The invention relates to an apparatus for the treatment of a medical fluid comprising a fluid treatment machine and a cassette insertable therein substantially consisting of a rigid base body of the cassette with fitted chambers and passages and a foil covering them.
Cassettes are used in medical engineering, in particular to convey dialysis fluid, blood and the like.
A cassette can include a base body with fitted chambers and passages which is closed by a flexible foil to cover the passages and chambers. The cassette can be inserted into a special receiving chamber, e.g., in a dialysis machine. This chamber can, for example, be opened via a pivotable door. The cassette can be inserted into the chamber, with the flexible foil lying opposite a corresponding mating piece at the machine so that the cassette can be operated with the aid of actuators and sensors on the machine side.
Conventional extracorporeal blood circuits or blood tubing systems are usually present in a differential construction. This means that a functional division onto different components is present. Such components (e.g., bubble traps, flow chambers or injection positions) are connected to one another by tubes and are as a rule connected individually to the respective dialysis machine. The design of such blood tubing systems is very complex in manufacture and handling, with the corresponding effort naturally being extremely time consuming with more complex systems such as an online hemodiafiltration.
On the other hand, conventional extracorporeal blood circuits which are installed in this differential construction have the advantage that they can be designed substantially more flexibly for the respective treatment depending on the demand. Previously known apparatuses for the use of cassettes typically were only usable for a very specific application.
Certain aspects of the invention relate to a generic apparatus comprising a fluid treatment machine and a cassette insertable therein such that a large flexibility for different applications is made possible while maintaining the fast and simple exchangeability.
In some aspects of the invention, actuators and sensors are arranged in a generic apparatus for the treatment of a medical fluid for the operation of the apparatus with an inserted cassette such that cassettes are insertable in different integration shapes.
Due to the clearly defined arrangement of corresponding sensors and actuators, cassettes of different complexity can be inserted into the fluid treatment machine in accordance with the desired application. It is therefore not necessary to provide different apparatus for different applications.
A cassette for a standard hemodialysis can thus be insertable here, for example. The corresponding pump chambers, measuring sensors and further actuators, such as valves, etc., are provided at pre-determined locations in the fluid treatment machine. Additional pumps, actuators, valves, etc. are provided in the fluid treatment machine which do not have to be actuated when the cassette is used for standard hemodialysis. They are, for example, only in use when a cassette is used for online hemodiafiltration or online hemofiltration. Further passages, pump chambers, etc. are provided at corresponding positions in the corresponding cassettes which are associated with these actuators, pumps or valves. Furthermore, a cassette for an acute dialysis treatment can be inserted in which in turn the pumps, actuators and valves provided on the side of the fluid treatment machine are associated with corresponding pumping chambers, passages, etc. The associated control electronics can be selected depending on the inserted cassette for the control of the pumps, actuators, sensors, etc.
Details and advantages of the invention will be explained in more detail by way of example in the following with reference to the Figures. There are shown:
In
The cassette consists of a base body 12 of a cassette which consists of polypropylene in the embodiment shown here. A cover foil 14 (shown in
These valves 30 have a valve body with a pressure passage and a sealing cap which cooperates with the valve body such that it closes the end of the pressure passage on the valve body side with respect to the environment, with a pressure space being able to be built up between the pressure passage and the sealing cap so that the sealing cap has a deformable sealing region for entry into the fluid passage in order to close this as required.
The pressure channel 114 of the valve body 112 is elongated, so that it can be inserted, for example, through the body or a wall of a counterpart of the disposable cassette 10 on the device side (i.e., through the machine block 108) and can be screwed down with a lock nut 122. A thread is provided on the outer wall of the portion of the valve body 112 that forms the pressure channel 114 to allow the lock nut 122 to secure the valve body 112 to the machine block 108. The valve body 112 has sealing surfaces 124 for sealing the valve body 112 in the machine block 108. The sealing cap 118 includes protruding bulges 126, which surround the valve body 112 in such a way that they lie adjacent to the sealing surfaces 124 and are pressed when the valve 30 is assembled.
Still referring to
The valve 30 is shown diagramatically in use in
The valve 30 is inserted into a suitably shaped housing (e.g., recess) 138 of the machine block 108 and screwed down with the lock nut 122. The shoulder 128 lies adjacent to the edges of the liquid passage 28. The movement of the deformable area 120 when an excess pressure or partial vacuum is applied or with venting of the pressure channel 114 is indicated by arrow 140. Reference number 142 indicates the direction in which the pressure is applied in order to close the valve 30. As shown in
A cut-out for accommodating the shoulder 128 can be provided either in the base body 12 of the cassette 10 or in the machine block 108. It is also possible for the shoulder 128 to be accommodated in a suitable opening in a cover mat located between the cassette 10 and the machine block 108.
For the sake of clarity,
For the operation of the valve 30 with the cassette 10, the valve body 112 is inserted through the housing 138 of the machine block 108, so that the pressure channel 114 extends through the machine block 108. The lock nut 122 is tightened up so that the protruding bulges 126 create a seal between the valve body 112 and the machine block 108. By simply screwing the lock nut 122 onto the valve body 112, a tight and reliable connection of the valve 30 with the machine block 108 is thus provided.
The machine block 108 with the valve 30 is pressed against the cassette 10, whereby the shoulders 128 of the sealing cap 118 fit tightly with the edges of the liquid passage 28. By pressing the machine block 108 against the disposable cassette 10, several valves 30 can be simultaneously fitted into their corresponding liquid passages 28 at the desired points.
The dialysis liquid, for example, flows through the fluid passage 28 when the valve 30 is in the opened state. If excess pressure is applied via the pressure channel 114 in the direction of the arrow 142, the deformable area 120 of the sealing cap 118 is deformed into the liquid passage 28 until the valve 30 is finally closed. The loading on the sealing cap 118 is reduced by the projection 130 of the sealing cap 118, without the movement of the deformable area 120 being significantly impaired. The cover foil 14 of the cassette 10 is deformed together with the sealing cap 118 into the liquid passage 28.
If the fluid passage 28 is to be opened again, the pressure channel 114 is vented and the deformable area 120 of the sealing cap 118 is relaxed. By applying a partial vacuum to the pressure channel 114, the deformable area 120 is placed against the convex curvature of the pressure chamber 116 and correspondingly increases the cross-section of the fluid passage 28. By simply applying or removing a pressurization to the pressure channel 114, therefore, the flow rate through the fluid passage 28 can be controlled.
When the disposable cartridge is removed, the valve 30 can be removed or replaced simply by loosening lock nut 122, e.g., for maintenance or in the event of malfunction.
The sealing cap 118 is a simple low-cost shaped part, which on account of its closed design can easily be cleaned and thus satisfies the hygiene requirements in dialysis, but which can also easily be replaced when necessary.
When the disposable cassette 10 is again compressed between the machine block 108 and the base body 12, the valve 30 fits into the fluid passage 28 very well by pressing the shoulder 128 with the edge of the fluid passage 28. On account of the elastic stretching of the deformable area 120 of the sealing cap 118, there is a very good tolerance compensation both in the depth of the fluid passage 28 as well as in respect of lateral misalignment, without a significant additional expenditure of force. The deformable area 120 guarantees that only small forces are required to block the fluid passage 28.
Other details regarding the valves 30 and their operation with disposable cartridges, such as the cassette 10 described above, are discussed in DE 100 46 651, which is incorporated by reference herein.
Referring again to
More specifically, each of the sensors 36 for measuring selected parameters of the medical fluid passing in the arterial and venous measuring chambers 32, 34 is disposed on a measurement plate that has a peripheral seal along its outer edge and that is in contact with the flexible membrane (i.e., the foil 14). The measurement plate has an inlet that leads to the foil 14 so that a vacuum can be established between the measurement plate and the foil 14.
