Diamond bonded construction with thermally stable region

Abstract
Diamond bonded constructions comprise a polycrystalline diamond body having a matrix phase of bonded-together diamond grains and a plurality of interstitial regions between the diamond grains including a catalyst material used to form the diamond body disposed within the interstitial regions. A sintered thermally stable diamond element is disposed within and bonded to the diamond body, and is configured and positioned to form part of a working surface. The thermally stable diamond element is bonded to the polycrystalline diamond body, and a substrate is bonded to the polycrystalline diamond body. The thermally stable diamond element comprises a plurality of bonded-together diamond grains and interstitial regions, wherein the interstitial regions are substantially free of a catalyst material used to make or sinter the thermally stable diamond element. A barrier material may be disposed over or infiltrated into one or more surfaces of the thermally stable diamond element.
Description
FIELD OF THE INVENTION
Background of the Invention

The use of constructions comprising a body formed from ultra-hard materials such as diamond, polycrystalline diamond (PCD), cubic boron nitride (cBN), polycrystalline cubic boron nitride (PcBN) are well known in the art. An example of such can be found in the form of cutting elements comprising an ultra-hard component or body that is joined to a metallic component. In such cutting element embodiment, the wear or cutting portion is formed from the ultra-hard component and the metallic portion is provided for the purpose of attaching the cutting element to a desired wear and/or cutting device. In such known constructions, the ultra-hard component can be formed from those ultra-hard materials described above that provide a high level of wear and/or abrasion resistance that is greater than that of the metallic component.


The use of PCD as an ultra-hard material for forming such constructions is well known in the art. PCD is formed by subjecting a volume of diamond grains to high pressure/high temperature (HPHT) conditions in the presence of a suitable catalyst material, such as a solvent catalyst metal selected from Group VIII of the Periodic table. Such PCD material is typically used to form the ultra-hard body that is attached to the metallic substrate. An issue that is known to exist with such conventional diamond bonded constructions comprising an ultra-hard body formed exclusively from PCD is that it is subject to thermal stresses and thermal degradation at elevated operating temperatures, due to the presence of the solvent metal catalyst, which is known to limit the effective service life of the construction when subjected to such operating temperatures.


Attempts to address such unwanted thermal performance of conventional PCD constructions have included removing the catalyst material, or solvent metal catalyst material, either partially or completely therefrom. For example, one known approach has involved removing the catalyst material completely from the PCD construction after it has been sintered, e.g., by the HPHT process noted above, by subjecting the PCD construction to a leaching process for a period of time that has resulted in the formation of a diamond bonded body that was substantially free of the catalyst material. The diamond bonded body resulting from such leaching process is referred to in the art as being thermally stable polycrystalline diamond (TSP) because the catalyst material has been removed therefrom.


While conventional TSP does have improved properties of thermal stability, abrasion and wear resistance at elevated temperatures when compared to conventional PCD, it lacks desired properties of strength, toughness, impact resistance and room-temperature hardness that were provided by the presence of the catalyst solvent metal. Thus, such conventional TSP while being well suited for some high temperature operating conditions, is not well suited for all such applications, e.g., those calling for properties of impact resistance, strength and/or toughness. Further, conventional TSP does not lend itself to attachment with a metallic substrate by HPHT process, and either has to be attached to a metallic substrate or directly to the end use application device by braze process. The need to attach the TSP body in this manner to a metallic substrate or to the end use device presents a further failure mechanism during operation due to the different material properties of the TSP body and substrate, and the related inability to form a strong attachment joint therebetween, which shortcomings operate to reduce the effective service life of cutting elements formed therefrom.


Another known approach aimed at improving the thermal stability of conventional PCD constructions involves removing the catalyst material from only a selected region of the PCD body, and not from the entire PCD body. Such removal of the catalyst material from only a region of the PCD body is achieved by subjecting the targeted region of the PCD body to a leaching agent for a period of time to provide a desired depth of catalyst material removal, and thereby leaving the catalyst material in a remaining region of the PCD body. This approach results in improving the thermal stability of the PCD construction at the treated region, while allowing the metallic substrate to remain attached to the construction. While this approach did improve the thermal stability of the PCD construction, and did provide a PCD construction having a strong substrate attachment, it is believed that further improvements in optimizing the desired performance properties of thermal stability, abrasion and wear resistance, strength, impact resistance, and toughness can be achieved.


It is, therefore, desired that a diamond bonded construction be provided in a manner that provides a desired optimized combination of thermal stability, wear and abrasion resistance, strength, impact resistance, and toughness when compared to conventional PCD, conventional TSP, or to the past attempts described above. It is further desired that such diamond bonded construction be produced in a manner that is efficient and does not involve the use of exotic materials and/or techniques.


SUMMARY OF THE INVENTION

Diamond bonded constructions, prepared according to principles of the invention, comprise a sintered polycrystalline diamond body having a matrix phase of bonded-together diamond grains and a plurality of interstitial regions disposed between the diamond grains, wherein the catalyst material used to form the diamond body is disposed within the interstitial regions. The construction includes one or more thermally stable diamond elements or segments disposed within the diamond body, wherein the thermally stable diamond element is positioned within the body to form at least part of a construction working surface. The thermally stable diamond element is bonded to the polycrystalline diamond body, and the construction includes a substrate bonded to the polycrystalline diamond body.


In an example embodiment, the thermally stable diamond element comprises at least 5 percent of the construction working surface, wherein the working surface is a surface of the construction that engages or could engage a formation or other type of object being cut or worn by contact with the construction. The thermally stable diamond element comprises a plurality of bonded-together diamond grains and interstitial regions, wherein the interstitial regions are substantially free of a catalyst material used to make or sinter the thermally stable diamond element. In an example embodiment, the thermally stable diamond element comprises a first diamond region adjacent a top surface and a second diamond region adjacent a bottom surface, wherein the first and second diamond regions are formed from differently sized diamond grains. The first and second diamond regions may also or alternatively comprise different diamond volume contents.


The thermally stable diamond element may include a barrier material disposed over one or more of its surfaces and/or may include an infiltrant material disposed therein to control, minimize and/or eliminate infiltration of the catalyst material used to form the polycrystalline diamond body therein. In an example embodiment, the thermally stable element may include one surface that does not include the barrier material or that is not filled with an infiltrant to facilitate the infiltration of the catalyst material used to form the polycrystalline diamond body therein to provide a desired attachment with the body. The infiltrant can be introduced into the thermally stable diamond element before or during an HPHT process used to form the polycrystalline diamond body.


Diamond bonded constructions can be made by forming a thermally stable diamond element from a polycrystalline diamond material, the polycrystalline diamond material comprising a plurality of bonded-together diamond grains with a catalyst material disposed within interstitial regions between the diamond gains, wherein the method of forming comprises removing the catalyst from the interstitial regions. One or more of the thermally stable diamond elements are combined with a volume of diamond grains to form an assembly, and the assembly is subjected to HPHT conditions to sinter the volume of diamond grains to form a polycrystalline diamond body. The thermally stable diamond element is disposed within and bonded to the polycrystalline diamond body and forms a surface of the diamond bonded construction. As noted above, the thermally stable diamond element can includes a barrier material in the form of a material layer or infiltrant to control, minimize and/or eliminate infiltration of the catalyst material used to form or sinter the polycrystalline diamond body. The barrier and/or infiltrant material may also be selected to provide an improved bond strength between the TSP element and the PCD body and/or to provide one or more improved properties such as fracture toughness, impact strength, and thermal conductivity to the TSP element.


Diamond bonded constructions, prepared according to principles of the invention, have properties of improved wear and/or abrasion resistance at the wear or cutting surface provided by placement of the thermally stable diamond element at such surface, while retaining desired properties of strength and toughness as provided by the polycrystalline diamond body. The construction structure of a composite, comprising the use of one or more thermally stable diamond elements to provide at least a portion of the working surface, and polycrystalline diamond to form the remaining diamond body, provides combined properties of wear and abrasion resistance, impact resistance, toughness, and strength not otherwise possible in a conventional homogeneous polycrystalline diamond construction or a conventional homogeneous thermally stable polycrystalline diamond construction.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages of the present invention will be appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:



FIG. 1 is a view taken from a section of a diamond bonded element or segment after it has been treated to remove a catalyst material used to form the same therefrom;



FIG. 2 is a perspective view of an example diamond bonded segment after it has been treated to remove the catalyst material used to form the same therefrom;



FIGS. 3A and 3C are schematic views, and FIG. 3B is a section view, of example diamond bonded segments of FIG. 2 that have been coated or backfilled respectively;



FIG. 4 is perspective view of an example embodiment diamond bonded body of this invention;



FIG. 5 is a perspective view of another example embodiment diamond bonded body of this invention;



FIG. 6 is a perspective view of another example embodiment diamond bonded body of this invention;



FIG. 7 is a perspective view of another example embodiment diamond bonded body of this invention;



FIG. 8 is perspective view of an example embodiment diamond bonded body of this invention;



FIG. 9 is a perspective view of another example embodiment diamond bonded body of this invention;



FIG. 10 is a perspective side view of a drag bit comprising a number of the ultra-hard and metallic constructions of this invention provided in the form of a shear cutter;



FIG. 11 is a perspective side view of a rotary cone drill bit comprising a number of the ultra-hard and metallic constructions of this invention provided in the form of inserts;



FIG. 12 is a perspective side view of a percussion or hammer bit comprising a number of the ultra-hard and metallic constructions of this invention provided in the form of inserts;



FIG. 13 is a perspective view an example embodiment TSP part useful for forming diamond bonded constructions;



FIG. 14 is a sectional view of the TSP part taken from FIG. 13;



FIG. 15 is a perspective view of another example embodiment TSP part useful for forming diamond bonded constructions;



FIG. 16 is a perspective view of another example embodiment TSP part useful for forming diamond bonded constructions; and



FIG. 17 is a perspective view of another example embodiment TSP part useful for forming diamond bonded constructions.





