The present invention is generally directed to gemstones and, more particularly, to non-round gemstones, preferably diamonds, having a unique cut that produces greater light amplification at the crown and table surfaces thereof.
The original round, brilliant-cut was developed by Marcel Tolkowsky in 1919. The round brilliant consists of 58 facets and is widely popular. In more recent years, non-round diamond shapes have come into vogue. The present invention is focused on non-round diamond cuts, such as those that are known as the emerald, cushion and radiant cuts. But the disclosure herein is also applicable to other oblong shapes, such as the marquis and oval cuts. It may even be applied to the asscher and princess cuts as well. The unique look of the emerald cut diamonds is created by the “step cuts” of its pavilion and its large, open table. Instead of the sparkle of the brilliant cut, emerald cut diamonds produce a hall-of-reflection-mirrors effect, with an interplay of light and dark planes. While less fiery, the long lines and dramatic flashes of light give the emerald cut an elegant appeal.
The present invention builds and improves upon the specially-shaped emerald diamond shown in the present inventor's issued U.S. Design Pat. No. D698,298, the contents of which are incorporated herein by reference.
As is well known, emerald and cushion cut diamonds have associated therewith certain parameters. These parameters include the crown angle, the crown height percentage, the girdle height percentage, the pavilion angle, the table percentage and the total depth percentage. Conventionally, the crown angle for an emerald cut is in the range of 35-36°. The pavilion angle is in the range of 40-41.5°. The total depth percentage is conventionally in the range of 60-70%.
As could be appreciated from the foregoing, emerald cut diamonds do not provide the brilliance and light reflecting experience which is the hallmark of the round, brilliant cut stones. The diamond trade has invested enormous efforts in searching for and attempting to find cuts that would increase the brilliance of oblong gemstones such as the emerald and cushion cut stones.
It is an object of the present invention to provide oblong gemstone shapes that are more sparkling.
It is another object of the invention to provide oblong shaped gemstones, particularly diamonds, that provide greater light reflection amplification.
The foregoing and other objects of the invention are realized by an oblong precious stone that includes: a table having a table plane; a first long crown surface extending at a predetermined crown angle to the table plane; a second long crown surface opposed to the first long crown surface and extending at said crown angle relative to the table plane; a first long pavilion surface extending at a predetermined pavilion angle relative to the table plane; a second long pavilion surface extending oppositely to the first long pavilion surface and extending at said predetermined pavilion angle relative to the table plane; wherein said predetermined crown angle is in the range of 30-36 and wherein said pavilion angle is in the range of 30-34; and wherein said predetermined crown angle and said pavilion angle are so formed that the predetermined crown angle is either equal to or larger than said pavilion angle by an angle that does not exceed 6 degrees.
Preferably, the precious stone has a crown angle in the range of 31-34; a crown height percentage of 8-13; a girdle height percentage of 3.5-4.5; a pavilion angle in the range of 31-33; a table percentage in the range of 72-77 and a total depth percentage in the range of 40-50.
Other features and advantages of the present invention will become apparent from the following description of the invention which refers to the accompanying drawings.
Referring to
In marked departure from the prior art, the instant inventor has discovered that a brilliant-like reflection pattern can be obtained by providing an emerald cut stone with a very shallow underside, namely by forming the pavilion angles in the range of 30 to 34 degrees, preferably 31 to 33 degrees, as opposed to the conventional pavilion angles which are in the range of 40 to 41.5 degrees. Furthermore, unlike the total depth percentage which is conventionally in the range of 60 to 70 percent, the present invention realizes its unexpectedly improved brilliance and light amplification characteristics by setting the total depth percentage in a range from 36.00 to 57.00. The crown angle is preferably from 30 to 36 degrees.
The realization of the unexpected brilliance of the diamond cut herein described is also dependent on assuring that the pavilion angle is equal to or smaller by up to 6 degrees, as compared to the crown angle.
The table below provides the relevant parameters for an emerald cut diamond, indicating in each instance a minimum value, a maximum value and a preferred range.
Additional criteria of the foregoing is that the pavilion angle is 6° or less than the crown angle. In other words, the pavilion angle <6° crown angle.
By adhering to the criteria set forth in the above table, and with reference to
In marked contrast to the prior art, the light pattern for an emerald stone in accordance with the present invention, follows a path whereby light is reflected from one pavilion surface to an opposed crown surface, then to the other pavilion surface, then to the table, then back to the pavilion surface, then to the crown, then to the opposed pavilion and only then out to the table. This light pattern, with light rays being repeatedly reflected and refracted between many diamond surfaces creates an extremely brilliant light display that has been very well received and appreciated by those who have seen it.
In
Although the present invention has been described in relation to particular embodiments thereof, many other variations and modifications and other uses will become apparent to those skilled in the art. It is preferred, therefore, that the present invention be limited not by the specific disclosure herein, but only by the appended claims.