Several sensors can be mounted on the measurement plate, and since the flexible membrane (i.e., the foil 14) can be brought in close contact with the measurement plate, the medical fluids are separated from the sensors on the measurement plate only by the foil 14. Because of the peripheral seal disposed on the measurement plate, the foil 14 can be brought in close contact with the underside of the measurement plate by applying a vacuum, so that very close contact can be established between the sensors and the medical fluid in the measurement chamber. The contact surface of at least one of the sensors is preferably flush with the underside of the measurement plate, so that it is possible to establish direct measurement contact between the respective sensor and the flexible membrane.
Because of advances in miniaturization and integration technology of sensors, it is possible to arrange multiple sensors on an area a few square centimeters in size. Each respective sensor is preferably mounted in a recess in the measurement plate, with the measurement surface of the sensor being in flush contact with the underside of the measurement plate. The sensors are preferably securely glued to the measurement plate.
For example, a pressure sensor and a temperature sensor may be used. Pressure sensors have become available formed on individual semiconductor chips due to advances in integration of Microsystems, so that the chips carrying the sensor are only a few square millimeters in size. Because the sensor surface can be brought in direct contact with the foil 14, it is possible to measure both positive and negative pressures. As a result, the thermal energy balance and the venous pressure in a dialysis machine can be measured with the pressure sensor and the temperature sensor.
In some implementations, the seal of the measurement plate is made of a rubber ring which is inserted into a groove in the measurement plate and projects slightly above the edge of the measurement plate. As soon as a vacuum is established between the membrane (i.e., the foil 14) and the measurement plate, the foil 14 is pressed tightly against the underside of the measurement plate by the ambient air pressure, and the seal guarantees that no additional air can flow into the area between the measurement plate and the foil 14.
The measurement plate can be made of a metal disk into which the respective sensors are inserted. In some implementations, the metal disk is kept at a constant temperature by, for example, Peltier elements. This design permits a more accurate temperature measurement of the medical fluid.
Before performing the individual measurements, a vacuum is first applied to the inlet so that the film (i.e., the foil 14) is placed in close contact with the sensors. Then, the sensors are activated by a control unit (not shown), so that the respective measurements can begin.
The above-described sensor arrangement is described in greater detail in DE 198 37 667, which is incorporated by reference herein.
Referring again to
As
The fluid guide body (i.e., the base body 12) further has a secondary passage 144 that leads away from the rear side of the base body 12, which is remote from the open side of the main passage 28, onto the opposite front side of the base body 12 and opens there into the main passage 28. As
The secondary passage 144 is positioned symmetrically in the center of the main passage 28 and extends perpendicularly to the longitudinal direction of the main passage 28. The planar designed orifice 150 is in the plane which is set up by the rims of the main passage 28.
As
As
To be able to close the open side of the secondary passage 144 and simultaneously the orifice 150 of the secondary passage 144, the covering film (i.e., the foil 14), which can be welded or connected in another way to the base body 12, lies on the base body 12. To seal the main passage 28, the foil 14 can be welded to the base body 12 along the rims of the main passage 28. The sealing can, however, also be effected by pressing the foil 14 along the rims of the main passage 28 by a valve plunger 152.
The valve plunger 152 has a continuous, planar plunger surface 154 that is formed by an elastic (e.g., elastomer) machine membrane. Due to the vertically coincident arrangement of the orifice 150 with the rims of the main passage 28, the secondary passage 144 can be closed without stretching of the foil 14, if the foil 14 is pressed onto the base body 12. The orifice 150 is formed for this purpose as a planar valve seat 156, which is in the plane set up by the rims of the main passage 28 and forms the front end of the funnel 148.
To open the secondary passage 144, the actuating part 158, which is connected to the plunger surface 154 in the region of the secondary passage orifice 150, is moved away from the base body 12. The plunger surface 154 is thereby raised from the orifice 150 of the secondary passage 144 in the region thereof. As
The foil 14 also lifts off the orifice 150 of the secondary passage 144 due to the raising of the plunger surface 154. The pressure of the flow in the main passage 28 presses the foil 14 away from the orifice 150. Optionally, this can also be supported actively by the interposition of a vacuum between the plunger surface 154 and the foil 14, which is helpful in particular when a sample should be sucked from the fluid flow in the main passage 28 through the secondary passage 144.
When the actuating part 158 lifts, the foil 14 stretches elastically. The deformation is here very low, however. It is in particular not plastic so that a formation of creases in the subsequent re-closing of the orifice 150 is prevented. As
Other details regarding the phantom valves 46 are described in DE 100 53 441, which is incorporated by reference herein.
Referring again to
In the upper region of the cassette in the installed state, a venting chamber 56 is formed which is shown again in
Bubbles are trapped in the venting chamber 56 by a slowing down of the blood flow. As shown in
The basic design of the passages 28 can be explained with reference to
It can also be explained with reference to
As shown in
The arterial injection septum 16 or the venous injection septum 20 are made in the embodiment shown here, in contrast to a conventional injection position, such that their base body is formed by the base body 12 of the cassette itself so that here only the elastic septum is fixed by a snap ring (not shown in detail here). The septum consists of an elastomer in the embodiment shown here.
A cassette 10 is shown in
The substituate region substantially formed by the substituate pump chambers 84 is surrounded by a substituate weld rim 92 to which the cover foil 14 is sealingly welded so that this region of the cassette 10 processing substituate is separated from the blood-carrying region.
In
In
In
In
The fluid treatment machine 100 substantially consists of a frame 104 which surrounds and/or includes or receives the most important components. A door 106 is fitted to the frame 104, on the one hand, and the machine block 108 is guided in the frame, on the other hand. All forces occurring between the door 106 and the interior of the unit are absorbed by means of the frame 104, namely the door hinge, door latch, pressing actuator system and the rear wall. The frame 104 furthermore contains the door latch 110. The cassette 10 is received between the door 106 and the machine block 108, as shown in the
The important elements for the control and monitoring of the extracorporeal blood circuit, such as pumps, valves, the sensor system, etc., are contained in the machine block 108. This machine block 108 establishes the most important interface to the cassette 10. The cassette surface is coupled to the unit here and the sealing of the cassette 10, and thus the fixing of the flow paths, takes place by this. The machine block 108 is guided movably in the frame and fixes the cassette 10, as already described above, until the door 106 is closed.
Hydraulic piston pumps are contained in the fluid treatment machine which are not shown in detail in
A pressing actuator system on the rear wall of the frame 104, likewise not shown in more detail, must be emphasized here. An inflatable air cushion is integrated here which can move the whole machine block 108, which is movably supported in the frame 104, and press it against the closed door 106.
Furthermore, instead of individual air-carrying tubes, an air distributor plate is provided at the machine block 108 which contains main connections for the pneumatics and which guides compressed air and vacuum to the valves and actuators via passages integrated there without any substantial tubing, with them simultaneously terminating the machine block with respect to the interior of the fluid treatment machine 100.
Optional modules can be provided in the fluid treatment machine 100 for the carrying out of the online hemodiafiltration. For instance, an online feed port for the automatic coupling of a cassette 10 to a dialysate circuit or an online flushing port for the return of flushing solution can be contained here.
The door 106 must be open for the insertion of the cassette 10. The cassette 10 is inserted and, after positioning of the centering fork 66, is fixed to the surface of the machine block by means of a snap hook.
The side of the machine block 108 facing the cassette 10 is lined with a soft elastomer mat 160 (shown in
Referring to
By referring to the sectional views of
Referring to
With the elastic matt 160, it is guaranteed that the interior space of the fluid treatment machine, in its idle state, is protected by the self-closing feature of slits 168. At the same time, an even air extraction is achieved between the fluid treatment machine and the cassette across its entire surface because parallel extraction takes place via numerous slits 168. Thus, a minor blockage may not cause any detrimental effects for other areas.
