulos | Apr 1982 | S |
4327726 | Kwong et al. | May 1982 | A |
4332655 | Berejka | Jun 1982 | A |
4333088 | Diggins | Jun 1982 | A |
4336352 | Sakurai et al. | Jun 1982 | A |
4341936 | Virgin | Jul 1982 | A |
4381005 | Bujan | Apr 1983 | A |
4382753 | Archibald | May 1983 | A |
4387184 | Coquard et al. | Jun 1983 | A |
4391600 | Archibald | Jul 1983 | A |
4396382 | Goldhaber | Aug 1983 | A |
4405667 | Christensen et al. | Sep 1983 | A |
4405774 | Miwa et al. | Sep 1983 | A |
4407877 | Rasmussen | Oct 1983 | A |
4407888 | Crofts | Oct 1983 | A |
4410164 | Kamen | Oct 1983 | A |
4410322 | Archibald | Oct 1983 | A |
4411649 | Kamen | Oct 1983 | A |
4417753 | Bacehowski | Nov 1983 | A |
4429076 | Saito et al. | Jan 1984 | A |
4438238 | Fukushima et al. | Mar 1984 | A |
4449976 | Kamen | May 1984 | A |
4464563 | Jewett | Aug 1984 | A |
4471191 | Greis et al. | Sep 1984 | A |
4472116 | Wenstrup | Sep 1984 | A |
4472117 | Wenstrup | Sep 1984 | A |
4473342 | Iles | Sep 1984 | A |
4479760 | Bilstad et al. | Oct 1984 | A |
4479761 | Bilstad et al. | Oct 1984 | A |
4479762 | Bilstad et al. | Oct 1984 | A |
4479989 | Mahal | Oct 1984 | A |
4480172 | Ciciliot | Oct 1984 | A |
4488961 | Spencer | Dec 1984 | A |
4511777 | Gerard | Apr 1985 | A |
4521437 | Storms | Jun 1985 | A |
4532414 | Shah et al. | Jul 1985 | A |
4537561 | Xanthopoulos | Aug 1985 | A |
4547136 | Rothstein | Oct 1985 | A |
4548348 | Clements | Oct 1985 | A |
4560849 | Migliori et al. | Dec 1985 | A |
4562118 | Maruhashi et al. | Dec 1985 | A |
4568723 | Lu | Feb 1986 | A |
4573994 | Fischell et al. | Mar 1986 | A |
4574173 | Bennett | Mar 1986 | A |
4574876 | Aid | Mar 1986 | A |
4586920 | Peabody | May 1986 | A |
4588648 | Krueger | May 1986 | A |
4599055 | Dykstra | Jul 1986 | A |
4599276 | Martini | Jul 1986 | A |
4600401 | Kamen | Jul 1986 | A |
4602140 | Sobolewski | Jul 1986 | A |
4620690 | Kamen | Nov 1986 | A |
RE32303 | Lasker et al. | Dec 1986 | E |
4627844 | Schmitt | Dec 1986 | A |
4628969 | Jurgens, Jr. et al. | Dec 1986 | A |
4634426 | Kamen | Jan 1987 | A |
4636412 | Field | Jan 1987 | A |
4638135 | Aoki | Jan 1987 | A |
4640870 | Akazawa et al. | Feb 1987 | A |
4642098 | Lundquist | Feb 1987 | A |
4643926 | Mueller | Feb 1987 | A |
4648872 | Kamen | Mar 1987 | A |
4655753 | Bellotti et al. | Apr 1987 | A |
4657490 | Abbott | Apr 1987 | A |
4668752 | Tominari et al. | May 1987 | A |
4673334 | Allington et al. | Jun 1987 | A |
4678460 | Rosner | Jul 1987 | A |
4680445 | Ogawa | Jul 1987 | A |
4681797 | Van Iseghem | Jul 1987 | A |
4686125 | Johnston et al. | Aug 1987 | A |
4692361 | Johnston et al. | Sep 1987 | A |
4696671 | Epstein et al. | Sep 1987 | A |
4707389 | Ward | Nov 1987 | A |
4724028 | Zabielski et al. | Feb 1988 | A |
4726997 | Mueller et al. | Feb 1988 | A |
4732795 | Ohya et al. | Mar 1988 | A |
4734327 | Vicik | Mar 1988 | A |
4735558 | Kienholz et al. | Apr 1988 | A |
