Dialysis systems and related methods

Information

  • Patent Grant
  • 9827359
  • Patent Number
    9,827,359
  • Date Filed
    Tuesday, December 16, 2014
    9 years ago
  • Date Issued
    Tuesday, November 28, 2017
    6 years ago
Abstract
A dialysis machine that includes a valve member having a deformable area configured to deform outwardly away when pressurized fluid is introduced into the valve member. The valve member is configured so that, when a dialysis fluid cassette is disposed in a cassette compartment of the dialysis machine and pressurized fluid is introduced into the valve member, the deformable area obstructs a fluid channel of the dialysis fluid cassette to control dialysis fluid flow therethrough.
Description
TECHNICAL FIELD

The invention relates to an apparatus for the treatment of a medical fluid comprising a fluid treatment machine and a cassette insertable therein substantially consisting of a rigid base body of the cassette with fitted chambers and passages and a foil covering them.


BACKGROUND

Cassettes are used in medical engineering, in particular to convey dialysis fluid, blood and the like.


A cassette can include a base body with fitted chambers and passages which is closed by a flexible foil to cover the passages and chambers. The cassette can be inserted into a special receiving chamber, e.g., in a dialysis machine. This chamber can, for example, be opened via a pivotable door. The cassette can be inserted into the chamber, with the flexible foil lying opposite a corresponding mating piece at the machine so that the cassette can be operated with the aid of actuators and sensors on the machine side.


Conventional extracorporeal blood circuits or blood tubing systems are usually present in a differential construction. This means that a functional division onto different components is present. Such components (e.g., bubble traps, flow chambers or injection positions) are connected to one another by tubes and are as a rule connected individually to the respective dialysis machine. The design of such blood tubing systems is very complex in manufacture and handling, with the corresponding effort naturally being extremely time consuming with more complex systems such as an online hemodiafiltration.


On the other hand, conventional extracorporeal blood circuits which are installed in this differential construction have the advantage that they can be designed substantially more flexibly for the respective treatment depending on the demand. Previously known apparatuses for the use of cassettes typically were only usable for a very specific application.


SUMMARY

Certain aspects of the invention relate to a generic apparatus comprising a fluid treatment machine and a cassette insertable therein such that a large flexibility for different applications is made possible while maintaining the fast and simple exchangeability.


In some aspects of the invention, actuators and sensors are arranged in a generic apparatus for the treatment of a medical fluid for the operation of the apparatus with an inserted cassette such that cassettes are insertable in different integration shapes.


Due to the clearly defined arrangement of corresponding sensors and actuators, cassettes of different complexity can be inserted into the fluid treatment machine in accordance with the desired application. It is therefore not necessary to provide different apparatus for different applications.


A cassette for a standard hemodialysis can thus be insertable here, for example. The corresponding pump chambers, measuring sensors and further actuators, such as valves, etc., are provided at pre-determined locations in the fluid treatment machine. Additional pumps, actuators, valves, etc. are provided in the fluid treatment machine which do not have to be actuated when the cassette is used for standard hemodialysis. They are, for example, only in use when a cassette is used for online hemodiafiltration or online hemofiltration. Further passages, pump chambers, etc. are provided at corresponding positions in the corresponding cassettes which are associated with these actuators, pumps or valves. Furthermore, a cassette for an acute dialysis treatment can be inserted in which in turn the pumps, actuators and valves provided on the side of the fluid treatment machine are associated with corresponding pumping chambers, passages, etc. The associated control electronics can be selected depending on the inserted cassette for the control of the pumps, actuators, sensors, etc.





DESCRIPTION OF DRAWINGS

Details and advantages of the invention will be explained in more detail by way of example in the following with reference to the Figures. There are shown:



FIG. 1: a schematic plan view of a cassette for standard hemodialysis;



FIG. 2: a schematic plan view of a cassette in accordance with the invention according to a further embodiment of the invention for use in online hemodiafiltration or online hemofiltration;



FIG. 3: a plan view of a cassette in accordance with a further embodiment of the present invention which can be used for acute treatment;



FIG. 4: a schematic plan view of a further aspect of the invention which substantially corresponds to that in accordance with FIG. 1, but has an integrated dialyzer;



FIG. 5: a further aspect of the invention which substantially corresponds to that in accordance with FIG. 2, but has an integrated dialyzer;



FIG. 6: a further embodiment of the invention which substantially corresponds to that in accordance with FIG. 3, but has an integrated dialyzer;



FIG. 7: a three-dimensional representation of a fluid treatment machine as an embodiment of the apparatus in accordance with the invention without an inserted cassette;



FIG. 8: a representation corresponding to FIG. 7, but with an inserted cassette;



FIG. 9: a representation in accordance with FIG. 7, but with a different embodiment variant of a cassette differing from the cassette shown in FIG. 8;



FIG. 10: a detail of a venting unit in the apparatus in accordance with the invention;



FIG. 11: a detailed view of a contour of a measuring chamber in a cassette in accordance with one of the aforesaid embodiment variants;



FIG. 12: a partially sectional representation of a pump chamber of the cassette in accordance with the present invention;



FIG. 13: a partially sectional representation through a passage of the cassette in accordance with an embodiment variant of the invention;



FIG. 14: a cross-sectional view of a valve;



FIG. 15: a diagrammatic view of the valve of FIG. 14 in use in a disposable cartridge;



FIG. 16: a perspective view of a fluid guide body having an open main passage and a secondary passage opening therein in accordance with an embodiment of the invention in a sectional representation;



FIG. 17: a perspective view of a base body of the cassette of FIG. 1 in a partial section, wherein a covering film is pressed onto the fluid guide body by a valve actuator and closes the secondary passage;



FIG. 18: a perspective view similar to FIG. 17, wherein the secondary passage is represented in its open position; and



FIG. 19: a schematic, 3D representation of a section of an elastic matt according to an embodiment of the present invention;



FIG. 20: a section along the section line A-A′ in FIG. 19;



FIG. 21: a section along the section line B-B′ in FIG. 19;



FIG. 22: a section along the section line C-C′ in FIG. 19.





DETAILED DESCRIPTION

In FIG. 1, a cassette 10 in accordance with an embodiment of the present invention is shown which can be used for standard hemodialysis. In FIG. 1, the surface of the cassette 10 is divided into a hatched region B (two partial areas) and a non-hatched region A. Both the surface of the cassette 10 and the surface of an associated machine block 108 (shown in FIG. 7) are divided into the covering surface regions A and B. Components of actuators or sensors to be coupled, which are common to all cassettes as basic variants (e.g., all the cassettes for standard hemodialysis) are accommodated in the surface region A (not hatched in FIG. 1), and the surface region B denotes a region in which actuators or sensors to be used optionally are provided in the machine block 108 (shown in FIG. 7). As discussed below, FIG. 2 illustrates a cassette that includes operable components in a region corresponding to a surface region B.


The cassette consists of a base body 12 of a cassette which consists of polypropylene in the embodiment shown here. A cover foil 14 (shown in FIGS. 10, 12, 13, 17, and 18) consisting, for example, of a polyolefin elastomer mixture, is applied to the base body 12 of the cassette 10. The passages and recesses, which will be looked at in more detail later, are covered by this cover foil 14. An arterial injection septum 16 is provided in the arterial line 18 to the dialyzer and a venous injection septum 20 is provided in the venous line 22 to the dialyzer. The dialyzer itself and the corresponding tube connection are not shown in any more detail in the embodiment shown here. Reference number 24 designates the blood inlet from the patient and reference number 26 designates the blood outlet to the patient. The respective tubes, which likewise consist of a polyolefin elastomer mixture, are also not shown here for reasons of simplification. Passages 28 are recessed in the base body 12 of the cassette 10. They are acted on by a row of valves 30.


These valves 30 have a valve body with a pressure passage and a sealing cap which cooperates with the valve body such that it closes the end of the pressure passage on the valve body side with respect to the environment, with a pressure space being able to be built up between the pressure passage and the sealing cap so that the sealing cap has a deformable sealing region for entry into the fluid passage in order to close this as required.



FIG. 14 shows one of the valves 30 in a sectional view, which is rotation-symmetric about a vertical axis. The valve 30 includes a valve body 112 with a pressure channel 114, which ends in a pressure chamber 116. A sealing cap 118 with a deformable area 120, which bounds the pressure chamber 116, is placed over the valve body 112.


The pressure channel 114 of the valve body 112 is elongated, so that it can be inserted, for example, through the body or a wall of a counterpart of the disposable cassette 10 on the device side (i.e., through the machine block 108) and can be screwed down with a lock nut 122. A thread is provided on the outer wall of the portion of the valve body 112 that forms the pressure channel 114 to allow the lock nut 122 to secure the valve body 112 to the machine block 108. The valve body 112 has sealing surfaces 124 for sealing the valve body 112 in the machine block 108. The sealing cap 118 includes protruding bulges 126, which surround the valve body 112 in such a way that they lie adjacent to the sealing surfaces 124 and are pressed when the valve 30 is assembled.


Still referring to FIG. 14, the upper area of the valve 30 is the area on the fluid passage side (i.e., the side nearest the cassette 10). A projection 130 of the sealing cap 118 lies on the end of the valve body 112, on the fluid passage side. A shoulder 128 of the sealing cap 118 is provided to ensure that that the sealing cap 118 fits into its associated fluid passage in the cassette 10.


The valve 30 is shown diagramatically in use in FIG. 15. The base body 12 of the disposable cassette 10 in which liquid passages 28 are formed is shown in diagrammatic representation. The corresponding counterpart of the disposable cartridge body on the device side (i.e., the machine block 108) is shown pressed against the cassette 10.


The valve 30 is inserted into a suitably shaped housing (e.g., recess) 138 of the machine block 108 and screwed down with the lock nut 122. The shoulder 128 lies adjacent to the edges of the liquid passage 28. The movement of the deformable area 120 when an excess pressure or partial vacuum is applied or with venting of the pressure channel 114 is indicated by arrow 140. Reference number 142 indicates the direction in which the pressure is applied in order to close the valve 30. As shown in FIG. 15, the housing 138 in the machine block 108 is rotation-symmetric about the pressure channel 114 of the valve 30, and the liquid passage 28 extends perpendicular to the plane of the figure.


A cut-out for accommodating the shoulder 128 can be provided either in the base body 12 of the cassette 10 or in the machine block 108. It is also possible for the shoulder 128 to be accommodated in a suitable opening in a cover mat located between the cassette 10 and the machine block 108.