With a thin matt 160, as it has been presented in the embodiment for example, the opening effect of the slits can be utilized by applying a vacuum.
Since the elastic matt 160 is exchangeable, it can be replaced easily after contamination or a fault. It is especially advantageous that no structured shapes are required for the fixed components on the machine. On the side of the elastic matt 160 facing the machine, open structures can be formed so that no sub-surface tunnels or other closed structures are required. On the other hand, the side of the elastic matt 160 facing the cassette is largely formed as a smooth, closed surface which can be cleaned easily for example.
Other details regarding the elastic matt 160 are described in DE 101 57 924.1, which is incorporated by reference herein.
Referring again to
To achieve a sufficient pressing and to prevent a tilting of the machine block 108 by a non-uniform introduction of force, the air cushion has approximately the size of the machine block 108 or of the cassette 10.
Since, however, further components, for example, control valves or the air distributor plate with the control valves, are now disposed between the air cushion and the machine block, the force transmission takes place by means of spacer bolts.
The traction between the door 106, the frame 104 and the rear wall takes place by the door hinge, the latch 110 and connection bolts, not shown in any more detail here, between the frame and the rear wall.
As already mentioned, a constant pressing of the cassette 10 must take place for a proper operation. For this purpose, it is necessary for the door 106 to be locked during the treatment. This locking takes place via two latching bolts (not shown in any more detail here) at the upper right hand and lower right hand door region, with these moving into two corresponding bores inside the door 106 on actuation, which takes place automatically. The moving in and out takes place pneumatically. An erroneous opening of the door 106 on a failure of the pneumatics is precluded by the bolts moved into the door and by the lateral forces occurring by the pressure load of the door. To check whether the latching has taken place, Hall proximity sensors can be integrated which detect the movement of the bolts. In addition, this signal can be linked to information on the door position which can be picked up by a separate sensor. In addition, the latching bolt not shown in any more detail here can have a latch connection. This latch connection consists of a spring-loaded latch ball on the door side which latches into a corresponding arch of the latch bolt and can hold the door in the corresponding position. An introduction slope is provided for the simplified latching. To open the door from the latch position, the latch ball present here is drawn back by means of a mechanical system.
On the side of the fluid treatment machine 100, the blood circuit substantially consists of at least one hydraulically controlled membrane pump having two independent pump chambers C and D which can be used as a highly precise flow pump or as a volumetric metering unit, a row of valves M, 0 and clamps N for the control of the flow path, a highly integrated sensor system H required for monitoring and control, an active air extractor, i.e., an air separation chamber I with a connected cassette venting A, of the blood circuit (air-free circuit) and a door 106 to fix the cassette 10.
The fluid treatment machine 100 respectively comprises a pneumatic system for the overpressure and a pneumatic system for the underpressure. The underpressure serves, for example, to apply an underpressure between the foil 14 of the cassette 10 and the unit side to prevent a passage restriction on the plastic deformation of the foil, to raise the foil at feed positions and thus to be able to keep the access free, to avoid air compliance in the pump devices and to be able to ensure an air-free coupling between the sensor and the foil at specific sensor positions. The air suction requires openings in the unit side and a suction unit, i.e., a vacuum pump, connected to it, wherein the vacuum distribution should be ensured as uniformly and as reliably as possible over the whole surface. In the idling state, the openings should be at least largely closed to permit a good cleaning here. In operation, however, a problem-free air suction should be possible. This problem is solved by the elastomer mat of the type described above.
In the cassette 10, no passage seals are contained except for the edge region and some safety weld connections. The sealing of all flow paths and passages must therefore take place by pressing. For this purpose, the cassette has sealing beads 52 on the passage rims which have already been described above and which are sealable on the pressing of the disposables between the machine block 108 and the door 106 by pressing into the elastic mat.
The air distributor plate not shown in any more detail here is located on the rear side of the machine block 108 and is connected to the, for example, two membrane pumps of the pneumatic system, namely the overpressure pump and the underpressure pump. The air distributor plate is sealed with respect to the rear side of the machine block by a sealing mat and permits the compressed air and vacuum feed via integrated passage structures so that every valve does not need its own tubing. A plurality of circuits are present on the air distributor plate, namely a vacuum circuit, a compressed air circuit which is directly connected to the compressor for the supply of components which always need compressed air, a compressed air circuit for the protection of sensitive components which may only be charged with compressed air under certain states, with it also being separable from the compressor by an on/off valve and an exhaust circuit.
By integration of a plurality of control valves on the air distributor plate, the electrical supply can also be collected via a small control board. Since a plurality of valves are only needed with specific options, a modular retrofitting capability must be ensured.
The sensor system and the pump connections are guided through the plate through apertures and cut-outs.
Sensors which are collected in integrated sensor modules in the present fluid treatment machine 100 are required for the monitoring and control of the extracorporeal blood circuit. Two respective modules work together as a pair. One module is accommodated in the door 106 and the counter-piece in the machine block 108. Both the arterial branch should be monitored by the arterial measuring chamber G and the venous branch by the venous measuring chamber H. The integrated measurement sensor system is described in detail in the German patent applications DE 198 37 667 A and DE 101 43 137 of the same patent applicant. The sensors together have the following properties or provide the following possibilities:
measurement and monitoring of the blood volume;
measurement of the hematocrit;
measurement and monitoring of the thermal energy balance;
measurement and monitoring of the body temperature;
measurement of the conditions of the fistula (with circulation);
air detection;
fistula pressure measurement.
A multi-sensor module is usually fitted with an ultrasonic sensor for volume monitoring, measurement of the hematocrit and the air detection, with a temperature sensor for the automatic access analysis, body temperature monitoring and thermal energy balance, with a pressure sensor for the pressure monitoring and with an optical sensor for the automatic detection of blood.
The valves M and the pump valves O have a similar design to those valves described above.
In addition to the aforesaid valves which are shown in
Reference letter N designates safety clamps which serve to achieve a safe state during an alarm in the extracorporeal blood circuit, with them interrupting the patient line and thus any blood flow from or to the patient. To avoid unwanted compliance effects, and since the system is designed for a flow reversal, this safety function must be ensured both on the arterial side and on the venous side so that two blocking clamps N are used which can be mechanically coupled.
The blocking clamps should be effective as close to the patient as possible in order to be able to minimize any interference and to satisfy high safety demands. For this reason, tube clamps are used which act directly on the patient tubes.
A possible embodiment, such as is provided here, consists of the clamping of the tubes against a clamping rail on the inner side of the door by means of a reclosable pneumatically opened clamping slide. Such a system is passively spring-closing, namely without pressure and without current and so is also advantageous in the case of a failure under safety aspects.
In
The new apparatus shown here follows a strictly modular approach while achieving a high flexibility and deployment possibility also with respect to future deployment possibilities and options. The integrated blood module permits the carrying out of the whole spectrum of the blood treatment procedures, namely standard hemodialysis, online hemodiafiltration, online hemofiltration and also acute treatment.
It must be pointed out with respect to the acute treatment that the machines serving the acute treatment, i.e., the acute dialysis or acute filtration, have to have a simple design in order to be able to be transported corresponding easily and to be able to work without a complex supply structure (e.g. water connection). In this system, therefore, work is carried out practically without exception with bags with premanufactured solutions. Using the embodiments shown in
Each of these types of treatment can take place both in two-needle and in single-needle mode. Reference is made here to the German patent DE 100 42 324 C1 with respect to the description of the two-needle or single-needle mode.