4735609 | Comeau et al. | Apr 1988 | A |
4735855 | Wofford et al. | Apr 1988 | A |
4740582 | Coquard et al. | Apr 1988 | A |
4742870 | Darone et al. | May 1988 | A |
4749109 | Kamen | Jun 1988 | A |
4753222 | Morishita | Jun 1988 | A |
4760114 | Haaf et al. | Jul 1988 | A |
4762864 | Goel et al. | Aug 1988 | A |
4764404 | Genske et al. | Aug 1988 | A |
4767377 | Falla | Aug 1988 | A |
4767651 | Starczewski et al. | Aug 1988 | A |
4769151 | Shouldice | Sep 1988 | A |
4772497 | Maasola | Sep 1988 | A |
4778450 | Kamen | Oct 1988 | A |
4778451 | Kamen | Oct 1988 | A |
4778697 | Genske et al. | Oct 1988 | A |
4786697 | Cozewith et al. | Nov 1988 | A |
4789714 | Cozewith et al. | Dec 1988 | A |
4791262 | Ando et al. | Dec 1988 | A |
4792488 | Schirmer | Dec 1988 | A |
4794942 | Yasuda et al. | Jan 1989 | A |
4795782 | Lutz et al. | Jan 1989 | A |
4798580 | DeMeo et al. | Jan 1989 | A |
4800129 | Deak | Jan 1989 | A |
4803102 | Raniere et al. | Feb 1989 | A |
4804474 | Blum | Feb 1989 | A |
4808161 | Kamen | Feb 1989 | A |
4814567 | De Angelis et al. | Mar 1989 | A |
4816343 | Mueller | Mar 1989 | A |
4818190 | Pelmulder et al. | Apr 1989 | A |
4824339 | Bainbridge et al. | Apr 1989 | A |
4826482 | Kamen | May 1989 | A |
4834755 | Silvestrini et al. | May 1989 | A |
4842948 | Gagliani et al. | Jun 1989 | A |
4844074 | Kurucz | Jul 1989 | A |
4847470 | Bakke | Jul 1989 | A |
4848722 | Webster | Jul 1989 | A |
4852851 | Webster | Aug 1989 | A |
4855356 | Holub et al. | Aug 1989 | A |
4855552 | Marceau et al. | Aug 1989 | A |
4856259 | Woo et al. | Aug 1989 | A |
4856260 | Woo et al. | Aug 1989 | A |
4861242 | Finsterwald | Aug 1989 | A |
4863996 | Nakazima et al. | Sep 1989 | A |
4871799 | Kobayashi et al. | Oct 1989 | A |
4872813 | Gorton et al. | Oct 1989 | A |
4873287 | Holub et al. | Oct 1989 | A |
4877682 | Sauers et al. | Oct 1989 | A |
4885119 | Mueller et al. | Dec 1989 | A |
4886431 | Soderquist et al. | Dec 1989 | A |
4904168 | Cavoto et al. | Feb 1990 | A |
4906816 | Van Leerdam | Mar 1990 | A |
4910085 | Raniere et al. | Mar 1990 | A |
4923470 | Dumican | May 1990 | A |
4929479 | Shishido et al. | May 1990 | A |
4931520 | Yamanashi et al. | Jun 1990 | A |
4937299 | Ewen et al. | Jun 1990 | A |
4941519 | Sestak et al. | Jul 1990 | A |
4946616 | Falla et al. | Aug 1990 | A |
4950720 | Randall, Jr. et al. | Aug 1990 | A |
4957966 | Nishio et al. | Sep 1990 | A |
4957967 | Mizuno et al. | Sep 1990 | A |
4966795 | Genske et al. | Oct 1990 | A |
4976162 | Kamen | Dec 1990 | A |
4977213 | Giroud-Abel et al. | Dec 1990 | A |
4990054 | Janocko | Feb 1991 | A |
4992511 | Yamamoto et al. | Feb 1991 | A |
4996054 | Pietsch et al. | Feb 1991 | A |
4999254 | Ofstein | Mar 1991 | A |
5003019 | Ishimaru et al. | Mar 1991 | A |
5003145 | Nolle et al. | Mar 1991 | A |
5006601 | Lutz et al. | Apr 1991 | A |
5008204 | Stehling | Apr 1991 | A |