DETAILED DESCRIPTION

Diamond bonded constructions of this invention comprise a diamond bonded body including one or more thermally stable polycrystalline diamond (TSP) elements or segments that are disposed therein. The diamond bonded body is formed from polycrystalline diamond (PCD) and the one or more TSP segments are joined or attached thereto during formation of the diamond bonded body at high pressure/high temperature (HPHT) conditions. The one or more TSP segments can be provided in a number of different predetermined shapes and sizes depending on the particular end-use application, and the segments may optionally be partially or fully coated and/or covered and/or backfilled with a desired material that can be the same or different as the catalyst material used to sinter the PCD portion of the diamond bonded body. The diamond bonded constructions further include a metallic substrate joined or otherwise attached to the diamond bonded body to facilitate attachment of the constriction to a desired end-use device.


While the body has been described above as a diamond bonded body, it is to be understood that the body can be formed from ultra-hard materials other than diamond. As used herein, the term “ultra-hard” is understood to refer to those materials known in the art to have a grain hardness of about 4,000 HV or greater. Such ultra-hard materials can include those capable of demonstrating physical stability at temperatures above about 750° C., and for certain applications above about 1,000° C., that are formed from consolidated materials. Such ultra-hard materials can include but are not limited to diamond, PCD, cubic boron nitride (cBN), polycrystalline cBN (PcBN) diamond-like carbon, boron suboxide, aluminum manganese boride, and other materials in the boron-nitrogen-carbon phase diagram which have shown hardness values similar to cBN and other ceramic materials.


Polycrystalline diamond (PCD) is an ultra-hard material that is formed in the manner noted above by subjecting a volume of diamond grains to HPHT conditions in the presence of a catalyst material. The catalyst material can be a solvent catalyst metal, such as one or more selected from Group VIII of the Periodic table. As used herein, the term “catalyst material” refers to the material that was initially used to facilitate diamond-to-diamond bonding or sintering during the initial HPHT process used to form the PCD.


Thermally stable polycrystalline diamond (TSP) is formed by removing the catalyst material from PCD, so that the remaining diamond structure is substantially free of the catalyst material. TSP has a material microstructure characterized by a polycrystalline phase comprising bonded-together diamond grains or crystals and a plurality of voids or empty pores that exist within interstitially regions disposed between the bonded together diamond grains. A feature of diamond bonded constructions of this invention is that they include one or more TSP elements, regions or segments that are disposed within a PCD region or body, and that are incorporated in the body when the remaining portion of the diamond bonded body is being sintered.


As used herein, the terms “element”, “region” or “segment” as used to characterize the TSP portion are understood to refer to a continuous portion of the construction having the same material microstructure that is different from a surrounding portion of the construction, and that is sized and/or shaped to (initially or during use) to form at least a portion of a working surface of the construction. The element, region or segment can be sized, shaped and/or placed within the construction such that it provides a construction working surface prior to operation, or can be configured to not initially be an outer or working surface but later become an outer or working surface during operation, e.g., when placed into a wear and/or cutting operation for some amount of time. Alternatively, the TSP region or segment may provide an outer or working surface of the construction after a machining or grinding process is performed on the construction prior to or after placement of the construction into operation.


Diamond grains useful for forming the TSP and/or PCD regions of the construction can include natural and/or synthetic diamond powders having an average diameter grain size in the range of from submicrometer in size to 100 micrometers, and more preferably in the range of from about 1 to 80 micrometers. The diamond powder can contain grains having a mono or multi-modal size distribution. In an example embodiment, the diamond powder has an average particle grain size of approximately 20 micrometers. In the event that diamond powders are used having differently sized grains, the diamond grains are mixed together by conventional process, such as by ball or attritor milling for as much time as necessary to ensure good uniform distribution.


The diamond grain powder is preferably cleaned, to enhance the sinterability of the powder by treatment at high temperature, in a vacuum or reducing atmosphere. The diamond powder mixture is loaded into a desired container for placement within a suitable HPHT consolidation and sintering device.


The diamond powder may be combined with a desired catalyst material, e.g., a solvent metal catalyst, in the form of a powder to facilitate diamond bonding during the HPHT process and/or the catalyst material can be provided by infiltration from a substrate positioned adjacent the diamond powder and that includes the catalyst material. Suitable substrates useful as a source for infiltrating the catalyst material can include those used to form conventional PCD materials, and can be provided in powder, green state and/or already-sintered form. A feature of such substrate is that it includes a metal solvent catalyst as one of its material constituents that is capable of melting and infiltrating into the adjacent volume of diamond powder to facilitate bonding the diamond grains together during the HPHT process. In an example embodiment, the catalyst material is cobalt, and a substrate useful for providing the same is a cobalt containing substrate, such as WC—Co.


Alternatively, the diamond powder mixture can be provided in the form of a green-state part or mixture comprising diamond powder that is combined with a binding agent to provide a conformable material product, e.g., in the form of diamond tape or other formable/conformable diamond mixture product to facilitate the manufacturing process. In the event that the diamond powder is provided in the form of such a green-state part, it is desirable that a preheating step take place before HPHT consolidation and sintering to drive off the binder material. In an example embodiment, the PCD material resulting from the above-described HPHT process may have a diamond volume content in the range of from about 85 to 95 percent.


The diamond powder mixture or green-state part is loaded into a desired container for placement within a suitable HPHT consolidation and sintering device. The HPHT device is activated to subject the container to a desired HPHT condition to effect consolidation and sintering of the diamond powder. In an example embodiment, the device is controlled so that the container is subjected to a HPHT process having a pressure of 5,000 MPa or greater and a temperature of from about 1,300° C. to 1,500° C. for a predetermined period of time. At this pressure and temperature, the catalyst material melts and infiltrates into the diamond powder mixture, thereby sintering the diamond grains to form PCD. After the HPHT process is completed, the container is removed from the HPHT device, and the so-formed PCD part is removed from the container.


The PCD part can be configured having a desired size and/or shape for eventual use within the diamond bonded body, after treatment to remove the catalyst material therefrom, without any further shaping or sizing. Alternatively, the PCD part can initially be configured having a form that facilitates HPHT processing, and that is subsequently shaped and/or sized as desired for use in forming the diamond bonded body. For example, the PCD part can be made in the form of a single part that is shaped and/or cut into the desired elements, segments or regions for use in the diamond body by conventional process, such as EDM or laser cutting technique.


In the event that a substrate is used during the HPHT process, e.g., as a source of the catalyst material, the substrate is preferably removed prior to a subsequent step of treating the PCD part to remove the catalyst material therefrom to form the desired TSP part. Alternatively, the substrate can be removed during or after the treatment to form TSP. In a preferred embodiment, any infiltration substrate is removed prior to treatment to expedite the process of removing the catalyst material from the PCD part to form the desired TSP.


The term “removed”, as used with reference to the catalyst material after the treatment process for forming the desired TSP part, is understood to mean that a substantial portion of the catalyst material no longer resides within the part. However, it is to be understood that some small amount of catalyst material may still remain in the part, e.g., within the interstitial regions and/or adhered to the surface of the diamond crystals. Additionally, the term “substantially free”, as used herein to refer to the catalyst material in the part after the treatment process, is understood to mean that there may still be some small/trace amount of catalyst material remaining within the TSP part as noted above.


In an example embodiment, the PCD part is treated to render it substantially free of the catalyst material. This can be done, by subjecting the PCD part to chemical treatment such as by acid leaching or aqua regia bath, electrochemical treatment such as by electrolytic process, by liquid metal solubility, or by liquid metal infiltration that sweeps the existing catalyst material away and replaces it with another noncatalyst material during a liquid phase sintering process, or by combinations thereof. In an example embodiment, the catalyst material is removed from the PCD part by an acid leaching technique, such as that disclosed for example in U.S. Pat. No. 4,224,380. Additionally, the PCD part can be subjected to such treatment before or after any desired reshaping or resizing operation.



FIG. 1 illustrates a section taken from a TSP part 10 formed by removing the catalyst material therefrom in the manner described above. The TSP part 10 has a material microstructure comprising a polycrystalline diamond matrix phase made up of a plurality of diamond grains or crystals 12 that are bonded together, and a plurality of interstitial regions 14 that are disposed between the bonded-together diamond grains, and that exist as empty pores or voids within the matrix phase of the material microstructure, as a result of the catalyst material being removed therefrom.



FIG. 2 illustrates an example embodiment of a TSP part 20 useful for being included within a diamond bonded body. As noted above, it is to be understood that the TSP part 20 can be formed from a sintered PCD part without subsequent shaping and/or sizing, or can be formed from a PCD part that has been reshaped and/or resized as desired for a particular end-use application. In an example embodiment, the TSP part 20 illustrated in FIG. 2 is initially provided in the form of a PCD wafer or disk that is subsequently leached to remove the catalyst material, and that is reshaped and/or resized into the desired predetermined configuration useful as the TSP element, region or segment, wherein the sequence of leaching and reshaping and/or resized can be switched.