Other embodiments are within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
102 24 750 | Jun 2002 | DE | national |
This application is a continuation application of and claims priority to U.S. Ser. No. 14/571,645, filed on Dec. 16, 2014, now U.S. Pat No. 9,827,359, which claims priority to U.S. Ser. No. 13/728,162, filed on Dec. 27, 2012, now U.S. Pat. No. 8,926,835, which claims priority to U.S. application Ser. No. 13/401,429, filed on Feb. 21, 2012, now U.S. Pat. No. 8,366,921, which is a continuation application of and claims priority to U.S. application Ser. No. 12/627,043, filed on Nov. 30, 2009, now U.S. Pat. No. 8,142,653, which is a continuation application of and claims priority to U.S. application Ser. No. 10/516,528, filed on Dec. 2, 2004, now U.S. Pat. No. 7,648,627, which is a nationalization of PCT/EP03/05377, filed on May 22, 2003 and published in German, which claims priority under 35 U.S.C. § 119(a) to DE 102 24 750.1, filed on Jun. 4, 2002.
Number | Name | Date | Kind |
---|---|---|---|
329773 | Perry | Nov 1885 | A |
2383193 | Herbert | Aug 1945 | A |
2453590 | Poux | Nov 1948 | A |
2529028 | Landon | Nov 1950 | A |
2658526 | Porter | Nov 1953 | A |
2711134 | Hughes | Jun 1955 | A |
2755745 | Lewis | Jan 1956 | A |
2871795 | Smith | Feb 1959 | A |
2886281 | Canalizo | May 1959 | A |
3083943 | Stewart et al. | Apr 1963 | A |
3323786 | Boschi | Jun 1967 | A |
3556465 | Little | Jan 1971 | A |
3671814 | Dick | Jun 1972 | A |
3689025 | Kiser | Sep 1972 | A |
3741687 | Nystroern | Jun 1973 | A |
3777625 | Andres | Dec 1973 | A |
3781141 | Schall | Dec 1973 | A |
3880053 | Trechsel et al. | Dec 1975 | A |
3927955 | Spinosa et al. | Dec 1975 | A |
3966358 | Heimes et al. | Jun 1976 | A |
3985135 | Carpenter et al. | Oct 1976 | A |
4026669 | Leonard et al. | May 1977 | A |
4047844 | Robinson | Sep 1977 | A |
4050859 | Vork | Sep 1977 | A |
4091812 | Helixon et al. | May 1978 | A |
4121584 | Turner et al. | Oct 1978 | A |
4152098 | Moody et al. | May 1979 | A |
4158530 | Bernstein | Jun 1979 | A |
4178940 | Au | Dec 1979 | A |
4273121 | Jassawalla | Jun 1981 | A |
4303376 | Siekmann | Dec 1981 | A |
4304260 | Turner et al. | Dec 1981 | A |
4312344 | Nilson | Jan 1982 | A |
4322201 | Archibald | Mar 1982 | A |
4333452 | Au | Jun 1982 | A |
4370983 | Lichtenstein | Feb 1983 | A |
4382753 | Archibald | May 1983 | A |
4410322 | Archibald | Oct 1983 | A |
4412553 | Kopp et al. | Nov 1983 | A |
4436620 | Bellotti et al. | Mar 1984 | A |
4453932 | Pastrone | Jun 1984 | A |
4479760 | Bilstad et al. | Oct 1984 | A |
4479761 | Bilstad et al. | Oct 1984 | A |
4479762 | Bilstad et al. | Oct 1984 | A |
4490621 | Watabe et al. | Dec 1984 | A |
4536201 | Brorsson et al. | Aug 1985 | A |
4558715 | Walton et al. | Dec 1985 | A |
4569378 | Bergandy | Feb 1986 | A |
4583920 | Lindner | Apr 1986 | A |
4597412 | Stark | Jul 1986 | A |
4610605 | Hartley | Sep 1986 | A |
4623328 | Hartranft | Nov 1986 | A |
4628499 | Hammett | Dec 1986 | A |
4639245 | Pastrone et al. | Jan 1987 | A |
4643713 | Viitala | Feb 1987 | A |
4657490 | Abbott | Apr 1987 | A |
4662598 | Weingarten | May 1987 | A |
4662906 | Matkovich et al. | May 1987 | A |
4676467 | Palsulich | Jun 1987 | A |
4690621 | Swain | Sep 1987 | A |
4703913 | Hunkapiller | Nov 1987 | A |
4705259 | Dolhen et al. | Nov 1987 | A |
4710166 | Thompson et al. | Dec 1987 | A |
4735558 | Kienholz et al. | Apr 1988 | A |
4778451 | Kamen | Oct 1988 | A |
4786240 | Koroly et al. | Nov 1988 | A |
4808161 | Kamen | Feb 1989 | A |
4826482 | Kamen | May 1989 | A |
4840542 | Abbott | Jun 1989 | A |
4842584 | Pastrone | Jun 1989 | A |
4846636 | Danby et al. | Jul 1989 | A |
4850980 | Lentz et al. | Jul 1989 | A |
4858883 | Webster | Aug 1989 | A |
4902282 | Bellotti et al. | Feb 1990 | A |
4906260 | Emheiser et al. | Mar 1990 | A |
4927411 | Pastrone et al. | May 1990 | A |
4950134 | Bailey et al. | Aug 1990 | A |
4974754 | Wirz | Dec 1990 | A |
4976162 | Kamen | Dec 1990 | A |
4995864 | Bartholomew et al. | Feb 1991 | A |
4997464 | Kopf | Mar 1991 | A |
5002471 | Perlov | Mar 1991 | A |
5006050 | Cooke et al. | Apr 1991 | A |
5011380 | Kovacs | Apr 1991 | A |
5036886 | Olsen et al. | Aug 1991 | A |
5061236 | Sutherland et al. | Oct 1991 | A |
5088515 | Kamen | Feb 1992 | A |
5098262 | Wecker et al. | Mar 1992 | A |
5100380 | Epstein | Mar 1992 | A |
5100699 | Roeser | Mar 1992 | A |
5116021 | Faust et al. | May 1992 | A |
5116316 | Sertic et al. | May 1992 | A |
5146713 | Grafius | Sep 1992 | A |
5151019 | Danby et al. | Sep 1992 | A |
5167837 | Snodgrass et al. | Dec 1992 | A |
5171029 | Maxwell et al. | Dec 1992 | A |
5178182 | Kamen | Jan 1993 | A |
5193990 | Kamen et al. | Mar 1993 | A |
5211201 | Kamen et al. | May 1993 | A |
5238003 | Baidwan et al. | Aug 1993 | A |
5241985 | Faust et al. | Sep 1993 | A |
5247434 | Peterson et al. | Sep 1993 | A |
5249932 | Van Bork | Oct 1993 | A |
5252044 | Raines et al. | Oct 1993 | A |
5259352 | Gerhardy et al. | Nov 1993 | A |
5267956 | Beuchat | Dec 1993 | A |
5279556 | Goi et al. | Jan 1994 | A |
5302093 | Owens et al. | Apr 1994 | A |
5324422 | Colleran et al. | Jun 1994 | A |
5330425 | Utterberg | Jul 1994 | A |
5342182 | Montoya et al. | Aug 1994 | A |
5344292 | Rabenau et al. | Sep 1994 | A |
5350357 | Kamen et al. | Sep 1994 | A |
D351470 | Scherer et al. | Oct 1994 | S |
5353837 | Faust | Oct 1994 | A |
5378126 | Abrahamson et al. | Jan 1995 | A |
5395351 | Munsch | Mar 1995 | A |