For the sake of clarity, FIG. 15 does not show the cover foil 14 of the cassette 10, which closes off the fluid passage 28 against the surroundings. The cover foil 14 (shown in FIGS. 10, 12, 13, 17, and 18) can be fixed on the side of the base body 12 of the cassette 10 that is pressed against the machine block 108. The cover foil 14 is sufficiently flexible so that it can follow the deformation of the deformable area 120 of the sealing cap 118 of the valve 130.


For the operation of the valve 30 with the cassette 10, the valve body 112 is inserted through the housing 138 of the machine block 108, so that the pressure channel 114 extends through the machine block 108. The lock nut 122 is tightened up so that the protruding bulges 126 create a seal between the valve body 112 and the machine block 108. By simply screwing the lock nut 122 onto the valve body 112, a tight and reliable connection of the valve 30 with the machine block 108 is thus provided.


The machine block 108 with the valve 30 is pressed against the cassette 10, whereby the shoulders 128 of the sealing cap 118 fit tightly with the edges of the liquid passage 28. By pressing the machine block 108 against the disposable cassette 10, several valves 30 can be simultaneously fitted into their corresponding liquid passages 28 at the desired points.


The dialysis liquid, for example, flows through the fluid passage 28 when the valve 30 is in the opened state. If excess pressure is applied via the pressure channel 114 in the direction of the arrow 142, the deformable area 120 of the sealing cap 118 is deformed into the liquid passage 28 until the valve 30 is finally closed. The loading on the sealing cap 118 is reduced by the projection 130 of the sealing cap 118, without the movement of the deformable area 120 being significantly impaired. The cover foil 14 of the cassette 10 is deformed together with the sealing cap 118 into the liquid passage 28.


If the fluid passage 28 is to be opened again, the pressure channel 114 is vented and the deformable area 120 of the sealing cap 118 is relaxed. By applying a partial vacuum to the pressure channel 114, the deformable area 120 is placed against the convex curvature of the pressure chamber 116 and correspondingly increases the cross-section of the fluid passage 28. By simply applying or removing a pressurization to the pressure channel 114, therefore, the flow rate through the fluid passage 28 can be controlled.


When the disposable cartridge is removed, the valve 30 can be removed or replaced simply by loosening lock nut 122, e.g., for maintenance or in the event of malfunction.


The sealing cap 118 is a simple low-cost shaped part, which on account of its closed design can easily be cleaned and thus satisfies the hygiene requirements in dialysis, but which can also easily be replaced when necessary.


When the disposable cassette 10 is again compressed between the machine block 108 and the base body 12, the valve 30 fits into the fluid passage 28 very well by pressing the shoulder 128 with the edge of the fluid passage 28. On account of the elastic stretching of the deformable area 120 of the sealing cap 118, there is a very good tolerance compensation both in the depth of the fluid passage 28 as well as in respect of lateral misalignment, without a significant additional expenditure of force. The deformable area 120 guarantees that only small forces are required to block the fluid passage 28.


Other details regarding the valves 30 and their operation with disposable cartridges, such as the cassette 10 described above, are discussed in DE 100 46 651, which is incorporated by reference herein.


Referring again to FIG. 1, an arterial measuring chamber 32 and a venous measuring chamber 34 are furthermore recessed in the base body 12 of the cassette 10. The basic design of these measuring chambers is shown in FIG. 11. Referring to FIG. 11, the flow direction of the fluid, i.e., of the blood through the chambers 32, 34, is indicated by the arrows. The measuring chambers 32 and 34 have a widened passage section to be able to receive the sensors 36. The contour of the measuring chambers 32, 34 corresponds to a diffuser nozzle geometry such as is shown in FIG. 11. A diffuser 38, which runs out in a nozzle 40, is arranged in the region of the inflow region of the fluid. The widened cross-section in the diffuser 38 is relatively rapid in comparison to the narrowed cross-section in the nozzle 40. The sensors 36, which are made in the form of multi-functional sensors, are arranged in the region of the arterial or venous measuring chamber 32, 34.


More specifically, each of the sensors 36 for measuring selected parameters of the medical fluid passing in the arterial and venous measuring chambers 32, 34 is disposed on a measurement plate that has a peripheral seal along its outer edge and that is in contact with the flexible membrane (i.e., the foil 14). The measurement plate has an inlet that leads to the foil 14 so that a vacuum can be established between the measurement plate and the foil 14.


Several sensors can be mounted on the measurement plate, and since the flexible membrane (i.e., the foil 14) can be brought in close contact with the measurement plate, the medical fluids are separated from the sensors on the measurement plate only by the foil 14. Because of the peripheral seal disposed on the measurement plate, the foil 14 can be brought in close contact with the underside of the measurement plate by applying a vacuum, so that very close contact can be established between the sensors and the medical fluid in the measurement chamber. The contact surface of at least one of the sensors is preferably flush with the underside of the measurement plate, so that it is possible to establish direct measurement contact between the respective sensor and the flexible membrane.


Because of advances in miniaturization and integration technology of sensors, it is possible to arrange multiple sensors on an area a few square centimeters in size. Each respective sensor is preferably mounted in a recess in the measurement plate, with the measurement surface of the sensor being in flush contact with the underside of the measurement plate. The sensors are preferably securely glued to the measurement plate.


For example, a pressure sensor and a temperature sensor may be used. Pressure sensors have become available formed on individual semiconductor chips due to advances in integration of Microsystems, so that the chips carrying the sensor are only a few square millimeters in size. Because the sensor surface can be brought in direct contact with the foil 14, it is possible to measure both positive and negative pressures. As a result, the thermal energy balance and the venous pressure in a dialysis machine can be measured with the pressure sensor and the temperature sensor.


In some implementations, the seal of the measurement plate is made of a rubber ring which is inserted into a groove in the measurement plate and projects slightly above the edge of the measurement plate. As soon as a vacuum is established between the membrane (i.e., the foil 14) and the measurement plate, the foil 14 is pressed tightly against the underside of the measurement plate by the ambient air pressure, and the seal guarantees that no additional air can flow into the area between the measurement plate and the foil 14.


The measurement plate can be made of a metal disk into which the respective sensors are inserted. In some implementations, the metal disk is kept at a constant temperature by, for example, Peltier elements. This design permits a more accurate temperature measurement of the medical fluid.


Before performing the individual measurements, a vacuum is first applied to the inlet so that the film (i.e., the foil 14) is placed in close contact with the sensors. Then, the sensors are activated by a control unit (not shown), so that the respective measurements can begin.


The above-described sensor arrangement is described in greater detail in DE 198 37 667, which is incorporated by reference herein.


Referring again to FIG. 1, an arterial port 42 and a heparin port 44 are provided at the cassette, which are each connected via corresponding passages to the passage carrying the arterial blood in each case via phantom valves 46. The phantom valves 46 are used in the cassette 10 in accordance with the invention instead of conventional open T-branches. In these phantom valves, the passage wall is not interrupted from the aspect of the main blood flow. Reference number 48 designates a venous port which likewise opens into a blood-carrying passage 28, here in the venous part of the blood-carrying passages, via a phantom valve 46.


As FIG. 16 shows, and as discussed above, the fluid guide body (i.e., the base body 12) of the cassette 10 has a main fluid passage 28, which is integrally worked into the base body 12 and is closed by a covering film (i.e., the foil 14), which is not shown in FIG. 16.


The fluid guide body (i.e., the base body 12) further has a secondary passage 144 that leads away from the rear side of the base body 12, which is remote from the open side of the main passage 28, onto the opposite front side of the base body 12 and opens there into the main passage 28. As FIG. 17 shows, the secondary passage 144 passes through a base 146 of the main passage 28. The secondary passage 144 extends into the main passage 28 in the form of a volcano-like funnel 148 whose height corresponds to the depth of the main passage 28 so that an orifice 150 of the secondary passage 144 is arranged vertically coincident with the rims of the main passage 28.


The secondary passage 144 is positioned symmetrically in the center of the main passage 28 and extends perpendicularly to the longitudinal direction of the main passage 28. The planar designed orifice 150 is in the plane which is set up by the rims of the main passage 28.


As FIG. 16 shows, the funnel 148 has a streamlined cross-section. In more precise terms, the outside of the wall of the secondary passage 144 in the main passage 28 is formed in streamlined manner, with the longitudinal axis of the streamlined shape corresponding to the longitudinal axis of the main passage 28. Vortexes, turbulences and an increased flow resistance are thereby avoided at the secondary passage 144. The medical fluid flowing through the main passage 28 can flow past the secondary passage 144 in laminar fashion.


As FIG. 16 shows, the contours of the main passage 28 are also formed extending in streamlined fashion around the secondary passage 144. The side walls of the main passage 28 opposite the funnel 148 bulge in streamlined fashion around the funnel 148 so that the fluid flow forking around the funnel 148 finds approximately the same flow cross-section and can flow past the funnel 148 without speed changes.


To be able to close the open side of the secondary passage 144 and simultaneously the orifice 150 of the secondary passage 144, the covering film (i.e., the foil 14), which can be welded or connected in another way to the base body 12, lies on the base body 12. To seal the main passage 28, the foil 14 can be welded to the base body 12 along the rims of the main passage 28. The sealing can, however, also be effected by pressing the foil 14 along the rims of the main passage 28 by a valve plunger 152.


The valve plunger 152 has a continuous, planar plunger surface 154 that is formed by an elastic (e.g., elastomer) machine membrane. Due to the vertically coincident arrangement of the orifice 150 with the rims of the main passage 28, the secondary passage 144 can be closed without stretching of the foil 14, if the foil 14 is pressed onto the base body 12. The orifice 150 is formed for this purpose as a planar valve seat 156, which is in the plane set up by the rims of the main passage 28 and forms the front end of the funnel 148.



FIG. 17 shows the closed state of the secondary passage 144. The plunger surface 154 is pressed onto the base body 12. Additional pressure can be applied by an actuating part 158 in the region of the orifice 150 of the secondary passage 144 in order to achieve a reliable sealing of the secondary passage 144.


To open the secondary passage 144, the actuating part 158, which is connected to the plunger surface 154 in the region of the secondary passage orifice 150, is moved away from the base body 12. The plunger surface 154 is thereby raised from the orifice 150 of the secondary passage 144 in the region thereof. As FIG. 18 shows, the plunger surface 154 thereby deforms, which is allowed by the design of the same as an elastic membrane.