In this particular embodiment, the PCD part was reshaped in the form of a number of different wedge-shaped TSP parts or segments. The wedge or pie-shaped segment has a generally convex outer surface 22 with radially inwardly extending side surfaces 24. The outer surface 22 can be configured having a radius of curvature that is the same, similar or that corresponds to the radius of curvature of the final diamond bonded body for placement of the TSP segment outer surface 22 along or adjacent an outermost edge of the construction, e.g., along a peripheral edge of the construction. The TSP part 20, for this and other embodiments, can have an axial thickness or depth that will vary depending on such factors as the particular size and shape of the TSP part, the particular construction configuration and/or the particular end use application and/or manufacturing constraints.


In an example embodiment, it is desired that the TSP part have a thickness that will promote HPHT formation of the TSP part without cracking or fracture, and that will promote subsequent incorporation of the TSP part into and formation of the diamond body in a subsequent HPHT process, e.g., avoiding cracking or fracture in such subsequent HPHT process. In an example embodiment, the TSP part may have a thickness of about 2 mm, as this thickness has been found to provide a desired degree of robustness to the TSP part, thereby helping to avoid unwanted crack or fracture formation during HPHT formation of the diamond body.


Configured in this manner, one or more TSP segments can be positioned within the diamond construction along an outermost surface of the construction, e.g., being positioned along a working surface and or cutting edge of the construction. Additionally, the segment shape of the TSP part helps to both minimize internal stresses within the constriction and provide a high level of strength to the construction.


While FIG. 2 illustrates a TSP part or segment having a particular configuration, it is to be understood that TSP parts as used in conjunction with diamond bonded constructions of this invention can be configured differently than as illustrated in FIG. 2 depending on a number of factors such as the end-use application, the particular placement of the construction working surface, and the choice of materials used to form the TSP part and/or the diamond bonded body. In an example embodiment, it is desired that the TSP part be configured in a manner that assists in minimizing internal stress within the construction, provides a desired improvement in wear resistance, abrasion resistance, and/or thermal resistance to the diamond bonded construction, while at the same time retaining the desired high strength properties of the remaining portion of the diamond bonded body. In a preferred embodiment, the TSP part is configured to facilitate its placement and/or use at or adjacent a working surface or cutting edge of the diamond bonded construction, wherein the working surface of the construction can be any surface of the construction that is placed into contact with material being cut and/or removed when used in a cutting and/or wear application.



FIGS. 13 to 16 illustrate additional embodiments of TSP parts useful for forming diamond bonded constructions of the invention. FIG. 13 illustrates a TSP part 170 that is provided in the form of a segment having a generally convex outer surface 172 with a radius of curvature that is the same as that of the diamond body for placement along a working edge of the diamond bonded construction. The TSP part 170 includes a radiused inner surface 174 that extends inwardly from side edges 176 of the TSP part. The outer surface 172 has a desired axial thickness as noted above, and is sized to extend along a desired portion of the diamond body circumference positioned along the construction working surface. Referring now to FIG. 14, the TSP part of this embodiment is shown to have an axial thickness that changes moving from the outer surface 172 to the inner surface 174. Specifically, the TSP part has a bottom surface 178 that is curved and that slopes upwardly moving from the outer surface 172 to the inner surface 174, i.e., the TSP part thickness in this embodiment decreases with position moving away from the outer surface 172 to the inner surface 174. In this particular embodiment, all of the TSP part surfaces that interface with the diamond body are curved or rounded for the purposes of helping to reduce unwanted stress in the diamond body. While the TSP part embodiment illustrated in FIGS. 13 and 14 have diamond body interface surfaces that are all rounded, it is to be understood that other TSP part embodiments such as those configured having one or more rounded interface surfaces, are intended to be within the scope of this invention, e.g., the bottom surface may be rounded while the inside surface may not be and visa versa.



FIG. 15 illustrates another embodiment TSP part 180 that is provided in the form of a segment having a generally convex outer surface 182 with a radius of curvature that is the same as that of the diamond body for placement along a working edge of the diamond bonded construction. The TSP part 180 includes an inner surface 184 that is generally planar and that extends from side edges 186 of the TSP part. The outer surface 172 has a desired axial thickness as noted above, and is sized to extend along a desired portion of the diamond body circumference positioned along the construction working surface. The TSP part 180 of this embodiment has an axial thickness that is constant moving from the outer surface 182 to the inner surface 184. In this particular embodiment, the TSP part has a radial thickness measured between the inner and outer surfaces that increases moving away from the edges 186 to a center portion of the TSP part.



FIG. 16 illustrates another embodiment TSP part 190 that is provided in the form of a segment having a generally convex outer surface 192 with a radius of curvature that is the same as that of the diamond body for placement along a working edge of the diamond bonded construction. The TSP part 190 includes an inner surface 194 that, like the embodiment illustrated in FIG. 13, is radiused to extend outwardly from the outer surface 192 and that extends from side edges 196 of the TSP part. The outer surface 192 has a desired axial thickness as noted above, and is sized to extend along a desired portion of the diamond body circumference positioned along the construction working surface. The TSP part 190 of this embodiment, like that illustrated in FIG. 15, has an axial thickness that is constant moving from the outer surface 192 to the inner surface 194. In this particular embodiment, the TSP part has a radial thickness measured between the inner and outer surfaces that increases moving away from the edges 196 to a center portion of the TSP part. In an example embodiment, the TSP segment has a shape of two intersecting and opposed cylindrical surfaces. A TSP part shaped in this manner helps to reduce thermal mismatch stresses in both the TSP part and diamond body, thereby decreasing the probability of crack formation in each during HPHT processing, and during stages of bonding, brazing and operation of the end-use device.



FIG. 17 illustrates another embodiment TSP part 200 that is provided in the form of a segment having a generally convex outer surface 202 with a radius of curvature that is the same as that of the diamond body for placement along a working edge of the diamond bonded construction. The TSP part 200 includes an inner surface 204 that, like the embodiment illustrated in FIG. 13, is radiused to extend outwardly from the outer surface 202 and that extends from side edges 206 of the TSP part. The TSP part 200 has a desired axial thickness as noted above, and is sized to extend along a desired portion of the diamond body circumference positioned along the construction working surface. The TSP part 200 of this embodiment, like that illustrated in FIG. 15, has an axial thickness that is constant moving from the outer surface 202 to the inner surface 204. Unlike the TSP part embodiment illustrated in FIG. 16 having top and bottom surfaces with generally the same surface areas, the TSP part of this embodiment has a top surface 208 that is sized differently than that of a bottom surface 210. The top surface can be larger or smaller than the bottom surface, and in the example embodiment illustrated in FIG. 17 is sized larger than the bottom surface. In an example embodiment, the TSP segment has a shape of two intersecting and opposed cylindrical surfaces, wherein one or both of the surfaces forming the outer and inner surfaces are tilted inwardly towards the other moving from the top to the bottom surface, thereby providing the desired difference in top and bottom surface area. A TSP part shaped in this manner helps to further reduce thermal mismatch stresses in both the TSP part and diamond body when compared to the embodiment illustrated in FIG. 16, thereby decreasing the probability of crack formation in each during HPHT processing, and during stages of bonding, brazing and operation of the end-use device.


If desired, the PCD material used to form the TSP part can comprise a uniform or homogeneous distribution of diamond grain sizes and diamond volume content. Alternatively, it may be desired that the PCD material used to form the TSP part be specially engineered to have different regions containing different diamond grain sizes and/or different diamond volume contents. For example, it may be desired to produce a PCD material having one region with a high diamond volume content at a position forming a working surface of the construction, and having another region with a lower diamond volume content at a position forming an attachment with the remaining diamond bonded body. In such an example embodiment, the presence of the relatively higher diamond volume content operates to provide improved properties of wear and abrasion resistance at the working surface while also operating to resist material infiltration from the remaining diamond bonded body.


In another example, the TSP part region forming the working surface can comprise diamond grains having a relatively finer grain size than that of the diamond grains used in the TSP part region forming an attachment with the diamond bonded body. The presence of the relatively coarser sized diamond grains in the attachment region of the TSP part can operate to facilitate infiltration of a material from the remaining diamond bonded body to assist with providing a desired strong attachment therebetween. The use of relatively finer-sized diamond grains at the working surface region also operates to resist infiltration from the remaining TSP region and the remaining diamond bonded body.


It is to be understood that the presence of such regions within the PCD material and resulting TSP part can be provided in the form of a step change such that the difference in one or more characteristics within the regions change at an interface therebetween, or can be provided in the form of a gradient change such that the difference in the one or more characteristic within the regions change gradually.


The one or more TSP parts or segments can be taken and combined with the volume of diamond material used to form the remaining diamond bonded body, and the combination of the TSP parts and the diamond volume can be subjected to an HPHT process suitable for sintering the diamond volume to form a polycrystalline diamond bonded body. During such process, a catalyst material provided with the diamond volume or provided from a substrate that is combined with the diamond volume and TSP part combination infiltrates into the diamond volume to effect sintering and infiltrates into at least an adjacent region of the TSP part to effect attachment during HPHT processing.