5008356 | Ishimaru et al. | Apr 1991 | A |
5017652 | Abe et al. | May 1991 | A |
5019140 | Bowser et al. | May 1991 | A |
5034457 | Serini et al. | Jul 1991 | A |
5034458 | Serini et al. | Jul 1991 | A |
5043088 | Falla | Aug 1991 | A |
5043201 | Cote | Aug 1991 | A |
5044902 | Malbec | Sep 1991 | A |
5053457 | Lee | Oct 1991 | A |
5062774 | Kramer et al. | Nov 1991 | A |
5071686 | Genske et al. | Dec 1991 | A |
5071911 | Furuta et al. | Dec 1991 | A |
5071912 | Furuta et al. | Dec 1991 | A |
5073167 | Carr et al. | Dec 1991 | A |
5075376 | Furuta et al. | Dec 1991 | A |
5079295 | Furuta et al. | Jan 1992 | A |
5085649 | Flynn | Feb 1992 | A |
5087677 | Brekner et al. | Feb 1992 | A |
5088515 | Kamen | Feb 1992 | A |
5093164 | Bauer et al. | Mar 1992 | A |
5093194 | Touhsaent et al. | Mar 1992 | A |
5094820 | Maxwell et al. | Mar 1992 | A |
5094921 | Itamura et al. | Mar 1992 | A |
5098262 | Wecker et al. | Mar 1992 | A |
5101086 | Dion et al. | Mar 1992 | A |
5106366 | Steppe | Apr 1992 | A |
5108844 | Blumberg et al. | Apr 1992 | A |
5110642 | Genske et al. | May 1992 | A |
5116906 | Mizuno et al. | May 1992 | A |
5125069 | O'Boyle | Jun 1992 | A |
5125891 | Hossain et al. | Jun 1992 | A |
5129894 | Sommermeyer et al. | Jul 1992 | A |
5132363 | Furuta et al. | Jul 1992 | A |
5133650 | Sunderland et al. | Jul 1992 | A |
5135485 | Cohen et al. | Aug 1992 | A |
5135785 | Milton | Aug 1992 | A |
5145731 | Lund et al. | Sep 1992 | A |
5154979 | Kerschbaumer et al. | Oct 1992 | A |
5159004 | Furuta et al. | Oct 1992 | A |
5164267 | D'Heur et al. | Nov 1992 | A |
5176634 | Smith et al. | Jan 1993 | A |
5176956 | Jevne et al. | Jan 1993 | A |
5178182 | Kamen | Jan 1993 | A |
5178523 | Cheng-Chung | Jan 1993 | A |
5180896 | Gibby et al. | Jan 1993 | A |
5183706 | Bekele | Feb 1993 | A |
5185084 | Lapidus et al. | Feb 1993 | A |
5185189 | Stenger et al. | Feb 1993 | A |
5189091 | Laughner | Feb 1993 | A |
5193913 | Rosenbaum | Mar 1993 | A |
5193990 | Kamen et al. | Mar 1993 | A |
5194316 | Horner et al. | Mar 1993 | A |
5195960 | Hossain et al. | Mar 1993 | A |
5195986 | Kamen | Mar 1993 | A |
5196254 | Alliyama | Mar 1993 | A |
5203943 | Nornberg et al. | Apr 1993 | A |
5206290 | Mizuno et al. | Apr 1993 | A |
5207983 | Liebert et al. | May 1993 | A |
5211201 | Kamen et al. | May 1993 | A |
5212238 | Schelbelhoffer et al. | May 1993 | A |
5213483 | Flaherty et al. | May 1993 | A |
5215312 | Knappe et al. | Jun 1993 | A |
5216215 | Walker et al. | Jun 1993 | A |
5218048 | Abe et al. | Jun 1993 | A |
5218049 | Yamamoto et al. | Jun 1993 | A |
5222946 | Kamen | Jun 1993 | A |
5230934 | Sakano et al. | Jul 1993 | A |
5230935 | Delimoy et al. | Jul 1993 | A |
5238997 | Bauer et al. | Aug 1993 | A |
5239916 | Hu | Aug 1993 | A |
5241985 | Faust et al. | Sep 1993 | A |
5244971 | Dekonick | Sep 1993 | A |
5245151 | Chamberlain et al. | Sep 1993 | A |
5245693 | Ford et al. | Sep 1993 | A |