5413626 | Bartsch | May 1995 | A |
5415528 | Ogden et al. | May 1995 | A |
5421208 | Packard et al. | Jun 1995 | A |
5421823 | Kamen et al. | Jun 1995 | A |
5427509 | Chapman et al. | Jun 1995 | A |
5431626 | Bryant et al. | Jul 1995 | A |
5431627 | Pastrone et al. | Jul 1995 | A |
5431634 | Brown | Jul 1995 | A |
5438510 | Bryant et al. | Aug 1995 | A |
5441636 | Chevallet et al. | Aug 1995 | A |
5445506 | Aftlerbaugh et al. | Aug 1995 | A |
5447286 | Kamen et al. | Sep 1995 | A |
5462416 | Dennehey et al. | Oct 1995 | A |
5462417 | Chapman | Oct 1995 | A |
5474683 | Bryant et al. | Dec 1995 | A |
5478211 | Dominiak et al. | Dec 1995 | A |
5480294 | Di Perna et al. | Jan 1996 | A |
5482438 | Anderson et al. | Jan 1996 | A |
5482440 | Dennehey et al. | Jan 1996 | A |
5482446 | Williamson et al. | Jan 1996 | A |
5484239 | Chapman et al. | Jan 1996 | A |
5486286 | Peterson et al. | Jan 1996 | A |
5514069 | Brown et al. | May 1996 | A |
5538405 | Patno et al. | Jul 1996 | A |
5540568 | Rosen et al. | Jul 1996 | A |
5547453 | Di Perna | Aug 1996 | A |
5551850 | Williamson et al. | Sep 1996 | A |
5551941 | Howell | Sep 1996 | A |
5551942 | Brown et al. | Sep 1996 | A |
5554013 | Owens et al. | Sep 1996 | A |
5570716 | Kamen et al. | Nov 1996 | A |
5573385 | Chevallier | Nov 1996 | A |
5578070 | Utterberg | Nov 1996 | A |
5586868 | Lawless | Dec 1996 | A |
5588816 | Abbott et al. | Dec 1996 | A |
5593290 | Greisch et al. | Jan 1997 | A |
5599174 | Cook | Feb 1997 | A |
5609572 | Lang | Mar 1997 | A |
5614677 | Wamsiedler et al. | Mar 1997 | A |
5624409 | Seale | Apr 1997 | A |
5628908 | Kamen et al. | May 1997 | A |
5630710 | Tune et al. | May 1997 | A |
5634896 | Bryant et al. | May 1997 | A |
5634391 | Eady | Jun 1997 | A |
5640995 | Packard et al. | Jun 1997 | A |
5641405 | Keshaviah et al. | Jun 1997 | A |
5641892 | Larkins et al. | Jun 1997 | A |
5643205 | Utterberg | Jul 1997 | A |
5645531 | Thompson et al. | Jul 1997 | A |
5658133 | Anderson et al. | Aug 1997 | A |
5669764 | Behringer et al. | Sep 1997 | A |
5690602 | Brown et al. | Nov 1997 | A |
D390654 | Alsberg et al. | Feb 1998 | S |
5713865 | Manning et al. | Feb 1998 | A |
5713888 | Neuenfeldt et al. | Feb 1998 | A |
5718567 | Rapp et al. | Feb 1998 | A |
5741125 | Neftel et al. | Apr 1998 | A |
5743169 | Yamada | Apr 1998 | A |
5746708 | Giesler et al. | May 1998 | A |
5755683 | Houle et al. | May 1998 | A |
5764034 | Bowman et al. | Jun 1998 | A |
5769387 | Perez | Jun 1998 | A |
5771914 | Ling et al. | Jun 1998 | A |
5772635 | Dastur et al. | Jun 1998 | A |
5772637 | Heinzmann et al. | Jun 1998 | A |
5775371 | Pan et al. | Jul 1998 | A |
5782575 | Vincent et al. | Jul 1998 | A |
5782805 | Meinzer et al. | Jul 1998 | A |
5799207 | Wang et al. | Aug 1998 | A |
5816779 | Lawless et al. | Oct 1998 | A |
5840151 | Munsch | Nov 1998 | A |
5842841 | Danby et al. | Dec 1998 | A |
5843035 | Bowman et al. | Dec 1998 | A |
5868696 | Giesler et al. | Feb 1999 | A |
5873853 | Keilman et al. | Feb 1999 | A |
5902096 | Behringer et al. | May 1999 | A |
5906598 | Giesler et al. | May 1999 | A |
5921951 | Morris | Jul 1999 | A |
5925011 | Faict et al. | Jul 1999 | A |
5934885 | Farrell et al. | Aug 1999 | A |
5935099 | Peterson et al. | Aug 1999 | A |
5938634 | Packard | Aug 1999 | A |
5984897 | Petersen et al. | Nov 1999 | A |
5989423 | Kamen | Nov 1999 | A |
5993174 | Konishi | Nov 1999 | A |
5996634 | Dennehey et al. | Dec 1999 | A |
6013057 | Danby et al. | Jan 2000 | A |
6036668 | Mathis | Mar 2000 | A |
6036680 | Home et al. | Mar 2000 | A |
6041801 | Gray et al. | Mar 2000 | A |
6053191 | Hussey | Apr 2000 | A |
6065389 | Riedlinger | May 2000 | A |
6065941 | Gray et al. | May 2000 | A |
6068612 | Bowman et al. | May 2000 | A |
6074359 | Keshaviah et al. | Jun 2000 | A |
6079959 | Kingsford et al. | Jun 2000 | A |
6099492 | Le Boeuf | Aug 2000 | A |
6106246 | Steck et al. | Aug 2000 | A |
6110410 | Owens et al. | Aug 2000 | A |
6118207 | Ormerod et al. | Sep 2000 | A |
6129517 | Danby et al. | Oct 2000 | A |
6132187 | Ericson | Oct 2000 | A |
6136565 | Best et al. | Oct 2000 | A |
6152705 | Kennedy et al. | Nov 2000 | A |
6154605 | Aonuma | Nov 2000 | A |
6164621 | Bouchard et al. | Dec 2000 | A |
6165154 | Gray et al. | Dec 2000 | A |
6168394 | Forman et al. | Jan 2001 | B1 |
6178996 | Suzuki | Jan 2001 | B1 |
6179801 | Holmes et al. | Jan 2001 | B1 |
6184356 | Anderson et al. | Feb 2001 | B1 |
6189857 | Zeger et al. | Feb 2001 | B1 |
6196987 | Holmes et al. | Mar 2001 | B1 |
6200287 | Keller et al. | Mar 2001 | B1 |
6206644 | Pereira et al. | Mar 2001 | B1 |
6208107 | Maske et al. | Mar 2001 | B1 |
6208497 | Seale et al. | Mar 2001 | B1 |
6210361 | Kamen et al. | Apr 2001 | B1 |
6220295 | Bouchard et al. | Apr 2001 | B1 |
6223130 | Gray et al. | Apr 2001 | B1 |
6227807 | Chase | May 2001 | B1 |
6227824 | Stehr | May 2001 | B1 |
6228047 | Dadson | May 2001 | B1 |
6229753 | Kono et al. | May 2001 | B1 |
6231537 | Holmes et al. | May 2001 | B1 |
6234989 | Brierton et al. | May 2001 | B1 |
6250502 | Cote et al. | Jun 2001 | B1 |
6258078 | Thilly | Jul 2001 | B1 |
6261065 | Nayak et al. | Jul 2001 | B1 |
6267242 | Nagata et al. | Jul 2001 | B1 |
6270673 | Belt et al. | Aug 2001 | B1 |
6280406 | Dolecek et al. | Aug 2001 | B1 |
6281145 | Deguchi et al. | Aug 2001 | B1 |
6284142 | Muller | Sep 2001 | B1 |
6285155 | Maske et al. | Sep 2001 | B1 |
6286566 | Cline et al. | Sep 2001 | B1 |
6294094 | Muller et al. | Sep 2001 | B1 |