In an example embodiment, it is desired that the HPHT process used for sintering the diamond bonded body and forming a desired attachment with the TSP parts be controlled in a manner so that the catalyst material infiltrates the TSP part only partially so the surface layer or working surface remains substantially free of the catalyst material a desired depth from the surface. In an example embodiment, this depth can be from about 0.01 mm to about 2.5 mm or about 95 to 99 percent of the TSP part axial thickness. In an example embodiment, the depth can be in the range of from about 0.03 mm to 0.8 mm


Alternatively, the TSP parts or segments can be further treated before being combined with the further material, such as diamond powder, used to form the remaining portion of the diamond bonded construction. For example, before the TSP part or parts are combined with diamond powder and the combination is subjected to HPHT conditions, to sinter the diamond powder forming the PCD body and attach the TSP parts, it may be desired to treat the TSP parts in a manner that minimizes or eliminates infiltration of the catalyst material used to form the PCD body into the TSP parts.



FIGS. 3A, 3B and 3C illustrate embodiments of TSP parts that have been optionally treated to control, minimize, or eliminate the infiltration of a catalyst material used to form the remaining PCD body making up the diamond bonded construction during the HPHT sintering process, and/or to introduce additional desired properties into the TSP part. FIG. 3A illustrates a TSP part 30 that comprises a material layer 32 along one or more of its outer surfaces positioned adjacent the diamond powder. FIG. 3B is a section taken from FIG. 3A that illustrates an example placement of the material layer 32 on the TSP part 30. In an example embodiment, the material layer is formed from materials that operate to control, minimize or eliminate infiltration of the catalyst material into the TSP body. Additionally, the material layer can be formed from a material that operates to provide a desired attachment bond with an adjacent surface of the PCD body during HPHT processing. In an example embodiment, those TSP surfaces exposed and otherwise placed into contact with the diamond powder comprise the material layer. Accordingly, it is to be understood that some or all of the TSP part outer surfaces may include such material layer depending on the TSP part placement position within the diamond volume forming the diamond bonded body.


The material layer can be provided in the form of a coating of the desired material that is spray, dipped or otherwise applied to a desired surface of the TSP part. The material layer can be provided in the form of a preformed film that is positioned over the desired surface of the TSP part.


Materials useful for forming the material layer can include those that have a melting temperature above that of the catalyst material used to form the host PCD body to thereby remain in solid form to control, minimize, or eliminate unwanted infiltration of the catalyst material during HPHT processing used to form the PCD body. Alternatively, materials having a melting temperature below that of the catalyst material may also be useful to form the material layer, e.g., such as carbide formers that are capable of forming a reaction product upon heating with the TSP. The material layer can cover one or more desired surface portion of the TSP body, and can extend inwardly a partial depth into the TSP body from such covered surface. In an example embodiment, the material layer can extend a depth of from about 2 to 4 layers of diamond grains into the TSP part.


Materials useful for forming the material layer include metals, oxides, nitrides, borides carbides and carbide formers, and the like capable of performing in the above-described manner. Thus, the material layer may or may not form a reaction product with the TSP surface during the HPHT treatment. Alternatively, the material layer may be applied to the TSP part, and the resulting TSP part may be subjected to a heat treatment and/or a combined heat and pressure treatment, e.g., HPHT treatment, independent of the HPHT process used to form the PCD material, to provide a desired effect, e.g., to form a reaction product or the like. Particular material layers include those formed from Al2O3, ZrO2, AlN, TiN, TiC, Ti(CN), Si3N4, SiC, Ti, Mo, V, Si, and the like.


Additionally, if desired, the TSP part may include a two or more material layers of different materials. The different material layers can be formed from materials specially selected to provide desired different properties, e.g., transition and/or intermediate properties, as they relate to the TSP part and the PCD body. For example, the different material layers can be engineered to provide an improved attachment bond between the TSP part and the PCD body and/or to provide a better match in physical properties of the TSP part and PCD body, such as the differences in thermal expansion or the like. In an example embodiment, the TSP part may include a first material layer formed from a material having thermal expansion properties that are closer to it than the PCD body, and a second material layer disposed on the first coating and forming an outer surface of the TSP part that can be formed from a material having a thermal expansion property that is more closely matched to the PCD body than the first material layer. Accordingly, it is to be understood that a TSP part having multiple material layers between it and the PCD body are within the scope of the invention.



FIG. 3C illustrates a TSP part 36 that has been treated so that all or a portion of the interstitial regions within the part, previously empty by virtue of removing the catalyst material therefrom, have been filled with a desired infiltrant material. In an example embodiment, the TSP part 36 is filled, backfilled or reinfiltrated with a material that operates to control, minimize and/or eliminate the infiltration of the catalyst material used to sinter the PCD body during HPHT processing.


Infiltration of the TSP part can take place separately from the HPHT process used to form the remaining diamond bonded body or can take place during the HPHT process, i.e., in situ, used to form the remaining diamond bonded body. In an example embodiment, where the TSP part is infiltrated before being combined with the diamond powder volume and subjected to HPHT conditions, the material that can be used to infiltrate the TSP part can be one having a higher melting temperature than that of the catalyst material used to sinter the diamond bonded body. Alternatively, the infiltrant material that is used may have a melting temperature that is less than that of the catalyst material used to form the diamond body, e.g., when the infiltrant material selected is one that is capable of forming a reaction product such as a carbide with the TSP part.


Further, the TSP part can be infiltrated without the use of high temperature and/or high pressure conditions. For example, the TSP part can be infiltrated with a polymeric or sol gel precursor material that may be subsequently treated to form a desired infiltrant in the TSP part either prior to or during HPHT processing, which HPHT processing can be the same as or separate from sintering the diamond bonded body.


Additionally, the material used as the infiltrant can be one that does or does not form a reaction product within the TSP body during infiltration or at another time subsequent to infiltration, e.g., during HPHT processing. Additionally, it may be desired that the infiltrant material be one that facilitates forming a desired attachment bond between the TSP part and the PCD body during HPHT process to form the PCD body and/or one that introduces desired properties such as fracture toughness, impact strength, and/or thermal conductivity to the TSP part.


Example infiltrant materials useful for backfilling the TSP part can include the same materials noted above useful for forming the TSP material layer, such as metallic materials, carbide formers, metal carbonates, and the like. In an example embodiment, the TSP part can be infiltrated independently of the HPHT process used for sintering the PCD body. The TSP part can be infiltrated by liquid method, wherein a desired infiltrant material is swept into the TSP part at temperatures lower that the diamond body HPHT sintering temperature, and when later subjected to the PCD sintering HPHT conditions operates to control, minimize and/or prevent the infiltration of the catalyst material. For example, the infiltrant material can include a carbide former that is introduced into the TSP part independent of the PCD sintering HPHT process, and during the infiltration stage and/or HPHT process reacts with the carbon in the TSP part to form a carbide that resists catalyst material infiltration. This reaction may also increase the melting temperature of the resulting reaction product. For example, while silicon has a melting temperature that is less than cobalt, when used as an infiltrant it reacts with the TCP part during the HPHT process to form SiC that has a melting temperature above cobalt and that operates to impair cobalt infiltration into the TSP part.


It is to be understood that the material selected to form the infiltrant material may permit some degree of catalyst material infiltration therein, possibly sufficient degree to form a desired attachment bond between the TSP body and the PCD body during the PCD sintering HPHT process. However, in an example embodiment, complete infiltration of the catalyst material used to sinter the PCD body is preferably avoided. In the event that an unwanted infiltrant be present at the surface of the TSP part, a clean up treatment may be performed on the diamond bonded construction, wherein a targeted region of the construction including the a surface of the TSP part is subjected to a leaching or other process aimed at removing the infiltrant or catalyst material from a desired surface region of the TSP part and/or diamond body.


Useful infiltrant materials include metals, metal alloys, and carbide formers, i.e., materials useful for forming a carbide reaction product with the diamond in the TSP body. Example metals and metal alloys include those selected from Group VIII of the Periodic table, examples of carbide formers include those comprising Si, Ti, B, and others known to produce a carbide reaction product when combined with diamond at HPHT conditions. Useful infiltrant materials can also include materials that operate to increase the thermal transfer capability of the construction. For example, certain metals, metal alloys, combinations of metals or alloys with diamond, can be used as infiltrant materials that operate to fill the empty voids in the TSP part, thereby facilitating thermal transfer within the construction from convection to conduction.


As used herein, the term “infiltrant material” is understood to refer to materials that are other than the catalyst material used to initially form the diamond body, and can include materials identified in Group VIII of the Periodic table that have subsequently been introduced into the already formed diamond body. Additionally, the term “infiltrant material” is not intended to be limiting on the particular method or technique use to introduce such material into the already formed diamond body


For the embodiment where the infiltrant material is introduced separately from the HPHT process used for forming the diamond bonded body, the infiltrant material preferably has a melting temperature that is within the diamond stable HPHT window, and that is either below or above that of the catalyst material used to sinter the PCD body. The infiltrant material can be provided in the form of a powder layer, a green state part, an already sintered part, or a preformed film. In an embodiment, the infiltrant material is provided in the form of a powder layer or a foil.


In another embodiment, the TSP part or segment can be infiltrated during the HPHT process used for sintering the diamond bonded body. In such embodiment, the infiltrant material can be selected from those materials having a melting point that is below the melting point of the catalyst material used to form the PCD body. Alternatively, the infiltrant material may have a higher melting temperature as noted above. The infiltrant material can be provided in the form of a powder or foil that is positioned adjacent a surface of the TSP segment, e.g., along a top surface or a working surface, such that upon heating and pressurizing during the HPHT process the infiltrant preferentially melts and infiltrates into the TSP part before the catalyst material melts, thereby filling the interstitial regions of the TSP part to partially or completely block the catalyst material from infiltrating therein.