The foil 14 also lifts off the orifice 150 of the secondary passage 144 due to the raising of the plunger surface 154. The pressure of the flow in the main passage 28 presses the foil 14 away from the orifice 150. Optionally, this can also be supported actively by the interposition of a vacuum between the plunger surface 154 and the foil 14, which is helpful in particular when a sample should be sucked from the fluid flow in the main passage 28 through the secondary passage 144.


When the actuating part 158 lifts, the foil 14 stretches elastically. The deformation is here very low, however. It is in particular not plastic so that a formation of creases in the subsequent re-closing of the orifice 150 is prevented. As FIG. 18 shows, the secondary passage 144 is in flow communication with the main passage 28 in the raised state of the foil 14.


Other details regarding the phantom valves 46 are described in DE 100 53 441, which is incorporated by reference herein.


Referring again to FIG. 1, reference numbers 50 designate two pump chambers which serve to pump the blood. The design of the pump chambers 50 is shown in detail in FIG. 12. The pump chambers 50, which are activated via membrane pumps provided at the machine side (i.e., in the machine block 108), have substantially tangential inlets and outlets for a uniform throughflow of the total chamber, as shown in FIG. 1. The shape of the pump chambers 50 is pre-determined by the correspondingly shaped base body 12 of the cassette 10 and can be approximately described as a spherical section. At the periphery, the base body 12 of the cassette 10 has a raised edge 52 around the pumping chambers 50 which serves as a stop bead. In addition, as shown in FIG. 12, the peripheral edge of the spherical section is set somewhat lower so that in the pressing-out phase, that is in the phase in which the cover foil 14 is moved toward the base body 12 of the cassette 10, a flushing edge or flushing passage 54 is formed. The flushing edge or flushing passage 54 is advantageously made in that the spherical pump surface at the machine side (i.e., the spherical pump surface in the machine block 108), which is not shown in FIG. 12, has a smaller radius than the radius of the pump chamber 50 at the cassette side. The radius difference Δr is shown in FIG. 12. A wide flushing edge or flushing passage 54 is hereby formed. This flushing edge or flushing passage 54 is an annular space for the pumped blood in the extreme pressing-out position. This free annular space, on the one hand, avoids blood damage by being trapped between the foil surface and the injection molded surface (i.e., the base body 12) at the end of the pressing-out phase and, on the other hand, blood damage due to high flow speeds and shearing strains which would result at the start of the start-up phase if no free annular space were provided.


In the upper region of the cassette in the installed state, a venting chamber 56 is formed which is shown again in FIG. 10 in a sectional representation. A venting membrane 58 is arranged in this venting chamber via which correspondingly collected air can be separated since it is made as a partially permeable membrane which preferably has hydrophobic or oleophobic properties. Expanded or sintered polytetrafluoroethylene can preferably be used as the venting membrane. A venting stub 60 is arranged above the venting membrane 58 and its cooperation with the fluid treatment machine (not shown in more detail here) will be described later.


Bubbles are trapped in the venting chamber 56 by a slowing down of the blood flow. As shown in FIG. 10, a rotation flow is generated for effective air separation with minimum area requirements on the cassette 10. In this process, the generation of the final rotation flow is only created in the operating state of the cassette 10 in the fluid treatment machine 100. The cover foil 14 of the cassette 10 is pulled into the fluid treatment machine 100 by a corresponding vacuum coupling system of which only one vacuum suction passage 102 is shown in FIG. 10. An almost circular cross-section of the venting chamber 56 is thereby formed. The rotation flow of the blood is supported in that the passage opening into the venting chamber 56 also runs—together with its cover foil 14—slightly into the machine side so that an almost tangential inflow within the chamber is achieved. An effective suction can take place at the machine side at the venting stub 60. A low filling volume results overall here in the venting chamber 56 as a result of the construction.


The basic design of the passages 28 can be explained with reference to FIG. 13. Generally, care is taken in the passage design of the passages 28 that a smooth foil surface and smooth passage surfaces are provided. Steps, dead spaces, turbulence and impact surfaces are avoided. Low changes in direction and speed are aimed for. Separations of flow are largely avoided. All passages 28 and also chambers 50 have an edge bead 52 which accompanies the passages and faces the cover foil 14. On insertion of the cassette 10 into the fluid treatment machine 100, the foil 14 is pressed onto the edge bead 52 such that all passages 28 are sealed against the environment. At the rear of the cassette, i.e., at the outer side of the passage wall, webs 62 are formed which accompany the passages and via which the rear pressing force is guided to the edge beads 52 in order thus to achieve a uniform linear distribution of force.


It can also be explained with reference to FIG. 13 that the base body 12 of the cassette 10 is welded to the cover foil 14 at the outer edge 64.


As shown in FIG. 1, the cassette 10 has a recessed centering fork 66 as a positioning aid which receives a centering pin on the machine side on insertion. Stop noses 68 are furthermore molded on which contact against corresponding machine surfaces on insertion. The cassette 10 is thereby guided in height and angle. When pressing the cassette 10 into the fluid treatment machine 100, a latching with the fluid treatment machine takes place at a snap element not shown in more detail here such that the cassette 10 is fixed in an aligned manner. The cassette 10 has a molded handle 70 at the side disposed opposite the centering fork 66 for simplified handling.


The arterial injection septum 16 or the venous injection septum 20 are made in the embodiment shown here, in contrast to a conventional injection position, such that their base body is formed by the base body 12 of the cassette itself so that here only the elastic septum is fixed by a snap ring (not shown in detail here). The septum consists of an elastomer in the embodiment shown here.



FIG. 4 shows a modified embodiment of the cassette in accordance with FIG. 1. This cassette 10 shown in FIG. 4 also serves standard hemodialysis and largely shows an identical design to the cassette 10 in accordance with FIG. 1. To this extent, a detailed description of the already described components of the cassette 10 is superfluous. However, instead of the handle 70 in the embodiment in accordance with FIG. 1, a dialyzer 72 is integrated in the side of the cassette 10, with the lines 18 and 22 to the dialyzer opening directly into the dialyzer. The dialysate connections at the dialyzer, which can have a conventional design, are designated by 74 and 76.


A cassette 10 is shown in FIG. 2 which is designed as an online hemodiafiltration cassette. It becomes clear from the arrangement of the different elements that the base body 12 of the cassette 10 starts from that base body of a cassette such as has already been described in FIG. 1 with reference to the embodiment for standard hemodialysis. All elements which are known from this configuration can be found in the same manner in the embodiment variant in accordance with FIG. 2 for online hemodiafiltration. To this extent, they will not be additionally explained again. However, those parts will be explained which are necessary for the operation of the hemodiafiltration cassette. This includes the substituate connector 80 via which the substituate fluid is fed into the passages 28. Substituate passage valves 82 are provided at the passages and the passages 28 can be closed at the appropriate positions via these valves 82. The substituate fluid is guided into two parallel pump chambers 84, which form substituate pump chambers, via the passages 28. The substituate pump chambers 84 substantially correspond to the pump chambers for the blood 50 as they have previously already been described in detail. Starting from the passage 28, the substituate fluid is guided through a substituate tunnel 86 which is disposed on the opposite side of the base body 12 of the cassette 10. The substituate tunnel 26 is suitably closed at the rear side, e.g., by a welded foil. The substituate fluid 86 can be led into the passage 28 carrying the blood via a port for pre-dilution 88 or via a port for post-dilution 90. The ports are again made as phantom valves of the type described above.


The substituate region substantially formed by the substituate pump chambers 84 is surrounded by a substituate weld rim 92 to which the cover foil 14 is sealingly welded so that this region of the cassette 10 processing substituate is separated from the blood-carrying region.


In FIG. 5, a modification of the embodiment variant in accordance with FIG. 2 is shown. Here, too, in a similar manner to the embodiment variant in accordance with FIG. 4, a dialyzer 72 is integrated directly into the cassette 10.


In FIG. 3, a cassette 10 for acute treatment is shown as a further integrated embodiment of the cassette. It is designed identically to the embodiment variant in accordance with FIG. 1 in the region of the blood treatment part. With respect to the substituate part, it partly corresponds to the embodiment in accordance with FIG. 2, with here only one substituate pump chamber 84 being provided which is fed by the substituate fluid led in via the substituate connector 80 and the passage 28. In a similar manner as to the embodiment variant in accordance with FIG. 2, substituate passage valves 82 are provided before and after the substituate pump chamber 84. The further pump chamber, which is designated by 94 in the present embodiment variant for acute treatment, is connected to a filtrate outlet 96 via a passage 28 and opens into a filtrate connection 98 which is connected to the dialyzer not shown in any more detail here.


In FIG. 6, in turn, a modified embodiment variant of the cassette 10 in accordance with FIG. 3 is shown. Here, a dialyzer 72 is in turn integrated instead of the handle, with here a connection 99 being provided between the dialyzer 72 and the passage 28 which carries the filtrate and which leads to the filtrate pump chamber 94.


In FIG. 7, an embodiment of the fluid treatment machine 100 is shown without an inserted cassette 10. This fluid treatment machine 100 is designed such that all aforesaid cassettes can be inserted, with a basic extracorporeal blood circuit, i.e. a standard dialysis using an external dialyzer, being carried out by a corresponding program selection, for example on insertion of the cassette in accordance with the embodiment variant in accordance with FIG. 1. When a cassette 10 in accordance with the embodiment of FIG. 2 is used, online hemodiafiltration or an online hemofiltration variant is, for example realized by use of the components required for this purpose with, optionally, automatic connections (not shown) to the fluid circuit of the basic unit. Highly integrated variants with an integrated dialyzer and an automatic dialyzer connection are also possible such as are shown by way of the cassette in the embodiment variants in accordance with FIGS. 4 and 5. Acute dialysis treatment is possible when a cassette 10 is used in accordance with the embodiment of FIG. 3.


The fluid treatment machine 100 substantially consists of a frame 104 which surrounds and/or includes or receives the most important components. A door 106 is fitted to the frame 104, on the one hand, and the machine block 108 is guided in the frame, on the other hand. All forces occurring between the door 106 and the interior of the unit are absorbed by means of the frame 104, namely the door hinge, door latch, pressing actuator system and the rear wall. The frame 104 furthermore contains the door latch 110. The cassette 10 is received between the door 106 and the machine block 108, as shown in the FIGS. 8 and 9, and is sealed by pressing. Sensor system elements are included in the cassette region of the machine and they detect whether a cassette is correctly positioned in the fluid treatment machine. These, or further sensor system elements, can be designed such that they are suitable for recognizing the cassette type (e.g. with the aid of a barcode on the cassette).