5252044 | Raines et al. | Oct 1993 | A |
5254824 | Chamberlain et al. | Oct 1993 | A |
5257917 | Minarik et al. | Nov 1993 | A |
5258230 | La Fleur et al. | Nov 1993 | A |
5272235 | Wakatsuru et al. | Dec 1993 | A |
5278231 | Chundury | Jan 1994 | A |
5278377 | Tsai | Jan 1994 | A |
5288531 | Falla et al. | Feb 1994 | A |
5288560 | Sudo et al. | Feb 1994 | A |
5288799 | Schmid et al. | Feb 1994 | A |
5290856 | Okamoto | Mar 1994 | A |
5294763 | Chamberlain et al. | Mar 1994 | A |
5295964 | Gauthier | Mar 1994 | A |
5302093 | Owens et al. | Apr 1994 | A |
5306542 | Bayer | Apr 1994 | A |
5312867 | Mitsuno et al. | May 1994 | A |
5317059 | Chundury et al. | May 1994 | A |
5319170 | Cassidy | Jun 1994 | A |
5331057 | Brekner et al. | Jul 1994 | A |
5334139 | Jeppsson et al. | Aug 1994 | A |
5336190 | Moss et al. | Aug 1994 | A |
5338293 | Jeppsson et al. | Aug 1994 | A |
5342886 | Glotin et al. | Aug 1994 | A |
5348794 | Takahashi | Sep 1994 | A |
5350357 | Kamen et al. | Sep 1994 | A |
5356676 | Von Widdern et al. | Oct 1994 | A |
5359001 | Epple et al. | Oct 1994 | A |
5360648 | Falla et al. | Nov 1994 | A |
5364371 | Kamen | Nov 1994 | A |
5364486 | Falla et al. | Nov 1994 | A |
5370674 | Farrell | Dec 1994 | A |
5371151 | Berge et al. | Dec 1994 | A |
5378543 | Muruta et al. | Jan 1995 | A |
5378800 | Mok et al. | Jan 1995 | A |
5381510 | Ford et al. | Jan 1995 | A |
5382630 | Stehling et al. | Jan 1995 | A |
5382631 | Stehling et al. | Jan 1995 | A |
5385540 | Abbott et al. | Jan 1995 | A |
5387645 | Montag et al. | Feb 1995 | A |
5397222 | Moss et al. | Mar 1995 | A |
5401342 | Vincent et al. | Mar 1995 | A |
5401939 | Iguchi et al. | Mar 1995 | A |
5408576 | Bishop | Apr 1995 | A |
5409355 | Brooke | Apr 1995 | A |
5420962 | Bakke | May 1995 | A |
5421823 | Kamen et al. | Jun 1995 | A |
5422409 | Brekner et al. | Jun 1995 | A |
5427509 | Chapman et al. | Jun 1995 | A |
5429485 | Dodge | Jul 1995 | A |
5431626 | Bryant et al. | Jul 1995 | A |
5433588 | Monk et al. | Jul 1995 | A |
5438510 | Bryant et al. | Aug 1995 | A |
5439587 | Stankowski et al. | Aug 1995 | A |
5442919 | Wilhelm | Aug 1995 | A |
5445506 | Afflerbaugh et al. | Aug 1995 | A |
5446270 | Chamberlain et al. | Aug 1995 | A |
5457249 | Toshihiro et al. | Oct 1995 | A |
5460490 | Carr et al. | Oct 1995 | A |
5460493 | Deniega et al. | Oct 1995 | A |
5462416 | Dennehey et al. | Oct 1995 | A |
5464388 | Merte et al. | Nov 1995 | A |
5474683 | Bryant et al. | Dec 1995 | A |
5475060 | Brekner et al. | Dec 1995 | A |
5480294 | Di Perna et al. | Jan 1996 | A |
5482440 | Dennehey et al. | Jan 1996 | A |
5482770 | Bekele | Jan 1996 | A |
5487649 | Dorsey, III et al. | Jan 1996 | A |
5498677 | Weller | Mar 1996 | A |
5508051 | Falla et al. | Apr 1996 | A |
5518378 | Neftel et al. | May 1996 | A |
5521361 | Strait, Jr. | May 1996 | A |
5522769 | DeGuiseppi | Jun 1996 | A |
5523550 | Kimura | Jun 1996 | A |