In an example embodiment, the infiltrant material useful for infiltrating the TSP body during the HPHT process can be an inert metal or metal alloy that does not promote diamond graphitization at high temperatures and normal pressures. Such materials preferably have a melting temperature that is lower than the catalyst material used to sinter and form the diamond bonded body. Examples of such infiltrant materials include metals such as Cu, alloys of such metals, and combinations of such metals and their alloys with carbide formers. Examples include TiCu, TiCuNi and the like. Such noted inert metal alloys have the advantage of having a low melting temperature. Additionally, the presence of a carbide former along with the metal or metal alloy contributes to the formation of a carbide during HPHT processing, the presence of such carbide contributes to TSP strengthening.


If desired, the extent of backfilling or infiltrating the TSP part can be controlled to leave a portion of the TSP part uninfiltrated. This can either be done, for example, by careful control of the infiltration process, by select placement/positioning of the infiltrant material adjacent target TSP part surfaces, and by careful control of the total amount of infiltrant material relative to the available TSP pore space, or can be done after the TSP part has been completely infiltrated by treating the TSP part to remove the infiltrant from a targeted region of the TSP part. For example, it may be desired that a surface portion of the TSP part, and possibly a region extending from such surface, not include the infiltrant material for the purpose of providing a desired level of thermal stability, abrasions and/or wear resistance. In an example embodiment, such a surface portion of the TSP part may form a surface portion, such as a working surface, of the final diamond bonded construction.


Additionally, it may be desired that the infiltrant material infiltrate the TSP part only along one or more select surfaces. For example, the infiltrant material can be positioned along a top surface and one or more side surfaces of the TSP part, and not along a bottom surface of the part. In such embodiment, the infiltrant material only partially fills the top and one or more side regions of the TSP part, and not the bottom region. During HPHT processing of the diamond bonded body, the catalyst material used to sinter the diamond bonded body is free to infiltrate the TSP part through the bottom surface, thereby facilitating the formation of a strong attachment between the TSP part and the remaining diamond bonded body. In such an embodiment, the TSP part can either be selectively infiltrated during the HPHT process or can be selectively infiltrated separately from the HPHT process and then subsequently combined with the diamond volume to for HPHT processing. Accordingly, constructions formed according to this embodiment include both the presence of the desired infiltrant material along selected surfaces of the TSP part to provide desired properties at such selected surfaces, e.g., the working surfaces, while also having a strong attachment with the remaining diamond bonded body by infiltration of the catalyst material therein.


Additionally, the one or more TSP parts used to form diamond bonded construction of this invention can be both infiltrated and include a material layer. For example, the TSP part can be completely or partially infiltrated with a desired infiltrant, and further include one or more desired material layers along one or more of its surfaces. The material that is used as the infiltrant can be the same or different from that used to form the material layer.


It is to be understood that treating the TSP part by applying a material layer or by infiltration is optional, and that diamond bonded constructions of this invention can be formed using one or more TSP parts that have not been treated to include a material layer or infiltrated as described above.


The TSP part or parts used to make diamond bonded constructions of this invention can be formed having a diamond grain size, grain size distribution, and/or diamond grain volume that is the same or different than that of the remaining PCD body comprising the TSP part or parts. In an example embodiment, the TSP part is formed using diamond grains that have an average grain size that is different, e.g., smaller, than that of used to form the PCD body. As noted above, the TSP part can also be configured having two or more different regions each having a different diamond grain size and/or a different diamond volume content. Diamond bonded bodies formed using fine-sized diamond grains, e.g., having a nominal diamond grain size of less than amount 10 micrometers, tend to provide superior wear resistance when compared to diamond bonded bodies formed from larger-sized diamond grains.


As described in greater detail below, a feature of diamond bonded constructions of this invention is that they comprise a diamond bonded body having one or more TSP parts disposed therein that are bonded to an adjacent region of the diamond bonded body during the process of forming/sintering the diamond bonded body at HPHT conditions.



FIG. 4 illustrates an example embodiment diamond bonded body 40 comprising a TSP part 42 that is disposed within a PCD body 44. In this particular embodiment, the TSP part 42 is provided in the form of a wedge or pie-shaped part or segment as illustrated in FIG. 2, and is positioned within the body 40 such that a convex shaped peripheral edge 46 of the TSP part 42 forms an edge or a working surface of the body 40. Further, in this particular example, the TSP part 42 includes a top surface 48 that is positioned within the body 44 to form part of the body top surface. Thus, in this embodiment, side and bottom surfaces of the TSP part are positioned within the PCD body and may include a material layer and/or the TSP part may be infiltrated as described above. In this example embodiment, the TSP part is disposed within and bonded to the PCD body, and is not placed into contact with the substrate. The TSP part 42 is bonded to the adjacent regions of the diamond bonded body during the process of sintering the diamond bonded body at HPHT conditions.


While FIG. 4 illustrates an example diamond bonded body comprising only a single TSP part, it is to be understood that the body can be constructed to comprise an number of TSP parts that are configured and positioned to together form a working surface, or that can be configured and/or positioned to form a working surface with a desired rotation of the diamond bonded body, e.g., to place the TSP part into working contact during operation. For example, the TSP body can comprise 2, 3, 4 or any number of such wedge shaped TSP parts that positioned at locations within the body, e.g., 180 degrees, 120 degrees, or 45 degrees apart from one another, to provide a combined single working surface or to provide 2, 3 or 4 different working surfaces upon an associated rotation of the diamond body in a wear and/or cutting operation. It is to be understood that diamond bonded bodies constructed in accordance with principles of the invention can comprise one or any number of such TSP segments or part. As used herein, the term “element”, “part”, or “segment” is understood to mean a TSP body having a predetermined shape and configuration that is specifically engineered to form all or a portion of the diamond bonded construction working surface.


Further, while FIG. 4 illustrates the placement of the TSP part within the diamond bonded body forming part of the body top surface, it is to be understood that the TSP part or parts used with constructions of this invention can be positioned within the diamond bonded body such that the diamond bonded body covers all or a portion of the TSP part top surface.


TSP parts or segments used to form diamond bonded constructions can be sized and shaped differently depending on the particular end-use application and the configuration of the wear and/or cutting device. A few examples provided by way of reference are illustrated in the figures. In an example embodiment, where the construction is provided in the form of a cutting element used in a bit for drilling subterranean formations, it is desired that each TSP segment be configured to form at least about 5 percent, and preferably 10 percent or more of the of the construction working surface. The construction “working surface” as used herein is understood to be the surface of the cutter that engages or that could engage a formation or object by the end use application, e.g., a drill bit. In some instances, the TSP part can form up to 100 percent of the working surface. Thus, in some applications the total edge or working surface of the construction can be provided by a single TSP part and in others it can be provided by two or more TSP parts. In an example embodiment, the TSP part, element or segment may be configured and positioned to occupy at least about 1 mm along a circumference of the working surface, wherein the working surface is positioned along a peripheral edge of the diamond bonded construction.



FIG. 5 illustrates an example embodiment diamond bonded body 50 comprising a TSP part 52 that is disposed within a PCD body 54. In this particular embodiment, the TSP part 52 is provided in the form of a wedge or pie-shaped part or segment and is positioned within the body 50 such that a convex shaped peripheral edge 56 of the TSP part 52 forms an edge or working surface of the body 50. Further, the TSP part is positioned within the body such that both the top and bottom surfaces of the TSP part are covered by the PCD material forming the body, i.e., so that only the edge portion of the TSP part is or becomes exposed. The placement depth of the TSP part in such embodiment can and will vary depending on the end-use application.



FIGS. 4 and 5 illustrate embodiments of diamond bonded bodies that comprise one or more TSP parts positioned within the body such that an edge surface of the TSP part is exposed to form an edge surface of the body or a working surface. However, it is to be understood that diamond bonded bodies may include one or more TSP parts that are positioned within the body having an edge surface that is not initially exposed, but that can be exposed and that can form the working surface either before being placed into use, e.g., by removing the adjacent portion of the diamond bonded body by machining process, or after a period of time once placed into use by the wearing away of the adjacent portion of the diamond bonded body during a wear or cutting operation.



FIG. 6 illustrates an example embodiment diamond bonded body 60 comprising a TSP part 62 that is disposed within a PCD body 64. In this particular embodiment, the TSP part 62 is provided in the form of a wedge or pie-shaped part or segment that is positioned within the body 60 such that an edge 66 of the TSP part is covered by a region of PCD material adjacent an outer edge 68 of the body. In this particular embodiment, the TSP part is positioned so that it is completely surrounded by the PCD material with its top and bottom surfaces covered. In an example embodiment, the TSP part edge 66 can become exposed to form an outer or working surface of the body prior to placing the body into operation by machining process or the like to remove the covering PCD region, or can be exposed after placing the body into operation after a period of time sufficient to remove the covering PCD region.