6296450 | Westberg et al. | Oct 2001 | B1 |
6297322 | Ding et al. | Oct 2001 | B1 |
6312412 | Saled | Nov 2001 | B1 |
6315707 | Smith et al. | Nov 2001 | B1 |
6315754 | Daoud et al. | Nov 2001 | B1 |
6316864 | Ormerod | Nov 2001 | B1 |
6322488 | Westberg et al. | Nov 2001 | B1 |
6325775 | Thom et al. | Dec 2001 | B1 |
6337049 | Tamari | Jan 2002 | B1 |
RE37553 | Ciavarini et al. | Feb 2002 | E |
6343614 | Gray et al. | Feb 2002 | B1 |
6348156 | Vishnoi et al. | Feb 2002 | B1 |
6361518 | Brierton et al. | Mar 2002 | B1 |
6364857 | Gray et al. | Apr 2002 | B1 |
6367669 | Au et al. | Apr 2002 | B1 |
6382923 | Gray | May 2002 | B1 |
6383158 | Utterberg | May 2002 | B1 |
6402486 | Steck et al. | Jun 2002 | B1 |
6406276 | Normand et al. | Jun 2002 | B1 |
6409696 | Toavs et al. | Jun 2002 | B1 |
6416293 | Bouchard et al. | Jul 2002 | B1 |
6419822 | Muller et al. | Jul 2002 | B2 |
6455676 | Weickert et al. | Sep 2002 | B1 |
6471855 | Odak et al. | Oct 2002 | B1 |
6481980 | Vandlik et al. | Nov 2002 | B1 |
6484383 | Herklotz | Nov 2002 | B1 |
6489896 | Platt et al. | Dec 2002 | B1 |
6491656 | Morris | Dec 2002 | B1 |
6494694 | Lawless et al. | Dec 2002 | B2 |
6497674 | Steele et al. | Dec 2002 | B1 |
6497676 | Childers et al. | Dec 2002 | B1 |
6503062 | Gray et al. | Jan 2003 | B1 |
6514225 | Utterberg et al. | Feb 2003 | B1 |
6519569 | White et al. | Feb 2003 | B1 |
6520747 | Gray et al. | Feb 2003 | B2 |
6524231 | Westberg et al. | Feb 2003 | B1 |
6529573 | Olsher et al. | Mar 2003 | B2 |
6537445 | Muller | Mar 2003 | B2 |
6542761 | Jahn et al. | Apr 2003 | B1 |
6558343 | Neftel | May 2003 | B1 |
6572604 | Platt et al. | Jun 2003 | B1 |
6579253 | Burbank et al. | Jun 2003 | B1 |
6582399 | Smith | Jun 2003 | B1 |
6592542 | Childers et al. | Jul 2003 | B2 |
6595948 | Suzuki et al. | Jul 2003 | B2 |
6603229 | Toye, IV | Aug 2003 | B1 |
6604908 | Bryant et al. | Aug 2003 | B1 |
6645166 | Scheunert et al. | Nov 2003 | B2 |
6645177 | Shearn | Nov 2003 | B1 |
6648861 | Platt et al. | Nov 2003 | B2 |
6663359 | Gray | Dec 2003 | B2 |
6670323 | Looker et al. | Dec 2003 | B1 |
6672841 | Herklotz et al. | Jan 2004 | B1 |
6695593 | Steck et al. | Feb 2004 | B1 |
6695803 | Robinson et al. | Feb 2004 | B1 |
6709417 | Houle et al. | Mar 2004 | B1 |
6716004 | Vandlik et al. | Apr 2004 | B2 |
6723062 | Westberg et al. | Apr 2004 | B1 |
6725726 | Adolfs et al. | Apr 2004 | B1 |
6726656 | Kamen et al. | Apr 2004 | B2 |
6730055 | Bainbridge et al. | May 2004 | B2 |
6743201 | Donig et al. | Jun 2004 | B1 |
6746514 | Bedingfield et al. | Jun 2004 | B2 |
6746637 | Huss et al. | Jun 2004 | B1 |
6749403 | Bryant et al. | Jun 2004 | B2 |
6752172 | Lauer | Jun 2004 | B2 |
6752599 | Park | Jun 2004 | B2 |
6755801 | Utterberg et al. | Jun 2004 | B2 |
6758975 | Peabody et al. | Jul 2004 | B2 |
6759007 | Westberg et al. | Jul 2004 | B1 |
6759014 | Dales et al. | Jul 2004 | B2 |
6764460 | Dolecek et al. | Jul 2004 | B2 |
6764761 | Eu et al. | Jul 2004 | B2 |
6768425 | Flaherty et al. | Jul 2004 | B2 |
6774517 | Kowalski et al. | Aug 2004 | B2 |
6790014 | Bowen | Sep 2004 | B2 |
6790195 | Steele et al. | Sep 2004 | B2 |
6790198 | White et al. | Sep 2004 | B1 |
6800054 | Westberg et al. | Oct 2004 | B2 |
6808369 | Gray et al. | Oct 2004 | B2 |
6814547 | Childers et al. | Nov 2004 | B2 |
6821432 | Metzner | Nov 2004 | B2 |
6828125 | Hoffman et al. | Dec 2004 | B1 |
6846161 | Kline et al. | Jan 2005 | B2 |
6852090 | Burbank et al. | Feb 2005 | B2 |
6869538 | Yu et al. | Mar 2005 | B2 |
6905479 | Bouchard et al. | Jun 2005 | B1 |
6929751 | Bowman, Jr. et al. | Aug 2005 | B2 |
6939111 | Huitt et al. | Sep 2005 | B2 |
6949079 | Westberg et al. | Sep 2005 | B1 |
6953323 | Childers et al. | Oct 2005 | B2 |
6957952 | Steck et al. | Oct 2005 | B1 |
6984218 | Nayak et al. | Jan 2006 | B2 |
7021148 | Kuhn et al. | Apr 2006 | B2 |
7029245 | Maianti et al. | Apr 2006 | B2 |
7033539 | Krensky et al. | Apr 2006 | B2 |
7041076 | Westberg et al. | May 2006 | B1 |
7044432 | Beden et al. | May 2006 | B2 |
7049406 | Weickert et al. | May 2006 | B2 |
7083719 | Bowman, Jr. et al. | Aug 2006 | B2 |
7087036 | Busby et al. | Aug 2006 | B2 |
7107837 | Lauman et al. | Sep 2006 | B2 |
7115107 | Delnevo et al. | Oct 2006 | B2 |
7115228 | Lundtveit et al. | Oct 2006 | B2 |
7147613 | Burbank et al. | Dec 2006 | B2 |
7153286 | Busby et al. | Dec 2006 | B2 |
7160087 | Fathallah et al. | Jan 2007 | B2 |
7166231 | Westberg et al. | Jan 2007 | B2 |
7175606 | Bowman, Jr. et al. | Feb 2007 | B2 |
7195607 | Westberg et al. | Mar 2007 | B2 |
7211560 | Looker et al. | May 2007 | B2 |
7232435 | Hildebrand et al. | Jun 2007 | B2 |
7236936 | White et al. | Jun 2007 | B2 |
7238164 | Childers et al. | Jul 2007 | B2 |
7255680 | Gharib | Aug 2007 | B1 |
7258534 | Fathallah et al. | Aug 2007 | B2 |
7261559 | Smith et al. | Aug 2007 | B2 |
7267661 | Susi | Sep 2007 | B2 |
7273465 | Ash | Sep 2007 | B2 |
7306578 | Gray et al. | Dec 2007 | B2 |
7331935 | Barere | Feb 2008 | B2 |
7338469 | Barker et al. | Mar 2008 | B2 |
7338472 | Shearn | Mar 2008 | B2 |
7345025 | Symonds et al. | Mar 2008 | B2 |
7347836 | Peterson et al. | Mar 2008 | B2 |
7390311 | Hildebrand et al. | Jun 2008 | B2 |
7398183 | Holland et al. | Jul 2008 | B2 |
7399637 | Wright et al. | Jul 2008 | B2 |
7404809 | Susi | Jul 2008 | B2 |
7410475 | Krensky et al. | Aug 2008 | B2 |
7422905 | Clague et al. | Sep 2008 | B2 |
7454314 | Holland et al. | Nov 2008 | B2 |
7461968 | Demers et al. | Dec 2008 | B2 |