5525659 | Falla et al. | Jun 1996 | A |
5526844 | Kamen | Jun 1996 | A |
5529708 | Palmgren et al. | Jun 1996 | A |
5530065 | Farley et al. | Jun 1996 | A |
5533589 | Kamen et al. | Jul 1996 | A |
5534606 | Bennett et al. | Jul 1996 | A |
5540808 | Vincent et al. | Jul 1996 | A |
5542919 | Simon et al. | Aug 1996 | A |
5552504 | Bennett et al. | Sep 1996 | A |
5554013 | Owens et al. | Sep 1996 | A |
5569026 | Novak | Oct 1996 | A |
5570716 | Kamen et al. | Nov 1996 | A |
5575310 | Kamen et al. | Nov 1996 | A |
5575632 | Morris et al. | Nov 1996 | A |
5578012 | Kamen et al. | Nov 1996 | A |
5580914 | Falla et al. | Dec 1996 | A |
5583192 | Bennett et al. | Dec 1996 | A |
5586868 | Lawless et al. | Dec 1996 | A |
5588815 | Zaleski, II | Dec 1996 | A |
5588816 | Abbott et al. | Dec 1996 | A |
5601420 | Warner et al. | Feb 1997 | A |
5609572 | Lang | Mar 1997 | A |
5610253 | Hatke et al. | Mar 1997 | A |
5620312 | Hyman et al. | Apr 1997 | A |
5620425 | Heffernan et al. | Apr 1997 | A |
5628908 | Kamen et al. | May 1997 | A |
5629398 | Okamoto et al. | May 1997 | A |
5634896 | Bryant et al. | Jun 1997 | A |
5637100 | Sudo | Jun 1997 | A |
5637400 | Brekner et al. | Jun 1997 | A |
5647231 | Payne et al. | Jul 1997 | A |
5650471 | Abe et al. | Jul 1997 | A |
5655897 | Neftel et al. | Aug 1997 | A |
5674944 | Falla et al. | Oct 1997 | A |
5676530 | Nazarifar | Oct 1997 | A |
5683381 | Carr et al. | Nov 1997 | A |
5683605 | Matsuoka | Nov 1997 | A |
5686527 | Laurin et al. | Nov 1997 | A |
5690160 | Sutton et al. | Nov 1997 | A |
5690614 | Carr et al. | Nov 1997 | A |
5693728 | Okamoto et al. | Dec 1997 | A |
5698645 | Weller et al. | Dec 1997 | A |
5698654 | Nye et al. | Dec 1997 | A |
5707751 | Garza et al. | Jan 1998 | A |
5711654 | Afflerbaugh | Jan 1998 | A |
5718569 | Holst | Feb 1998 | A |
5721025 | Falla et al. | Feb 1998 | A |
5722941 | Jeppsson et al. | Mar 1998 | A |
5723189 | Sudo | Mar 1998 | A |
5724478 | Thweatt | Mar 1998 | A |
5729653 | Magliochetti et al. | Mar 1998 | A |
5733991 | Rohrmann et al. | Mar 1998 | A |
5741125 | Neftel et al. | Apr 1998 | A |
5744664 | Brekner et al. | Apr 1998 | A |
5752813 | Tyner et al. | May 1998 | A |
5756623 | Krueder et al. | May 1998 | A |
5782575 | Vincent et al. | Jul 1998 | A |
5788670 | Reinhard et al. | Aug 1998 | A |
5788671 | Johnson | Aug 1998 | A |
5790752 | Anglin et al. | Aug 1998 | A |
5792824 | Natori | Aug 1998 | A |
5795945 | Natori | Aug 1998 | A |
5816779 | Lawless et al. | Oct 1998 | A |
5822740 | Haissig et al. | Oct 1998 | A |
5836908 | Beden et al. | Nov 1998 | A |
5849843 | Laurin et al. | Dec 1998 | A |
5854347 | Laurin et al. | Dec 1998 | A |
5854349 | Abe et al. | Dec 1998 | A |
5863986 | Herrmann-Schonherr et al. | Jan 1999 | A |
5871566 | Rutz | Feb 1999 | A |
5872201 | Cheung et al. | Feb 1999 | A |
5875282 | Jordan et al. | Feb 1999 | A |
5879768 | Falla et al. | Mar 1999 | A |