FIG. 7 illustrates an example embodiment diamond bonded body 70 comprising a TSP part 72 that is disposed within a PCD body 74. In this particular embodiment, the TSP part 72 is provided in the form of an annular section that is positioned within the body 74 such that an outside surface 76 of the section forms an outer wall surface of the body adjacent an edge 78 of the body. In this particular embodiment, the TSP part inner wall surface is bonded to the PCD material of the body and is positioned along a wall surface of the body to form a lip during placement of the body in a wear or cutting operation as the body edge 78 becomes worn away.


While the constructions illustrated in FIGS. 4 to 7 do not show the presence of a substrate attached to the diamond bonded body, it is to be understand that such constructions can be configured to include substrates attached to the diamond bonded body. The substrate can be attached during HPHT formation of the diamond bonded body or can be attached by other technique, such as by brazing or welding or the like. Additionally, it is to be understood that the constructions illustrated in FIGS. 4 to 7 may or may not be configured to include one or more material layers and/or infiltrants as described above depending on the particular end use application.



FIG. 8. illustrates an example embodiment diamond bonded body 80 comprising a TSP part 82 that is disposed within a PCD body 84. Like the embodiment illustrated in FIG. 4, the TSP part 82 is provided in the form of a wedge or pie-shaped part or segment and is positioned within the body 80 such that a convex-shaped peripheral edge 86 of the TSP part 82 forms an edge and working surface of the body 84. Unlike the embodiment of FIG. 4, the TSP part 82 extends axially within the body 94 to a substrate 88 that is attached to the body. The TSP part can include a material layer and/or may be infiltrated as described above. This example illustrates that the TSP part or parts disposed within the diamond bonded body can extend through the body to a substrate used to form the construction.



FIG. 9 illustrates an example embodiment diamond bonded body 90 comprising a TSP part 92 that is disposed within a PCD body 94. In this particular embodiment, the TSP part 92 is provided in the form of a solid disk that is positioned within the body 94. The TSP part 92 has a diameter sized to form a peripheral edge 96 or working surface of the PCD body 94. The TSP part 92 includes a top surface 98 that is positioned within the body 94 to form the body top surface. In this embodiment, the bottom surface of the TSP part is positioned within the PCD body and may include a material layer and/or the TSP part may be infiltrated as described above. In this example embodiment, the TSP part is disposed within and bonded to the PCD body, and is not placed into contact with the substrate. The TSP part 92 is bonded to the adjacent region of the diamond bonded body during the process of sintering the diamond bonded body at HPHT conditions.


While the TSP part shown in FIG. 9 is illustrated having a particular configuration, e.g., in the form of a solid disk, it is to be understood that other TSP part shapes can be used for forming diamond bonded constructions of this invention. For example, the TSP part can be provided in the form of an annular ring, or an arc-shaped section, having an outside diameter that is sized to permit placement within the diamond bonded body to form a working surface along a peripheral edge of the construction. Such a TSP ring or arc-shaped section can be positioned at the top of the body or a desired depth below the body top surface, depending on the particular end-use application.


Further, although the TSP parts described above and shown in the figures have been illustrated as having generally smooth surfaces, it is to be understood that the TSP parts used in making diamond bonded constructions can comprise one or more surface features to provide a nonplanar interface with an adjacent region of the PCD material, which can provide additional strength to the attachment between the TSP part and the adjacent PCD body region. Still further, while certain TSP part configurations and placements within the diamond bonded body have been described and illustrated, it is to be understood that the exact TSP part configuration and placement position can and will vary depending on the particular construction geometry and the end-use application.


As illustrated in FIG. 8, diamond bonded constructions of this invention generally comprise a diamond bonded body, comprising one or more TSP parts or segments disposed therein, that is attached to a substrate. Accordingly, it is to be understood that the example diamond bonded bodies illustrated in FIGS. 4 to 7 and 9 are preferably attached to a substrate to form a diamond bonded construction that will facilitate attachment with a desired end use device, e.g., by welding or brazing attachment.


Substrates useful for forming diamond bonded-constructions can be the same as those used to form conventional PCD materials, such a metallic materials, ceramic materials, cermet materials, and combinations thereof. The substrate can be attached to the body either during the process of forming the diamond bonded body by HPHT processing, or can be attached to the body after it has been formed by welding, brazing or other such techniques.


In an example embodiment, where the substrate is attached to the body during the HPHT process used to form the body including the TSP part, it is desired that the substrate material comprise a metallic material capable of both facilitating a bonded attachment with the body and supplying a catalyst material to the diamond volume used to sinter the PCD body during such HPHT processing. In a preferred embodiment, a useful substrate is formed from WC—Co. The substrate can be provided in powder form, as a green state part, or can be provided in the form of an already-sintered part.


In an example embodiment, diamond bonded construction of this invention are prepared by placing the one or more TSP parts formed in the manner noted above into a desired region within a volume of diamond powder disposed within a suitable HPHT container. In an example embodiment, the TSP part or parts are positioned within the diamond volume to provide a desired placement position within the resulting PCD body to form an outer or working surface of the body. A substrate is positioned adjacent the diamond volume and comprises a catalyst material capable of infiltrating into the diamond volume during the HPHT process. The container can be formed from those materials conventionally used to form PCD, such as niobium, tantalum, molybdenum, zirconium, mixtures thereof and the like.


The container is then loaded into a HPHT device, such as that used to form conventional PCD, and the device is operated to subject the contents of the container to a desired HPHT condition for a designated period of time. In an example embodiment, the container can be subjected to the same HPHT conditions as described above for the first HPHT cycle for forming the PCD material used to form the TSP part or parts.


A feature of diamond bonded constructions prepared in accordance with the invention is the inclusion of a TSP part or segment within a diamond bonded body during the process of making the diamond body, e.g., comprising PCD, to provide desired properties of wear and abrasion resistance to the construction while not otherwise sacrificing desired properties such as toughness. A further feature of such constructions is that it enables one to engineer, position, and configure a desired outer surface or working surface made from TSP within a PCD body to specifically meet the wear and/or cutting demands of a particular end-use application, providing desired wear resistant and abrasion resistant properties where they are more needed while retaining desired toughness adjacent the wear surface and within remaining portions of the body, and while achieving a strong attachment with between the TSP part and the diamond bonded body.


Diamond bonded constructions of this invention can be used in a number of different applications, such as tools for mining, cutting, machining, milling and construction applications, wherein properties of shear strength, thermal stability, wear and abrasion resistance, mechanical strength, and/or reduced thermal residual stress at and/or adjacent the working surface are highly desired. Constructions of this invention are particularly well suited for forming working, wear and/or cutting elements in machine tools and drill and mining bits such as roller cone rock bits, percussion or hammer bits, diamond bits, and shear cutters used in subterranean drilling applications.



FIG. 10 illustrates a drag bit 162 comprising a plurality of cutting elements made from ultra-hard and metallic constructions of this invention configured in the form of shear cutters 164. The shear cutters 164 are each attached to blades 166 that extend from a head 168 of the drag bit for cutting against the subterranean formation being drilled. The shear cutters 164 are attached by conventional welding or brazing technique to the blades and are positioned to provide a desired cutting surface.



FIG. 11 illustrates a rotary or roller cone drill bit in the form of a rock bit 170 comprising a number of the ultra-hard and metallic constructions of this invention provided in the form of wear or cutting inserts 172. The rock bit 170 comprises a body 174 having three legs 176, and a roller cutter cone 178 mounted on a lower end of each leg. The inserts 172 can be formed according to the methods described above. The inserts 172 are provided in the surfaces of each cutter cone 178 for bearing on a rock formation being drilled. In an example embodiment, the inserts can be positioned along the gage and/or heel row of the drill bit.



FIG. 12 illustrates the inserts described above as used with a percussion or hammer bit 180. The hammer bit comprises a hollow steel body 182 having a threaded pin 184 on an end of the body for assembling the bit onto a drill string (not shown) for drilling oil wells and the like. A plurality of the inserts 172 are provided in the surface of a head 186 of the body 182 for bearing on the subterranean formation being drilled.


Other modifications and variations of ultra-hard and metallic constructions of this invention will be apparent to those skilled in the art. It is, therefore, to be understood that within the scope of the appended claims, this invention may be practiced otherwise than as specifically described.