The important elements for the control and monitoring of the extracorporeal blood circuit, such as pumps, valves, the sensor system, etc., are contained in the machine block 108. This machine block 108 establishes the most important interface to the cassette 10. The cassette surface is coupled to the unit here and the sealing of the cassette 10, and thus the fixing of the flow paths, takes place by this. The machine block 108 is guided movably in the frame and fixes the cassette 10, as already described above, until the door 106 is closed.


Hydraulic piston pumps are contained in the fluid treatment machine which are not shown in detail in FIGS. 7, 8 and 9 here. They are, on the one hand, blood pumps or optional substituate feed pumps or ultrafiltrate pumps. They are hydraulically connected to the pump chambers (i.e., the blood pump chambers) C, D, and, in some cases, they are hydraulically connected to the optional filtrate pump chambers and/or the optional substituate pump chambers E, F. Furthermore, compressors for the generation of the required pneumatic pressure (overpressure or vacuum) not shown in more detail here are contained in the fluid treatment machine 100. The fluid treatment machine 100 furthermore has—in a manner not shown in more detail—a pneumatic buffer container for the compensation of pressure fluctuations, a main electronics box, a heparin injection pump and a blood pressure monitor module.


A pressing actuator system on the rear wall of the frame 104, likewise not shown in more detail, must be emphasized here. An inflatable air cushion is integrated here which can move the whole machine block 108, which is movably supported in the frame 104, and press it against the closed door 106.


Furthermore, instead of individual air-carrying tubes, an air distributor plate is provided at the machine block 108 which contains main connections for the pneumatics and which guides compressed air and vacuum to the valves and actuators via passages integrated there without any substantial tubing, with them simultaneously terminating the machine block with respect to the interior of the fluid treatment machine 100.


Optional modules can be provided in the fluid treatment machine 100 for the carrying out of the online hemodiafiltration. For instance, an online feed port for the automatic coupling of a cassette 10 to a dialysate circuit or an online flushing port for the return of flushing solution can be contained here.


The door 106 must be open for the insertion of the cassette 10. The cassette 10 is inserted and, after positioning of the centering fork 66, is fixed to the surface of the machine block by means of a snap hook.


The side of the machine block 108 facing the cassette 10 is lined with a soft elastomer mat 160 (shown in FIG. 19), which seals the cassette 10 after pressing has taken place.


Referring to FIG. 19, during use, the elastic matt 160 is arranged between the fluid treatment machine (i.e., the machine block 108), of which no detail is shown here, and the cassette 10. On the so-called machine side, namely on the surface which, when assembled, faces the fluid treatment machine 100, matt channels 162 and connection channels 164 are formed. Furthermore, a recess 166 is arranged in the elastic matt 160, into which in the assembled condition a machine-mounted valve, for example, engages and establishes a seal all around. It is easy to see that this machine-mounted valve interrupts the respective matt channel 162 which happens to join the recess 166. In order to still make an air extraction possible, a connection channel 164 has been provided which connects the two interrupted branches of the matt channel 162 and connects them in turn with a further, parallel matt channel 162. The structure shown here is, of course, only an example and can be changed in any way. While the channel structures are provided on the machine side of the elastic matt 160, the disposable side, namely the side facing the cassette, is executed as a smooth, i.e., flat surface.


By referring to the sectional views of FIGS. 20 to 22, the structure of the individual channels can be explained in more detail. The section A-A′ as per FIG. 19 is shown in FIG. 20 where a matt channel 162 becomes visible which, with the elastic matt 160 used here having a thickness of 4 mm, has a depth of 3 mm and a width of 2 mm. In the remaining matt material below the channel 162, which has a thickness of 1 mm, a slit 168 is placed which takes on a type of valve function. When a vacuum is applied, the two areas of the elastic matt 160 adjacent to the slit 168 will open and enable the extraction of air gas. In an idle state or when an equilibrium is obtained, the two adjacent areas return to their original position and close the opening. In order to enhance this return effect, areas between the slits 168 are provided in the matt channel 162, which on the one hand do not have a slit and, on the other hand, are less deeply recessed in the area of matt channel 162. Referring to FIG. 21, a corresponding area can be seen in section B-B′, which shows that, while the matt channel 162 in this area has the same width of 2 mm, it only has a depth of 1 mm.


Referring to FIG. 22, a connection channel 164 is shown in the sectional view of C-C′, where said channel is narrower and not as deep as the matt channel 162, which can be seen clearly in this view. In this case, both the width of the connection channel 164 and the depth are one millimeter each.


With the elastic matt 160, it is guaranteed that the interior space of the fluid treatment machine, in its idle state, is protected by the self-closing feature of slits 168. At the same time, an even air extraction is achieved between the fluid treatment machine and the cassette across its entire surface because parallel extraction takes place via numerous slits 168. Thus, a minor blockage may not cause any detrimental effects for other areas.


With a thin matt 160, as it has been presented in the embodiment for example, the opening effect of the slits can be utilized by applying a vacuum.


Since the elastic matt 160 is exchangeable, it can be replaced easily after contamination or a fault. It is especially advantageous that no structured shapes are required for the fixed components on the machine. On the side of the elastic matt 160 facing the machine, open structures can be formed so that no sub-surface tunnels or other closed structures are required. On the other hand, the side of the elastic matt 160 facing the cassette is largely formed as a smooth, closed surface which can be cleaned easily for example.


Other details regarding the elastic matt 160 are described in DE 101 57 924.1, which is incorporated by reference herein.


Referring again to FIG. 7, after closing and locking the door 106, pressing takes place by inflating the aforesaid air cushion. On opening and removing the cassette 10, the pressing is cancelled again by letting out the air in the air cushion before opening the door 106.


To achieve a sufficient pressing and to prevent a tilting of the machine block 108 by a non-uniform introduction of force, the air cushion has approximately the size of the machine block 108 or of the cassette 10.


Since, however, further components, for example, control valves or the air distributor plate with the control valves, are now disposed between the air cushion and the machine block, the force transmission takes place by means of spacer bolts.


The traction between the door 106, the frame 104 and the rear wall takes place by the door hinge, the latch 110 and connection bolts, not shown in any more detail here, between the frame and the rear wall.


As already mentioned, a constant pressing of the cassette 10 must take place for a proper operation. For this purpose, it is necessary for the door 106 to be locked during the treatment. This locking takes place via two latching bolts (not shown in any more detail here) at the upper right hand and lower right hand door region, with these moving into two corresponding bores inside the door 106 on actuation, which takes place automatically. The moving in and out takes place pneumatically. An erroneous opening of the door 106 on a failure of the pneumatics is precluded by the bolts moved into the door and by the lateral forces occurring by the pressure load of the door. To check whether the latching has taken place, Hall proximity sensors can be integrated which detect the movement of the bolts. In addition, this signal can be linked to information on the door position which can be picked up by a separate sensor. In addition, the latching bolt not shown in any more detail here can have a latch connection. This latch connection consists of a spring-loaded latch ball on the door side which latches into a corresponding arch of the latch bolt and can hold the door in the corresponding position. An introduction slope is provided for the simplified latching. To open the door from the latch position, the latch ball present here is drawn back by means of a mechanical system.


On the side of the fluid treatment machine 100, the blood circuit substantially consists of at least one hydraulically controlled membrane pump having two independent pump chambers C and D which can be used as a highly precise flow pump or as a volumetric metering unit, a row of valves M, O and clamps N for the control of the flow path, a highly integrated sensor system G, H required for monitoring and control, an active air extractor, i.e., an air separation chamber I with a connected cassette venting A, of the blood circuit (air-free circuit) and a door 106 to fix the cassette 10.


The fluid treatment machine 100 respectively comprises a pneumatic system for the overpressure and a pneumatic system for the underpressure. The underpressure serves, for example, to apply an underpressure between the foil 14 of the cassette 10 and the unit side to prevent a passage restriction on the plastic deformation of the foil, to raise the foil at feed positions and thus to be able to keep the access free, to avoid air compliance in the pump devices and to be able to ensure an air-free coupling between the sensor and the foil at specific sensor positions. The air suction requires openings in the unit side and a suction unit, i.e., a vacuum pump, connected to it, wherein the vacuum distribution should be ensured as uniformly and as reliably as possible over the whole surface. In the idling state, the openings should be at least largely closed to permit a good cleaning here. In operation, however, a problem-free air suction should be possible. This problem is solved by the elastomer mat of the type described above.


In the cassette 10, no passage seals are contained except for the edge region and some safety weld connections. The sealing of all flow paths and passages must therefore take place by pressing. For this purpose, the cassette has sealing beads 52 on the passage rims which have already been described above and which are sealable on the pressing of the disposables between the machine block 108 and the door 106 by pressing into the elastic mat.


The air distributor plate not shown in any more detail here is located on the rear side of the machine block 108 and is connected to the, for example, two membrane pumps of the pneumatic system, namely the overpressure pump and the underpressure pump. The air distributor plate is sealed with respect to the rear side of the machine block by a sealing mat and permits the compressed air and vacuum feed via integrated passage structures so that every valve does not need its own tubing. A plurality of circuits are present on the air distributor plate, namely a vacuum circuit, a compressed air circuit which is directly connected to the compressor for the supply of components which always need compressed air, a compressed air circuit for the protection of sensitive components which may only be charged with compressed air under certain states, with it also being separable from the compressor by an on/off valve and an exhaust circuit.


By integration of a plurality of control valves on the air distributor plate, the electrical supply can also be collected via a small control board. Since a plurality of valves are only needed with specific options, a modular retrofitting capability must be ensured.


The sensor system and the pump connections are guided through the plate through apertures and cut-outs.


Sensors which are collected in integrated sensor modules in the present fluid treatment machine 100 are required for the monitoring and control of the extracorporeal blood circuit. Two respective modules work together as a pair. One module is accommodated in the door 106 and the counter-piece in the machine block 108. Both the arterial branch should be monitored by the arterial measuring chamber G and the venous branch by the venous measuring chamber H. The integrated measurement sensor system is described in detail in the German patent applications DE 198 37 667 A and DE 101 43 137 of the same patent applicant. The sensors together have the following properties or provide the following possibilities:


measurement and monitoring of the blood volume;


measurement of the hematocrit;


measurement and monitoring of the thermal energy balance;


measurement and monitoring of the body temperature;


measurement of the conditions of the fistula (with circulation);


air detection;


fistula pressure measurement.