7490021 | Holland et al. | Feb 2009 | B2 |
7500962 | Childers et al. | Mar 2009 | B2 |
7517387 | Chevallet et al. | Apr 2009 | B2 |
7553295 | Susi | Jun 2009 | B2 |
7556616 | Fathallah et al. | Jul 2009 | B2 |
7575564 | Childers | Aug 2009 | B2 |
7618948 | Kaemmerer | Nov 2009 | B2 |
7645258 | White et al. | Jan 2010 | B2 |
7648627 | Beden et al. | Jan 2010 | B2 |
7654976 | Peterson et al. | Feb 2010 | B2 |
7662286 | Childers et al. | Feb 2010 | B2 |
7699966 | Qin et al. | Apr 2010 | B2 |
7717682 | Orr | May 2010 | B2 |
7789849 | Busby et al. | Sep 2010 | B2 |
7815595 | Busby et al. | Oct 2010 | B2 |
7662133 | Scarborough et al. | Dec 2010 | B2 |
8038640 | Orr | Oct 2011 | B2 |
8142653 | Beden et al. | Mar 2012 | B2 |
8192401 | Morris et al. | Jun 2012 | B2 |
8197231 | Orr | Jun 2012 | B2 |
8197439 | Wang et al. | Jun 2012 | B2 |
8206338 | Childers et al. | Jun 2012 | B2 |
8292594 | Tracey et al. | Oct 2012 | B2 |
8366921 | Beden et al. | Feb 2013 | B2 |
8377293 | Beden et al. | Feb 2013 | B2 |
8409441 | Wilt | Apr 2013 | B2 |
8435408 | Beden et al. | May 2013 | B2 |
8562834 | Kamen et al. | Oct 2013 | B2 |
8721879 | van der Marwe et al. | May 2014 | B2 |
8721883 | Lauer | May 2014 | B2 |
8926835 | Beden et al. | Jan 2015 | B2 |
8932032 | Orr | Jan 2015 | B2 |
8986254 | Morris et al. | Mar 2015 | B2 |
9011114 | Farrell et al. | Apr 2015 | B2 |
9101709 | Beden et al. | Aug 2015 | B2 |
9180240 | Farrell et al. | Nov 2015 | B2 |
9421314 | Plahey et al. | Aug 2016 | B2 |
9500188 | Ly et al. | Nov 2016 | B2 |
9610392 | Farrell et al. | Apr 2017 | B2 |
9624915 | Medina | Apr 2017 | B2 |
20010034502 | Moberg | Oct 2001 | A1 |
20010037763 | Deguchi et al. | Nov 2001 | A1 |
20010043450 | Seale et al. | Nov 2001 | A1 |
20020045851 | Suzuki et al. | Apr 2002 | A1 |
20020062109 | Lauer | May 2002 | A1 |
20020072718 | Brugger et al. | Jun 2002 | A1 |
20020098097 | Singh | Jul 2002 | A1 |
20020107474 | Noack | Aug 2002 | A1 |
20020147423 | Burbank et al. | Oct 2002 | A1 |
20030018395 | Crnkovich et al. | Jan 2003 | A1 |
20030028144 | Duchon et al. | Feb 2003 | A1 |
20030029451 | Blair | Feb 2003 | A1 |
20030042181 | Metzner | Mar 2003 | A1 |
20030100882 | Beden et al. | May 2003 | A1 |
20030136189 | Lauman et al. | Jul 2003 | A1 |
20030194332 | Jahn et al. | Oct 2003 | A1 |
20030200812 | Kuhn et al. | Oct 2003 | A1 |
20030204162 | Childers et al. | Oct 2003 | A1 |
20030217957 | Bowman et al. | Nov 2003 | A1 |
20030217961 | Hopping | Nov 2003 | A1 |
20030217975 | Yu et al. | Nov 2003 | A1 |
20030218623 | Krensky et al. | Nov 2003 | A1 |
20030220599 | Lundtveit et al. | Nov 2003 | A1 |
20030220605 | Bowman et al. | Nov 2003 | A1 |
20030220607 | Busby et al. | Nov 2003 | A1 |
20030220608 | Huitt et al. | Nov 2003 | A1 |
20030220609 | Childers et al. | Nov 2003 | A1 |
20030220627 | Distler et al. | Nov 2003 | A1 |
20040001766 | Maianti et al. | Jan 2004 | A1 |
20040010223 | Busby et al. | Jan 2004 | A1 |
20040019313 | Childers et al. | Jan 2004 | A1 |
20040019320 | Childers et al. | Jan 2004 | A1 |
20040031756 | Suzuki et al. | Feb 2004 | A1 |
20040064080 | Cruz et al. | Apr 2004 | A1 |
20040067161 | Axelsson | Apr 2004 | A1 |
20040082903 | Micheli | Apr 2004 | A1 |
20040084647 | Beden et al. | May 2004 | A1 |
20040109769 | Jahn et al. | Jun 2004 | A1 |
20040115068 | Hansen et al. | Jun 2004 | A1 |
20040135078 | Mandro et al. | Jul 2004 | A1 |
20040136843 | Jahn et al. | Jul 2004 | A1 |
20040156745 | Vandlik et al. | Aug 2004 | A1 |
20040195190 | Min et al. | Oct 2004 | A1 |
20040238416 | Burbank et al. | Dec 2004 | A1 |
20050054968 | Giannella | Mar 2005 | A1 |
20050230292 | Beden et al. | Oct 2005 | A1 |
20060002823 | Feldstein | Jan 2006 | A1 |
20060079766 | Neer et al. | Apr 2006 | A1 |
20060079826 | Beden et al. | Apr 2006 | A1 |
20060195064 | Plahey et al. | Aug 2006 | A1 |
20070040454 | Freudenberger et al. | Feb 2007 | A1 |
20070112297 | Plahey et al. | May 2007 | A1 |
20070149913 | Busby et al. | Jun 2007 | A1 |
20070193940 | Duchamp et al. | Aug 2007 | A1 |
20070213651 | Busby et al. | Sep 2007 | A1 |
20070213653 | Childers et al. | Sep 2007 | A1 |
20070269340 | Dannenmaier et al. | Nov 2007 | A1 |
20070278155 | Lo et al. | Dec 2007 | A1 |
20080033346 | Childers et al. | Feb 2008 | A1 |
20080077068 | Orr | Mar 2008 | A1 |
20080125693 | Gavin et al. | May 2008 | A1 |
20080208103 | Demers et al. | Aug 2008 | A1 |
20080216898 | Grant et al. | Sep 2008 | A1 |
20080253912 | Demers et al. | Oct 2008 | A1 |
20090004033 | Demers et al. | Jan 2009 | A1 |
20090099498 | Demers et al. | Apr 2009 | A1 |
20090137940 | Orr | May 2009 | A1 |
20090169402 | Stenberg | Jul 2009 | A1 |
20090212248 | Kozak | Aug 2009 | A1 |
20100021313 | Devan et al. | Jan 2010 | A1 |
20100133153 | Beden et al. | Jun 2010 | A1 |
20100211044 | Dacquay et al. | Aug 2010 | A1 |
20100241062 | Morris et al. | Sep 2010 | A1 |
20100286614 | Ring | Nov 2010 | A1 |
20110015610 | Plahey et al. | Jan 2011 | A1 |
20110020156 | Van Brunt et al. | Jan 2011 | A1 |
20110092895 | Yardimci et al. | Apr 2011 | A1 |
20110125085 | McGill et al. | May 2011 | A1 |
20110137237 | Prisco et al. | Jun 2011 | A1 |
20110152785 | Chattaraj et al. | Jun 2011 | A1 |
20110274566 | Amirouche et al. | Nov 2011 | A1 |
20110293450 | Grimes et al. | Dec 2011 | A1 |
20120022354 | Beyer et al. | Jan 2012 | A1 |
20120061310 | Beden et al. | Mar 2012 | A1 |
20120065581 | Childers et al. | Mar 2012 | A1 |
20120073432 | Ingersoll et al. | Mar 2012 | A1 |