Claims
  • 1. An ultra-hard composite construction comprising: a body formed from an ultra-hard material having a hardness of greater than about 4,000 HV; anda thermally stable element disposed within and bonded to the body, wherein the thermally stable element has a level of thermal stability that is greater than that of the ultra-hard material, and wherein the thermally stable element has an average grain size that is different than that of the body.
  • 2. The construction as recited in claim 1 wherein the thermally stable element has an average grain size less than about 10 microns.
  • 3. The construction as recited in claim 2 wherein the body has a grain size greater than the thermally stable element.
  • 4. The construction as recited in claim 1 wherein the thermally stable element is positioned in the body to form a working surface of the construction.
  • 5. The construction as recited in claim 1 wherein the thermally stable element is formed separately from the body.
  • 6. The construction as recited in claim 1 wherein the thermally stable element is bonded to the body during formation of the body at high pressure-high temperature conditions.
  • 7. The construction as recited in claim 1 wherein the ultra-hard material comprises sintered polycrystalline diamond having a catalyst material disposed therein.
  • 8. The construction as recited in claim 1 wherein the thermally stable element comprises sintered polycrystalline diamond that is substantially free of a catalyst material used to form the polycrystalline diamond.
  • 9. The construction as recited in claim 1 wherein the thermally stable element is formed separately from the body and is bonded to the body during a high pressure-high temperature condition used to form the body, and wherein the construction further comprises a metallic substrate that is attached to the body.
  • 10. A bit for drilling subterranean formations comprising a bit body and a number of cutting elements operatively attached thereto, the cutting elements comprising the construction as recited in claim 1.
  • 11. A thermally stable element containing assembly comprising; a volume of precursor material grains useful for forming an ultra-hard body having a hardness of greater than about 4,000 HV when sintered at high-pressure-high temperature processing conditions; anda thermally stable sintered element disposed within the volume of the precursor material and having an average grain size that is different from the precursor material grains;wherein the ultra-hard body is formed by subjecting the volume of precursor material to high pressure-high temperature processing condition, and wherein the thermally stable element is relatively more thermally stable than the ultra-hard body.
  • 12. The assembly as recited in claim 11 wherein the thermally stable element has an average grain size of less than about 10 microns.
  • 13. The assembly as recited in claim 11 wherein the thermally stable element is bonded to the ultra-hard body during the high pressure-high temperature processing conditions.
  • 14. The assembly as recited in claim 11 wherein the precursor material is diamond grains, and wherein the ultra-hard body is formed in the presence of a catalyst material to form a polycrystalline diamond body.
  • 15. The assembly as recited in claim 11 wherein the thermally stable element is positioned within the body to form a portion of a working surface.
  • 16. The assembly as recited in claim 11 further comprising a metallic substrate positioned adjacent the precursor material.
  • 17. A method for making an ultra-hard composite construction comprising: combining a sintered thermally stable element together with a volume of precursor material grains to form an assembly; andsubjecting the assembly to high pressure-high temperature processing conditions to sinter the volume precursor material grains to form an ultra-hard body having a hardness of greater than about 4,000 HV, wherein the thermally stable element has an average grain size different than that of the ultra-hard body;wherein during the step of subjecting, the thermally stable element is bonded to the ultra-hard body to form at least part of a working surface, and wherein the thermally stable element is relatively more thermally stable than the body.
  • 18. The method as recited in claim 17 wherein the assembly includes a metallic substrate disposed thereby, and wherein during the step of subjecting the body is attached to the substrate.
  • 19. The method as recited in claim 18 wherein the precursor material grains comprise diamond grains, and wherein the step of subjecting takes place in the presence of a catalyst material.
  • 20. The method as recited in claim 19 wherein after the step of subjecting, the thermally stable element is substantially free of the catalyst material.
  • 21. The method as recited in claim 19 wherein the thermally stable element comprises bonded-together diamond grains.
  • 22. The method as recited in claim 19 wherein the thermally stable element comprises an infiltrant.
  • 23. An ultra-hard cutting element comprising: an ultra-hard body having a hardness of greater than about 4,000 HV;a thermally stable element disposed in the ultra-hard body, the thermally stable element having a thermal stability that is greater than that of the ultra-hard body and having an average grain size different than that of the ultra-hard body, the thermally stable element being formed separately from the ultra-hard body and being bonded thereto during a high pressure-high temperature process used to form the ultra-hard body; anda metallic substrate attached to the body.
  • 24. The cutting element as recited in claim 23 wherein the thermally stable element is positioned within the body to form at least part of a working surface of the cutting element.
  • 25. The cutting element as recited in claim 23 wherein the thermally stable element comprises an average grain size of less than about 10 microns.
  • 26. The cutting element as recited in claim 23 wherein the ultra-hard body comprises polycrystalline diamond and is formed in the presence of a catalyst material.
  • 27. The cutting element as recited in claim 26 wherein the thermally stable element is substantially free of the catalyst material.
  • 28. The cutting element as recited in claim 26 wherein the thermally stable element comprises one or both of an infiltrant and an infiltration barrier.
Parent Case Info

This application is a continuation of U.S. patent application Ser. No. 13/338,146, filed on Dec. 27, 2011, now U.S. Pat. No. 8,365,844 issued Feb. 5, 2013, which is a continuation of U.S. patent application Ser. No. 12/245,582 filed Oct. 3, 2008, now U.S. Pat. No. 8,083,012 issued Dec. 27, 2011, which are both expressly incorporated by reference herein.