A multi-sensor module is usually fitted with an ultrasonic sensor for volume monitoring, measurement of the hematocrit and the air detection, with a temperature sensor for the automatic access analysis, body temperature monitoring and thermal energy balance, with a pressure sensor for the pressure monitoring and with an optical sensor for the automatic detection of blood.


The valves M and the pump valves O have a similar design to those valves described above.


In addition to the aforesaid valves which are shown in FIG. 7, so-called phantom valves, which are not drawn in any more detail in this FIG. 7, are additionally present. The design and function of the phantom valves are similar to the design and function of the phantom valves discussed above.


Reference letter N designates safety clamps which serve to achieve a safe state during an alarm in the extracorporeal blood circuit, with them interrupting the patient line and thus any blood flow from or to the patient. To avoid unwanted compliance effects, and since the system is designed for a flow reversal, this safety function must be ensured both on the arterial side and on the venous side so that two blocking clamps N are used which can be mechanically coupled.


The blocking clamps should be effective as close to the patient as possible in order to be able to minimize any interference and to satisfy high safety demands. For this reason, tube clamps are used which act directly on the patient tubes.


A possible embodiment, such as is provided here, consists of the clamping of the tubes against a clamping rail on the inner side of the door by means of a reclosable pneumatically opened clamping slide. Such a system is passively spring-closing, namely without pressure and without current and so is also advantageous in the case of a failure under safety aspects.


In FIG. 8, a fluid treatment machine 100 is shown corresponding to FIG. 7 with an inserted cassette 10 corresponding to FIG. 2. In FIG. 9, in contrast, a fluid treatment machine 100 is shown with a cassette 10 corresponding to the embodiment variant in accordance with FIG. 5, with the dialyzer in the cassette here having an automatic dialysate connection K and L to the fluid treatment machine 100.


The new apparatus shown here follows a strictly modular approach while achieving a high flexibility and deployment possibility also with respect to future deployment possibilities and options. The integrated blood module permits the carrying out of the whole spectrum of the blood treatment procedures, namely standard hemodialysis, online hemodiafiltration, online hemofiltration and also acute treatment.


It must be pointed out with respect to the acute treatment that the machines serving the acute treatment, i.e., the acute dialysis or acute filtration, have to have a simple design in order to be able to be transported corresponding easily and to be able to work without a complex supply structure (e.g. water connection). In this system, therefore, work is carried out practically without exception with bags with premanufactured solutions. Using the embodiments shown in FIGS. 3 to 6, acute hemofiltration can then be carried out easily in which the substituate is supplied from a bag and filtrate is removed from the filter into an empty bag with the pumps shown. Except for the connection of the bags, no further measure is necessary in this case. It would naturally nevertheless be possible to additionally make a dialysis possible with a corresponding effort. Furthermore, the substituate pump could alternatively be used as a dialysate supply pump if the connections inside the cassette were changed accordingly. Then dialysis fluid filled into bags could be supplied in balanced form to the filter via the membrane pump, while fluid is led out in a controlled manner via the filtrate pump. No further components would also be necessary for the fluid control in such a machine.


Each of these types of treatment can take place both in two-needle and in single-needle mode. Reference is made here to the German patent DE 100 42 324 C1 with respect to the description of the two-needle or single-needle mode.


Other embodiments are within the scope of the following claims.

Claims
  • 1. A dialysis machine, comprising: a machine block;a door that, when closed, cooperates with the machine block to define a cassette compartment configured to receive a dialysis fluid cassette that comprises a fluid channel formed between a base and a flexible membrane that is attached to the base, the cassette compartment being configured such that the membrane of the dialysis fluid cassette is positioned adjacent the machine block when the dialysis fluid cassette is disposed in the cassette compartment of the dialysis machine; anda valve member secured to the machine block in a manner such that the valve member is substantially aligned with a portion of the fluid channel of the dialysis fluid cassette when the dialysis fluid cassette is disposed in the cassette compartment, the valve member comprising a deformable area configured to deform outwardly, upon being pressurized by fluid introduced into the valve member, a sufficient extent to obstruct the fluid channel of the dialysis fluid cassette to control dialysis fluid flow therethrough when the dialysis fluid cassette is disposed in the cassette compartment.
  • 2. The dialysis machine of claim 1, further comprising a pressurized air source fluidly connected to the valve member such that pressurized air can be delivered from the pressurized air source to the valve member.
  • 3. The dialysis machine of claim 1, further comprising a vacuum source fluidly connected to the valve member such that vacuum pressure can be applied to the valve member by the vacuum source to move the deformable area of the valve member from an outwardly deformed position to an undeformed or an inwardly deformed position.
  • 4. The dialysis machine of claim 1, further comprising an inflatable pad configured to press the dialysis fluid cassette against the machine block when the dialysis fluid cassette is disposed in the cassette compartment.
  • 5. The dialysis machine of claim 1, wherein the door is connected to the machine block via a hinge.
  • 6. The dialysis machine of claim 1, wherein the machine block and the door are configured so that, when the dialysis fluid cassette is disposed in the cassette compartment, the flexible membrane of the dialysis fluid cassette is substantially parallel to an adjacent face of the machine block.
  • 7. The dialysis machine of claim 1, wherein the valve member comprises a valve body defining a pressure passage and a sealing cap disposed at a first end of the valve body such that the sealing cap closes off the pressure passage at the first end of the valve body, the sealing cap forming the deformable area, which is configured to deform outwardly away from the valve body when pressurized fluid is introduced into the pressure passage of the valve body.
  • 8. The dialysis machine of claim 7, wherein the sealing cap has a radially inwardly directed projection configured to prevent direct contact of the valve body with the deformable area of the sealing cap.
  • 9. The dialysis machine of claim 7, further comprising a fastening component coupled to a second end of the valve body opposite the first end, the fastening component configured to abut the machine block to secure the valve member to the machine block.
  • 10. The dialysis machine of claim 7, wherein the sealing cap is detachable from the valve body.
  • 11. The dialysis machine of claim 1, wherein the dialysis machine is a hemodialysis machine.
  • 12. A dialysis system comprising: a dialysis fluid cassette that comprises a fluid channel formed between a base and a flexible membrane that is attached to the base; anda dialysis machine comprising a machine block;a door that, when closed, cooperates with the machine block to define a cassette compartment configured to receive the dialysis fluid cassette in a manner such that the membrane of the dialysis fluid cassette is positioned adjacent the machine block when the dialysis fluid cassette is disposed in the cassette compartment of the dialysis machine; anda valve member secured to the machine block in a manner such that the valve member is substantially aligned with a portion of the fluid channel of the dialysis fluid cassette when the dialysis fluid cassette is disposed in the cassette compartment, the valve member comprising a deformable area configured to deform outwardly, upon being pressurized by fluid introduced into the valve member, a sufficient extent to obstruct the fluid channel of the dialysis fluid cassette to control dialysis fluid flow therethrough when the dialysis fluid cassette is disposed in the cassette compartment.
  • 13. The dialysis system of claim 12, wherein the dialysis system is configured to cause dialysate to flow through the fluid channel of the dialysis fluid cassette.
  • 14. The dialysis system of claim 13, wherein the dialysis system is configured to cause blood to flow through the fluid channel of the dialysis fluid cassette.
  • 15. The dialysis system of claim 12, wherein the base of the dialysis fluid cassette is rigid.
  • 16. The dialysis system of claim 12, wherein the base of the dialysis fluid cassette defines a recessed region and comprises raised rims extending outward from a planar surface of the base along edges of the recessed region, the raised rims configured to contact the flexible membrane when the flexible membrane is pressed against the base to form the fluid channel between the flexible membrane and the recessed region of the base.
  • 17. The dialysis system of claim 12, wherein the base and the flexible membrane of the dialysis fluid cassette form a pump chamber therebetween, and the pump chamber is connected to the fluid channel such that operation of the valve member can control fluid flow to or from the pump chamber.
  • 18. The dialysis system of claim 12, wherein the dialysis system further comprises a pressurized air source fluidly connected to the valve member such that pressurized air can be delivered from the pressurized air source to the valve member.
  • 19. The dialysis system of claim 12, wherein the dialysis system further comprises a vacuum source fluidly connected to the valve member such that vacuum pressure can be applied to the valve member by the vacuum source to move the deformable area of the valve member from an outwardly deformed position to an undeformed or an inwardly deformed position.
  • 20. The dialysis system of claim 12, wherein the dialysis machine comprises an inflatable pad configured to press the dialysis fluid cassette against the machine block when the dialysis fluid cassette is disposed in the cassette compartment.
  • 21. The dialysis system of claim 12, wherein the door is connected to the machine block via a hinge.
  • 22. The dialysis system of claim 12, wherein the machine block, the door, and the dialysis fluid cassette are configured so that, when the dialysis fluid cassette is disposed in the cassette compartment, the flexible membrane of the dialysis fluid cassette is substantially parallel to an adjacent face of the machine block.
  • 23. The dialysis system of claim 12, wherein the valve member comprises a valve body defining a pressure passage and a sealing cap disposed at a first end of the valve body such that the sealing cap closes off the pressure passage at the first end of the valve body, the sealing cap forming the deformable area, which is configured to deform outwardly away from the valve body when pressurized fluid is introduced into the pressure passage of the valve body.
  • 24. The dialysis system of claim 23, wherein the sealing cap has a radially inwardly directed projection configured to prevent direct contact of the valve body with the deformable area of the sealing cap.
  • 25. The dialysis system of claim 23, further comprising a fastening component coupled to a second end of the valve body opposite the first end, the fastening component configured to abut the machine block to secure the valve member to the machine block.
  • 26. The dialysis system of claim 23, wherein the sealing cap is detachable from the valve body.
  • 27. The dialysis system of claim 12, wherein the dialysis machine is a hemodialysis machine.
  • 28. The dialysis system of claim 12, wherein the dialysis fluid cassette comprises a plurality of fluid channels formed between the base and the flexible membrane that is attached to the base, and the dialysis machine comprises a plurality of valve members secured to the machine block, each of the valve members being substantially aligned with a portion of one of the fluid channels of the dialysis fluid cassette when the dialysis fluid cassette is disposed in the cassette compartment of the dialysis machine, and each of the valve members comprising a deformable area configured to deform outwardly, upon being pressurized by fluid introduced into the valve member, a sufficient extent to obstruct the aligned portion of the fluid channel of the dialysis fluid cassette to control dialysis fluid flow therethrough when the dialysis fluid cassette is disposed in the cassette compartment of the dialysis machine.
  • 29. The dialysis system of claim 28, wherein a plurality of pump chambers are formed between the base and the flexible membrane of the dialysis fluid cassette, and the dialysis machine comprises a plurality of pumps, each of the pumps being aligned with one of the pump chambers, and each of the fluid channels being connected to one or more of the pump chambers such that the pumps can be operated to force dialysis fluid through the fluid channels of the dialysis fluid cassette.
Priority Claims (1)
Number Date Country Kind
102 24 750 Jun 2002 DE national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of and claims priority to U.S. Ser. No. 13/728,162, filed on Dec. 27, 2012 now U.S. Pat. No. 8,926,835, which claims priority to U.S. application Ser. No. 13/401,429, filed on Feb. 21, 2012 now U.S. Pat. No. 8,366,921, which is a continuation application of and claims priority to U.S. application Ser. No. 12/627,043, filed on Nov. 30, 2009, now U.S. Pat. No. 8,142,653, which is a continuation application of and claims priority to U.S. application Ser. No. 10/516,528, filed on Dec. 2, 2004, now U.S. Pat. No. 7,648,627, which is a nationalization of PCT/EP03/05377, filed on May 22, 2003 and published in German, which claims priority under 35 U.S.C. §119(a) to DE 102 24 750.1, filed on Jun. 4, 2002.