20120123322 | Scarpaci et al. | May 2012 | A1 |
20120156097 | Beden et al. | Jun 2012 | A1 |
20120181225 | Weis | Jul 2012 | A1 |
20120181226 | Lauer | Jul 2012 | A1 |
20120181231 | Beden et al. | Jul 2012 | A1 |
20120209169 | Morris et al. | Aug 2012 | A1 |
20120224984 | Orr | Sep 2012 | A1 |
20120230844 | Farrell et al. | Sep 2012 | A1 |
20120232469 | Medina | Sep 2012 | A1 |
20120271226 | Farrell et al. | Oct 2012 | A1 |
20120308412 | Rochat | Dec 2012 | A1 |
20130118961 | Beden et al. | May 2013 | A1 |
20130118970 | Beden et al. | May 2013 | A1 |
20130183170 | Laermer | Jul 2013 | A1 |
20130184638 | Scarpaci et al. | Jul 2013 | A1 |
20130330208 | Ly et al. | Dec 2013 | A1 |
20130331774 | Farrell et al. | Dec 2013 | A1 |
20150098846 | Orr | Apr 2015 | A1 |
20150165105 | Beden et al. | Aug 2015 | A1 |
20160015882 | Farrell et al. | Jan 2016 | A1 |
20160331883 | Plahey et al. | Nov 2016 | A1 |
20170203023 | Farrell et al. | Jul 2017 | A1 |
Number | Date | Country |
---|---|---|
2628238 | Jan 1978 | DE |
2827648 | Jan 1979 | DE |
4006785 | Sep 1990 | DE |
4336336 | May 1994 | DE |
19837667 | Mar 2000 | DE |
19919572 | Nov 2000 | DE |
10042324 | Feb 2002 | DE |
10046651 | Apr 2002 | DE |
19919572 | Apr 2002 | DE |
10053441 | May 2002 | DE |
10157924 | May 2002 | DE |
69618766 | Aug 2002 | DE |
10143137 | Apr 2003 | DE |
102007059239 | Jun 2009 | DE |
257279 | Mar 1988 | EP |
314379 | Aug 1991 | EP |
410125 | Aug 1993 | EP |
728509 | Aug 1996 | EP |
848193 | Jun 1998 | EP |
856321 | Aug 1998 | EP |
947814 | Oct 1999 | EP |
956876 | Nov 1999 | EP |
1529545 | May 2005 | EP |
1483702 | Aug 1977 | GB |
2101232 | Jan 1983 | GB |
2331796 | Jun 1999 | GB |
396850 | Apr 1991 | JP |
4191755 | Jul 1992 | JP |
6154314 | Jun 1994 | JP |
6002650 | Nov 1994 | JP |
8028722 | Feb 1996 | JP |
1068383 | Mar 1998 | JP |
11347115 | Dec 1999 | JP |
2000070358 | Mar 2000 | JP |
2000346214 | Dec 2000 | JP |
8402473 | Jul 1984 | WO |
1986001115 | Feb 1986 | WO |
1994015660 | Jul 1994 | WO |
9420155 | Sep 1994 | WO |
1996025064 | Sep 1996 | WO |
1997016214 | May 1997 | WO |
9737703 | Oct 1997 | WO |
9822165 | May 1998 | WO |
1998022167 | May 1998 | WO |
0023140 | Apr 2000 | WO |
0033898 | Jun 2000 | WO |
0117605 | Mar 2001 | WO |
0225225 | Mar 2002 | WO |
225146 | Mar 2002 | WO |
2007006030 | Jun 2007 | WO |
2009071069 | Jun 2009 | WO |
2010128914 | Nov 2010 | WO |
2011045167 | Apr 2011 | WO |
Entry |
---|
Operator's Manual, Serena, Program Version 3.xx—English, 2002. |
Sleep Safe Operating Instructions, Software Version 0.9, Part No. 677 805 1; Aug. 2000. |
Sleep Safe Technical Manual, Part No. 677 807 1, Aug. 2000. |
Liberty Cycler Operator's Manual, 2003-2004. |
Newton IQ Cycler Operator Manual, Part No. 470203 Rev. F, 2000-2006. |
Operator's Instructions, Fresenius 90/2 Peritoneal Therapy Cycler, Part No. 470016 Rev. B, 1991. |
Gambro®, “DEHP-free cartridge blood sets,” © Nov. 2004, Gambro, Inc., Lakewood, CO, 4 pp. |
Gambro®, Prisma® HF 1000, “For Increased Filtration Capacity”, © Aug. 2001, Gambro Renal Products, Inc., Lakewood, CO, 2 pp. |
Gambro®, “Prisma® M60 and M 100 Pre-Pump Infusion Sets—Introducing: The unique solution that enables Physicians to choose a predilution method that meets the needs of their patients”, © 2004, Gambro Inc., Lakewood, CO, 4 pp. |
Gambro®, “Prismaflex™ anticipating critical care needs and taking our innovative response . . . to new heights,” © 2004, Gambro, Inc., Lakewood, CO, 8 pages. |
Glenn Avolio, “Principles of Rotary Optical Encoders,” Sensors Journal of Machine Perception, vol. 10, No. 4, pp. 10-18, 1993. |
Manns, Markus et al., “The acu-men: A new device for continuous renal replacement therapy in acute renal failure,” Kidney International, vol. 54, pp. 268-274, 1998. |
Bolegoh, Gordon, “Pumps: Reference Guide”, p. 24, 3rd edition, 2001. |
Ronco et al., “Evolution of Machines for Automated Peritoneal Dialysis”, in Automated Peritoneal Dialysis, Contributions to Nephrology, vol. 129, pp. 142-161, 1999. |
Sleep Safe Operating Instructions, Software Version 0.5, Apr. 1999. |
Sleep Safe Operating Instructions, Software Version 1.0, Oct. 2000. |
Sleep Safe Technical Manual, Dec. 2001. |
Sleep Safe Operating Instructions, Jan. 2002. |
Sleep Safe Communicating Therapy, Mar. 1998. |
Sleep Safe Kommunizierte Therapie, May 1998. |
Innovative Technologies in Peritoneal Dialysis, Sleep Safe Concept, Oct. 13, 1999 (4 attachments). |
TL™ Pump Brochure, TL Systems Corporation, Apr. 1975. |
Google definition for Hall Effect Sensor, accessed Jul. 30, 2015. |
Hall Sensor Effect—NPL Wayback Mar. 11, 2011. www.movingmagnet.com, Technologies, Magnetic and Hall effect Position Sensors. |
International Search Report and Written Opinion, PCT/US2010 /041976, dated Dec. 2, 2010. |
Notification Concerning Transmittal of International Preliminary Report on Patentability for corresponding PCT Application No. PCT/US2012/032672, dated Oct. 31, 2013, 9 pages. |
International Search Report and Written Opinion for PCT Application No. PCT/US2012/032672, dated Jun. 13, 2012, 13 pages. |
Number | Date | Country | |
---|---|---|---|
20180117229 A1 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14571645 | Dec 2014 | US |
Child | 15805374 | US | |
Parent | 13728162 | Dec 2012 | US |
Child | 14571645 | US | |
Parent | 13401429 | Feb 2012 | US |
Child | 13728162 | US | |
Parent | 12627043 | Nov 2009 | US |
Child | 13401429 | US | |
Parent | 10516528 | US | |
Child | 12627043 | US |