5899674 | Jung et al. | May 1999 | A |
5906598 | Giesler et al. | May 1999 | A |
5927956 | Lim et al. | Jul 1999 | A |
5928196 | Johnson et al. | Jul 1999 | A |
5931808 | Pike | Aug 1999 | A |
5942579 | Falla et al. | Aug 1999 | A |
5960160 | Clark et al. | Sep 1999 | A |
5980495 | Heinz et al. | Nov 1999 | A |
5981916 | Griffiths et al. | Nov 1999 | A |
5983136 | Kamen | Nov 1999 | A |
5984762 | Tedeschi et al. | Nov 1999 | A |
5989238 | Ginsburg | Nov 1999 | A |
5989423 | Kamen et al. | Nov 1999 | A |
5990254 | Weller et al. | Nov 1999 | A |
5990465 | Nakaoka et al. | Nov 1999 | A |
5993949 | Rosenbaum et al. | Nov 1999 | A |
5998019 | Rosenbaum et al. | Dec 1999 | A |
6001201 | Vincent et al. | Dec 1999 | A |
6007520 | Sudo | Dec 1999 | A |
6020444 | Riedel et al. | Feb 2000 | A |
6036458 | Cole et al. | Mar 2000 | A |
6045648 | Palmgren et al. | Apr 2000 | A |
6046442 | Kawamura et al. | Apr 2000 | A |
6056522 | Johnson | May 2000 | A |
6059544 | Jung et al. | May 2000 | A |
6060572 | Gillis et al. | May 2000 | A |
6065270 | Reinhard et al. | May 2000 | A |
6068936 | Pfeiffer et al. | May 2000 | A |
6069343 | Kolowich | May 2000 | A |
6070761 | Bloom et al. | Jun 2000 | A |
6074183 | Allen et al. | Jun 2000 | A |
6077246 | Kullas et al. | Jun 2000 | A |
6078032 | Miller et al. | Jun 2000 | A |
6106948 | Wang et al. | Aug 2000 | A |
6109254 | Reinke et al. | Aug 2000 | A |
6109895 | Ray et al. | Aug 2000 | A |
6110549 | Hamada et al. | Aug 2000 | A |
6110617 | Feres | Aug 2000 | A |
6114457 | Markel et al. | Sep 2000 | A |
6117465 | Falla et al. | Sep 2000 | A |
6118111 | Price et al. | Sep 2000 | A |
6121394 | Sugimoto et al. | Sep 2000 | A |
6129699 | Haight et al. | Oct 2000 | A |
6133547 | Maynard | Oct 2000 | A |
6136744 | Gillis et al. | Oct 2000 | A |
6139528 | Kistner et al. | Oct 2000 | A |
6142974 | Kistner et al. | Nov 2000 | A |
6146359 | Carr et al. | Nov 2000 | A |
6147025 | Gillis et al. | Nov 2000 | A |
6165154 | Gray et al. | Dec 2000 | A |
6168862 | Rosenbaum et al. | Jan 2001 | B1 |
6169052 | Brekner et al. | Jan 2001 | B1 |
6171670 | Sudo et al. | Jan 2001 | B1 |
6175688 | Cassidy et al. | Jan 2001 | B1 |
6186752 | Deniega et al. | Feb 2001 | B1 |
6191254 | Falla et al. | Feb 2001 | B1 |
6203296 | Ray et al. | Mar 2001 | B1 |
6210361 | Kamen et al. | Apr 2001 | B1 |
6221648 | Le Page et al. | Apr 2001 | B1 |
6225426 | Gillis et al. | May 2001 | B1 |
6225427 | Burton et al. | May 2001 | B1 |
6228047 | Dadson | May 2001 | B1 |
6229957 | Baker | May 2001 | B1 |
6231320 | Lawless et al. | May 2001 | B1 |
6234997 | Kamen et al. | May 2001 | B1 |
6236809 | Cassidy et al. | May 2001 | B1 |
RE37208 | Winter et al. | Jun 2001 | E |
6246831 | Seitz et al. | Jun 2001 | B1 |
6248093 | Moberg | Jun 2001 | B1 |
6255396 | Ding et al. | Jul 2001 | B1 |
6257265 | Brunner et al. | Jul 2001 | B1 |
6259074 | Brunner et al. | Jul 2001 | B1 |