US Referenced Citations (504)
Number Name Date Kind
329773 Perry Nov 1885 A
2383193 Herbert Aug 1945 A
2453590 Poux Nov 1948 A
2529028 Landon Nov 1950 A
2658526 Porter Nov 1953 A
2711134 Hughes Jun 1955 A
2755745 Lewis Jul 1956 A
2871795 Smith Feb 1959 A
2886281 Canalizo May 1959 A
3083943 Stewart et al. Apr 1963 A
3323786 Boschi Jun 1967 A
3556465 Little Jan 1971 A
3671814 Dick Jun 1972 A
3689025 Kiser Sep 1972 A
3741687 Nystroem Jun 1973 A
3777625 Andres Dec 1973 A
3781141 Schall Dec 1973 A
3880053 Trechsel et al. Apr 1975 A
3927955 Spinosa et al. Dec 1975 A
3966358 Heimes et al. Jun 1976 A
3985135 Carpenter et al. Oct 1976 A
4026669 Leonard et al. May 1977 A
4047844 Robinson Sep 1977 A
4050859 Vork Sep 1977 A
4091812 Helixon et al. May 1978 A
4121584 Turner et al. Oct 1978 A
4152098 Moody et al. May 1979 A
4158530 Bernstein Jun 1979 A
4178940 Au Dec 1979 A
4273121 Jassawalla Jun 1981 A
4303376 Siekmann Dec 1981 A
4304260 Turner et al. Dec 1981 A
4322201 Archibald Mar 1982 A
4333452 Au Jun 1982 A
4370983 Lichtenstein Feb 1983 A
4382753 Archibald May 1983 A
4410322 Archibald Oct 1983 A
4412553 Kopp et al. Nov 1983 A
4436620 Bellotti et al. Mar 1984 A
4453932 Pastrone Jun 1984 A
4479760 Bilstad et al. Oct 1984 A
4479761 Bilstad et al. Oct 1984 A
4479762 Bilstad et al. Oct 1984 A
4490621 Watabe et al. Dec 1984 A
4536201 Brorsson et al. Aug 1985 A
4558715 Walton et al. Dec 1985 A
4569378 Bergandy Feb 1986 A
4583920 Lindner Apr 1986 A
4597412 Stark Jul 1986 A
4610605 Hartley Sep 1986 A
4623328 Hartranft Nov 1986 A
4628499 Hammett Dec 1986 A
4639245 Pastrone et al. Jan 1987 A
4643713 Viitala Feb 1987 A
4657490 Abbott Apr 1987 A
4662598 Weingarten May 1987 A
4662906 Matkovich et al. May 1987 A
4676467 Palsulich Jun 1987 A
4690621 Swain Sep 1987 A
4703913 Hunkapiller Nov 1987 A
4705259 Dolhen et al. Nov 1987 A
4710166 Thompson et al. Dec 1987 A
4735558 Kienholz et al. Apr 1988 A
4778451 Kamen Oct 1988 A
4786240 Koroly et al. Nov 1988 A
4808161 Kamen Feb 1989 A
4826482 Kamen May 1989 A
4840542 Abbott Jun 1989 A
4842584 Pastrone Jun 1989 A
4846636 Danby et al. Jul 1989 A
4850980 Lentz et al. Jul 1989 A
4858883 Webster Aug 1989 A
4902282 Bellotti et al. Feb 1990 A
4906260 Emheiser et al. Mar 1990 A
4927411 Pastrone et al. May 1990 A
4950134 Bailey et al. Aug 1990 A
4974754 Wirz Dec 1990 A
4976162 Kamen Dec 1990 A
4995864 Bartholomew et al. Feb 1991 A
4997464 Kopf Mar 1991 A
5002471 Perlov Mar 1991 A
5006050 Cooke et al. Apr 1991 A
5011380 Kovacs Apr 1991 A
5036886 Olsen et al. Aug 1991 A
5061236 Sutherland et al. Oct 1991 A
5088515 Kamen Feb 1992 A
5098262 Wecker et al. Mar 1992 A
5100380 Epstein et al. Mar 1992 A
5100699 Roeser Mar 1992 A
5116021 Faust et al. May 1992 A
5116316 Sertic et al. May 1992 A
5146713 Grafius Sep 1992 A
5151019 Danby et al. Sep 1992 A
5167837 Snodgrass et al. Dec 1992 A
5171029 Maxwell et al. Dec 1992 A
5178182 Kamen Jan 1993 A
5193990 Kamen et al. Mar 1993 A
5211201 Kamen et al. May 1993 A
5238003 Baidwan et al. Aug 1993 A
5241985 Faust et al. Sep 1993 A
5247434 Peterson et al. Sep 1993 A
5249932 Van Bork Oct 1993 A
5252044 Raines et al. Oct 1993 A
5259352 Gerhardy et al. Nov 1993 A
5267956 Beuchat Dec 1993 A
5279556 Goi et al. Jan 1994 A
5302093 Owens et al. Apr 1994 A
5324422 Colleran et al. Jun 1994 A
5330425 Utterberg Jul 1994 A
5342182 Montoya et al. Aug 1994 A
5344292 Rabenau et al. Sep 1994 A
5350357 Kamen et al. Sep 1994 A
D351470 Scherer et al. Oct 1994 S
5353837 Faust Oct 1994 A
5378126 Abrahamson et al. Jan 1995 A
5395351 Munsch Mar 1995 A
5413626 Bartsch May 1995 A
5415528 Ogden et al. May 1995 A
5421208 Packard et al. Jun 1995 A
5421823 Kamen et al. Jun 1995 A
5427509 Chapman et al. Jun 1995 A
5431626 Bryant et al. Jul 1995 A
5431627 Pastrone et al. Jul 1995 A
5431634 Brown Jul 1995 A
5438510 Bryant et al. Aug 1995 A
5441636 Chevallet et al. Aug 1995 A
5445506 Afflerbaugh et al. Aug 1995 A
5447286 Kamen et al. Sep 1995 A
5462416 Dennehey et al. Oct 1995 A
5462417 Chapman Oct 1995 A
5474683 Bryant et al. Dec 1995 A
5478211 Dominiak et al. Dec 1995 A
5480294 DiPerna et al. Jan 1996 A
5482438 Anderson et al. Jan 1996 A
5482440 Dennehey et al. Jan 1996 A
5482446 Williamson et al. Jan 1996 A
5484239 Chapman et al. Jan 1996 A
5486286 Peterson et al. Jan 1996 A
5514069 Brown et al. May 1996 A
5538405 Patno et al. Jul 1996 A
5540568 Rosen et al. Jul 1996 A
5547453 DiPerna Aug 1996 A
5551850 Williamson et al. Sep 1996 A
5551941 Howell Sep 1996 A
5551942 Brown et al. Sep 1996 A
5554013 Owens et al. Sep 1996 A
5570716 Kamen et al. Nov 1996 A
5573385 Chevallier Nov 1996 A
5578070 Utterberg Nov 1996 A
5588816 Abbott et al. Dec 1996 A
5593290 Greisch et al. Jan 1997 A
5599174 Cook et al. Feb 1997 A
5609572 Lang Mar 1997 A
5614677 Wamsiedler et al. Mar 1997 A
5624409 Seale Apr 1997 A
5628908 Kamen et al. May 1997 A
5630710 Tune et al. May 1997 A
5634391 Eady Jun 1997 A
5634896 Bryant et al. Jun 1997 A
5640995 Packard et al. Jun 1997 A
5641405 Keshaviah et al. Jun 1997 A
5641892 Larkins et al. Jun 1997 A
5643205 Utterberg Jul 1997 A
5645531 Thompson et al. Jul 1997 A
5658133 Anderson et al. Aug 1997 A
5669764 Behringer et al. Sep 1997 A
5690602 Brown et al. Nov 1997 A
D390654 Alsberg et al. Feb 1998 S
5713865 Manning et al. Feb 1998 A
5713888 Neuenfeldt et al. Feb 1998 A
5718567 Rapp et al. Feb 1998 A
5741125 Neftel et al. Apr 1998 A
5743169 Yamada Apr 1998 A
5746708 Giesler et al. May 1998 A
5755683 Houle et al. May 1998 A
5764034 Bowman et al. Jun 1998 A
5769387 Perez Jun 1998 A
5771914 Ling et al. Jun 1998 A
5772635 Dastur et al. Jun 1998 A
5772637 Heinzmann et al. Jun 1998 A
5775371 Pan et al. Jul 1998 A
5782575 Vincent et al. Jul 1998 A
5782805 Meinzer et al. Jul 1998 A
5799207 Wang et al. Aug 1998 A
5816779 Lawless et al. Oct 1998 A
5840151 Munsch Nov 1998 A
5842841 Danby et al. Dec 1998 A
5843035 Bowman et al. Dec 1998 A
5868696 Giesler et al. Feb 1999 A
5873853 Keilman et al. Feb 1999 A
5902096 Behringer et al. May 1999 A
5906598 Giesler et al. May 1999 A
5921951 Morris Jul 1999 A
5925011 Faict et al. Jul 1999 A
5934885 Farrell et al. Aug 1999 A
5935099 Peterson et al. Aug 1999 A
5938634 Packard Aug 1999 A
5984897 Petersen et al. Nov 1999 A
5989423 Kamen et al. Nov 1999 A
5993174 Konishi Nov 1999 A
5996634 Dennehey et al. Dec 1999 A
6013057 Danby et al. Jan 2000 A
6036668 Mathis Mar 2000 A
6036680 Home et al. Mar 2000 A
6041801 Gray et al. Mar 2000 A
6053191 Hussey Apr 2000 A
6065389 Riedlinger May 2000 A
6065941 Gray et al. May 2000 A
6068612 Bowman et al. May 2000 A
6074359 Keshaviah et al. Jun 2000 A
6079959 Kingsford et al. Jun 2000 A
6099492 Le Boeuf Aug 2000 A
6106246 Steck et al. Aug 2000 A
6110410 Owens et al. Aug 2000 A
6118207 Ormerod et al. Sep 2000 A