US Referenced Citations (200)
Number Name Date Kind
3136615 Bovenkerk et al. Jun 1964 A
3141746 Lai Jul 1964 A
3233988 Wentorf, Jr. et al. Feb 1966 A
3745623 Wentorf, Jr. et al. Jul 1973 A
4108614 Mitchell Aug 1978 A
4109737 Bovenkerk Aug 1978 A
4151686 Lee et al. May 1979 A
4224380 Bovenkerk et al. Sep 1980 A
4225322 Knemeyer Sep 1980 A
4255165 Dennis et al. Mar 1981 A
4268276 Bovenkerk May 1981 A
4288248 Bovenkerk et al. Sep 1981 A
4303442 Hara et al. Dec 1981 A
4311490 Bovenkerk et al. Jan 1982 A
4373593 Phaal et al. Feb 1983 A
4387287 Marazzi Jun 1983 A
4412980 Tsuji et al. Nov 1983 A
4440246 Jurgens Apr 1984 A
4481016 Campbell et al. Nov 1984 A
4486286 Lewin et al. Dec 1984 A
4498549 Jurgens Feb 1985 A
4504519 Zelez Mar 1985 A
4505746 Nakai et al. Mar 1985 A
4515226 Mengel et al. May 1985 A
4522633 Dyer Jun 1985 A
4525179 Gigl Jun 1985 A
4534773 Phaal et al. Aug 1985 A
4556403 Almond et al. Dec 1985 A
4560014 Geczy Dec 1985 A
4570726 Hall Feb 1986 A
4572722 Dyer Feb 1986 A
4602691 Weaver Jul 1986 A
4604106 Hall Aug 1986 A
4605343 Hibbs, Jr. et al. Aug 1986 A
4606738 Hayden Aug 1986 A
4621031 Scruggs Nov 1986 A
4636253 Nakai et al. Jan 1987 A
4645977 Kurokawa et al. Feb 1987 A
4662348 Hall et al. May 1987 A
4664705 Horton et al. May 1987 A
4670025 Pipkin Jun 1987 A
4707384 Schachner et al. Nov 1987 A
4726718 Meskin et al. Feb 1988 A
4764434 Aronsson et al. Aug 1988 A
4766040 Hillert et al. Aug 1988 A
4776861 Frushour Oct 1988 A
4784023 Dennis Nov 1988 A
4792001 Zijsling Dec 1988 A
4793828 Burnand Dec 1988 A
4797138 Komanduri Jan 1989 A
4797241 Peterson et al. Jan 1989 A
4798026 Cerceau Jan 1989 A
4802539 Hall et al. Feb 1989 A
4807402 Rai Feb 1989 A
4828582 Frushour May 1989 A
4844185 Newton, Jr. et al. Jul 1989 A
4850523 Slutz Jul 1989 A
4861350 Phaal et al. Aug 1989 A
4871377 Frushour Oct 1989 A
4882128 Hukvari et al. Nov 1989 A
4899922 Slutz et al. Feb 1990 A
4919220 Fuller et al. Apr 1990 A
4931068 Dismukes et al. Jun 1990 A
4933529 Saville Jun 1990 A
4940180 Martell Jul 1990 A
4943488 Sung et al. Jul 1990 A
4944772 Cho Jul 1990 A
4976324 Tibbitts Dec 1990 A
4985051 Ringwood Jan 1991 A
5011514 Cho et al. Apr 1991 A
5027912 Juergens Jul 1991 A
5028177 Meskin et al. Jul 1991 A
5030276 Sung et al. Jul 1991 A
5032147 Frushour Jul 1991 A
5037704 Nakai et al. Aug 1991 A
5068148 Nakahara et al. Nov 1991 A
5092687 Hall Mar 1992 A
5116568 Sung et al. May 1992 A
5127923 Bunting et al. Jul 1992 A
5135061 Newton, Jr. Aug 1992 A
5176720 Martell et al. Jan 1993 A
5186725 Martell et al. Feb 1993 A
5199832 Meskin et al. Apr 1993 A
5205684 Meskin et al. Apr 1993 A
5213248 Horton et al. May 1993 A
5238074 Tibbitts et al. Aug 1993 A
5264283 Waldenstrom et al. Nov 1993 A
5337844 Tibbitts Aug 1994 A
5369034 Hargett et al. Nov 1994 A
5370195 Keshavan et al. Dec 1994 A
5379853 Lockwood et al. Jan 1995 A
5439492 Anthony et al. Aug 1995 A
5464068 Najafi-Sani Nov 1995 A
5468268 Tank et al. Nov 1995 A
5496638 Waldenstrom et al. Mar 1996 A
5505748 Tank et al. Apr 1996 A
5510193 Cerutti et al. Apr 1996 A
5523121 Anthony et al. Jun 1996 A
5524719 Dennis Jun 1996 A
5560716 Tank et al. Oct 1996 A
5590729 Cooley et al. Jan 1997 A
5592995 Scott et al. Jan 1997 A
5607024 Keith et al. Mar 1997 A
5620382 Cho et al. Apr 1997 A
5624068 Waldenstrom et al. Apr 1997 A
5645617 Frushour Jul 1997 A
5667028 Truax et al. Sep 1997 A
5718948 Ederyd et al. Feb 1998 A
5722497 Gum et al. Mar 1998 A
5722499 Nguyen et al. Mar 1998 A
5776615 Wong et al. Jul 1998 A
5833021 Mensa-Wilmot et al. Nov 1998 A
5862873 Matthias et al. Jan 1999 A
5887580 Eyre Mar 1999 A
5897942 Karner et al. Apr 1999 A
5954147 Overstreet et al. Sep 1999 A
5957228 Yorston et al. Sep 1999 A
5979578 Packer Nov 1999 A
6009963 Chaves et al. Jan 2000 A
6011232 Matthias Jan 2000 A
6054693 Barmatz et al. Apr 2000 A
6063333 Dennis May 2000 A
6082474 Matthias Jul 2000 A
6123612 Goers Sep 2000 A
6126741 Jones et al. Oct 2000 A
6131678 Griffin Oct 2000 A
6145607 Griffin et al. Nov 2000 A
6165616 Lemelson et al. Dec 2000 A
6193001 Eyre et al. Feb 2001 B1
6202770 Jurewicz et al. Mar 2001 B1
6202771 Scott et al. Mar 2001 B1
6227318 Siracki May 2001 B1
6234261 Evans et al. May 2001 B1
6248447 Griffin et al. Jun 2001 B1
6269894 Griffin Aug 2001 B1
6283234 Torbet Sep 2001 B1
6302225 Yoshida et al. Oct 2001 B1
6315067 Fielder Nov 2001 B1
6315652 Snyder et al. Nov 2001 B1
6344149 Oles Feb 2002 B1
6410085 Griffin et al. Jun 2002 B1
6435058 Matthias et al. Aug 2002 B1
6443248 Yong et al. Sep 2002 B2
6488106 Dourfaye Dec 2002 B1
6510910 Eyre et al. Jan 2003 B2
6527069 Meiners et al. Mar 2003 B1
6544308 Griffin et al. Apr 2003 B2
6550556 Middlemiss et al. Apr 2003 B2
6562462 Griffin et al. May 2003 B2
6571891 Smith et al. Jun 2003 B1
6585064 Griffin et al. Jul 2003 B2
6589640 Griffin et al. Jul 2003 B2
6592985 Griffin et al. Jul 2003 B2
6601662 Matthias et al. Aug 2003 B2
6739214 Griffin et al. May 2004 B2
6739417 Smith et al. May 2004 B2
6749033 Griffin et al. Jun 2004 B2
6797326 Griffin et al. Sep 2004 B2
6892836 Eyre et al. May 2005 B1
7234550 Azar et al. Jun 2007 B2
7261753 Yamamoto et al. Aug 2007 B2
7377341 Middlemiss et al. May 2008 B2
7426969 Azar Sep 2008 B2
7462003 Middlemiss Dec 2008 B2
7473287 Belnap et al. Jan 2009 B2
7517589 Eyre Apr 2009 B2
7533740 Zhang et al. May 2009 B2
7647993 Middlemiss Jan 2010 B2
7828088 Middlemiss et al. Nov 2010 B2
8034136 Sani Oct 2011 B2
8056650 Middlemiss et al. Nov 2011 B2
8061454 Voronin et al. Nov 2011 B2
8083012 Voronin et al. Dec 2011 B2
8365844 Voronin et al. Feb 2013 B2
20020023733 Hall et al. Feb 2002 A1
20050050801 Cho et al. Mar 2005 A1
20050115744 Griffin et al. Jun 2005 A1
20050129950 Griffin et al. Jun 2005 A1
20050139397 Achilles et al. Jun 2005 A1
20050230156 Belnap et al. Oct 2005 A1
20050263328 Middlemiss Dec 2005 A1
20050269139 Shen et al. Dec 2005 A1
20060032677 Azar et al. Feb 2006 A1
20060060390 Eyre Mar 2006 A1
20060060392 Eyre Mar 2006 A1
20060165993 Keshavan Jul 2006 A1
20060217258 Zhao Sep 2006 A1
20060266558 Middlemiss et al. Nov 2006 A1
20070079994 Middlemiss Apr 2007 A1
20070169419 Davis et al. Jul 2007 A1
20070181348 Lancaster et al. Aug 2007 A1
20080142276 Griffo et al. Jun 2008 A1
20080209818 Belnap et al. Sep 2008 A1
20080223621 Middlemiss et al. Sep 2008 A1
20080223623 Keshavan et al. Sep 2008 A1
20080230280 Keshavan et al. Sep 2008 A1
20090133938 Hall et al. May 2009 A1
20090173547 Voronin et al. Jul 2009 A1
20100121852 Kim May 2010 A1
20100122852 Russell et al. May 2010 A1
Foreign Referenced Citations (59)
Number Date Country
2535387 Aug 2006 CA
0156264 Oct 1985 EP
0157278 Oct 1985 EP
0 196 777 Oct 1986 EP
0246789 Nov 1987 EP
0297071 Dec 1988 EP
0300699 Jan 1989 EP
0329954 Aug 1989 EP
0336698 Oct 1989 EP
0352811 Jan 1990 EP
0374424 Jun 1990 EP
0500253 Aug 1992 EP
0582484 Feb 1994 EP
0595630 May 1994 EP
0612868 Aug 1994 EP
0617207 Sep 1994 EP
0787820 Aug 1997 EP
0860515 Aug 1998 EP
1116858 Jul 2001 EP
1190791 Mar 2002 EP
1958688 Aug 2008 EP
1349385 Apr 1974 GB
2048927 Dec 1980 GB
2204625 Nov 1988 GB
2261894 Jun 1993 GB
2268768 Jan 1994 GB
2270492 Mar 1994 GB
2270493 Mar 1994 GB
2323398 Sep 1998 GB
2351747 Jan 2001 GB
2367081 Mar 2002 GB
2 408 735 Jun 2005 GB
2409474 Jun 2005 GB
2413575 Nov 2005 GB
2413813 Nov 2005 GB
2418215 Mar 2006 GB
2422623 Aug 2006 GB
2427215 Dec 2006 GB
2429471 Feb 2007 GB
2429727 Mar 2007 GB
2431948 May 2007 GB
2438073 Nov 2007 GB
2438319 Nov 2007 GB
2447776 Sep 2008 GB
2453023 Mar 2009 GB
2454122 Apr 2009 GB
59219500 Dec 1984 JP
60187603 Sep 1985 JP
8176696 Jul 1996 JP
990486 Jan 1983 SU
WO-9323204 Nov 1993 WO
WO-9634131 Oct 1996 WO
WO-0028106 May 2000 WO
WO-2004040095 May 2004 WO
WO-2004106003 Dec 2004 WO
WO-2004106004 Dec 2004 WO
WO-2007042920 Apr 2007 WO
WO-2008063568 May 2008 WO
WO-2009125355 Oct 2009 WO
Non-Patent Literature Citations (18)
Entry
Office Action in U.S. Appl. No. 12/406,764 dated Aug. 20, 2010.
Office Action in U.S. Appl. No. 12/406,764 dated Mar. 18, 2010.
Office Action in U.S. Appl. No. 12/416,817 dated Mar. 9, 2010.
Office Action in U.S. Patent Reexamination Control No. 90/009,607 dated Apr. 1, 2010.
Search Report for British Patent Application No. GB 0916199.3, dated Jan. 20, 2010 total 5 pages.
Office Action in U.S. Patent Reexamination Control No. 90/009,607 dated Jan. 27, 2010, 13 pages.
Office Action in U.S. Appl. No. 11/350,620, now issued patent No. 7,533,740 dated Jun. 9, 2008.
Office Action in U.S. Appl. No. 11/350,620 now Issued Patent No. 7,533,740 dated Oct. 31, 2008.
Notice of Allowance in U.S. Appl. No. 11/350,620, now Issued Patent No. 7,533,740, dated Feb. 10, 2009.
Reexamination Application No. 90/009,607 filed Oct. 13, 2009 (Reexamination of Patent No. 7,533,740 issued May 19, 2009).
Zhang et al.; “Thermally Stable Polycrystalline Diamond Cutting Elements and Bits Incorporating the Same” filed in U.S. Appl. No. 12/406,764 on Mar. 18, 2009, which is a divisional of U.S. Appl. No. 11/350,602, now U.S. Patent No. 7,533,740; totalk 38 pages (previously submitted in parent case).
Zhang et al.; “Thermally Stable Polycrystalline Diamond Cutting Elements and Bits Incorporating the Same” filed in U.S. Appl. No. 12/416,871 on Apr. 1, 2009, which is a divisional of U.S. Appl. No. 11/350,602, now U.S. Patent No. 7,533,740; total 38 pages (previously submitted in parent case).
Radtke et al.; Faster Drilling Longer Life: Thermally Stable Diamond Drill Bit Cutters, Summer 2004 Gas Tips, 2004, pp. 5-9 (previously submitted in parent case).
Office Action in U.S. Appl. No. 12/416,817 dated Jul. 31, 2009.
Office Action in U.S. Appl. No. 13/338,146 dated Apr. 6, 2012.
Office Action in U.S. Appl. No. 13/338,146 dated Jul. 19, 2012.
Office Action in U.S. Appl. No. 12/245,582 dated Feb. 9, 2011.
Office Action in U.S. Appl. No. 12/245,582 dated Jun. 10, 2011.
Related Publications (1)
Number Date Country
20130146369 A1 Jun 2013 US
Continuations (2)
Number Date Country
Parent 13338146 Dec 2011 US
Child 13759751 US
Parent 12245582 Oct 2008 US
Child 13338146 US