6261261 | Gordon | Jul 2001 | B1 |
6261655 | Rosenbaum et al. | Jul 2001 | B1 |
6266664 | Russell-Falla et al. | Jul 2001 | B1 |
6278084 | Maynard | Aug 2001 | B1 |
6280408 | Sipin | Aug 2001 | B1 |
6293921 | Shinmoto et al. | Sep 2001 | B1 |
6293926 | Sorensen et al. | Sep 2001 | B1 |
6302653 | Bryant et al. | Oct 2001 | B1 |
6343614 | Gray et al. | Feb 2002 | B1 |
6364857 | Gray et al. | Apr 2002 | B1 |
6372848 | Yang et al. | Apr 2002 | B1 |
6382923 | Gray | May 2002 | B1 |
6416293 | Bouchard | Jul 2002 | B1 |
6497676 | Childers et al. | Dec 2002 | B1 |
6503062 | Gray et al. | Jan 2003 | B1 |
6512212 | Harris | Jan 2003 | B1 |
6541744 | Von Arx et al. | Apr 2003 | B2 |
6592542 | Childers et al. | Jul 2003 | B2 |
6674055 | Zhang et al. | Jan 2004 | B2 |
6743201 | Donig et al. | Jun 2004 | B1 |
6808369 | Gray et al. | Oct 2004 | B2 |
6814547 | Childers et al. | Nov 2004 | B2 |
6869538 | Yu et al. | Mar 2005 | B2 |
20020045851 | Suzuki et al. | Apr 2002 | A1 |
20020077598 | Yap et al. | Jun 2002 | A1 |
20020081109 | Mitsunaga et al. | Jun 2002 | A1 |
20030000939 | Faries et al. | Jan 2003 | A1 |
20030114795 | Faries et al. | Jun 2003 | A1 |
20030195454 | Wariar et al. | Oct 2003 | A1 |
20030204162 | Childers et al. | Oct 2003 | A1 |
20040108311 | de Rooij et al. | Jun 2004 | A1 |
20040254513 | Shang et al. | Dec 2004 | A1 |
20050118038 | Gray et al. | Jun 2005 | A1 |
20060000829 | Furnrohr et al. | Jan 2006 | A1 |
20080021377 | Kienman et al. | Jan 2008 | A1 |
20080200865 | Bedingfield | Aug 2008 | A1 |
20080200866 | Prisco et al. | Aug 2008 | A1 |
20080200867 | Bedingfield | Aug 2008 | A1 |
20080200868 | Alberti et al. | Aug 2008 | A1 |
20080200869 | Bedingfield | Aug 2008 | A1 |
Number | Date | Country |
---|---|---|
133 411 | Jan 1979 | DE |
251 904 | Dec 1987 | DE |
39 37 365 | Jun 1990 | DE |
0075811 | Apr 1983 | EP |
0 156 464 | Oct 1985 | EP |
0 291 208 | Nov 1988 | EP |
0 306 664 | Mar 1989 | EP |
0 216 509 | Sep 1991 | EP |
0462544 | Dec 1991 | EP |
0 497 567 | Aug 1992 | EP |
0 524 802 | Jan 1993 | EP |
0 283 164 | May 1995 | EP |
0660645 | Jun 1995 | EP |
0 492 982 | Aug 1995 | EP |
0 430 585 | Jan 1996 | EP |
0 156 464 | May 1996 | EP |
0 582 355 | May 1996 | EP |
0 709 105 | May 1996 | EP |
0 203 799 | Aug 1996 | EP |
0 384 694 | Sep 1996 | EP |
0 497 567 | Sep 1996 | EP |
0 291 208 | Aug 1997 | EP |
0 790 063 | Aug 1997 | EP |
0 680 401 | Jan 1999 | EP |
0 709 105 | Dec 2001 | EP |
574805 | Jan 1946 | GB |
03-095286 | Apr 1991 | JP |
05-277154 | Oct 1993 | JP |
11-071554 | Mar 1999 | JP |
1781845 | Dec 1992 | RU |
WO8912204 | Dec 1989 | WO |
WO9119138 | Dec 1991 | WO |
WO9312627 | Jun 1992 | WO |
9708054 | Mar 1997 | WO |
9827926 | Jul 1998 | WO |
9844043 | Oct 1998 | WO |
9948990 | Sep 1999 | WO |
WO0207793 | Jan 2002 | WO |
WO0164263 | Sep 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20080200866 A1 | Aug 2008 | US |