6129517 Danby et al. Oct 2000 A
6132187 Ericson Oct 2000 A
6136565 Best et al. Oct 2000 A
6152705 Kennedy et al. Nov 2000 A
6154605 Aonuma Nov 2000 A
6164621 Bouchard et al. Dec 2000 A
6165154 Gray et al. Dec 2000 A
6168394 Forman et al. Jan 2001 B1
6178996 Suzuki Jan 2001 B1
6179801 Holmes et al. Jan 2001 B1
6184356 Anderson et al. Feb 2001 B1
6189857 Zeger et al. Feb 2001 B1
6196987 Holmes et al. Mar 2001 B1
6200287 Keller et al. Mar 2001 B1
6206644 Pereira et al. Mar 2001 B1
6208107 Maske et al. Mar 2001 B1
6208497 Seale et al. Mar 2001 B1
6210361 Kamen et al. Apr 2001 B1
6220295 Bouchard et al. Apr 2001 B1
6223130 Gray et al. Apr 2001 B1
6227807 Chase May 2001 B1
6227824 Stehr May 2001 B1
6228047 Dadson May 2001 B1
6229753 Kono et al. May 2001 B1
6231537 Holmes et al. May 2001 B1
6234989 Brierton et al. May 2001 B1
6250502 Cote et al. Jun 2001 B1
6261065 Nayak et al. Jul 2001 B1
6267242 Nagata et al. Jul 2001 B1
6270673 Belt et al. Aug 2001 B1
6280406 Dolecek et al. Aug 2001 B1
6281145 Deguchi et al. Aug 2001 B1
6284142 Muller Sep 2001 B1
6285155 Maske et al. Sep 2001 B1
6286566 Cline et al. Sep 2001 B1
6294094 Muller et al. Sep 2001 B1
6296450 Westberg et al. Oct 2001 B1
6297322 Ding et al. Oct 2001 B1
6312412 Saied et al. Nov 2001 B1
6315707 Smith et al. Nov 2001 B1
6315754 Daoud et al. Nov 2001 B1
6316864 Ormerod Nov 2001 B1
6322488 Westberg et al. Nov 2001 B1
6325775 Thom et al. Dec 2001 B1
6337049 Tamari Jan 2002 B1
RE37553 Ciavarini et al. Feb 2002 E
6343614 Gray et al. Feb 2002 B1
6348156 Vishnoi et al. Feb 2002 B1
6361518 Brierton et al. Mar 2002 B1
6364857 Gray et al. Apr 2002 B1
6367669 Au et al. Apr 2002 B1
6382923 Gray May 2002 B1
6383158 Utterberg et al. May 2002 B1
6402486 Steck et al. Jun 2002 B1
6406276 Normand et al. Jun 2002 B1
6409696 Toavs et al. Jun 2002 B1
6416293 Bouchard et al. Jul 2002 B1
6419822 Muller et al. Jul 2002 B2
6455676 Weickert et al. Sep 2002 B1
6471855 Odak et al. Oct 2002 B1
6481980 Vandlik et al. Nov 2002 B1
6484383 Herklotz Nov 2002 B1
6489896 Platt et al. Dec 2002 B1
6491656 Morris Dec 2002 B1
6494694 Lawless et al. Dec 2002 B2
6497674 Steele et al. Dec 2002 B1
6497676 Childers et al. Dec 2002 B1
6503062 Gray et al. Jan 2003 B1
6514225 Utterberg et al. Feb 2003 B1
6519569 White et al. Feb 2003 B1
6520747 Gray et al. Feb 2003 B2
6524231 Westberg et al. Feb 2003 B1
6529573 Olsher et al. Mar 2003 B2
6537445 Muller Mar 2003 B2
6542761 Jahn et al. Apr 2003 B1
6558343 Neftel May 2003 B1
6572604 Platt et al. Jun 2003 B1
6579253 Burbank et al. Jun 2003 B1
6592542 Childers et al. Jul 2003 B2
6595948 Suzuki et al. Jul 2003 B2
6603229 Toye Aug 2003 B1
6604908 Bryant et al. Aug 2003 B1
6645166 Scheunert et al. Nov 2003 B2
6645177 Shearn Nov 2003 B1
6648861 Platt et al. Nov 2003 B2
6663359 Gray Dec 2003 B2
6670323 Looker et al. Dec 2003 B1
6672841 Herklotz et al. Jan 2004 B1
6695593 Steck et al. Feb 2004 B1
6695803 Robinson et al. Feb 2004 B1
6709417 Houle et al. Mar 2004 B1
6716004 Vandlik et al. Apr 2004 B2
6723062 Westberg et al. Apr 2004 B1
6725726 Adolfs et al. Apr 2004 B1
6726656 Kamen et al. Apr 2004 B2
6730055 Bainbridge et al. May 2004 B2
6743201 Donig et al. Jun 2004 B1
6746514 Bedingfield et al. Jun 2004 B2
6746637 Huss et al. Jun 2004 B1
6749403 Bryant et al. Jun 2004 B2
6752172 Lauer Jun 2004 B2
6752599 Park Jun 2004 B2
6755801 Utterberg et al. Jun 2004 B2
6758975 Peabody et al. Jul 2004 B2
6759007 Westberg et al. Jul 2004 B1
6759014 Dales et al. Jul 2004 B2
6764460 Dolecek et al. Jul 2004 B2
6764761 Eu et al. Jul 2004 B2
6768425 Flaherty et al. Jul 2004 B2
6774517 Kowalski et al. Aug 2004 B2
6790014 Bowen Sep 2004 B2
6790195 Steele et al. Sep 2004 B2
6790198 White et al. Sep 2004 B1
6800054 Westberg et al. Oct 2004 B2
6808369 Gray et al. Oct 2004 B2
6814547 Childers et al. Nov 2004 B2
6821432 Metzner Nov 2004 B2
6828125 Hoffman et al. Dec 2004 B1
6846161 Kline et al. Jan 2005 B2
6852090 Burbank et al. Feb 2005 B2
6869538 Yu et al. Mar 2005 B2
6905479 Bouchard et al. Jun 2005 B1
6929751 Bowman et al. Aug 2005 B2
6939111 Huitt et al. Sep 2005 B2
6949079 Westberg et al. Sep 2005 B1
6953323 Childers et al. Oct 2005 B2
6957952 Steck et al. Oct 2005 B1
6984218 Nayak et al. Jan 2006 B2
7021148 Kuhn et al. Apr 2006 B2
7029245 Maianti et al. Apr 2006 B2
7033539 Krensky et al. Apr 2006 B2
7041076 Westberg et al. May 2006 B1
7044432 Beden et al. May 2006 B2
7049406 Weickert et al. May 2006 B2
7083719 Bowman et al. Aug 2006 B2
7087036 Busby et al. Aug 2006 B2
7107837 Lauman et al. Sep 2006 B2
7115107 Delnevo et al. Oct 2006 B2
7115228 Lundtveit et al. Oct 2006 B2
7147613 Burbank et al. Dec 2006 B2
7153286 Busby et al. Dec 2006 B2
7160087 Fathallah et al. Jan 2007 B2
7166231 Westberg et al. Jan 2007 B2
7175606 Bowman et al. Feb 2007 B2
7195607 Westberg et al. Mar 2007 B2
7211560 Looker et al. May 2007 B2
7232435 Hildebrand et al. Jun 2007 B2
7236936 White et al. Jun 2007 B2
7238164 Childers et al. Jul 2007 B2
7255680 Gharib Aug 2007 B1
7258534 Fathallah et al. Aug 2007 B2
7261559 Smith et al. Aug 2007 B2
7267661 Susi Sep 2007 B2
7273465 Ash Sep 2007 B2
7306578 Gray et al. Dec 2007 B2
7331935 Barere Feb 2008 B2
7338469 Barker et al. Mar 2008 B2
7338472 Shearn Mar 2008 B2
7345025 Symonds et al. Mar 2008 B2
7347836 Peterson et al. Mar 2008 B2
7390311 Hildebrand et al. Jun 2008 B2
7398183 Holland et al. Jul 2008 B2
7399637 Wright et al. Jul 2008 B2
7404809 Susi Jul 2008 B2
7410475 Krensky et al. Aug 2008 B2
7422905 Clague et al. Sep 2008 B2
7454314 Holland et al. Nov 2008 B2
7461968 Demers et al. Dec 2008 B2
7490021 Holland et al. Feb 2009 B2
7500962 Childers et al. Mar 2009 B2
7517387 Chevallet et al. Apr 2009 B2
7553295 Susi Jun 2009 B2
7556616 Fathallah et al. Jul 2009 B2
7575564 Childers Aug 2009 B2
7618948 Kaemmerer Nov 2009 B2
7645258 White et al. Jan 2010 B2
7648627 Beden et al. Jan 2010 B2
7654976 Peterson et al. Feb 2010 B2
7662133 Scarborough et al. Feb 2010 B2
7662286 Childers et al. Feb 2010 B2
7699966 Qin et al. Apr 2010 B2
7717682 Orr May 2010 B2
7789849 Busby et al. Sep 2010 B2
7815595 Busby et al. Oct 2010 B2
8038640 Orr Oct 2011 B2
8197231 Orr Jun 2012 B2
8197439 Wang et al. Jun 2012 B2
8206338 Childers et al. Jun 2012 B2
8292594 Tracey et al. Oct 2012 B2
8366921 Beden et al. Feb 2013 B2
8409441 Wilt Apr 2013 B2
8562834 Kamen et al. Oct 2013 B2
8721879 van der Merwe et al. May 2014 B2
8926835 Beden et al. Jan 2015 B2
20010034502 Moberg et al. Oct 2001 A1
20010037763 Deguchi et al. Nov 2001 A1
20010043450 Seale et al. Nov 2001 A1
20020045851 Suzuki et al. Apr 2002 A1
20020062109 Lauer May 2002 A1
20020072718 Brugger et al. Jun 2002 A1
20020098097 Singh Jul 2002 A1
20020107474 Noack Aug 2002 A1
20020147423 Burbank et al. Oct 2002 A1
20030018395 Crnkovich et al. Jan 2003 A1
20030028144 Duchon et al. Feb 2003 A1
20030029451 Blair et al. Feb 2003 A1
20030042181 Metzner Mar 2003 A1
20030100882 Beden et al. May 2003 A1
20030136189 Lauman et al. Jul 2003 A1
20030194332 Jahn et al. Oct 2003 A1
20030200812 Kuhn et al. Oct 2003 A1
20030204162 Childers et al. Oct 2003 A1
20030217957 Bowman et al. Nov 2003 A1
20030217961 Hopping Nov 2003 A1
20030217975 Yu et al. Nov 2003 A1
20030218623 Krensky et al. Nov 2003 A1
20030220599 Lundtveit et al. Nov 2003 A1
20030220605 Bowman et al. Nov 2003 A1
20030220607 Busby et al. Nov 2003 A1
20030220608 Huitt et al. Nov 2003 A1
20030220609 Childers et al. Nov 2003 A1
20030220627 Distler et al. Nov 2003 A1
20040001766 Maianti et al. Jan 2004 A1
20040010223 Busby et al. Jan 2004 A1
20040019313 Childers et al. Jan 2004 A1
20040019320 Childers et al. Jan 2004 A1
20040031756 Suzuki et al. Feb 2004 A1
20040064080 Cruz et al. Apr 2004 A1
20040067161 Axelsson Apr 2004 A1
20040082903 Micheli Apr 2004 A1
20040084647 Beden et al. May 2004 A1
20040109769 Jahn et al. Jun 2004 A1
20040115068 Hansen et al. Jun 2004 A1
20040135078 Mandro et al. Jul 2004 A1
20040136843 Jahn et al. Jul 2004 A1
20040156745 Vandlik et al. Aug 2004 A1
20040195190 Min et al. Oct 2004 A1
20040238416 Burbank et al. Dec 2004 A1
20050054968 Giannella Mar 2005 A1
20050230292 Beden et al. Oct 2005 A1
20060002823 Feldstein Jan 2006 A1
20060079766 Neer et al. Apr 2006 A1
20060079826 Beden et al. Apr 2006 A1
20060195064 Plahey et al. Aug 2006 A1
20070040454 Freudenberger et al. Feb 2007 A1
20070112297 Plahey et al. May 2007 A1
20070149913 Busby et al. Jun 2007 A1
20070193940 Duchamp et al. Aug 2007 A1
20070213651 Busby et al. Sep 2007 A1
20070213653 Childers et al. Sep 2007 A1
20070269340 Dannenmaier et al. Nov 2007 A1
20070278155 Lo et al. Dec 2007 A1
20080033346 Childers et al. Feb 2008 A1
20080077068 Orr Mar 2008 A1
20080125693 Gavin et al. May 2008 A1
20080208103 Demers et al. Aug 2008 A1
20080216898 Grant et al. Sep 2008 A1
20080253912 Demers et al. Oct 2008 A1
20090004033 Demers et al. Jan 2009 A1
20090099498 Demers et al. Apr 2009 A1
20090137940 Orr May 2009 A1
20090169402 Stenberg Jul 2009 A1
20090212248 Kozak Aug 2009 A1
20100021313 Devan et al. Jan 2010 A1
20100211044 Dacquay et al. Aug 2010 A1
20100241062 Morris et al. Sep 2010 A1
20100286614 Ring Nov 2010 A1
20110015610 Plahey et al. Jan 2011 A1
20110020156 Van Brunt et al. Jan 2011 A1
20110092895 Yardimci et al. Apr 2011 A1
20110125085 McGill et al. May 2011 A1
20110137237 Prisco et al. Jun 2011 A1
20110152785 Chattaraj et al. Jun 2011 A1
20110274566 Amirouche et al. Nov 2011 A1
20110293450 Grimes et al. Dec 2011 A1
20120065581 Childers et al. Mar 2012 A1
20120073432 Ingersoll et al. Mar 2012 A1
20120123322 Scarpaci et al. May 2012 A1
20120209169 Morris et al. Aug 2012 A1
20120224984 Orr Sep 2012 A1
20120230844 Farrell et al. Sep 2012 A1
20120232469 Medina Sep 2012 A1
20120271226 Farrell et al. Oct 2012 A1
20120308412 Rochat Dec 2012 A1
20130118961 Beden et al. May 2013 A1
20130118970 Beden et al. May 2013 A1
20130184638 Scarpaci et al. Jul 2013 A1
20130330208 Ly et al. Dec 2013 A1
20130331774 Farrell et al. Dec 2013 A1
Foreign Referenced Citations (54)
Number Date Country
2628238 Jan 1978 DE
2827648 Jan 1979 DE
4006785 Sep 1990 DE
4336336 May 1994 DE
19837667 Mar 2000 DE
19919572 Nov 2000 DE
10042324 Feb 2002 DE
10046651 Apr 2002 DE
19919572 Apr 2002 DE
10053441 May 2002 DE
69618766 Aug 2002 DE
10143137 Apr 2003 DE
10157924 Jun 2003 DE
102007059239 Jun 2009 DE
257279 Mar 1988 EP
0314379 Aug 1991 EP
0410125 Aug 1993 EP
0728509 Aug 1996 EP
0848193 Jun 1998 EP
0856321 Aug 1998 EP
0947814 Oct 1999 EP
0956876 Nov 1999 EP
1529545 May 2005 EP
2101232 Jan 1983 GB
2101232 Jan 1983 GB
1483702 Aug 1997 GB
2331796 Jun 1999 GB
0396850 Apr 1991 JP
04191755 Jul 1992 JP
06154314 Jun 1994 JP
06002650 Nov 1994 JP
08028722 Mar 1996 JP
1068383 Mar 1998 JP
11347115 Dec 1999 JP
2000070358 Mar 2000 JP
2000346214 Dec 2000 JP
8402473 Jul 1984 WO
8601115 Feb 1986 WO
WO1994015660 Jul 1994 WO
9420155 Sep 1994 WO
9625064 Aug 1996 WO
1997016214 May 1997 WO
1997037703 Oct 1997 WO
9822165 May 1998 WO
WO1998022167 May 1998 WO
0023140 Apr 2000 WO
0033898 Jun 2000 WO
0117605 Mar 2001 WO
0225146 Mar 2002 WO
0225225 Mar 2002 WO
WO2007006030 Jun 2007 WO
2009071069 Jun 2009 WO
WO2010128914 Nov 2010 WO
WO2011045167 Apr 2011 WO
Non-Patent Literature Citations (22)
Entry
Bolegoh, Gordon, “Pumps: Reference Guide”, p. 24, 3rd edition, 2001.
Ronco et al., “Evolution of Machines for Automated Peritoneal Dialysis”, in Automated Peritoneal Dialysis, Contributions to Nephrology, vol. 129, pp. 142-161, 1999.
Sleep Safe Operating Instructions, Software Version 0.5, Apr. 1999.
Sleep Safe Operating Instructions, Software Version 1.0, Oct. 2000.
Sleep Safe Technical Manual, Dec. 2001.
Sleep Safe Operating Instructions, Jan. 2002.
Sleep Safe Communicating Therapy, Mar. 1998.
Sleep Safe Kommunizierte Therapie, May 1998.
Innovative Technologies in Peritoneal Dialysis, Sleep Safe Concept, Oct. 13, 1999 (4 attachments).
TL ™ Pump Brochure, TL Systems Corporation, Apr. 1975.
Avolio, Glenn, “Principles of Rotary Optical Encoders,” Sensors Journal of Machine Perception, vol. 10, No. 4, pp. 10-18, 1993.
Gambro®, “DEHP-free cartridge blood sets,” © Nov. 2004, Gambro, Inc., Lakewood, CO, 4 pp.
Gambro®, ″Prisma® HF 1000, “For Increased Filtration Capacity”, © Aug. 2001, Gambro Renal Products, Inc., Lakewood, CO, 2 pp.
Gambro®, “Prisma® M60 and M100 Pre-Pump Infusion Sets—Introducing: The unique solution that enables Physicians to choose a predilution method that meets the needs of their patients”, © 2004, Gambro Inc., Lakewood, CO, 4 pp.
Gambro®, “Prismaflex™ anticipating critical care needs and taking our innovative response . . . To new heights,” ©2004, Gambro Inc., Lakewood, CO, 8 pp.
Liberty Cycler Operator's Manual, 2003-2004.
Manns et al., “The acu-men: A new device for continuous renal replacement therapy in acute renal failure,” Kidney International, vol. 54, pp. 268-274, 1998.
Newton IQ Cycler Operator Manual, Part No. 470203 Rev. F, 2000-2006.
Operator's Instructions, Fresenius 90/2 Peritoneal Therapy Cycler, Part No. 470016, Rev. B, 1991.
Operator's Manual, Serena, Program Version 3.xx—English, 2002.
Sleep Safe Operating Instructions, Software Version 0.9, Part No. 677 805 1; Aug. 2000.
Sleep Safe Technical Manual, Part No. 677 807 1; Aug. 2000.
Related Publications (1)
Number Date Country
20150165105 A1 Jun 2015 US
Continuations (4)
Number Date Country
Parent 13728162 Dec 2012 US
Child 14571645 US
Parent 13401429 Feb 2012 US
Child 13728162 US
Parent 12627043 Nov 2009 US
Child 13401429 US
Parent 10516528 US
Child 12627043 US